JP2008057776A - Angular ball bearing - Google Patents

Angular ball bearing Download PDF

Info

Publication number
JP2008057776A
JP2008057776A JP2007204762A JP2007204762A JP2008057776A JP 2008057776 A JP2008057776 A JP 2008057776A JP 2007204762 A JP2007204762 A JP 2007204762A JP 2007204762 A JP2007204762 A JP 2007204762A JP 2008057776 A JP2008057776 A JP 2008057776A
Authority
JP
Japan
Prior art keywords
inner ring
ball bearing
outer ring
groove
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007204762A
Other languages
Japanese (ja)
Other versions
JP5233199B2 (en
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007204762A priority Critical patent/JP5233199B2/en
Publication of JP2008057776A publication Critical patent/JP2008057776A/en
Application granted granted Critical
Publication of JP5233199B2 publication Critical patent/JP5233199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3806Details of interaction of cage and race, e.g. retention, centring

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angular ball bearing without sharing a rolling body load only by at least one groove shoulder part of an inner race and an outer race, when forming a groove for storing a seal. <P>SOLUTION: This angular ball bearing 100 of a single row of a narrow width, has at least one of the inner race 102 forming a recessed step part 122b having a diameter smaller than an inner race groove shoulder part 102c in a part in at least the circumferential direction and the outer race 101 forming a recessed step part having a diameter larger than an outer race groove shoulder part in a part in at least the circumferential direction, and is formed by rollingly arranging a large number of balls 103 between a raceway groove 101a of the outer race 101 and a raceway groove 102a of the inner race 102. A contact angle θ is set so that an extension line L1 in the normal direction in contact parts P1 and P2 between the balls 103, the outer race and the inner race, does not interfere with the recessed step part 122b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば産業機械、工作機械、ロボット、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等に用いられる玉軸受に関し、特にラジアル荷重と両方向のアキシアル荷重、特に大きなモーメント荷重が負荷として作用されるアンギュラ玉軸受に関する。   The present invention relates to a ball bearing used in, for example, industrial machines, machine tools, robots, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optical and optoelectronic apparatuses, and in particular, radial loads and axial loads in both directions, particularly large moment loads. The present invention relates to an angular ball bearing that acts as

一般に、アンギュラ玉軸受には深みぞ玉軸受のようなシールは装着されていない。したがって、例えば図19に示すように、ハウジング1と軸2との間に単列のアンギュラ玉軸受3A,3Bを2列に並設し、内輪3aを間座で構成される内輪押え4及び軸受ナット5で固定すると共に、外輪3bを外輪抑え6で固定した場合、アンギュラ玉軸受3A,3Bの接触角を表す接触点の法線方向の延長線L1は、内輪3a及び外輪3bのみぞ肩部3c及び3dを通り、軸2又は内輪押え4やハウジング1、又は外輪押え6を通過するようになる。   In general, angular ball bearings are not equipped with seals like deep groove ball bearings. Therefore, for example, as shown in FIG. 19, single-row angular ball bearings 3A and 3B are arranged in two rows between the housing 1 and the shaft 2, and the inner ring presser 4 and the bearing are constituted by the inner ring 3a as a spacer. When the outer ring 3b is fixed with the outer ring retainer 6 while being fixed with the nut 5, the extension line L1 in the normal direction of the contact point representing the contact angle of the angular ball bearings 3A, 3B is the shoulder portion of only the inner ring 3a and the outer ring 3b. It passes through 3c and 3d and passes through the shaft 2, the inner ring presser 4, the housing 1, or the outer ring presser 6.

アンギュラ玉軸受3A,3Bに外部荷重が負荷として付加されたとき、内輪3a及び外輪3b間に介装された玉でなる転動体3eと内輪3a及び外輪3bのみぞ間の接触部に生じる所謂転動体荷重は、図19で矢視するように、接触角を表す接触部の法線方向で、転動体3eから内輪3a及び外輪3bのみぞ接触部間に向かって発生する。特に、モーメント荷重の比率が大きい場合、一部の転動体3e(主として180°対向位置)の転動体荷重が極端に大きくなる。   When an external load is applied as a load to the angular ball bearings 3A, 3B, so-called rolling occurs at the contact portion between the rolling element 3e, which is a ball interposed between the inner ring 3a and the outer ring 3b, and the inner ring 3a and the outer ring 3b. As indicated by arrows in FIG. 19, the moving body load is generated from the rolling element 3e toward the inner ring 3a and the outer ring 3b between the contact parts in the normal direction of the contact part representing the contact angle. In particular, when the ratio of the moment load is large, the rolling element load of a part of the rolling elements 3e (mainly at a position opposite to 180 °) becomes extremely large.

図19に示すようにシールを有さないアンギュラ玉軸受では、図19(a)に示すように接触角が30°程度である場合には、転動体荷重の方向は、アンギュラ玉軸受3A,3Bの双方とも内輪3aのみぞ肩部3cを通り、軸2の軸受装着部を通ることになり、図19(b)のように、接触角が60°程度である場合には、転動体荷重の方向は、アンギュラ玉軸受3Aでは内輪3aのみぞ肩部3cを通り、軸2の内輪押えとなる段部3fを通ることになり、アンギュラ玉軸受3Bでは内輪3aのみぞ肩部3cを通り、内輪押え4を通って軸2の軸受装着部に達することになる。   In the angular ball bearing having no seal as shown in FIG. 19, when the contact angle is about 30 ° as shown in FIG. 19 (a), the direction of the rolling element load is the angular ball bearings 3A and 3B. Both pass through the shoulder 3c of the inner ring 3a and the bearing mounting portion of the shaft 2, and when the contact angle is about 60 ° as shown in FIG. In the angular ball bearing 3A, the inner ring 3a passes through the shoulder 3c and passes through the step 3f serving as the inner ring presser of the shaft 2, and in the angular ball bearing 3B, the inner ring 3a passes through the shoulder 3c. The bearing mounting portion of the shaft 2 is reached through the presser 4.

このように、シールを有さないアンギュラ玉軸受3A,3Bでは、内輪3a及び外輪3bがこれらと接触する軸2やハウジング1及び内輪押え4や外輪押え6によってバックアップされているので、内輪3a及び外輪3bのみぞ肩部3c及び3dのみで転動体荷重を負担するわけではないので、みぞ肩部3c及び3dが変形することはなく転動体荷重を支持することができる。   As described above, in the angular ball bearings 3A and 3B having no seal, the inner ring 3a and the outer ring 3b are backed up by the shaft 2, the housing 1, the inner ring presser 4 and the outer ring presser 6 which are in contact with them. Since the outer ring 3b only has the shoulder portions 3c and 3d not bearing the rolling element load, the groove shoulder portions 3c and 3d are not deformed and can support the rolling element load.

このため、特許文献1に示すように、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された単列の玉軸受において、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63とする幅狭のアンギュラ玉軸受でも、シールを設けない場合には内輪又は外輪のみぞ肩部のみで転動体荷重を負担することはなく、みぞ肩部が変形することはなく転動体荷重を支持することができる。
特開2006−105385号公報(第1頁、図1)
For this reason, as shown in Patent Document 1, in a single row ball bearing in which a large number of balls are rotatably disposed between the outer ring raceway groove and the inner ring raceway groove, the axial sectional width B and radius Even in the case of a narrow angular contact ball bearing with a cross-sectional dimension ratio (B / H) to (B / H) <0.63 with respect to the direction cross-section height H, if no seal is provided, only the shoulder of the inner ring or the outer ring Thus, the rolling element load is not borne, and the shoulder of the groove is not deformed, and the rolling element load can be supported.
JP 2006-105385 A (first page, FIG. 1)

しかしながら、特許文献1に開示されている幅狭のアンギュラ玉軸受で、その図11に示されているように、シール付きアンギュラ玉軸受として接触角を大きくすると、玉の接触部における法線方向の延長線がシールを収容するみぞ部を通ることになり、バックアップされていない内輪のみぞ肩部のみで転動体荷重を負担することになり、玉と内輪及び外輪のみぞ接触部の弾性変形に加えてみぞ肩部の弾性変形が生じ、剛性の低下を招く。また、転動体荷重が大きい場合にはみぞ肩部に破断や欠けが生じてしまうなどの未解決の課題がある。
そこで、本発明は上記従来例の未解決の課題に着目してなされたものであり、シールを収納するみぞ等を形成した場合に、内輪及び外輪の少なくとも一方のみぞ肩部のみで転動体荷重を負担することがないようにしたアンギュラ玉軸受を提供することを目的としている。
However, in the narrow angular contact ball bearing disclosed in Patent Document 1, as shown in FIG. 11, when the contact angle is increased as a sealed angular contact ball bearing, the normal direction in the contact portion of the ball is increased. The extension line will pass through the groove part that accommodates the seal, and it will bear the rolling element load only at the shoulder part of the inner ring groove that is not backed up. In addition to the elastic deformation of the contact part of the ball and inner ring and outer ring groove Elastic deformation of the shoulder of the groove occurs, leading to a decrease in rigidity. In addition, when the rolling element load is large, there are unsolved problems such as breakage or chipping in the groove shoulder.
Accordingly, the present invention has been made paying attention to the unsolved problems of the conventional example described above, and when a groove or the like for storing a seal is formed, the rolling element load is applied only to the shoulder of at least one of the inner ring and the outer ring. It is an object of the present invention to provide an angular contact ball bearing that does not bear the load.

上記目的を達成するために、請求項1に係る発明は、少なくとも円周方向の一部に内輪みぞ肩部よりも径の小さい凹段部が形成された内輪、及び少なくとも円周方向の一部に外輪みぞ肩部よりも径の大きい凹段部が形成された外輪の、少なくとも一方を備え、前記外輪の軌道溝と前記内輪の軌道溝との間に多数の玉が転動自在に配設された幅狭の単列のアンギュラ玉軸受において、前記玉と前記外輪及び内輪の接触部における法線方向の延長線が前記凹段部に干渉しないように接触角を設定したことを特徴としている。   In order to achieve the above object, the invention according to claim 1 is directed to an inner ring in which a concave step portion having a diameter smaller than that of the inner ring groove shoulder is formed in at least a part in the circumferential direction, and at least a part in the circumferential direction. And at least one of the outer rings formed with a concave step portion having a diameter larger than the shoulder portion of the outer ring groove, and a large number of balls are rotatably disposed between the race groove of the outer ring and the race groove of the inner ring. In the narrow single-row angular contact ball bearing, the contact angle is set so that the extension line in the normal direction in the contact portion between the ball and the outer ring and the inner ring does not interfere with the concave stepped portion. .

また、請求項2に係る発明は、少なくとも円周方向の一部に内輪みぞ肩部よりも径の小さい凹段部が形成された内輪、及び少なくとも円周方向の一部に外輪みぞ肩部よりも径の大きい凹段部が形成された外輪の、少なくとも一方を備え、前記外輪の軌道溝と前記内輪の軌道溝との間に多数の玉が転動自在に配設された幅狭の複列のアンギュラ玉軸受において、前記玉と前記外輪及び内輪の接触部における法線方向の延長線が前記凹段部に干渉しないように接触角を設定したことを特徴としている。   The invention according to claim 2 includes an inner ring in which a concave step portion having a diameter smaller than that of the inner ring groove shoulder is formed at least in a part in the circumferential direction, and an outer ring groove shoulder in at least a part in the circumferential direction. The outer ring is formed with a concave step portion having a large diameter, and a plurality of balls are arranged between the raceway groove of the outer ring and the raceway groove of the inner ring so as to be freely rollable. In the row of angular contact ball bearings, a contact angle is set so that an extension line in a normal direction at a contact portion between the ball and the outer ring and the inner ring does not interfere with the concave stepped portion.

さらに、請求項3に係る発明は、請求項1又は2に係る発明において、前記凹段部は、環状シール体を挿入するみぞ及び対向するシールラビリンス部で構成されていることを特徴としている。
さらにまた、請求項4に係る発明は、請求項1乃至3の何れか1つに係る発明において、前記内輪及び外輪の何れか一方の凹段部に、環状シール体が挿入され、該環状シール体は、挿入される側に対応する内輪及び外輪の凹部段に対して、接触及び非接触の何れかとなるように構成されていることを特徴としている。
Furthermore, the invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the concave step portion is constituted by a groove into which the annular seal body is inserted and an opposing seal labyrinth portion.
Furthermore, the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein an annular seal body is inserted into one of the concave steps of the inner ring and the outer ring, and the annular seal is provided. The body is configured to be in contact with or not in contact with the concave portions of the inner ring and the outer ring corresponding to the inserted side.

ここで、幅狭のアンギュラ玉軸受としては、標準アンギュラ玉軸受(78xx、79xx、70xx、72xx、73xxシリーズ等)に当てはまらないサイズ、すなわち、少なくとも例えば単列アンギュラ玉軸受の場合、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63とする幅狭の単列アンギュラ玉軸受であり、複列アンギュラ玉軸受の場合、軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2とする幅狭の複列アンギュラ玉軸受である。
更に、アンギュラ玉軸受の接触角としては、内輪及び外輪のみぞ肩の高さ・玉径と軸受幅の比率・シールみぞの形状や大きさによって変わるが、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、許容アキシアル荷重や許容モーメント荷重が低下するので好ましくない。
Here, as the narrow angular contact ball bearing, a size not applicable to a standard angular contact ball bearing (78xx, 79xx, 70xx, 72xx, 73xx series, etc.), that is, in the case of at least a single row angular contact ball bearing, for example, an axial sectional width B is a single row angular contact ball bearing with a cross-sectional dimension ratio (B / H) of B and radial cross section height H (B / H) <0.63, and in the case of a double row angular contact ball bearing, This is a narrow double-row angular contact ball bearing in which the cross-sectional dimension ratio (B2 / H2) between the cross-sectional width B2 and the radial cross-sectional height H2 is (B2 / H2) <1.2.
Further, the contact angle of the angular ball bearing varies depending on the height of the shoulders of the inner and outer rings, the ratio of the ball diameter and the bearing width, and the shape and size of the seal groove, but is generally 60 ° or less, preferably 50 ° or less. More preferably, the angle is 40 ° or less, but if it is less than 20 °, the allowable axial load and the allowable moment load decrease, which is not preferable.

本発明によれば、幅狭の単列アンギュラ玉軸受及び複列アンギュラ玉軸受の場合に、玉と前記外輪及び内輪との接触部における法線方向の延長線が前記凹段部に干渉しないように接触角を設定したので、内輪及び外輪の少なくとも一方のみぞ肩部のみで転動体荷重を負担することを確実に防止して、シールを有する幅狭のアンギュラ玉軸受で、みぞ肩部が変形することはなく転動体荷重を支持することができるという効果が得られる。   According to the present invention, in the case of narrow single-row angular contact ball bearings and double-row angular contact ball bearings, the extension line in the normal direction at the contact portion between the balls and the outer ring and the inner ring does not interfere with the recessed step portion. Since the contact angle is set at the inner ring and at least one of the outer ring, it is possible to reliably prevent the load of the rolling element from being loaded only by the shoulder portion, and the groove shoulder portion is deformed by a narrow angular ball bearing having a seal. The effect that it can support a rolling element load without doing is acquired.

以下、本発明の実施の形態を図を参照して説明する。図1は本発明の第1の態様(請求項1に対応)の実施の形態の一例である単列玉軸受を説明するための要部断面図、図2は図1の単列玉軸受を2列組み合わせた状態を示す要部断面図である。
本発明の第1の態様(請求項1に対応)の実施の形態の一例である単列玉軸受100は、図1に示すように、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された単列のアンギュラ玉軸受100において、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)を(B/H)<0.63としている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part for explaining a single row ball bearing which is an example of an embodiment of the first aspect of the present invention (corresponding to claim 1), and FIG. 2 shows the single row ball bearing of FIG. It is principal part sectional drawing which shows the state which combined 2 rows.
As shown in FIG. 1, a single row ball bearing 100 as an example of an embodiment of the first aspect of the present invention (corresponding to claim 1) includes a raceway groove 101a of an outer ring 101 and a raceway groove 102a of an inner ring 102. In the single-row angular contact ball bearing 100 in which a large number of balls 103 are movably disposed between them, an axial sectional width B and a radial sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / The cross-sectional dimension ratio (B / H) to 2) is (B / H) <0.63.

ここで、この実施の形態では、図2に示すように、アンギュラ玉軸受100を2列背面組合せとし、7208A(接触角30°)の2列組合せアンギュラ玉軸受と置き換える場合を例に採る。
7208Aのアンギュラ玉軸受は、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅)Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態のアンギュラ玉軸受100では、断面寸法比(B/H)=0.45(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)を9mmとした)としている。これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けることができると共に、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができる。
もちろん、必要に応じて、アンギュラ玉軸受100の断面寸法比(B/H)を0.45未満或いは0.45を超える(但し(B/H)<0.63)ように設定してもかまわない。
Here, in this embodiment, as shown in FIG. 2, the angular ball bearing 100 is used as a two-row back surface combination and replaced with a double row angular contact ball bearing of 7208A (contact angle 30 °).
The 7208A angular contact ball bearing has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial sectional width (bearing single body width) B of 18 mm, so the sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 100 of the present embodiment, the sectional dimension ratio (B / H) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing single body width) is 9 mm). Yes. As a result, a radial load, an axial load in both directions, and a moment load can be received, and space saving, a reduction in torque, and a further increase in rigidity can be achieved in the axial dimension.
Of course, if necessary, the cross-sectional dimension ratio (B / H) of the angular ball bearing 100 may be set to be less than 0.45 or more than 0.45 (where (B / H) <0.63). Absent.

このように、B/H<0.63とする理由は以下の通りである。
図3及び図4はそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm,軸受外径:φ47.625mm,軸受幅:4.762mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図5参照:内輪を例示)及び半径方向の断面2次モーメントI(図6参照:I=bh3 /12で計算)を比較した結果を示している。
Thus, the reason why B / H <0.63 is as follows.
3 and 4 are standard thin ball bearings (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, cross-sectional dimension ratio (B / H)) = 1) as a reference, the inner and outer ring rings are deformed in the radial direction when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed). properties (see FIG. 5: the inner ring of illustration) and radial cross-sectional secondary moment I: shows the result of comparison (see FIG. 6 calculated as I = bh 3/12).

また、図7及び図8についてもそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm,軸受外径:φ76.2mm,軸受幅:6.35mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した結果を示している。   7 and 8 are also used as standard thin ball bearings (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio (B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) The result of having compared the deformation characteristic of a direction and the cross-sectional secondary moment I of the radial direction is shown.

何れの軸受も(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。
従って、本実施形態では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。
In any of the bearings, (B / H) = 0.63, and the change in the rigidity increase rate gradient is remarkable. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated.
Therefore, in this embodiment, it is possible to prevent bearing deformation due to lathe processing during inner / outer ring production or processing force during polishing processing, which is a problem with conventional ultra-thin bearings, and bearing accuracy such as roundness and uneven thickness Can be improved.

また、軸やハウジングに組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、内輪押えや外輪押え等で軸受を固定した時の内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。   Deformation of inner and outer rings when bearings are fixed with inner ring retainers and outer ring retainers (especially when they are assembled with a clearance fit with the shaft or housing). In addition, it is possible to prevent torque defects and rotational accuracy defects caused by deformation, or problems such as increased heat generation, wear and seizure.

なお、単列玉軸受は、1列では、予圧をかけたりモーメント荷重を負荷することは困難であるが、2列以上の多列組合せとすることで、ラジアル荷重、アキシアル荷重及びモーメント荷重を負荷することが可能となる。
また、各玉が内外輪の軌道溝に対して常に2点で接触するので、4点接触玉軸受のように、玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロスローラ軸受に比べて転がり抵抗が低くなるので低トルク化を実現することができる。
Single-row ball bearings are difficult to apply preload or moment load in one row, but by combining multiple rows of two or more rows, radial load, axial load and moment load can be applied. It becomes possible to do.
Further, since each ball always contacts the inner and outer raceway grooves at two points, an increase in torque due to a large spin of the ball can be suppressed as in a four-point contact ball bearing. Since the rolling resistance is lower than that of the bearing, a reduction in torque can be realized.

図9は、単列の本発明品(接触角がハの字形となる2列背面組合せ軸受)とクロスローラ軸受についてそれぞれの軸受にモーメント荷重を負荷した場合の内外輪相対傾き角の比較データである。
ここで、測定軸受の主要寸法は、
本発明品:
内輪内径 :φ170
外輪外径 :φ215
単体幅 :13.5mm
転動体ピッチ円直径:φ192.5
接触角35°
(B/H=0.60)
クロスローラ軸受:
内輪内径 :φ130
外輪外径 :φ230
組立幅 :30mm
転動体ピッチ円直径:φ189.7
である。
FIG. 9 is a comparison data of the relative inclination angle of the inner and outer rings when a moment load is applied to the bearings of the single-row product of the present invention (two-row rear combination bearing with a contact angle of C shape) and the cross roller bearing. is there.
Here, the main dimensions of the measuring bearing are
Invention product:
Inner ring inner diameter: φ170
Outer ring outer diameter: φ215
Single unit width: 13.5mm
Rolling element pitch circle diameter: φ192.5
Contact angle 35 °
(B / H = 0.60)
Cross roller bearing:
Inner ring inner diameter: φ130
Outer ring outer diameter: φ230
Assembly width: 30mm
Rolling element pitch circle diameter: φ189.7
It is.

この図9から明らかなように、転動体のピッチ円直径が略同一となる本発明品及びクロスローラ軸受の両者について、モーメント剛性の比較データは、本発明品がクロスローラ軸受に対して、約1.3倍のモーメント剛性を保持していることが確認された。
また、上記の実験に加えて、本発明品及びクロスローラ軸受を軸及びハウジングに組込んだ後、モータ(ベルト駆動)により低速で回転させたが、本発明品は、回転ムラもなくスムーズに回転したが、クロスローラ軸受の場合はトルク変動による回転ムラが実際に確認された。
As is apparent from FIG. 9, for both the present invention product and the cross roller bearing in which the pitch circle diameters of the rolling elements are substantially the same, the comparison data of the moment stiffness is about the present invention product about the cross roller bearing. It was confirmed that the moment rigidity was maintained 1.3 times.
In addition to the above experiments, the product of the present invention and the cross roller bearing were assembled into the shaft and housing, and then rotated at a low speed by a motor (belt drive). In the case of the cross roller bearing, rotation irregularity due to torque fluctuation was actually confirmed.

更に、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が増加し、軸受剛性は従来の玉軸受に対して増加する。また、旋回ロボットのアーム継ぎ手部分等に適用する場合では、低速の揺動回転がほとんどであるので、玉径を小さくしたことにより軸受の負荷容量が低下しても、転がり疲れ寿命時間が実用上で問題となることはない。
その他の産業機械、工作機械、ロボット、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置などでも、回転数が低い用途や揺動回転用途が多いので、転がり疲れ寿命時間が問題となることはほとんどない。
Furthermore, when the width dimension is about half that of the conventional standard single row ball bearing, the ball diameter is also about half that of the conventional ball bearing, but conversely, the number of balls per row is increased, and the bearing rigidity is conventional. Increased against ball bearings. In addition, when applied to the arm joint of a turning robot, etc., low-speed oscillating rotation is almost the case, so even if the bearing load capacity is reduced by reducing the ball diameter, the rolling fatigue life time is practical. There is no problem.
Other industrial machines, machine tools, robots, medical equipment, semiconductor / liquid crystal manufacturing equipment, optical and optoelectronic equipment, etc., have many applications with low rotation speeds and rocking rotations, so rolling fatigue life time becomes a problem. There is almost no.

図10は、各種軸受の計算モーメント剛性の比較である。同一サイズ(計算例は、軸受名番7906A(接触角30°)相当で、内外径寸法が同じ場合:内輪内径φ30mm、外輪外径φ47mm)では、請求項1に係る単列の幅狭アンギュラ玉軸受(接触角30°:軸受の計算例)を2列組合せ、且つ内外輪の軌道溝曲率半径(Daは玉径)を変化させた本発明例A〜Eは、いずれもクロスローラ軸受、標準2列組合せアンギュラ玉軸受及び4点接触玉軸受に比べてモーメント剛性が高くなっており、例えば本発明例Bは、クロスローラ軸受の2.4倍、従来の標準2列組合せアンギュラ玉軸受の1.9倍、4点接触玉軸受の3.3倍のモーメント剛性を保持させることが可能である。   FIG. 10 is a comparison of calculated moment stiffness of various bearings. For the same size (calculation example is equivalent to bearing name No. 7906A (contact angle 30 °) and the inner and outer diameter dimensions are the same: inner ring inner diameter φ30 mm, outer ring outer diameter φ47 mm), the single row narrow angular contact ball according to claim 1 The invention examples A to E in which the bearings (contact angle 30 °: bearing calculation example) are combined in two rows and the raceway groove radius of curvature of the inner and outer rings (Da is the ball diameter) are changed. The moment rigidity is higher than that of the two-row combined angular ball bearing and the four-point contact ball bearing. For example, the present invention example B is 2.4 times that of the cross roller bearing, and 1 of the conventional standard two-row combined angular ball bearing. It is possible to maintain a moment rigidity 3.3 times that of a 4-point contact ball bearing.

なお、それぞれの設計予圧すきまは、本発明例A〜E、標準2列組合せアンギュラ玉軸受及び4点接触玉軸受は−0.010mm、クロスローラ軸受は−0.001mmと実用上の標準的な値として計算している。
また、本実施形態における幅狭玉軸受の適正な玉径は、シール等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道溝との接触部間の面圧が増加し、耐圧痕性が低下する虞れがあるため、概ね、軸受幅(B)又は(B2/2)の30〜90%が望ましい。
The design preload clearances are -0.010 mm for the invention examples A to E, standard two-row combination angular contact ball bearings and 4-point contact ball bearings, and -0.001 mm for the cross roller bearings, which are standard in practical use. Calculated as a value.
In addition, the appropriate ball diameter of the narrow ball bearing in the present embodiment varies depending on the presence or absence of a seal or the like, but in order to increase rigidity, if the ball diameter is extremely reduced, the ball and the inner and outer ring raceway grooves Since the contact pressure between the contact portions increases and the pressure scar resistance may be lowered, approximately 30 to 90% of the bearing width (B) or (B2 / 2) is desirable.

そして、本実施形態では、単列玉軸受100の片側に環状シール体120を設けると共に、多数の玉103を円周方向に位置決めする保持器130を配設している。
すなわち、図1に示すように、外輪101及び内輪102の例えば右側の片側端面に環状シール体120を収容する凹段部としてのシール収容溝121及び122が配設されている。
In this embodiment, an annular seal body 120 is provided on one side of the single row ball bearing 100, and a cage 130 for positioning a large number of balls 103 in the circumferential direction is provided.
That is, as shown in FIG. 1, seal housing grooves 121 and 122 serving as concave steps for housing the annular seal body 120 are disposed on, for example, the right side end surfaces of the outer ring 101 and the inner ring 102.

環状シール体120は逆L字状に形成した金属芯金125で補強した補強タイプのゴムシール(例えばニトリルゴム・アクリルゴムやフッ素ゴム)126で構成されている。ゴムシール126は、外周部に外輪101と嵌合する嵌合部126aが形成され、内周部に内輪102と接触するリップ部126bが形成されている。
外輪101のシール収容溝121は、外輪101の軌道溝101aに連接する傾斜内周面101bの右端側に比較的浅い段部121aと、この段部121aの底部に円周方向に形成された環状シール体120の嵌合部126aを押し込んで挿入する浅い嵌合凹部121bとを有する構成とされている。
The annular seal body 120 is composed of a reinforced rubber seal (for example, nitrile rubber / acrylic rubber or fluororubber) 126 reinforced by a metal core 125 formed in an inverted L shape. The rubber seal 126 has a fitting portion 126 a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126 b that contacts the inner ring 102 on the inner peripheral portion.
The seal housing groove 121 of the outer ring 101 has a relatively shallow step portion 121a on the right end side of the inclined inner peripheral surface 101b connected to the raceway groove 101a of the outer ring 101, and an annular shape formed in the circumferential direction at the bottom portion of the step portion 121a. It is set as the structure which has the shallow fitting recessed part 121b which pushes in and inserts the fitting part 126a of the seal body 120. FIG.

また、内輪102のシール収容溝122は、内輪の軌道溝102aの左右両端に連接する円筒外周面102bにおける軌道溝102aの右側のみぞ肩部102cの右端側に比較的深い段部122aと、この段部122aの底面に円周方向に形成した環状シール体120の内周面に形成されたリップ部126bが接触する浅い収容凹部122bとを有する構成とされている。   Further, the seal housing groove 122 of the inner ring 102 has a relatively deep step portion 122a on the right end side of the groove 102a on the right side of the raceway groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the raceway groove 102a of the inner ring. A shallow housing recess 122b that is in contact with a lip 126b formed on the inner peripheral surface of the annular seal body 120 formed in the circumferential direction is formed on the bottom surface of the stepped portion 122a.

さらに、保持器130は、玉103を収容するポケット部131を挟んで軸方向に延長する一対の円環状部132a及び132bを有し、これら円環状部132a及び132bが内輪102の円筒外周面102bを案内面として装着されている。
そして、環状シール体120側の円環状部132bには内輪102の円筒外周面102bとシール収容溝122との交点に形成される交点エッジ部123と対向する内周面に交点エッジ部123との接触を回避する断面半円形の凹状溝部133が円周方向に形成されている。
Furthermore, the retainer 130 has a pair of annular portions 132 a and 132 b extending in the axial direction across the pocket portion 131 that accommodates the ball 103, and these annular portions 132 a and 132 b are the cylindrical outer peripheral surface 102 b of the inner ring 102. Is installed as a guide surface.
The annular portion 132b on the annular seal body 120 side is connected to the intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122. A concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.

この保持器130は、切削により製作された銅合金などの金属材料、ポリアミド、ポリアセタール、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の合成樹脂材料、さらにはガラス繊維やカーボン繊維等の補強材を添加した強化材入り合成樹脂材料等で製作されている。保持器130を樹脂材料で形成する場合には、切削成形及び射出成形の何れをも適用することができる。   The cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass fiber or carbon fiber. It is made of a synthetic resin material containing a reinforcing material with a reinforcing material added. When the cage 130 is formed of a resin material, either cutting molding or injection molding can be applied.

このように、保持器130の案内面の右端側に形成された交点エッジ部123と対向する内周面に凹状溝部133が円周方向に形成されているので、この交点エッジ部123が保持器130の内周面と接触することを確実に防止することができ、環状シール体120側の円環状部132bの幅を広くして断面積を大きくすることにより強度を確保しながら、保持器130の摩耗を確実に防止することができる。   As described above, since the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is formed in the cage. The retainer 130 can be reliably prevented from coming into contact with the inner peripheral surface of the ring 130, while ensuring the strength by increasing the width of the annular portion 132b on the annular seal body 120 side to increase the cross-sectional area. Can be reliably prevented.

また、案内面の一部に設けられた凹状溝部133には、グリース潤滑の場合、グリースを保持する貯留部としての役割を果たすことができ、加えて案内面近傍に位置するため、案内面に適度に潤滑油を供給する効果もあり、潤滑特性の面からも、長期に亘って耐摩耗性を保持することができる。この効果は、後述する図13に示すように、円環状部132a及び132bの双方に凹状溝部133及び134を形成した場合にはより顕著になる。   In addition, in the case of grease lubrication, the concave groove 133 provided in a part of the guide surface can serve as a reservoir for holding grease, and in addition, since it is located in the vicinity of the guide surface, There is also an effect of appropriately supplying the lubricating oil, and the wear resistance can be maintained for a long time from the viewpoint of the lubrication characteristics. This effect becomes more conspicuous when concave grooves 133 and 134 are formed in both annular portions 132a and 132b as shown in FIG.

通常、玉軸受100の少なくとも片側に環状シール体120を配設する場合には、外輪101の内径面や内輪102の外径面を保持器130の案内面とするが、この案内面とシール収容溝122とが接する位置に交点エッジ部123が形成されるため、この交点エッジ部123と保持器130の円環状部132bとの接触によるエッジ当りによって保持器130が摩耗することになる。   Normally, when the annular seal body 120 is disposed on at least one side of the ball bearing 100, the inner diameter surface of the outer ring 101 and the outer diameter surface of the inner ring 102 are used as the guide surfaces of the cage 130. Since the intersection edge portion 123 is formed at a position where the groove 122 is in contact with the groove 122, the cage 130 is worn due to the contact between the intersection edge portion 123 and the annular portion 132b of the cage 130.

この保持器130の摩耗を防止するには、従来は、内輪案内としたときに、図11に示すように、保持器130の交点エッジ部123側における円環状部132bの軸方向長さ即ち幅を短くして、円環状部132bと交点エッジ部123とが接触しないようにすることが考えられている。
しかしながら、本実施例のように幅狭の玉軸受100の場合には、円環状部132bの幅が非常に薄くなり、十分な強度を確保することができないという問題がある。
In order to prevent the wear of the cage 130, conventionally, when the inner ring guide is used, as shown in FIG. 11, the axial length or width of the annular portion 132b on the intersection edge portion 123 side of the cage 130 is shown. It is considered that the annular portion 132b and the intersection edge portion 123 do not come into contact with each other.
However, in the case of the narrow ball bearing 100 as in this embodiment, there is a problem that the width of the annular portion 132b becomes very thin and sufficient strength cannot be ensured.

このためには、図12に示すように円環状部132bの幅を長くして強度を確保する必要があるが、この場合には、上述したように、円環状部132bの内周面と交点エッジ部123とが対向することになるため、玉軸受100の回転中に保持器130が案内側軌道輪に対して傾いた場合に、円環状部132bの内周面が交点エッジ部123にエッジ当りすることになり保持器130が摩耗してしまう。
特に、シール収容溝121及び122は、切削加工後の熱処理面であることが多いので面粗度が悪く、且つ保持器130と接触する交線部分にはバリが形成されやすいので、摩耗が発生しやすい。
For this purpose, as shown in FIG. 12, it is necessary to increase the width of the annular portion 132b to ensure the strength, but in this case, as described above, the intersection with the inner peripheral surface of the annular portion 132b. Since the edge portion 123 is opposed, when the cage 130 is inclined with respect to the guide-side raceway during rotation of the ball bearing 100, the inner peripheral surface of the annular portion 132b is edged to the intersection edge portion 123. As a result, the cage 130 is worn.
In particular, since the seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor, and burrs are likely to be formed at the intersecting portions that come into contact with the cage 130, so that wear occurs. It's easy to do.

さらに、本発明による玉軸受100は、構造上、軸受の玉ピッチ円径に対して、玉径が非常に小さくなるので、それに対応して、保持器130の円環状部132bの断面も小さくなり、保持器130の半径方向強度(円環状部132bの半径方向強度)も小さくなる。これに加え、本発明による玉軸受100の用途はその使用条件から、軸受回転時に、大きなモーメント荷重が付加され易く、軸受が傾き易い。そのため、各玉103の接触角の変化により、各玉103の公転速度がバラツキ、玉103とポケット部131との間の突っ張り力による保持器130の変形も大きくなるため、さらにエッジ当りし易くなり、接触部の面圧も増加して摩耗が進行し易い。   Furthermore, since the ball bearing 100 according to the present invention has a structurally very small ball diameter with respect to the ball pitch circle diameter of the bearing, the cross section of the annular portion 132b of the cage 130 is correspondingly reduced. The radial strength of the cage 130 (the radial strength of the annular portion 132b) is also reduced. In addition to this, the application of the ball bearing 100 according to the present invention is likely to cause a large moment load to be applied during rotation of the bearing, and the bearing is liable to tilt due to its usage conditions. Therefore, due to the change in the contact angle of each ball 103, the revolution speed of each ball 103 varies, and the deformation of the cage 130 due to the tension force between the ball 103 and the pocket portion 131 also increases, so it is easier to hit the edge. Further, the surface pressure of the contact portion also increases and wear tends to proceed.

しかしながら、上述したように、本実施形態では、図1に示すように、保持器130の環状シール体120側における円環状部132bの幅を広くして断面積を増加させながらシール収容溝122と案内面となる円筒面102bとの境界部の交点エッジ部123に接触する可能性のある部分に凹状溝部133が形成されているので、保持器130が傾いたとしても、交点エッジ部123と凹状溝部133との間に十分な間隔を確保することができるので、凹状溝部133と交点エッジ部123との接触を確実に防止することができ、保持器130の摩耗を確実に防止することができる。   However, as described above, in the present embodiment, as shown in FIG. 1, the width of the annular portion 132 b on the annular seal body 120 side of the cage 130 is increased to increase the cross-sectional area and Since the concave groove 133 is formed in a portion that may contact the intersection edge 123 at the boundary with the cylindrical surface 102b serving as the guide surface, even if the cage 130 is inclined, the intersection edge 123 and the concave shape are formed. Since a sufficient space can be ensured between the groove portion 133 and the concave groove portion 133 and the intersection edge portion 123 can be reliably prevented from being contacted, and the wear of the cage 130 can be reliably prevented. .

また、本実施形態では、玉103の外輪101の軌道溝101aに接触する接触部P1及び内輪102の軌道溝102aに接触する接触部P2における法線方向の延長線L1が収容凹部122bと干渉することのないように、接触角θが35°に設定されている。このため、延長線L1と平行で収納凹部122bと接する平行線L2との距離ΔがΔ>0とされている。ここで、接触角θは、内輪及び外輪のみぞ肩の高さ・玉径と軸受幅の比率・シールの収納凹部122bの形状や大きさによって変わるが、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、許容アキシアル荷重や許容モーメント荷重が低下するので好ましくない。   In the present embodiment, the normal extension line L1 at the contact portion P1 that contacts the raceway groove 101a of the outer ring 101 of the ball 103 and the contact portion P2 that contacts the raceway groove 102a of the inner ring 102 interferes with the housing recess 122b. In order to prevent this, the contact angle θ is set to 35 °. For this reason, the distance Δ between the parallel line L2 parallel to the extension line L1 and in contact with the storage recess 122b is Δ> 0. Here, the contact angle θ varies depending on the height of the shoulder of the inner ring and the outer ring, the ratio of the ball diameter and the bearing width, and the shape and size of the seal recess 122b, but is generally 60 ° or less, preferably 50 ° or less. More preferably, the angle is 40 ° or less, but if it is less than 20 °, the allowable axial load and the allowable moment load decrease, which is not preferable.

このように、接触角θを設定することにより、転動体荷重の付加方向となる接触部P1及びP2の法線方向の延長線L1が環状シール体120を収納する収納凹部122bに対して距離Δ(>0)だけ離れた位置を通ることになり、転動体荷重を内輪のみぞ肩部のみで負担することを確実に防止して、図1で鎖線図示の内輪押え140でバックアップされる内輪102及び内輪102に嵌挿された軸(図示せず)で転動体荷重を受けることができ、みぞ肩部102cが変形して剛性の低下を招くことなく転動体荷重を受けることができる。したがって、幅狭のアンギュラ玉軸受で、大きなモーメント荷重が付加された場合でもみぞ肩部102cで破断や欠けが生じることがなく、軸受寿命を長期化することができる。   In this way, by setting the contact angle θ, the contact line P1 and the extension line L1 in the normal direction of the P2 which is the direction in which the rolling element load is applied are separated by a distance Δ from the storage recess 122b in which the annular seal body 120 is stored. (> 0), the inner ring 102 is backed up by the inner ring presser 140 shown by the chain line in FIG. In addition, a rolling element load can be received by a shaft (not shown) fitted in the inner ring 102, and the rolling shoulder load can be received without causing deformation of the groove shoulder portion 102c and causing a decrease in rigidity. Therefore, even when a large angular load is applied to a narrow angular ball bearing, the groove shoulder 102c is not broken or chipped, and the bearing life can be extended.

なお、上記実施形態では、玉軸受100の右側に環状シール体120を配設した場合について説明したが、これに限定されるものではなく、玉軸受100の左側に環状シール体120を配設するようにしてもよく、さらには両側に環状シール体120を配設するようにしてもよい。
また、上記変形例では、円環状部132bに形成する凹状溝部133を断面半円形状に形成した場合について説明したが、これに限定されるものではなく、断面四角形状、断面三角形状、断面楕円状等の交点エッジ部123との接触を回避できる形状であれば任意の形状とすることができる。
In addition, although the said embodiment demonstrated the case where the annular seal body 120 was arrange | positioned on the right side of the ball bearing 100, it is not limited to this, The annular seal body 120 is arrange | positioned on the left side of the ball bearing 100. Alternatively, the annular seal body 120 may be disposed on both sides.
Moreover, although the case where the concave groove part 133 formed in the annular part 132b is formed in a semicircular cross section has been described in the above modification, the present invention is not limited to this, and is not limited to this. Any shape can be used as long as contact with the intersection edge portion 123 such as a shape can be avoided.

さらに、上記変形例では、環状シール体120が内輪シール収容溝122と接触する場合について説明したが、これに限定されるものではなく、図14に示す内輪シール収容溝122と接触しない非接触ゴムシール型(金属芯金付き)や外輪シール溝に加締める金属シールを適用することができる。
さらにまた、上記実施形態では、保持器130の案内面を内輪102の外周面とした場合について説明したが、これに限定されるものではなく、外輪101の内周面を案内面とするようにしてもよい。
Further, in the above modification, the case where the annular seal body 120 contacts the inner ring seal housing groove 122 has been described. However, the present invention is not limited to this, and a non-contact rubber seal that does not contact the inner ring seal housing groove 122 shown in FIG. A metal seal that is caulked in a mold (with a metal core) or an outer ring seal groove can be applied.
Furthermore, in the above embodiment, the case where the guide surface of the cage 130 is the outer peripheral surface of the inner ring 102 has been described. However, the present invention is not limited to this, and the inner peripheral surface of the outer ring 101 is used as the guide surface. May be.

なおさらに、上記実施形態では、保持器130の円環状部132a及び132bのうち環状シール体120側の円環状部132bに凹状溝部133を形成した場合について説明したが、これに限定されるものではなく、図13に示すように、環状シール体120とは反対側の円環状部132aにも円環状部132bの凹状溝部133と各玉103の中心を通る垂直面を挟む面対称位置に凹状溝部134を設けるようにしてもよい。このように、凹状溝部を左右の円環状部132a及び132bに形成すると、組み付け時に保持器130の凹状溝部の形成位置を確認することなく、任意の方向から組み付けることができ、組み付け作業を向上させることができる。   Furthermore, although the said embodiment demonstrated the case where the concave groove part 133 was formed in the annular part 132b by the side of the annular seal body 120 among the annular parts 132a and 132b of the holder | retainer 130, it is not limited to this. As shown in FIG. 13, the annular groove 132a on the opposite side of the annular seal body 120 also has a concave groove at a plane symmetrical position sandwiching the concave groove 133 of the annular portion 132b and the vertical plane passing through the center of each ball 103. 134 may be provided. As described above, when the concave groove portions are formed in the left and right annular portions 132a and 132b, it is possible to assemble from any direction without confirming the formation position of the concave groove portions of the retainer 130 during the assembly, thereby improving the assembling work. be able to.

また、保持器は、本実施例以外に、図16に示すように、軸方向の一方の端部(組合せ側端面と反対側の端部)に環状シール体104を装着し、且つ玉103を転動可能に保持する保持器110を備えたアンギュラ玉軸受100を2列背面組合せした場合に、図17及び図18に示すように、円環部111と、この円環部111の一端部に円周方向に略等間隔で複数個所軸方向に突設された柱部112と、各柱部112間に形成されて玉103を周方向に転動可能に保持するポケット部113とを備えた柔軟性のある内輪外径面、外輪内径面を案内面としない片持ちリング構造の保持器すなわち内輪・外輪と非接触となる玉案内冠形保持器110を採用してもよい。このように単列玉軸受を2列組み合わせた場合には、図16に示すように、玉103の軸方向ピッチをできるだけ組合せ側端面の反対側にずらせば(X1>X2)、保持器リング部の軸方向肉厚が厚くなる構造にでき、且つモーメント剛性を上げるための作用点間距離を大きくとることができる。また、保持器のない総玉のアンギュラ玉軸受を適用してもよい。 In addition to this embodiment, as shown in FIG. 16, the cage has an annular seal body 104 attached to one end in the axial direction (end opposite to the end face on the combination side), and the ball 103 is attached. When two rows of angular ball bearings 100 having cages 110 that are held so as to be able to roll are combined on the back side, as shown in FIGS. 17 and 18, an annular part 111 and one end part of the annular part 111 are provided. A plurality of pillar portions 112 projecting in the axial direction at a plurality of substantially equal intervals in the circumferential direction, and pocket portions 113 formed between the respective pillar portions 112 to hold the balls 103 so as to roll in the circumferential direction. A retainer having a flexible inner ring outer diameter surface and a cantilever ring structure in which the outer ring inner diameter surface is not used as a guide surface, that is, a ball guide crown-shaped cage 110 that is not in contact with the inner ring / outer ring may be employed. When two single-row ball bearings are combined in this way, as shown in FIG. 16, if the axial pitch of the balls 103 is shifted as much as possible on the opposite side of the end face on the combination side (X 1 > X 2 ), the cage A structure in which the axial thickness of the ring portion increases can be obtained, and the distance between the operating points for increasing the moment rigidity can be increased. Further, a full-ball angular contact ball bearing without a cage may be applied.

なお、上記実施形態では、玉103のピッチ円直径は次式(1)のとおりとしているが、軸受1列あたりの玉数を増やして更にモーメント剛性を増加させたい場合は、次式(2)を採用して、玉103のピッチ円直径を外輪側にずらした構造としてもよいし、必要に応じて次式(3)を採用して逆に玉103のピッチ円直径を内輪102側にずらしてもよい(図示せず)。
玉のピッチ円直径=(内輪内径+外輪外径)/2 …(1)
玉のピッチ円直径>(内輪内径+外輪外径)/2 …(2)
玉のピッチ円直径<(内輪内径+外輪外径)/2 …(3)
In the above embodiment, the pitch circle diameter of the balls 103 is as shown in the following formula (1). However, when it is desired to increase the moment stiffness by increasing the number of balls per row of the bearing, the following formula (2) The pitch circle diameter of the ball 103 may be shifted to the outer ring side, or the following equation (3) may be used as necessary to shift the pitch circle diameter of the ball 103 toward the inner ring 102 side. (Not shown).
Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) / 2 (1)
Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) / 2 (2)
Ball pitch circle diameter <(inner ring inner diameter + outer ring outer diameter) / 2 (3)

また、必要に応じて、組み合わされる左右の玉軸受の玉ピッチ円直径を同―値とせずともよいし、組み合わされる左右の玉軸受の玉103の径を同一値としなくてもよい。加えて、組み合わせる2個の玉軸受の断面寸法比(B/H)は同一でなく、例えば玉径の小さい方を(B/H)=0.28、玉径の大きい方を(B/H)=0.62としても構わない。更に、玉103の軸方向ピッチも軸方向中心でなくともよく、シールや保持器の装着有無やモーメントの作用点間距離の確保等のために玉103の軸方向ピッチを軸方向にずらしてもよい。   If necessary, the ball pitch circle diameters of the left and right ball bearings to be combined may not be the same value, and the diameters of the balls 103 of the left and right ball bearings to be combined may not be the same value. In addition, the sectional dimension ratio (B / H) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (B / H) = 0.28, and the larger ball diameter is (B / H). ) = 0.62. Further, the axial pitch of the balls 103 may not be the center of the axial direction, and the axial pitch of the balls 103 may be shifted in the axial direction in order to secure the distance between the application points of the moment and the moment of attachment of the seal and the cage. Good.

次に、図15を参照して、本発明の第2の態様(請求項2に対応)の実施の形態の一例である複列アンギュラ玉軸受を説明する。
この複列アンギュラ玉軸受200は、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設され、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が(B2/H2)<1.2とされており、玉ピッチ円直径が半径方向断面高さの中央に設定されている。
Next, with reference to FIG. 15, a double-row angular contact ball bearing which is an example of an embodiment of the second aspect (corresponding to claim 2) of the present invention will be described.
In this double row angular contact ball bearing 200, a large number of balls 203 are rotatably arranged between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202, and an axial cross-section. The cross-sectional dimension ratio (B2 / H2) between the width B2 and the radial sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2 / H2) <1.2, The pitch circle diameter is set at the center of the radial section height.

そして、外輪201及び内輪202の左右側面に夫々第1の実施形態と同様のシール収容溝121及び122が形成され、これらシール収容溝121及び122に環状シール体120が左右対象に収容されている。
ここで、この実施の形態では、複列玉軸受200を7208A(接触角35°)の2列組合せアンギュラ玉軸受に置き換えた場合を例に採る。
And the seal | sticker accommodation groove | channels 121 and 122 similar to 1st Embodiment are each formed in the right-and-left side surface of the outer ring | wheel 201 and the inner ring | wheel 202, and the cyclic | annular seal body 120 is accommodated in these seal | sticker accommodation grooves 121 and 122 by right and left object. .
Here, in this embodiment, a case where the double row ball bearing 200 is replaced with a double row combination angular ball bearing of 7208A (contact angle 35 °) is taken as an example.

7208Aは、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅):Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態のアンギュラ玉軸受200では、断面寸法比(B2/H2)=0.90(内輪外径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅):B2を18mmとした)としている。これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けることができるのは勿論のこと、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができる。   7208A has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial cross-sectional width (bearing single body width): B is 18 mm, so the cross-sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 200 of the present embodiment, the cross-sectional dimension ratio (B2 / H2) = 0.90 (the inner ring outer diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width): B2 is 18 mm. ) As a result, it is possible not only to receive radial load, axial load in both directions, and moment load, but also to reduce space by 1/2 in the axial dimension, lower torque, and higher rigidity. .

もちろん、必要に応じて、断面寸法比(B2/H2)を0.90未満或いは0.90を超える(但し、(B2/H2)<1.2)ように設定してもよい。
そして、アンギュラ玉軸受200の接触角は、前述した第1の実施形態と同様に例えば35°に設定され、玉203の外輪201及び内輪202の軌道溝201a,201b及び202a,202bとの接触部P1及びP2の法線方向の延長線L1が収容凹部122bに対して所定距離Δ(>0)だけ離れた位置を通るように設定されている。
Of course, if necessary, the cross-sectional dimension ratio (B2 / H2) may be set to be less than 0.90 or more than 0.90 (provided that (B2 / H2) <1.2).
The contact angle of the angular ball bearing 200 is set to 35 °, for example, as in the first embodiment described above, and the contact portions of the ball 203 with the outer ring 201 and the raceway grooves 201a, 201b and 202a, 202b of the inner ring 202 are set. The extension line L1 in the normal direction of P1 and P2 is set so as to pass through a position separated by a predetermined distance Δ (> 0) with respect to the housing recess 122b.

この第2の実施形態でも、接触部P1及びP2の法線方向の延長線L1がシール収容溝122の収容凹部122bに対して干渉することがないように接触角θが設定されているので、大きな転動体荷重が付加されたときに、この転動体荷重をみぞ肩部のみで負担することはなく、内輪押えでバックアップされた内輪202及びこれに嵌挿される軸(図示せず)で受けることができ、みぞ肩部の変形を抑制してみぞ肩部の破断や欠けを確実に防止することができ、幅狭の複列アンギュラ軸受の寿命を長期化することができる。   Even in the second embodiment, the contact angle θ is set so that the extension line L1 in the normal direction of the contact portions P1 and P2 does not interfere with the housing recess 122b of the seal housing groove 122. When a large rolling element load is applied, the rolling element load is not borne only by the groove shoulder, but is received by the inner ring 202 backed up by the inner ring presser and a shaft (not shown) inserted therein. Therefore, the deformation of the groove shoulder can be suppressed, and the fracture or chipping of the groove shoulder can be surely prevented, and the life of the narrow double row angular bearing can be prolonged.

なお、この第2の実施形態でも、モーメント剛性をあげるため、複列アンギュラ玉軸受200で玉ピッチ円直径を外径側にずらしたり、複列アンギュラ玉軸受200で各列の玉径や玉ピッチ円直径を変えたりしてもよい。
また、保持器のない複列総玉アンギュラ玉軸受でもよい。
何れの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造に関する適用例は、上記第1の実施形態で記載した単列玉軸受に準ずる。また、上記第1の態様の実施の形態と同様に、予圧及びすきまの何れの条件で使用してもよい。
In the second embodiment, in order to increase the moment rigidity, the double-row angular contact ball bearing 200 is used to shift the ball pitch circle diameter to the outer diameter side, or the double-row angular contact ball bearing 200 is used to change the ball diameter and ball pitch of each row. The circle diameter may be changed.
Alternatively, a double row full ball angular contact ball bearing without a cage may be used.
In any case, in addition to the structure of the annular seal body, the cage, etc. and whether or not it is mounted, the application example related to the structure is the same as the single row ball bearing described in the first embodiment. Moreover, you may use on any conditions of a preload and a clearance gap similarly to embodiment of the said 1st aspect.

また、上記第1の実施形態においては、内輪102側のみぞ肩部102cに連接して環状シール体120を収容する収容凹部121b,122bを形成した場合について説明したが、これに限定されるものではなく、図1で玉103の中心を通る垂直線で左右反転させた形状として外輪101及び内輪102のみぞ肩部に連接して環状シール体120を収容する収容凹部を形成した場合にも本発明を適用することができる。ここで、環状シール体120は、左右両側に設けるようにしてもよい。   In the first embodiment, the case has been described in which the housing recesses 121b and 122b for housing the annular seal body 120 connected to the shoulder portion 102c on the inner ring 102 side are formed. However, the present invention is not limited to this. Instead, this is also the case when the concave portion for accommodating the annular seal body 120 is formed by connecting the outer ring 101 and the inner ring 102 to the shoulders as a shape reversed left and right by a vertical line passing through the center of the ball 103 in FIG. The invention can be applied. Here, the annular seal body 120 may be provided on both the left and right sides.

さらに、上記第1及び第2の実施形態においては、環状シール体120を収容する収容凹部121b,122bが円周方向の全周に亘って形成されている場合について説明したが、これに限定されるものではなく、円周方向の一部に収納凹部が形成されている場合にも本発明を適用し得るものである。さらにまた、収納凹部としては環状シール体120を収容するためのものに限らず、任意の用途に使用する収納凹部を適用することができる。   Furthermore, in the said 1st and 2nd embodiment, although the accommodation recessed part 121b, 122b which accommodates the cyclic | annular sealing body 120 was demonstrated covering the perimeter of the circumferential direction, it is limited to this. The present invention can also be applied to a case where the housing recess is formed in a part of the circumferential direction. Furthermore, the storage recess is not limited to the one for storing the annular seal body 120, and a storage recess used for any application can be applied.

本発明の第1の態様(請求項1に対応)の実施の形態の一例である単列アンギュラ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row angular contact ball bearing which is an example of embodiment of the 1st aspect (corresponding to Claim 1) of this invention. 図1の単列アンギュラ玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row angular contact ball bearing of FIG. 1 with 2 rows. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 本発明品とクロスローラ軸受とのモーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the moment rigidity of this invention product and a cross roller bearing. 各種軸受での計算モーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the calculated moment rigidity in various bearings. 本発明の第1の態様の他の実施の形態である単列アンギュラ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row angular contact ball bearing which is other embodiment of the 1st aspect of this invention. 本発明の第1の態様の単列アンギュラ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row angular contact ball bearing of the 1st aspect of this invention. 本発明の第1の実施形態の単列アンギュラ玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of the single row angular contact ball bearing of the 1st Embodiment of this invention. 本発明の第1の態様の他の変形例の単列アンギュラ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row angular contact ball bearing of the other modification of the 1st aspect of this invention. 本発明の第2の態様の複列アンギュラ玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row angular contact ball bearing of the 2nd aspect of this invention. 本発明の第1の態様の単列アンギュラ玉軸受の他の例を示す単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which shows the other example of the single row angular ball bearing of the 1st aspect of this invention in two rows. 保持器の径方向に沿う断面図である。It is sectional drawing in alignment with the radial direction of a holder | retainer. 保持器を径方向内側から見た部分斜視図である。It is the fragmentary perspective view which looked at the holder | retainer from radial direction inner side. 従来のアンギュラ玉軸受を示す説明図である。It is explanatory drawing which shows the conventional angular contact ball bearing.

符号の説明Explanation of symbols

100 単列玉軸受
101 外輪
101a 外輪軌道溝
102 内輪
102a 内輪軌道溝
102c みぞ肩部
103 玉
120 環状シール体
121,122 シール収容溝
123 交点エッジ部
130 保持器
131 ポケット部
132a,132b 円環状部
133 凹状溝部
200 複列玉軸受
201 外輪
201a,201b 外輪軌道溝
202 内輪
202a,202b 内輪軌道溝
203 玉
100 single row ball bearing 101 outer ring 101a outer ring raceway groove 102 inner ring 102a inner ring raceway groove 102c groove shoulder 103 ball 120 annular seal body 121, 122 seal receiving groove 123 intersection edge part 130 cage 131 pocket part 132a, 132b annular part 133 Concave groove 200 Double row ball bearing 201 Outer ring 201a, 201b Outer ring raceway groove 202 Inner ring 202a, 202b Inner ring raceway groove 203 Ball

Claims (4)

少なくとも円周方向の一部に内輪みぞ肩部よりも径の小さい凹段部が形成された内輪、及び少なくとも円周方向の一部に外輪みぞ肩部よりも径の大きい凹段部が形成された外輪の、少なくとも一方を備え、前記外輪の軌道溝と前記内輪の軌道溝との間に多数の玉が転動自在に配設された幅狭の単列のアンギュラ玉軸受において、
前記玉と前記外輪及び内輪との接触部における法線方向の延長線が前記凹段部に干渉しないように接触角を設定したことを特徴とする単列のアンギュラ玉軸受。
An inner ring in which a concave step portion having a diameter smaller than that of the inner ring groove shoulder portion is formed at least in a part of the circumferential direction, and a concave step portion having a diameter larger than that of the outer ring groove shoulder portion is formed in at least a part of the circumferential direction. In the narrow single row angular contact ball bearing provided with at least one of the outer ring and a large number of balls rotatably arranged between the race groove of the outer ring and the race groove of the inner ring,
A single row angular contact ball bearing, wherein a contact angle is set so that an extension line in a normal direction at a contact portion between the ball and the outer ring and the inner ring does not interfere with the concave stepped portion.
少なくとも円周方向の一部に内輪みぞ肩部よりも径の小さい凹段部が形成された内輪、及び少なくとも円周方向の一部に外輪みぞ肩部よりも径の大きい凹段部が形成された外輪の、少なくとも一方を備え、前記外輪の軌道溝と前記内輪の軌道溝との間に多数の玉が転動自在に配設された幅狭の複列のアンギュラ玉軸受において、
前記玉と前記外輪及び内輪との接触部における法線方向の延長線が前記凹段部に干渉しないように接触角を設定したことを特徴とする複列のアンギュラ玉軸受。
An inner ring in which a concave step portion having a diameter smaller than that of the inner ring groove shoulder portion is formed at least in a part of the circumferential direction, and a concave step portion having a diameter larger than that of the outer ring groove shoulder portion is formed in at least a part of the circumferential direction. In the narrow double-row angular contact ball bearing provided with at least one of the outer ring and a large number of balls rotatably arranged between the race groove of the outer ring and the race groove of the inner ring,
A double row angular contact ball bearing, wherein a contact angle is set so that an extension line in a normal direction at a contact portion between the ball and the outer ring and the inner ring does not interfere with the concave stepped portion.
前記凹段部は、環状シール体を挿入するみぞ及び対向するシールラビリンス部で構成されていることを特徴とする請求項1又は2に記載したアンギュラ玉軸受。   The angular ball bearing according to claim 1, wherein the concave step portion includes a groove into which an annular seal body is inserted and an opposing seal labyrinth portion. 前記内輪及び外輪の何れか一方の凹段部に、環状シール体が挿入され、該環状シール体は、挿入される側に対応する内輪及び外輪の凹部段に対して、接触及び非接触の何れかとなるように構成されていることを特徴とする請求項1乃至3の何れか1項に記載のアンギュラ玉軸受。   An annular seal body is inserted into the concave step portion of either the inner ring or the outer ring, and the annular seal body is in contact with or not in contact with the concave step of the inner ring and outer ring corresponding to the inserted side. The angular ball bearing according to any one of claims 1 to 3, wherein the angular ball bearing is configured so as to be formed.
JP2007204762A 2006-08-04 2007-08-06 Angular contact ball bearings Expired - Fee Related JP5233199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204762A JP5233199B2 (en) 2006-08-04 2007-08-06 Angular contact ball bearings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006213485 2006-08-04
JP2006213485 2006-08-04
JP2007204762A JP5233199B2 (en) 2006-08-04 2007-08-06 Angular contact ball bearings

Publications (2)

Publication Number Publication Date
JP2008057776A true JP2008057776A (en) 2008-03-13
JP5233199B2 JP5233199B2 (en) 2013-07-10

Family

ID=39240754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204762A Expired - Fee Related JP5233199B2 (en) 2006-08-04 2007-08-06 Angular contact ball bearings

Country Status (1)

Country Link
JP (1) JP5233199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153683A (en) * 2010-01-28 2011-08-11 Nsk Ltd Angular ball bearing
JP2013204642A (en) * 2012-03-27 2013-10-07 Nsk Ltd Multi-row combinational ball bearing
JP2014148993A (en) * 2013-01-31 2014-08-21 Nsk Ltd Double-row ball bearing and method of manufacturing the same
JP2014219101A (en) * 2014-07-14 2014-11-20 日本精工株式会社 Angular ball bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635659U (en) * 1992-10-13 1994-05-13 エヌティエヌ株式会社 Rolling bearing lubricator
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2005061433A (en) * 2003-08-11 2005-03-10 Nsk Ltd Multi-point contacting ball bearing
JP2006118548A (en) * 2004-10-20 2006-05-11 Ntn Corp Bearing device for wheel
JP2006170335A (en) * 2004-12-16 2006-06-29 Nsk Ltd Ball bearing for ct scanner device and ct scanner device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635659U (en) * 1992-10-13 1994-05-13 エヌティエヌ株式会社 Rolling bearing lubricator
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2005061433A (en) * 2003-08-11 2005-03-10 Nsk Ltd Multi-point contacting ball bearing
JP2006118548A (en) * 2004-10-20 2006-05-11 Ntn Corp Bearing device for wheel
JP2006170335A (en) * 2004-12-16 2006-06-29 Nsk Ltd Ball bearing for ct scanner device and ct scanner device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153683A (en) * 2010-01-28 2011-08-11 Nsk Ltd Angular ball bearing
JP2013204642A (en) * 2012-03-27 2013-10-07 Nsk Ltd Multi-row combinational ball bearing
JP2014148993A (en) * 2013-01-31 2014-08-21 Nsk Ltd Double-row ball bearing and method of manufacturing the same
JP2014219101A (en) * 2014-07-14 2014-11-20 日本精工株式会社 Angular ball bearing

Also Published As

Publication number Publication date
JP5233199B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
KR101057311B1 (en) Ball bearing for spindle turning of machine tool and spindle spindle of machine tool using same
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
JP2017203551A (en) Ball bearing, and motor and spindle device using the same
JP3207410U (en) Rolling bearing
JP5233199B2 (en) Angular contact ball bearings
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP2011153683A (en) Angular ball bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP2006105384A (en) Double row ball bearing
JP6529209B2 (en) Angular contact ball bearings
JP2011002077A (en) Rolling bearing
JP3200125U (en) Angular contact ball bearings
JP2014219101A (en) Angular ball bearing
JPH1151061A (en) Synthetic resin retainer for roller bearing
JP4715961B2 (en) Rotary table device for machine tools
JP5034962B2 (en) Rolling bearing
JP2014105809A (en) Retainer for rolling bearing
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP2006046380A (en) Ball bearing
JP2009092162A (en) Roller bearing
JP4322650B2 (en) Cylindrical roller bearing
JP2020070857A (en) Slewing bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees