JP5499830B2 - Combination ball bearings and double row ball bearings - Google Patents

Combination ball bearings and double row ball bearings Download PDF

Info

Publication number
JP5499830B2
JP5499830B2 JP2010077160A JP2010077160A JP5499830B2 JP 5499830 B2 JP5499830 B2 JP 5499830B2 JP 2010077160 A JP2010077160 A JP 2010077160A JP 2010077160 A JP2010077160 A JP 2010077160A JP 5499830 B2 JP5499830 B2 JP 5499830B2
Authority
JP
Japan
Prior art keywords
ball
pocket
ring
ring portion
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010077160A
Other languages
Japanese (ja)
Other versions
JP2011208730A (en
Inventor
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010077160A priority Critical patent/JP5499830B2/en
Publication of JP2011208730A publication Critical patent/JP2011208730A/en
Application granted granted Critical
Publication of JP5499830B2 publication Critical patent/JP5499830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/418Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/46Gap sizes or clearances

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、例えば産業機械、ロボットの関節部や旋回機構部、工作機械の回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等に用いられる組合せ玉軸受や複列玉軸受に関し、特にラジアル荷重と両方向のアキシアル荷重、特に大きなモーメント荷重が負荷として作用する用途に使用される玉軸受に関する。   The present invention includes, for example, combination ball bearings used in industrial machines, robot joints and turning mechanisms, rotary tables and spindle turning mechanisms in machine tools, medical equipment, semiconductor / liquid crystal manufacturing devices, optical and optoelectronic devices, etc. The present invention relates to a double row ball bearing, and more particularly to a ball bearing used for an application in which a radial load and an axial load in both directions, particularly a large moment load acts as a load.

通常、玉軸受、例えば深みぞ玉軸受などでは、図9に示すように、内輪2及び外輪1の軌道面間に玉3が回転自在に挟持され、封入グリースの保持及び外部への洩れ防止、あるいは外部から軸受内部への異物侵入防止等の目的で、内輪2及び外輪1間の軸方向端面にシール5を装着している。また、玉3を保持する玉案内保持器4としては、図10に示すように、リング部6aに所要数のポケット部6bを形成した冠形(片持ちリング構造)の玉案内合成樹脂保持器が標準的に採用されている。   Normally, in a ball bearing, for example, a deep groove ball bearing, as shown in FIG. 9, the ball 3 is rotatably held between the raceway surfaces of the inner ring 2 and the outer ring 1 to hold sealed grease and prevent leakage to the outside. Or the seal | sticker 5 is mounted | worn on the axial direction end surface between the inner ring | wheel 2 and the outer ring | wheel 1 in order to prevent the foreign material penetration | invasion from the exterior to the inside of a bearing. Further, as a ball guide holder 4 for holding the balls 3, as shown in FIG. 10, a crown-shaped (cantilever ring structure) ball guide synthetic resin holder in which a required number of pocket portions 6b are formed in a ring portion 6a. Is adopted as standard.

この玉案内保持器4は、図10に示すように、通常、玉3を保持するポケット内面6cは、玉3の曲率より僅かに大きな曲率を持った球面形状に形成されており、保持器4の半径方向の動き量は、図11に示すように、玉3とポケット内径側端面間のすきまΔR1、又は玉3とポケット外径側端面間のすきまΔR2の何れか小さい方で位置決めされる。
また、保持器4の軸方向の動き量は、図12に示すように、一方向はリング側ポケット内面6cと玉3とのすきまΔS1で位置決めされ、もう一方向は、ポケット柱部6dの先端に形成した玉係止部6eと玉3とのすきまΔS2によって位置決めされる。
As shown in FIG. 10, the ball guide holder 4 normally has a pocket inner surface 6 c that holds the ball 3 formed in a spherical shape having a curvature slightly larger than the curvature of the ball 3. As shown in FIG. 11, the movement amount in the radial direction is determined by the smaller one of the clearance ΔR 1 between the ball 3 and the pocket inner diameter side end surface or the clearance ΔR 2 between the ball 3 and the pocket outer diameter side end surface. The
Further, as shown in FIG. 12, the amount of movement of the cage 4 in the axial direction is determined by the clearance ΔS 1 between the ring-side pocket inner surface 6c and the ball 3 in one direction, and the other direction is that of the pocket column portion 6d. The ball is positioned by a clearance ΔS 2 between the ball locking portion 6 e formed at the tip and the ball 3.

また、保持器4は、通常、射出成形で製作されるが、型から保持器を分離する時は、軸方向に離形する構成(所謂アキシャルドロー型)となっている。このとき、ポケット面の内径φdPと、一対の玉係止部6e間の距離即ち口元径寸法Hとの関係がφdP>Hとなるため、離型時に玉係止部6eはポケットを形成するための成形型部材(球面状の部材)が通過する際、変形を伴う。所謂無理抜きの形を取らざるを得ない。   The cage 4 is usually manufactured by injection molding. However, when the cage is separated from the mold, the cage 4 is separated in the axial direction (so-called axial draw type). At this time, since the relationship between the inner diameter φdP of the pocket surface and the distance between the pair of ball locking portions 6e, that is, the diameter H of the mouth diameter is φdP> H, the ball locking portion 6e forms a pocket at the time of release. When the mold member (spherical member) passes, it is deformed. You have to take the so-called unreasonable form.

したがって、玉係止部6eは離型の際、破損や亀裂、あるいは機能上問題となる大きな塑性変形を残さないような柔軟性を保持することが必要である。
また、玉係止部6eは、その対向する玉係止部6e間の口元径寸法Hに対する玉径φDaがφDa>Hの関係でもあり、軸受に保持器4を組込む際即ち玉3をポケット部6bに挿入する際に、玉係止部6e間を通過する時も、玉係止部6eの破損や欠け等が生じないことが必要であり、組込後は保持器4が軸方向に玉3から抜けないような構造としている。
Therefore, it is necessary for the ball engaging portion 6e to maintain flexibility so as not to leave a breakage, a crack, or a large plastic deformation that causes a functional problem when releasing.
Further, the ball locking portion 6e has a relationship that the ball diameter φDa with respect to the mouth diameter H between the opposing ball locking portions 6e is φDa> H. When the cage 4 is assembled into the bearing, that is, the ball 3 is inserted into the pocket portion. When inserting into the ball 6b, it is necessary that the ball locking portion 6e is not damaged or chipped even when passing between the ball locking portions 6e. The structure is such that it cannot be removed from 3.

一方、アンギュラ玉軸受の場合、図13及び図14に示すように、一般的には両側リング構造の所謂もみぬき保持器7が使用されることが多いが、最近、特許文献1に示すような幅狭玉軸受の場合には、玉軸受の軸方向の幅をより狭くするための方策として、冠形片持ちリング構造の玉案内保持器が提案されている。   On the other hand, in the case of an angular ball bearing, as shown in FIGS. 13 and 14, a so-called rice bran cage 7 having a double-sided ring structure is generally used. In the case of a narrow ball bearing, a ball guide cage having a crown-shaped cantilever ring structure has been proposed as a measure for further reducing the axial width of the ball bearing.

特許文献1では、図15(b)に示すように、リング部111の少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間ΔRを持たせた構造の保持器を開示している。
このような構造を採用することで、保持器110と内外輪との熱膨張係数差及び保持器の寸法精度や真円度のばらつきにより、転動体ピッチ円径と保持器ポケットのピッチ円径がずれた場合でも、片持ち形状であることによる半径方向の柔軟性と、各切断面間のすき間ΔRによる円周方向の弾力的変形(円周方向の柔軟性)を兼ね備えることとなるため、玉103とポケット部113間の突っ張り力を緩衝して、保持器110の損傷や摩耗を防止すると共に、玉103とポケット部113内面とのすべり接触抵抗によるトルクむらや発熱をより軽減することができる。
In Patent Document 1, as shown in FIG. 15 (b), the adjacent pocket portions 113 are cut in advance at least at one place in the circumferential direction of the ring portion 111, and a predetermined gap ΔR is set between the cut surfaces. A cage having a held structure is disclosed.
By adopting such a structure, due to the difference in thermal expansion coefficient between the cage 110 and the inner and outer rings and the variation in the dimensional accuracy and roundness of the cage, the rolling element pitch circle diameter and the pitch circle diameter of the cage pocket are reduced. Even in the case of misalignment, it has both radial flexibility due to the cantilever shape and circumferential elastic deformation (circumferential flexibility) due to the gap ΔR between each cut surface. The cushioning force between the ball 103 and the pocket 113 can be buffered to prevent the cage 110 from being damaged and worn, and the torque unevenness and heat generation due to the sliding contact resistance between the ball 103 and the pocket 113 can be further reduced. .

さらに、図15(b)に示す保持器構造においては、図15(c)のように、切断された面と、保持器リング部の側面との隅部に、対向する保持器間の円周方向の干渉を防止するガイド機構としてのC面取り部115を設けている。   Further, in the cage structure shown in FIG. 15 (b), as shown in FIG. 15 (c), the circumference between the opposing cages is formed at the corners of the cut surface and the side surface of the cage ring portion. A C chamfered portion 115 is provided as a guide mechanism for preventing directional interference.

例えば、モーメント荷重などの外部荷重が軸受に作用した際、内外輪の相対的傾きや内外輪の変形などによって、組合せた各軸受列間の玉及び保持器の公転速度が異なり、保持器110が軸方向に相対変形し、保持器110同士が図15(d)に示すように円周方向に干渉して突っ張り合い、保持器110に負荷を与える場合があり得る。そこで、上記のような面取り部を形成することで、図15(e)に示すように、各列の保持器110間の円周方向の干渉を回避でき、回転トルクの増加、保持器110の磨耗や損傷などの不具合をなくすことが可能となる。   For example, when an external load such as a moment load is applied to the bearing, the revolving speeds of the balls and the cage between the combined bearing rows differ depending on the relative inclination of the inner and outer rings and the deformation of the inner and outer rings. As shown in FIG. 15D, the cages 110 may be deformed relative to each other in the axial direction and interfere with each other in the circumferential direction so as to stick to each other and apply a load to the cage 110. Therefore, by forming the chamfered portion as described above, as shown in FIG. 15 (e), it is possible to avoid the interference in the circumferential direction between the cages 110 in each row, increasing the rotational torque, Problems such as wear and damage can be eliminated.

しかしながら、特許文献1に開示されている幅狭玉軸受の保持器において、C面取り部115の最適な形状について、詳細な検討がなされていなかった。   However, in the cage of the narrow ball bearing disclosed in Patent Document 1, detailed examination has not been made on the optimum shape of the C chamfered portion 115.

特開2008−169998号公報JP 2008-169998 A

そこで、本発明は上記従来例の未解決の課題に着目してなされたものであり、軸方向の省スペース化の目的で冠形保持器を採用した場合に、玉の摩耗や損傷及び保持器を破損させることなく安定した回転性能を発揮することができる玉軸受を提供することを目的としている。   Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and when a crown-shaped cage is adopted for the purpose of space saving in the axial direction, the wear and damage of the ball and the cage An object of the present invention is to provide a ball bearing capable of exhibiting stable rotational performance without damaging the shaft.

上記目的を達成するために、請求項1に係る組合せ玉軸受は、幅狭玉軸受を2列組合せて構成され、各幅狭玉軸受は、片側にリング部を有し、当該リング部の他方側に玉を保持する所要数のポケット部を形成した冠形の玉案内保持器をそのリング部側を組合せ面側に配置してなる組合せ玉軸受であって、前記ポケット部は、前記リング部とは反対側の先端部に形成した玉の抜け出しを防止する玉係止部を有し、前記ポケット部の曲率中心と前記玉係止部先端との軸方向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状態における対向する2つの保持器におけるリング部端部間の軸方向すきまに、前記ポケット部のポケット面と玉との軸方向すきまを加えた値が小さくなるように設定され、前記リング部は、少なくとも円周方向の一箇所で互いに隣り合う前記ポケット部間を予め切断して、各切断面間に所定のすき間を持たせた構造とし、前記切断面と前記リング部の側面との隅部にはC面取り部が設けられ、前記C面取り部と前記リング部側面とのなす角度をαとし、前記保持器間の静摩擦係数をμとした場合、tan−1μの値に対してαの値が大きくなるように設定し、前記C面取り部の寸法をCとし、前記玉係止部と前記玉との軸方向すきまをMとし、前記ポケット部の曲率中心と前記玉の曲率中心とを一致させた状態における対向する2つの前記保持器におけるリング部の端部間の軸方向すきまをΔGとした場合、(2×M−ΔG)/2の値に対してCの値が大きくなるように設定したことを特徴としている。 In order to achieve the above object, a combination ball bearing according to claim 1 is configured by combining two rows of narrow ball bearings, and each narrow ball bearing has a ring portion on one side, and the other of the ring portions. A combined ball bearing in which a ring-shaped ball guide retainer having a required number of pocket portions for holding balls on its side is arranged on the combined surface side, and the pocket portion is the ring portion. A ball locking portion that prevents the ball from being pulled out formed on the tip portion opposite to the tip portion of the pocket portion with respect to the axial distance between the center of curvature of the pocket portion and the tip of the ball locking portion. The value obtained by adding the axial clearance between the pocket surface of the pocket portion and the ball to the axial clearance between the end portions of the two opposing cages in a state where the center of curvature coincides with the center of curvature of the ball is small. The ring part is at least The pocket portions adjacent to each other in one circumferential direction are cut in advance so that a predetermined gap is provided between the cut surfaces, and C is provided at the corner between the cut surface and the side surface of the ring portion. When a chamfered portion is provided, the angle between the C chamfered portion and the side surface of the ring portion is α, and the coefficient of static friction between the cages is μ, the value of α is larger than the value of tan −1 μ. The dimension of the C chamfered portion is set as C, the axial clearance between the ball engaging portion and the ball is set as M, and the curvature center of the pocket portion and the curvature center of the ball are made to coincide with each other. When the axial clearance between the ends of the ring portions of the two opposing cages in the state is ΔG, the value of C is set to be larger than the value of (2 × M−ΔG) / 2. It is characterized by that.

さらに、請求項に係る複列玉軸受は、幅狭の複列玉軸受の構成を有し、夫々の列には、片側にリング部を有し、当該リング部の他方側に玉を保持する所要数のポケット部を形成した冠形の玉案内保持器をそのリング部側を軸受の軸方向内側に対向させて配置してなる複列玉軸受であって、前記ポケット部は、前記リング部とは反対側の先端部に形成した
玉の抜け出しを防止する玉係止部を有し、前記ポケット部の曲率中心と前記玉係止部先端との軸方向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状態における対向する2つの保持器におけるリング部端部間の軸方向すきまに、前記ポケット部のポケット面と玉との軸方向すきまを加えた値が小さくなるように設定され、前記リング部は、少なくとも円周方向の一箇所で互いに隣り合う前記ポケット部間を予め切断して、各切断面間に所定のすき間を持たせた構造とし、前記切断面と前記リング部の側面との隅部にはC面取り部が設けられ、前記C面取り部と前記リング部側面とのなす角度をαとし、前記保持器間の静摩擦係数をμとした場合、tan−1μの値に対してαの値が大きくなるように設定し、前記C面取り部の寸法をCとし、前記玉係止部と前記玉との軸方向すきまをMとし、前記ポケット部の曲率中心と前記玉の曲率中心とを一致させた状態における対向する2つの前記保持器におけるリング部の端部間の軸方向すきまをΔGとした場合、(2×M−ΔG)/2の値に対してCの値が大きくなるように設定したことを特徴としている。
Furthermore, the double-row ball bearing according to claim 2 has a configuration of a narrow double-row ball bearing, and each row has a ring portion on one side and holds the ball on the other side of the ring portion. A double row ball bearing in which a crown-shaped ball guide retainer in which a required number of pocket portions are formed is arranged with the ring portion side facing the inner side in the axial direction of the bearing, the pocket portion being the ring A ball engaging portion that prevents the ball formed at the tip opposite to the portion from slipping out, and the pocket portion with respect to the axial distance between the center of curvature of the pocket portion and the tip of the ball engaging portion The value obtained by adding the axial clearance between the pocket surface of the pocket portion and the ball to the axial clearance between the ring portion end portions of the two opposing cages in a state where the center of curvature of the ball and the center of curvature of the ball coincide with each other. The ring portion is set to be at least one circumferential direction. The pocket portions adjacent to each other in advance are cut in advance so that a predetermined gap is provided between the cut surfaces, and a chamfered portion is provided at the corner between the cut surface and the side surface of the ring portion. When the angle between the C chamfered portion and the side surface of the ring portion is α and the coefficient of static friction between the cages is μ, the value of α is set to be larger than the value of tan −1 μ. And the dimension of the C chamfered portion is C, the axial clearance between the ball locking portion and the ball is M, and the pocket center and the center of curvature of the ball are opposed to each other. When the axial clearance between the ends of the ring portions of the two cages is ΔG, the value of C is set to be larger than the value of (2 × M−ΔG) / 2. It is said.

本発明によれば、幅狭玉軸受を2列組合せた組合せ軸受、あるいは幅狭の複列玉軸受において、前記リング部を、少なくとも円周方向の一箇所で互いに隣り合う前記ポケット部間を予め切断して、各切断面間に所定のすき間を持たせた構造とし、前記切断面と前記リング部の側面との隅部にはC面取り部が設けられ、前記C面取り部と前記リング部側面とのなす角度をαとし、前記保持器間の静摩擦係数をμとした場合、tan-1μの値に対してαの値が大きくなるように設定したので、モーメント荷重による内外輪傾き等で、保持器が軸方向に移動した場合でも、保持器間の円周方向の干渉を回避することができ、回転トルクの増加、保持器の磨耗や損傷などの不具合を確実に防止することができるという効果が得られる。 According to the present invention, in the combination bearing in which two rows of narrow ball bearings are combined, or in the double row ball bearing with narrow width, the ring portion is arranged in advance between the pocket portions adjacent to each other at least at one place in the circumferential direction. The cut surface is structured to have a predetermined gap between the cut surfaces, and a C chamfered portion is provided at a corner between the cut surface and the side surface of the ring portion, and the C chamfered portion and the side surface of the ring portion are provided. Is set so that the value of α is larger than the value of tan −1 μ, where α is the angle between and the static friction coefficient between the cages. Even when the cage moves in the axial direction, it is possible to avoid circumferential interference between the cages, and to reliably prevent problems such as an increase in rotational torque and wear and damage of the cage. The effect is obtained.

本発明の第1の実施形態の一例である背面組合せとした組合せ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the combination ball bearing made into the back combination which is an example of the 1st Embodiment of this invention. 保持器の径方向に沿う断面図である。It is sectional drawing in alignment with the radial direction of a holder | retainer. 保持器を径方向内側から見た部分斜視図である。It is the fragmentary perspective view which looked at the cage | basket from the radial inside. 図2の矢印Y方向から見た矢視図である。It is the arrow line view seen from the arrow Y direction of FIG. 図2のZ−Z線上の断面図である。It is sectional drawing on the ZZ line of FIG. 保持器が軸方向移動した場合の作用を説明する説明図である。It is explanatory drawing explaining an effect | action when a holder | retainer moves to an axial direction. (a)は図2の矢印X方向から見た矢視図、(b)は(a)に示す保持器を示す拡大図である。(A) is an arrow view seen from the arrow X direction of FIG. 2, (b) is an enlarged view which shows the holder | retainer shown to (a). 本発明の第2の実施形態の一例である複列アンギュラ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row angular contact ball bearing which is an example of the 2nd Embodiment of this invention. 従来の深みぞ玉軸受を示す断面図である。It is sectional drawing which shows the conventional deep groove ball bearing. 図9の保持器を示す斜視図である。It is a perspective view which shows the holder | retainer of FIG. 図9のB−B線上の断面図である。It is sectional drawing on the BB line of FIG. 図9のA−A線上の断面図である。It is sectional drawing on the AA line of FIG. 従来のアンギュラ玉軸受を示す断面図である。It is sectional drawing which shows the conventional angular contact ball bearing. 図13の保持器を示す側面図である。It is a side view which shows the holder | retainer of FIG. (a)は従来の保持器を軸方向から見た矢視図、(b)は(a)の変形例を示す矢視図、(c)は(b)に示す保持器の変形例を示す拡大図、(d)は保持器の干渉状態を示す図、(e)は保持器の干渉回避状態を示す図である。(A) is the arrow view which looked at the conventional cage from the axial direction, (b) is an arrow view which shows the modification of (a), (c) shows the modification of the cage shown in (b). (D) is a figure which shows the interference state of a holder | retainer, (e) is a figure which shows the interference avoidance state of a holder | retainer.

以下、本発明の実施の形態を図を参照して説明する。図1は本発明の第1の実施の形態を示す単列玉軸受を2列組み合わせた状態を示す要部断面図、図2は玉案内保持器を示す断面図、図3は保持器を径方向内側から見た部分斜視図、図4は図2の矢印Y方向から見た矢視図、図5は図2のZ−Z線断面図、図6は保持器が軸方向に移動した場合の作用を説明する説明図、図7は本発明の保持器を示す図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part showing a state in which two rows of single-row ball bearings according to the first embodiment of the present invention are combined, FIG. 2 is a cross-sectional view showing a ball guide cage, and FIG. 4 is a partial perspective view as seen from the inside of the direction, FIG. 4 is an arrow view as seen from the direction of the arrow Y in FIG. 2, FIG. 5 is a sectional view taken along the line ZZ in FIG. FIG. 7 is a view showing the cage of the present invention.

本発明の組合せ軸受100は、図1に示すように、2つの単列アンギュラ玉軸受100A及び100Bを接触角がハの字を表すように2列背面組合せた構成を有する。
ここで、単列アンギュラ玉軸受100A及び100Bの夫々は、図1に示すように、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された幅狭軸受の構成を有する。
As shown in FIG. 1, the combination bearing 100 of the present invention has a configuration in which two single-row angular ball bearings 100A and 100B are combined in two rows on the back so that the contact angle represents a square shape.
Here, in each of the single row angular ball bearings 100A and 100B, as shown in FIG. 1, a large number of balls 103 are rotatably arranged between the raceway groove 101a of the outer ring 101 and the raceway groove 102a of the inner ring 102. It has the structure of a narrow bearing.

また、内輪102、外輪101及び玉103の材料は、標準的な使用条件では軸受鋼(例えば、SUJ2、SUJ3など)とするが、使用環境に応じて、耐食材料であるステンレス系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材やSUS304等のオーステナイト系ステンレス鋼材、SUS630等の析出硬化系ステンレス鋼材など)、チタン合金やセラミック系材料(例えば、Si、SiC、Al、ZrO等)を採用してもよい。 In addition, the material of the inner ring 102, the outer ring 101, and the ball 103 is a bearing steel (for example, SUJ2, SUJ3, etc.) under standard use conditions, but depending on the use environment, a stainless steel material (for example, a corrosion resistant material) Martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation hardened stainless steel materials such as SUS630), titanium alloys and ceramic materials (for example, Si 3 N 4 , SiC, Al 2 O 3 , ZrO) 2 etc.) may be adopted.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、高温環境用途などではフッ素系グリース又はフッ素系の油、或いはフッ素樹脂、MoSなどの固体潤滑剤を使用することができる。
また、幅狭軸受とは、国際標準化機構(ISO)で規定されている標準アンギュラ玉軸受(78××、79××、70××、72××、73××シリーズ等)に当てはまらないサイズの軸受であって、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)を(B/H)<0.63とする軸受である。
The lubrication method is not particularly limited, and mineral oil-based grease or synthetic oil-based grease (for example, lithium-based or urea-based grease) or oil can be used in a general use environment, and fluorine-based grease or fluorine in high-temperature environment applications. Series lubricants or solid lubricants such as fluororesin and MoS 2 can be used.
Narrow bearings are sizes not applicable to standard angular contact ball bearings (78XX, 79XX, 70XX, 72XX, 73XX series, etc.) defined by the International Organization for Standardization (ISO). The sectional dimension ratio (B / H) between the axial sectional width B and the radial sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) is (B / H) < The bearing is 0.63.

また、幅狭の複列玉軸受とは、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2との断面寸法比(B2/H2)が(B2/H2)<1.2とする幅狭の複列アンギュラ玉軸受である。
例えば、従来の玉軸受として、7208A(接触角30度のアンギュラ玉軸受)の場合、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅)Bが18mmであるので、断面寸法比(B/H)=0.9である。
A narrow double-row ball bearing has a cross-sectional dimension ratio (B2 / H2) of an axial cross-sectional width B2 and a radial cross-sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2). B2 / H2) A narrow double row angular contact ball bearing with <1.2.
For example, in the case of 7208A (angular ball bearing with a contact angle of 30 degrees) as a conventional ball bearing, the inner ring inner diameter φ40 mm, the outer ring outer diameter φ80 mm, and the axial sectional width (bearing unit width) B is 18 mm. (B / H) = 0.9.

したがって、本実施形態のアンギュラ玉軸受100A及び100Bでは、断面寸法比(B/H)=0.45(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)を9mmとした)としている。これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けることができると共に、軸方向寸法で1/2の省スペース化が図れ、単列の7208Aと置き換えが可能となり、且つ低トルク化及び更なる高剛性化を図ることができる。   Therefore, in the angular ball bearings 100A and 100B of the present embodiment, the sectional dimension ratio (B / H) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing single body width) is 9 mm. ). As a result, radial load, axial load in both directions, and moment load can be received, space saving of 1/2 in the axial dimension can be achieved, and the single row 7208A can be replaced, and torque can be reduced. High rigidity can be achieved.

なお、単列玉軸受は、1列では、予圧をかけたりモーメント荷重を負荷することは困難であるが、2列以上の多列組合せとすることで、ラジアル荷重、アキシアル荷重及びモーメント荷重を負荷することが可能となる。   Single-row ball bearings are difficult to apply preload or moment load in one row, but by combining multiple rows of two or more rows, radial load, axial load and moment load can be applied. It becomes possible to do.

また、各玉が内外輪の軌道溝に対して常に2点で接触するので、4点接触玉軸受のように、玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロスローラ軸受に比べて転がり抵抗が低くなるので低トルク化を実現することができる。   Further, since each ball always contacts the inner and outer raceway grooves at two points, an increase in torque due to a large spin of the ball can be suppressed as in a four-point contact ball bearing. Since the rolling resistance is lower than that of the bearing, a reduction in torque can be realized.

なお、接触角θは、大きなモーメント荷重を負荷した際に、内外輪みぞ肩部への玉と内外輪みぞ接触部の乗り上げを抑えるため、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、逆に許容アキシアル荷重や許容モーメント荷重が低下するので好ましくない。
そして、本実施形態では、単列アンギュラ玉軸受100A及び100Bの組合せ面側に多数の玉103を円周方向に位置決めする玉案内保持器110を配設し、組合せ面とは反対側に環状シール体120を配設している。
Note that the contact angle θ is approximately 60 ° or less, preferably 50 ° or less, more preferably, in order to suppress the ball and the inner / outer ring groove contact portion from climbing onto the shoulder portions of the inner and outer rings when a large moment load is applied. 40 ° or less is preferable, but if it is less than 20 °, the allowable axial load and the allowable moment load are reduced, which is not preferable.
In this embodiment, a ball guide retainer 110 for positioning a large number of balls 103 in the circumferential direction is disposed on the combination surface side of the single row angular ball bearings 100A and 100B, and an annular seal is provided on the opposite side to the combination surface. A body 120 is provided.

玉案内保持器110は、図2〜図4に示すように、リング部111と、このリング部111の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部112と、各柱部112間に形成されて玉103を周方向に転動可能に保持する多数のポケット部113と、このポケット部113のリング部111とは反対側の先端部に形成された玉103の抜け出しを防止する一対の玉係止部114とを備えた柔軟性のある冠形保持器の構成を有する。この保持器110の材料は、例えば、ポリアミド、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。   As shown in FIGS. 2 to 4, the ball guide retainer 110 includes a ring portion 111, and column portions 112 protruding in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction on one end portion of the ring portion 111. , A plurality of pockets 113 formed between the pillars 112 to hold the balls 103 so as to be able to roll in the circumferential direction, and the balls 103 formed at the front ends of the pockets 113 opposite to the ring parts 111. And a pair of ball locking portions 114 for preventing the slipping out of the flexible crown-shaped cage. The material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.

そして、玉案内保持器110が、図1に示すように、単列アンギュラ玉軸受100A及び100Bに、リング部111が組合せ面側となるように配置されている。
ここで、図5に示すように、ポケット部113の曲率中心Oと玉係止部114の先端との軸方向距離Lに対して、ポケット部113曲率中心Oと玉103の曲率中心とを一致させた状態における対向する2つの保持器110におけるリング部111の端部間の軸方向すきまΔGに、ポケット部113のポケット面113aと玉103の軸方向すきまΔPを加えた値ΔG+ΔPが下記(1)式で表されるように小さくなるように設定されている。
As shown in FIG. 1, the ball guide cage 110 is arranged on the single row angular ball bearings 100 </ b> A and 100 </ b> B so that the ring portion 111 is on the combination surface side.
Here, as shown in FIG. 5, the center of curvature 113 of the pocket portion 113 and the center of curvature of the ball 103 coincide with the axial distance L between the center of curvature O of the pocket portion 113 and the tip of the ball locking portion 114. The value ΔG + ΔP obtained by adding the axial clearance ΔP between the pocket surface 113a of the pocket portion 113 and the ball 103 to the axial clearance ΔG between the ends of the ring portions 111 in the two opposing cages 110 in the state where they are set to be (1 ) Is set so as to be small as represented by the formula.

L>ΔG+ΔP …………(1)
このような寸法構成とすることで、モーメント荷重による内外輪傾き等で、図6に示すように、一方の単列アンギュラ玉軸受例えば100Aで保持器110が鎖線図示の状態から実線図示の状態に軸方向に移動した際に、そのリング部111が組合せた他方の単列アンギュラ玉軸受100Bの保持器110のリング部111に当接することにより、玉103の大径部が玉係止部114の先端を越えることがなく(すなわち、図6中のΔが正の値となる)、保持器110の脱落即ち玉103がポケット部113から外れることを確実に防止することができる(すなわち、図6中のΔだけ余裕代が残る)。
L> ΔG + ΔP (1)
By adopting such a dimensional configuration, the cage 110 is changed from the state shown in the chain line to the state shown in the solid line by one single-row angular ball bearing, for example, 100A, as shown in FIG. When the ring portion 111 moves in the axial direction, the large diameter portion of the ball 103 is brought into contact with the ring engaging portion 114 by contacting the ring portion 111 of the cage 110 of the other single-row angular ball bearing 100B combined with the ring portion 111. The tip is not exceeded (that is, Δ in FIG. 6 becomes a positive value), and it is possible to reliably prevent the retainer 110 from dropping, that is, the ball 103 from being detached from the pocket portion 113 (that is, FIG. 6). A margin is left for Δ in the middle).

組合せ軸受100で、上記(1)式の関係を有するように保持器110を配置することにより、保持器110の玉103からの抜けを確実に防止することができると共に、保持器110の玉係止部114の形状設計の選択範囲を広げることができ、設計も容易となる。
また、この実施形態では、軸受の負荷容量や剛性を上げるために、隣合う玉103間の円周方向ピッチをできるだけ組合せ側端面の反対側にずらし(図1:X1>X2)、保持器110のリング部111が軸受組合せ端面側になるように配置しており、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。
By disposing the retainer 110 so as to have the relationship of the above formula (1) in the combined bearing 100, it is possible to reliably prevent the retainer 110 from coming off from the ball 103, and the ball engagement of the retainer 110. The selection range of the shape design of the stopper 114 can be expanded, and the design is facilitated.
Further, in this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between the adjacent balls 103 is shifted as much as possible to the opposite side of the combination side end face (FIG. 1: X1> X2), and the cage 110. The ring part 111 is arranged on the bearing combination end face side so that the distance between the operating points for increasing moment rigidity can be increased.

また、保持器110は、図7(a)に示すように、リング部111の少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間ΔRを持たせた構造としている。   In addition, as shown in FIG. 7A, the retainer 110 cuts in advance between the pocket portions 113 adjacent to each other at least at one place in the circumferential direction of the ring portion 111, and a predetermined gap between the cut surfaces. The structure has ΔR.

さらに、図7(b)に示すように、切断された面と、保持器リング部111の側面との隅部に、対向する保持器間の円周方向の干渉を防止するガイド機構としてのC面取り部115を設けている。
例えば、モーメント荷重などの外部荷重が軸受に作用した際、内外輪の相対的傾きや内外輪の変形などによって、組合せた各軸受列間の玉103及び保持器110の公転速度が異なり、保持器110が軸方向に相対変形し、保持器110同士が円周方向に干渉して突っ張り合い、保持器110に負荷を与える場合があり得る。そこで、上記のような面取り部を形成することで、各列の保持器110間の円周方向の干渉を回避でき、回転トルクの増加、保持器110の磨耗や損傷などの不具合をなくすことが可能となる。
Further, as shown in FIG. 7B, C as a guide mechanism for preventing circumferential interference between opposing cages at the corners of the cut surface and the side surface of the cage ring portion 111. A chamfered portion 115 is provided.
For example, when an external load such as a moment load is applied to the bearing, the revolution speeds of the balls 103 and the cage 110 between the combined bearing rows differ depending on the relative inclination of the inner and outer rings, the deformation of the inner and outer rings, and the cage. 110 may be deformed relative to each other in the axial direction, and the cages 110 may interfere with each other in the circumferential direction and stick together to apply a load to the cage 110. Therefore, by forming the chamfered portion as described above, circumferential interference between the cages 110 in each row can be avoided, and problems such as an increase in rotational torque and wear and damage of the cage 110 can be eliminated. It becomes possible.

さらにまた、C面取り部115とリング部111側面とのなす角度αは、保持器間の静摩擦係数をμとした場合、tan-1μの値に対してαの値が大きくなるように設定することが望ましい。以上のような設定とすれば、各保持器110のスリットすき間ΔRの円周方向位相が一致した際、各列の保持器110同士が円周方向で干渉した場合でも、C面取り部115の傾斜部間において接触が円滑に行われるため、保持器110同士が確実に軸方向に逃げあうことが可能となる。例えば、保持器110の材料としてポリアミド樹脂を採用する場合、μ=0.15〜0.30となるので、μを最大値0.30として計算すると、α>tan-1μ=16.699°となる。αの値は本値以上であれば良いが、スリットすき間ΔRで対向するポケット部113とリング部111間の最小肉厚部とC面取り部115との干渉を避けるため、αは70〜80°以下に設定することが好ましい。 Furthermore, the angle α formed between the C chamfered portion 115 and the side surface of the ring portion 111 is set so that the value of α is larger than the value of tan −1 μ when the coefficient of static friction between the cages is μ. It is desirable. With the above setting, when the circumferential phase of the slit clearance ΔR of each cage 110 matches, even if the cages 110 in each row interfere with each other in the circumferential direction, the inclination of the C chamfer 115 Since the contact is smoothly performed between the parts, the cages 110 can surely escape in the axial direction. For example, when a polyamide resin is used as the material of the cage 110, μ = 0.15 to 0.30. Therefore, when μ is calculated as the maximum value 0.30, α> tan −1 μ = 16.699 °. It becomes. The value of α may be equal to or greater than this value. However, in order to avoid interference between the chamfered portion 115 and the minimum thickness portion between the pocket portion 113 and the ring portion 111 facing each other with a slit clearance ΔR, α is 70 to 80 °. It is preferable to set the following.

また、C面取り部115の寸法Cは、以下のように設定することが好ましい。
玉係止部114と103玉との軸方向すきまをM(図5を参照)とし、ポケット部113の曲率中心と玉103の曲率中心とを一致させた状態における対向する2つの保持器110におけるリング部111の端部間の軸方向すきまをΔGとした場合、(2×M−ΔG)/2の値に対してCの値が大きくなるように設定する。以上のような設定とすれば、円周方向において確実にC面取り部115同士で接触が発生することになり、すき間ΔRの切断面で接触する状態を確実に防止することができる。
The dimension C of the C chamfered portion 115 is preferably set as follows.
In the two cages 110 facing each other in a state in which the axial clearance between the ball locking portions 114 and 103 is M (see FIG. 5), and the center of curvature of the pocket portion 113 and the center of curvature of the ball 103 are matched. When the axial clearance between the ends of the ring portion 111 is ΔG, the value of C is set to be larger than the value of (2 × M−ΔG) / 2. With the setting as described above, contact between the C chamfered portions 115 is surely generated in the circumferential direction, and the state of contact with the cut surface having the clearance ΔR can be reliably prevented.

次に、図8を参照して、本発明の第2の実施形態の一例である複列アンギュラ玉軸受を説明する。この複列アンギュラ玉軸受200は、外輪201の複列軌道溝201aと互いに別体に形成された2個の内輪202A及び202Bの軌道溝202aとの間に多数の玉203が保持器210によって転動自在に保持され、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が(B2/H2)<1.2とされている。   Next, a double-row angular contact ball bearing which is an example of the second embodiment of the present invention will be described with reference to FIG. In this double row angular contact ball bearing 200, a plurality of balls 203 are rolled by a cage 210 between the double row raceway groove 201a of the outer ring 201 and the raceway grooves 202a of two inner rings 202A and 202B formed separately from each other. The sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2 / H2) < 1.2.

ここで、保持器210は前述した第1の実施形態と同様の構成を有する冠形保持器とされ、第1の実施形態との対応部分には同一符号を付し、その詳細説明はこれを省略するが、前述した第1の実施形態における図5に示すように、ポケット部113の曲率中心Oと玉係止部114の先端との軸方向距離Lに対して、ポケット部113曲率中心Oと玉203の曲率中心とを一致させた状態における対向する2つの保持器210におけるリング部111の端部間の軸方向すきまΔGに、ポケット部113のポケット面113aと玉203の軸方向すきまΔPを加えた値ΔG+ΔPが小さくなるように設定されている(L>ΔG+ΔP)。   Here, the retainer 210 is a crown-shaped retainer having the same configuration as that of the first embodiment described above, and the same reference numerals are given to the corresponding parts to the first embodiment, and the detailed description thereof will be given here. Although omitted, as shown in FIG. 5 in the first embodiment described above, the pocket portion 113 curvature center O with respect to the axial distance L between the curvature center O of the pocket portion 113 and the tip of the ball locking portion 114. And the axial clearance ΔP between the pocket surface 113a of the pocket portion 113 and the axial direction of the ball 203 in the axial clearance ΔG between the ends of the ring portion 111 in the two cages 210 facing each other in a state where the center of curvature of the ball 203 and the ball 203 are matched. Is set to be small (L> ΔG + ΔP).

これにより、第1の実施形態と同様の効果が得られ、ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けることができるのは勿論のこと、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができる。   As a result, the same effects as those of the first embodiment can be obtained, and the radial load, the axial load in both directions, and the moment load can be received. Torque and higher rigidity can be achieved.

そして、前述した第1の実施形態と同様に、保持器210のリング部111は、少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間ΔRを持たせた構造とし、切断面とリング部111の側面との隅部にはC面取り部115が設けられ、C面取り部115とリング部111側面とのなす角度をαとし、保持器210間の静摩擦係数をμとした場合、tan-1μの値に対してαの値が大きくなるように設定したので、モーメント荷重による内外輪傾き等の影響による保持器210間の円周方向の干渉を回避することができ、回転トルクの増加、保持器210の摩耗や損傷などの不具合を確実に防止することができる。 As in the first embodiment described above, the ring portion 111 of the retainer 210 is preliminarily cut between the pocket portions 113 adjacent to each other at least at one place in the circumferential direction, and a predetermined interval is formed between the cut surfaces. A structure having a clearance ΔR is provided, and a C chamfered portion 115 is provided at a corner between the cut surface and the side surface of the ring portion 111, and an angle formed between the C chamfered portion 115 and the side surface of the ring portion 111 is defined as α. When the static friction coefficient between 210 is μ, the value of α is set to be larger than the value of tan −1 μ. Interference can be avoided, and problems such as an increase in rotational torque and wear and damage of the cage 210 can be reliably prevented.

本発明の組合せ玉軸受及び複列玉軸受は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等、特にラジアル荷重と両方向のアキシアル荷重、特に大きなモーメント荷重が負荷として作用される組合せ玉軸受及び複列玉軸受に好適に利用できる。   The combination ball bearing and double-row ball bearing of the present invention are, for example, industrial machines, robot joints and turning mechanisms, machine tool rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optics, and optical components. It can be suitably used for an electronic device or the like, especially for a combination ball bearing and a double row ball bearing in which a radial load and an axial load in both directions, particularly a large moment load are applied as a load.

100 組合せ玉軸受
100A,100B 単列アンギュラ玉軸受
101 外輪
101a 外輪軌道溝
102 内輪
102a 内輪軌道溝
103 玉
110 玉案内保持器
111 リング部
112 柱部
113 ポケット部
114 玉係止部
115 C面取り部
120 環状シール体
121,122 シール収容溝
200 複列アンギュラ玉軸受
201 外輪
201a 外輪軌道溝
202A,202B 内輪
202a 内輪軌道溝
230 玉
220 環状シール体
221,222 シール収容溝
100 Combination ball bearings 100A, 100B Single row angular contact ball bearing 101 Outer ring 101a Outer ring raceway groove 102 Inner ring 102a Inner ring raceway groove 103 Ball 110 Ball guide retainer 111 Ring part 112 Column part 113 Pocket part 114 Ball locking part 115 C chamfering part 120 Annular seal bodies 121 and 122 Seal receiving groove 200 Double row angular contact ball bearing 201 Outer ring 201a Outer ring raceway grooves 202A and 202B Inner ring 202a Inner ring raceway groove 230 Ball 220 Annular seal bodies 221 and 222 Seal receiving groove

Claims (2)

幅狭玉軸受を2列組合せて構成され、各幅狭玉軸受は、片側にリング部を有し、当該リング部の他方側に玉を保持する所要数のポケット部を形成した冠形の玉案内保持器をそのリング部側を組合せ面側に配置してなる組合せ玉軸受であって、
前記ポケット部は、前記リング部とは反対側の先端部に形成した玉の抜け出しを防止する玉係止部を有し、前記ポケット部の曲率中心と前記玉係止部先端との軸方向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状態における対向する2つの保持器におけるリング部端部間の軸方向すきまに、前記ポケット部のポケット面と玉との軸方向すきまを加えた値が小さくなるように設定され、前記リング部は、少なくとも円周方向の一箇所で互いに隣り合う前記ポケット部間を予め切断して、各切断面間に所定のすき間を持たせた構造とし、前記切断面と前記リング部の側面との隅部にはC面取り部が設けられ、前記C面取り部と前記リング部側面とのなす角度をαとし、前記保持器間の静摩擦係数をμとした場合、tan−1μの値に対してαの値が大きくなるように設定され
前記C面取り部の寸法をCとし、前記玉係止部と前記玉との軸方向すきまをMとし、前記ポケット部の曲率中心と前記玉の曲率中心とを一致させた状態における対向する2つの前記保持器におけるリング部の端部間の軸方向すきまをΔGとした場合、(2×M−ΔG)/2の値に対してCの値が大きくなるように設定されたことを特徴とする組合せ玉軸受。
Each of the narrow ball bearings is composed of two rows of narrow ball bearings. Each narrow ball bearing has a ring portion on one side and a required number of pocket portions for holding balls on the other side of the ring portion. A combined ball bearing in which the guide retainer is arranged on the combination surface side on the ring side,
The pocket portion has a ball locking portion that prevents a ball formed at a tip portion on the opposite side to the ring portion, and an axial distance between the center of curvature of the pocket portion and the tip of the ball locking portion. In contrast, the axial clearance between the pocket surface of the pocket portion and the ball in the axial clearance between the ring portion end portions of the two opposing cages in a state in which the center of curvature of the pocket portion and the center of curvature of the ball coincide with each other. The ring portion is set to have a small value, and the ring portion is preliminarily cut between the pocket portions adjacent to each other at least at one place in the circumferential direction, and has a predetermined gap between the cut surfaces. A chamfered portion is provided at a corner between the cut surface and the side surface of the ring portion, an angle formed between the C chamfered portion and the side surface of the ring portion is α, and static friction between the cages If the coefficient was μ, tan The value of α to the value of 1 mu is set to increase,
The dimension of the C chamfered portion is C, the axial clearance between the ball engaging portion and the ball is M, and the two opposing surfaces in the state where the center of curvature of the pocket portion and the center of curvature of the ball are matched. When the axial clearance between the ends of the ring portion in the cage is ΔG, the value of C is set to be larger than the value of (2 × M−ΔG) / 2. Combination ball bearing.
幅狭の複列玉軸受の構成を有し、夫々の列には、片側にリング部を有し、当該リング部の他方側に玉を保持する所要数のポケット部を形成した冠形の玉案内保持器をそのリング部側を軸受の軸方向内側に対向させて配置してなる複列玉軸受であって、
前記ポケット部は、前記リング部とは反対側の先端部に形成した玉の抜け出しを防止する玉係止部を有し、前記ポケット部の曲率中心と前記玉係止部先端との軸方向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状態における対向する2つの保持器におけるリング部端部間の軸方向すきまに、前記ポケット部のポケット面と玉との軸方向すきまを加えた値が小さくなるように設定され、前記リング部は、少なくとも円周方向の一箇所で互いに隣り合う前記ポケット部間を予め切断して、各切断面間に所定のすき間を持たせた構造とし、前記切断面と前記リング部の側面との隅部にはC面取り部が設けられ、前記C面取り部と前記リング部側面とのなす角度をαとし、前記保持器間の静摩擦係数をμとした場合、tan−1μの値に対してαの値が大きくなるように設定され
前記C面取り部の寸法をCとし、前記玉係止部と前記玉との軸方向すきまをMとし、前記ポケット部の曲率中心と前記玉の曲率中心とを一致させた状態における対向する2つの前記保持器におけるリング部の端部間の軸方向すきまをΔGとした場合、(2×M−ΔG)/2の値に対してCの値が大きくなるように設定されたことを特徴とする複列玉軸受。
A crown-shaped ball having a configuration of a narrow double-row ball bearing, each row having a ring portion on one side and a required number of pocket portions holding the ball on the other side of the ring portion. A double row ball bearing in which the guide cage is arranged with the ring side facing the inner side in the axial direction of the bearing,
The pocket portion has a ball locking portion that prevents a ball formed at a tip portion on the opposite side to the ring portion, and an axial distance between the center of curvature of the pocket portion and the tip of the ball locking portion. In contrast, the axial clearance between the pocket surface of the pocket portion and the ball in the axial clearance between the ring portion end portions of the two opposing cages in a state in which the center of curvature of the pocket portion and the center of curvature of the ball coincide with each other. The ring portion is set to have a small value, and the ring portion is preliminarily cut between the pocket portions adjacent to each other at least at one place in the circumferential direction, and has a predetermined gap between the cut surfaces. A chamfered portion is provided at a corner between the cut surface and the side surface of the ring portion, an angle formed between the C chamfered portion and the side surface of the ring portion is α, and static friction between the cages If the coefficient was μ, tan The value of α to the value of 1 mu is set to increase,
The dimension of the C chamfered portion is C, the axial clearance between the ball engaging portion and the ball is M, and the two opposing surfaces in the state where the center of curvature of the pocket portion and the center of curvature of the ball are matched. When the axial clearance between the ends of the ring portion in the cage is ΔG, the value of C is set to be larger than the value of (2 × M−ΔG) / 2. Double row ball bearing.
JP2010077160A 2010-03-30 2010-03-30 Combination ball bearings and double row ball bearings Expired - Fee Related JP5499830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077160A JP5499830B2 (en) 2010-03-30 2010-03-30 Combination ball bearings and double row ball bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077160A JP5499830B2 (en) 2010-03-30 2010-03-30 Combination ball bearings and double row ball bearings

Publications (2)

Publication Number Publication Date
JP2011208730A JP2011208730A (en) 2011-10-20
JP5499830B2 true JP5499830B2 (en) 2014-05-21

Family

ID=44940001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077160A Expired - Fee Related JP5499830B2 (en) 2010-03-30 2010-03-30 Combination ball bearings and double row ball bearings

Country Status (1)

Country Link
JP (1) JP5499830B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579123B2 (en) * 2005-10-07 2010-11-10 Ntn株式会社 Ultra thin rolling bearing and cage for the same
CN101341347B (en) * 2006-01-13 2012-02-15 日本精工株式会社 Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same
JP4743176B2 (en) * 2006-09-13 2011-08-10 日本精工株式会社 Combination ball bearings and double row ball bearings

Also Published As

Publication number Publication date
JP2011208730A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US20090131235A1 (en) Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
JP3207410U (en) Rolling bearing
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
US20170067511A1 (en) Sealing device for rolling bearing unit
JP2011094719A (en) Ball bearing
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP2006022891A (en) Ball-bearing cage
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP5187279B2 (en) Rolling bearing
JP2006105384A (en) Double row ball bearing
JP2011153683A (en) Angular ball bearing
JP2011094716A (en) Thrust roller bearing
JP5499830B2 (en) Combination ball bearings and double row ball bearings
JP2009275722A (en) Rolling bearing
JP4715961B2 (en) Rotary table device for machine tools
JP2006207684A (en) Rolling bearing
JP2020070857A (en) Slewing bearing
US20090016660A1 (en) Solid lubrication roller bearing
JP2011226614A (en) Rolling bearing
JP2011112201A (en) Ball bearing
JP2014219101A (en) Angular ball bearing
JP2005239258A (en) Cap attaching jig and ball bearing used for the jig
JP2008057776A (en) Angular ball bearing
JP2006046380A (en) Ball bearing
JP5854090B2 (en) Ball bearing, transfer device and transfer robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131018

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees