JP5499823B2 - Cooling water treatment method - Google Patents

Cooling water treatment method Download PDF

Info

Publication number
JP5499823B2
JP5499823B2 JP2010071677A JP2010071677A JP5499823B2 JP 5499823 B2 JP5499823 B2 JP 5499823B2 JP 2010071677 A JP2010071677 A JP 2010071677A JP 2010071677 A JP2010071677 A JP 2010071677A JP 5499823 B2 JP5499823 B2 JP 5499823B2
Authority
JP
Japan
Prior art keywords
cooling water
basic treatment
caco
basic
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010071677A
Other languages
Japanese (ja)
Other versions
JP2011202243A (en
Inventor
藤田  和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010071677A priority Critical patent/JP5499823B2/en
Priority to SG2012067948A priority patent/SG184056A1/en
Priority to PCT/JP2011/055497 priority patent/WO2011118389A1/en
Priority to DE112011101068.0T priority patent/DE112011101068B4/en
Priority to CN201180012481.2A priority patent/CN102782190B/en
Publication of JP2011202243A publication Critical patent/JP2011202243A/en
Application granted granted Critical
Publication of JP5499823B2 publication Critical patent/JP5499823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • C02F5/145Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F2025/005Liquid collection; Liquid treatment; Liquid recirculation; Addition of make-up liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は冷却水系の金属部材表面に防食皮膜を形成するための冷却水系の処理方法に関する。   The present invention relates to a cooling water treatment method for forming an anticorrosion film on the surface of a cooling water metal member.

循環冷却水システムの熱交換器伝熱管や配管等の部材の材料として一般的に使用される鉄系金属は、水と接触すると著しい腐食が発生する。このため、冷却水中に各種の腐食防止剤を添加し、鉄系金属部材の表面に薄い防食皮膜を形成する腐食防止方法が行われている。   Ferrous metals generally used as materials for members such as heat exchanger tubes and pipes of a circulating cooling water system are subject to significant corrosion when in contact with water. For this reason, a corrosion prevention method has been performed in which various corrosion inhibitors are added to the cooling water to form a thin anticorrosion film on the surface of the iron-based metal member.

この腐食防止方法は、循環冷却水システムの運転開始時に行われる基礎処理工程と、基礎処理を行った後の通常運転時に行われる通常処理工程とを有している。   This corrosion prevention method has a basic treatment process performed at the start of operation of the circulating cooling water system and a normal treatment process performed during normal operation after performing the basic treatment.

一般に、循環冷却水システムの運転開始時においては金属部材表面に防食皮膜が形成されておらず、極めて腐食が発生しやすい状態となっている。基礎処理工程では、鉄系金属部材の表面に対し、比較的高濃度の腐食防止剤によって防食皮膜を形成させる。   In general, at the start of operation of the circulating cooling water system, the anticorrosion film is not formed on the surface of the metal member, and corrosion is very likely to occur. In the basic treatment process, an anticorrosion film is formed on the surface of the iron-based metal member with a relatively high concentration of corrosion inhibitor.

通常処理工程では、基礎処理工程で防食皮膜を形成させた鉄系金属部材に対し、低濃度の腐食防止剤によって防食皮膜を維持する。   In the normal treatment process, the anticorrosion film is maintained with a low concentration corrosion inhibitor on the iron-based metal member on which the anticorrosion film is formed in the basic treatment process.

従来、循環冷却水システムの初期の基礎処理工程として、冷却水に無機リン酸塩と亜鉛化合物とを添加して、一定時間冷却水を循環させることにより、鉄系金属部材の表面に防食皮膜を形成させる方法が知られている。   Conventionally, as an initial basic treatment step of the circulating cooling water system, an inorganic phosphate and a zinc compound are added to the cooling water, and the cooling water is circulated for a certain period of time, so that an anticorrosive film is formed on the surface of the iron-based metal member. Methods of forming are known.

こうして形成された防食皮膜は、リン酸鉄及び酸化鉄を主体とした緻密な下地層と、リン酸亜鉛を主体とした緻密な表面層との二層構造とされている。そして、この緻密な二層構造の防食皮膜がアノード防食及びカソード防食の機能を発揮し、鉄系金属部材の腐食を防止することが可能となる(特開2003−105573号公報)。   The thus formed anticorrosion film has a two-layer structure of a dense underlayer mainly composed of iron phosphate and iron oxide and a dense surface layer mainly composed of zinc phosphate. And this dense two-layered anticorrosion film exhibits the functions of anode anticorrosion and cathodic anticorrosion, and it is possible to prevent the corrosion of the iron-based metal member (Japanese Patent Laid-Open No. 2003-105573).

この特開2003−105573号公報の0037段落には、基礎処理工程をカルシウム硬度120mgCaCO/L、亜鉛イオン濃度0.13mモル/L、リン原子濃度として1.58mモル/Lのヘキサメタリン酸ナトリウムpH7.0の条件下で行うことが記載されている。また、同号公報の0045段落には基礎処理工程をカルシウム硬度240mgCaCO/L、亜鉛イオン濃度0.13mモル/L、リン原子濃度として3.16mモル/Lのヘキサメタリン酸ナトリウムpH7.0の条件下で行うことが記載されている。 In paragraph 0037 of JP-A-2003-105573, the basic treatment step is a sodium hexametaphosphate pH 7 having a calcium hardness of 120 mg CaCO 3 / L, a zinc ion concentration of 0.13 mmol / L, and a phosphorus atom concentration of 1.58 mmol / L. It is described to be performed under the condition of 0.0. In the paragraph 0045 of the same publication, the basic treatment step is performed under the conditions of a calcium hardness of 240 mg CaCO 3 / L, a zinc ion concentration of 0.13 mmol / L, and a phosphorus atom concentration of 3.16 mmol / L sodium hexametaphosphate pH 7.0. Described below is what to do.

リン及び亜鉛を利用した初期防食皮膜形成処理は、特開2005−290419号公報の0004段落にも記載されている。   The initial anticorrosive film forming treatment using phosphorus and zinc is also described in paragraph 0004 of JP-A-2005-290419.

特開2003−105573号公報JP 2003-105573 A 特開2005−290419号公報JP 2005-290419 A

本発明は、基礎処理工程によって防食効果の高い防食皮膜を形成することができる冷却水系の処理方法を提供することを目的とする。   An object of this invention is to provide the processing method of the cooling water type | system | group which can form the anti-corrosion film with a high anti-corrosion effect by a basic treatment process.

本発明(請求項1)の冷却水系の処理方法は、冷却水系の起動時に該水系にリン酸塩及び亜鉛化合物を添加して該冷却水系の金属部材表面に初期防食皮膜を形成する基礎処理工程を行う冷却水系の処理方法において、該基礎処理工程において、全リン酸濃度70〜120mgPO/L、亜鉛濃度10〜30mgZn/L、カルシウム硬度25〜75mgCaCO/L、pH6.0以上7.0未満とした条件下に5〜36時間維持して前期基礎処理工程を行った後、pHを7.0〜7.5としてさらに基礎処理を行うことを特徴とするものである。 The cooling water system treatment method of the present invention (Claim 1) is a basic treatment step of forming an initial anticorrosion film on the surface of a metal member of the cooling water system by adding a phosphate and a zinc compound to the aqueous system when the cooling water system is started. In the treatment method of the cooling water system in which the basic treatment step is performed, in the basic treatment step, the total phosphoric acid concentration is 70 to 120 mg PO 4 / L, the zinc concentration is 10 to 30 mg Zn / L, the calcium hardness is 25 to 75 mg CaCO 3 / L, pH 6.0 or more and 7.0. The basic treatment process is performed for 5 to 36 hours under the condition of less than the above, and then the basic treatment is further performed at pH 7.0 to 7.5.

請求項2の冷却水系の処理方法は、請求項1において、該前期基礎処理工程を5〜24時間行うことを特徴とするものである。   A cooling water treatment method according to claim 2 is characterized in that, in claim 1, the first basic treatment step is performed for 5 to 24 hours.

請求項3の冷却水系の処理方法は、請求項1又は2において、該前期基礎処理工程でカルシウム硬度を40〜60mgCaCO/Lとすることを特徴とするものである。 A cooling water treatment method according to a third aspect is characterized in that, in the first or second aspect, the calcium hardness is set to 40 to 60 mg CaCO 3 / L in the first basic treatment step.

本発明方法により防食効果の高い防食皮膜が形成される。このメカニズムの詳細は必ずしも明確ではないが、以下の通りであると推定される。   An anticorrosion film having a high anticorrosion effect is formed by the method of the present invention. The details of this mechanism are not necessarily clear, but are presumed to be as follows.

本発明の冷却水系の処理方法の前期基礎処理工程では、鉄系金属部材からアノード反応によって鉄が溶出し、この鉄イオンが水中のリン酸イオンと反応してリン酸鉄が生成すると共に、カソード反応によってOHが生成し、このOHが亜鉛イオンと反応して水酸化亜鉛が生成する。本発明方法の前期基礎処理工程の条件下では、これらのリン酸鉄と水酸化亜鉛が効率よく生成し、これらを取り込んだ緻密な防食皮膜が形成される。この前期基礎処理工程の後、pHを7.0〜7.5としてさらに基礎処理を行うと、水中のカルシウムイオンとリン酸イオンが反応してリン酸カルシウムを生成し、前記防食皮膜の上にさらに皮膜を形成することによって全体的に防食皮膜が強固なものとなる。 In the first basic treatment step of the cooling water treatment method of the present invention, iron is eluted from the iron-based metal member by an anodic reaction, and this iron ion reacts with phosphate ion in water to produce iron phosphate. the reaction by OH - is produced, this OH - zinc hydroxide is produced by the reaction with zinc ions. Under the conditions of the first basic treatment step of the method of the present invention, these iron phosphate and zinc hydroxide are efficiently produced, and a dense anticorrosive film incorporating them is formed. After this basic treatment step, when the basic treatment is further carried out at a pH of 7.0 to 7.5, calcium ions and phosphate ions in water react to produce calcium phosphate, which is further coated on the anticorrosion coating. As a result, the anticorrosion film becomes stronger overall.

実験結果を示すグラフである。It is a graph which shows an experimental result. 試験方法を説明する模式図である。It is a schematic diagram explaining a test method. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実施例及び比較例で用いた実機の系統図である。It is a systematic diagram of the real machine used by the Example and the comparative example.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明では、基礎処理工程において、水中の成分濃度を全リン酸濃度70〜120mgPO/L、亜鉛濃度10〜30mgZn/L、カルシウム硬度25〜75mgCaCO/L、pH6.0以上7.0未満とし、この条件下に5〜36時間維持する前期基礎処理を行い、その後、pHを7.0〜7.5としてさらに基礎処理を行うことにより、金属部材表面に初期防食皮膜を形成する。 In the present invention, in the basic treatment step, the component concentration in water is the total phosphoric acid concentration of 70 to 120 mg PO 4 / L, the zinc concentration of 10 to 30 mg Zn / L, the calcium hardness of 25 to 75 mg CaCO 3 / L, pH 6.0 or more and less than 7.0. Then, an initial anticorrosive film is formed on the surface of the metal member by performing the basic treatment in the first half of the period, which is maintained for 5 to 36 hours under these conditions, and then further performing the basic treatment at a pH of 7.0 to 7.5.

この金属部材としては鉄系金属部材、特に炭素鋼部材が好適である。冷却水系としては開放循環式冷却水系が好適である。   As the metal member, an iron-based metal member, particularly a carbon steel member is suitable. As the cooling water system, an open circulation type cooling water system is suitable.

本発明方法を適用する水系の水質としては、水中に含まれるカルシウム硬度が25〜75mg−CaCO/L、特に40〜60mg−CaCO/Lであることが好ましい。カルシウム硬度が25mg−CaCO/L未満では、リン酸塩とカルシウムとの作用で生成するリン及びカルシウムよりなる防食皮膜を十分に形成し得ず、75mg−CaCO/Lを超えるとリン及びカルシウムよりなるスケールの析出、付着が懸念される。なお、処理対象水系の水質が上記範囲から外れる場合には、硝酸カルシウム、塩化カルシウム等のカルシウム硬度成分の添加或いは除去により水質調整を行えば良い。 As the water quality of the aqueous system to which the method of the present invention is applied, the calcium hardness contained in the water is preferably 25 to 75 mg-CaCO 3 / L, particularly 40 to 60 mg-CaCO 3 / L. When the calcium hardness is less than 25 mg-CaCO 3 / L, it is not possible to sufficiently form an anticorrosion film composed of phosphorus and calcium produced by the action of phosphate and calcium, and when it exceeds 75 mg-CaCO 3 / L, phosphorus and calcium There is concern about the deposition and adhesion of scale. When the water quality of the water system to be treated is out of the above range, the water quality may be adjusted by adding or removing calcium hardness components such as calcium nitrate and calcium chloride.

このような水系に対して、リン酸及び/又はその塩等のリン系防食成分を、添加後の水系の全リン酸濃度が70〜120mg−PO/L、特に80〜110mg−PO/Lとなるように添加する。防食剤添加後のリン酸濃度が70mg−PO/L未満では、十分な防食皮膜を形成し得ず、120mg−PO/Lを超えると、高濃度となって、環境への影響が懸念される。なお、基礎防食皮膜形成工程中に、防食成分の消耗等で、上記最低必要リン酸濃度を下回った場合には、最低必要リン酸濃度を維持するようにリン酸等を追加添加することが好ましい。 For such aqueous, the phosphorus-based corrosion components such as phosphoric acid and / or salt thereof, the total concentration of phosphoric acid aqueous after addition 70~120mg-PO 4 / L, especially 80~110mg-PO 4 / Add to L. If the phosphoric acid concentration after addition of the anticorrosive agent is less than 70 mg-PO 4 / L, a sufficient anticorrosion film cannot be formed, and if it exceeds 120 mg-PO 4 / L, the concentration becomes high and there is a concern about the influence on the environment. Is done. In addition, it is preferable to add phosphoric acid or the like to maintain the minimum required phosphoric acid concentration when the basic anticorrosive film formation step is below the minimum necessary phosphoric acid concentration due to consumption of anticorrosive components, etc. .

リン系防食成分としては、リン酸及び/又はその塩、例えばリン酸ナトリウム、リン酸カリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸二水素ナトリウム、リン酸二水素カリウムのほか、ピロリン酸塩、トリポリリン酸塩、ヘキサメタリン酸塩などの重合リン酸、例えばピロリン酸カリウム、ピロリン酸ナトリウム等のピロリン酸アルカリ金属塩、ピロリン酸二水素二ナトリウム等のピロリン酸二水素塩等を用いることができ、これらは1種を単独で用いても良く、2種以上を併用しても良い。   Examples of phosphorus-based anticorrosive ingredients include phosphoric acid and / or a salt thereof such as sodium phosphate, potassium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, Use polymerized phosphoric acid such as pyrophosphate, tripolyphosphate, hexametaphosphate, alkali metal pyrophosphate such as potassium pyrophosphate and sodium pyrophosphate, dihydrogen pyrophosphate such as disodium dihydrogen pyrophosphate, etc. These may be used alone or in combination of two or more.

亜鉛としては、塩化亜鉛、硫酸亜鉛などが好適であり、その添加量は10〜30mgZn/L好ましくは15〜25mgZn/Lとする。本発明においては、水系に、このようなリン酸系及び亜鉛系防食剤を添加すると共に、初期pHを6.0以上7.0未満、好ましくは6.0〜6.5に調整する。この初期pHが7以上であると鉄系金属部材からの鉄の溶出が少なく、このため鉄系金属部材表面に防食皮膜成分としてのリン酸鉄を十分に形成し得ず、6未満では腐食性が強まり、被処理対象金属や系内に存在する他の金属材料の一時的な腐食の進行が懸念されるようになる。初期pHの調整方法には特に制限はないが、塩酸、硫酸等の酸を添加して調整する方法が好ましい。   As zinc, zinc chloride, zinc sulfate and the like are suitable, and the amount added is 10 to 30 mg Zn / L, preferably 15 to 25 mg Zn / L. In the present invention, such a phosphoric acid-based and zinc-based anticorrosive agent is added to the aqueous system, and the initial pH is adjusted to 6.0 or more and less than 7.0, preferably 6.0 to 6.5. If the initial pH is 7 or more, there is little elution of iron from the iron-based metal member. Therefore, iron phosphate as a corrosion protection film component cannot be sufficiently formed on the surface of the iron-based metal member. As a result, the corrosion of the metal to be treated and other metal materials existing in the system are concerned about the progress of temporary corrosion. The method for adjusting the initial pH is not particularly limited, but a method of adjusting by adding an acid such as hydrochloric acid or sulfuric acid is preferable.

また、本発明においては、防食剤を添加し、初期pHを6以上7未満に調整した水系のMアルカリ度が10mg−CaCO/L以上20mg−CaCO/L未満であること好ましい。 In the present invention, the addition of anticorrosive preferable M alkalinity of the water was adjusted initial pH below 6 or 7 is less than 10mg-CaCO 3 / L or more 20mg-CaCO 3 / L.

基礎処理工程は、通常の場合、常温で実施するが、処理対象の状況により高温部が生じる場合(例えば、熱交換器を運転しながら初期防食皮膜形成処理を実施する場合など)など、防食剤成分と水系のカルシウムよりなるリン酸カルシウム系スケールが金属部材表面へ過剰に析出・付着することによる悪影響を防ぐために、必要に応じリン酸カルシウム系スケールの析出及び/又は付着防止効果を有する高分子電解質を添加する。この高分子電解質としては、上記スケール析出及び/又は付着防止効果を有するものであれば特に制限はないが、(メタ)アクリル酸又はその塩よりなる単量体とスルホン酸基を含む単量体などとを共重合したアクリル酸系ポリマーなどが使用される。このような高分子電解質として、(メタ)アクリル酸又はその塩と3−ヒドロキシ−2−アリロキシプロパンスルホン酸との共重合体、(メタ)アクリル酸又はその塩とイソプレンスルホン酸及び/又はヒドロキシエチルメタクリレートとの共重合体などが例示される。これらの高分子電解質は、通常固形分として50〜300mg/L、特に10〜100mg/L程度の範囲で処理対象水系の状況に応じて添加される。   The basic treatment process is usually carried out at room temperature, but the anticorrosive agent, for example, when a high-temperature part is generated depending on the condition of the treatment target (for example, when the initial anticorrosion film forming treatment is carried out while operating the heat exchanger). In order to prevent adverse effects due to excessive precipitation and adhesion of calcium phosphate scale composed of components and aqueous calcium to the metal member surface, a polymer electrolyte having an effect of preventing precipitation and / or adhesion of calcium phosphate scale is added as necessary. . The polymer electrolyte is not particularly limited as long as it has an effect of preventing scale precipitation and / or adhesion. However, a monomer comprising (meth) acrylic acid or a salt thereof and a monomer containing a sulfonic acid group Acrylic acid-based polymers obtained by copolymerization with the above are used. As such a polymer electrolyte, a copolymer of (meth) acrylic acid or a salt thereof and 3-hydroxy-2-allyloxypropanesulfonic acid, (meth) acrylic acid or a salt thereof, isoprenesulfonic acid and / or hydroxy Examples thereof include a copolymer with ethyl methacrylate. These polymer electrolytes are usually added in a range of about 50 to 300 mg / L, particularly about 10 to 100 mg / L as a solid content, depending on the situation of the water system to be treated.

このような初期防食皮膜を形成する前期基礎処理工程は、5〜36時間、望ましくは5〜24時間行う。   The basic treatment step for forming the initial anticorrosion film is performed for 5 to 36 hours, preferably 5 to 24 hours.

本発明においては、この前期基礎処理が終了した後、pH7.0〜7.5とし、さらに基礎処理(後期基礎処理)を行う。これにより、おそらくはそれまで形成された防食皮膜の上にさらにリン酸カルシウム系の皮膜が形成されることにより、防食皮膜がさらに強固なものとなる。   In the present invention, after this early basic treatment is completed, the pH is adjusted to 7.0 to 7.5, and further basic treatment (late basic treatment) is performed. As a result, a calcium phosphate-based film is formed on the anti-corrosion film that has been formed so far, thereby further strengthening the anti-corrosion film.

pHを7.0〜7.5に高めるためには、アルカリを添加する。このアルカリとしては、pHが急激に上昇しないようにするために、炭酸ナトリウムや重炭酸ナトリウムを用いるのが好ましい。pH7.0〜7.5の調整は、Mアルカリ度を20mgCaCO/L以上40mgCaCO/L未満とすることによって達成される。 In order to increase the pH to 7.0 to 7.5, an alkali is added. As this alkali, it is preferable to use sodium carbonate or sodium bicarbonate in order to prevent the pH from rising rapidly. Adjustment of pH7.0~7.5 is achieved by a 20mgCaCO 3 / L or more 40mgCaCO 3 / below L and M alkalinity.

前期基礎処理工程と後期基礎処理工程とを併せた基礎処理工程の合計の時間は70〜150時間特に70〜100時間程度が好適である。   The total time of the basic treatment process including the first basic treatment process and the latter basic treatment process is preferably about 70 to 150 hours, particularly about 70 to 100 hours.

この基礎処理が終了した後、水系の濃縮度を徐々に上昇させ、通常運転に移行する。   After this basic treatment is completed, the concentration of the aqueous system is gradually increased, and the normal operation is started.

本発明では、基礎処理工程や、その後の工程において、水系にスライム防止剤、スケール防止剤や、他の防食剤を添加してもよい。   In this invention, you may add a slime inhibitor, a scale inhibitor, and another anticorrosive agent to a water system in a basic treatment process and a subsequent process.

以下に試験例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to test examples, examples and comparative examples.

[試験例1]
前期基礎処理工程における処理時間の影響について試験を行った。
[Test Example 1]
The effect of the treatment time in the basic treatment process was tested.

1LビーカーにRO水(逆浸透処理水、カルシウム硬度0mgCaCO/L)を満たし、カルシウム硬度50mgCaCO/L(添加薬剤:Ca(NO)、Mアルカリ度50mgCaCO/L(添加薬剤:NaHCO)とし、全リン酸濃度100mgPO/L(添加薬剤:ヘキサメタリン酸ソーダ)、亜鉛濃度20mgZn/L(添加薬剤:塩化亜鉛)となるよう添加薬剤を添加後、硫酸にてpH6.0とした。 A 1 L beaker is filled with RO water (reverse osmosis treated water, calcium hardness 0 mg CaCO 3 / L), calcium hardness 50 mg CaCO 3 / L (added drug: Ca (NO 3 ) 2 ), M alkalinity 50 mg CaCO 3 / L (added drug: NaHCO 3 ), and after adding the additive so that the total phosphoric acid concentration is 100 mg PO 4 / L (added agent: sodium hexametaphosphate) and the zinc concentration is 20 mg Zn / L (added agent: zinc chloride), the pH is adjusted to 6.0 with sulfuric acid. did.

鉄センサー(材質:SS400、10φ×30mmの鉄棒)および、SUSセンサー(10φ×30mmのステンレス棒)を、第2図のように30℃の恒温槽に浸漬した後、スターラー撹拌を開始した。   An iron sensor (material: SS400, 10φ × 30 mm iron rod) and a SUS sensor (10φ × 30 mm stainless steel rod) were immersed in a thermostatic bath at 30 ° C. as shown in FIG.

1,2,3,4,5,24,48又は72時間、前期基礎処理を行った後に炭酸ナトリウム溶液を添加し、pH7.0〜7.1とした。その後、さらに3日間スターラー撹拌して基礎処理を終了した。   After basic treatment for 1, 2, 3, 4, 5, 24, 48 or 72 hours, sodium carbonate solution was added to adjust the pH to 7.0 to 7.1. Thereafter, the basic treatment was completed by stirring with a stirrer for another 3 days.

この基礎処理を施した鉄センサー(鉄棒)の耐食性を試験するために、ビーカー内の水を野木町水に切り替え、さらに3日間スターラー撹拌を行った。そして、3日目に腐食計(K−600、東方技研製)により、鉄センサーの腐食速度を測定した。   In order to test the corrosion resistance of the iron sensor (iron bar) subjected to this basic treatment, the water in the beaker was switched to Nogicho water, and stirring was further performed for 3 days. On the third day, the corrosion rate of the iron sensor was measured with a corrosion meter (K-600, manufactured by Toho Giken).

試験結果を第3図に示す。第3図の通り、前期基礎処理工程においてpHを6.0に維持する時間を5〜36hr特に5〜24hrとすることにより、腐食速度が著しく小さくなる。   The test results are shown in FIG. As shown in FIG. 3, the corrosion rate is remarkably reduced by setting the time for maintaining the pH at 6.0 in the basic treatment step in the previous period to be 5 to 36 hours, particularly 5 to 24 hours.

[試験例2]
ビーカー水中のカルシウム硬度を0,25,40,60,75又は100mgCaCO/Lとしたこと以外は試験例1におけるpH6.0維持時間=5hrの場合と同様として試験を行った。腐食速度の測定結果を第1図に示す。
[Test Example 2]
The test was conducted in the same manner as in the case of pH 6.0 maintenance time = 5 hr in Test Example 1 except that the calcium hardness in the beaker water was 0, 25, 40, 60, 75 or 100 mg CaCO 3 / L. The measurement results of the corrosion rate are shown in FIG.

第1図の通り、カルシウム硬度が25〜75mgCaCO/L特に40〜60mgCaCO/Lであると、腐食速度が小さくなることが認められた。 As shown in FIG. 1, when the calcium hardness was 25 to 75 mg CaCO 3 / L, particularly 40 to 60 mg CaCO 3 / L, it was recognized that the corrosion rate was reduced.

[実施例1]
第4図に示す循環水量15000m/hrの開放循環式冷却水系において試験を行った。冷却水の水質は、カルシウム硬度50mgCaCO/L、Mアルカリ度50mgCaCO/Lである。
[Example 1]
The test was conducted in an open circulation type cooling water system having a circulating water amount of 15000 m 3 / hr shown in FIG. The water quality of the cooling water has a calcium hardness of 50 mg CaCO 3 / L and an M alkalinity of 50 mg CaCO 3 / L.

この実機冷却水系にヘキサメタリン酸ソーダ及び硫酸亜鉛を添加して全リン酸濃度100mgPO/L、亜鉛濃度20mgZn/Lとし、硫酸によりpH6.5に調整した。その後、循環ポンプを始動させ、5時間の間、pH6.5〜7.0未満となるように硫酸によりpH調整した。その後、硫酸によるpH調整を止め、20時間後にpHが自然に7.1となっていることを確認した。なお、冷却塔横にモニター熱交換器として、炭素鋼チューブ(STB340)を設置した。そして、このチューブ内に水蒸気を流通させると共に、チューブ外(シェル側)に循環冷却水を通水するシェル側通水による評価を行った。シェル側通水を流速0.1m/sとし、蒸気加熱によりΔT5℃(冷却水入口温度30℃→冷却水出口温度35℃)の熱交換を行った。3日間この状態に保って基礎処理を行った。 To this actual cooling water system, sodium hexametaphosphate and zinc sulfate were added to give a total phosphoric acid concentration of 100 mg PO 4 / L and a zinc concentration of 20 mg Zn / L, and the pH was adjusted to 6.5 with sulfuric acid. Thereafter, the circulation pump was started, and the pH was adjusted with sulfuric acid so that the pH was less than 6.5 to 7.0 for 5 hours. Thereafter, the pH adjustment with sulfuric acid was stopped, and it was confirmed that the pH was naturally 7.1 after 20 hours. A carbon steel tube (STB340) was installed as a monitor heat exchanger beside the cooling tower. Then, water vapor was circulated in the tube, and evaluation was performed by shell-side water passage for circulating circulating cooling water outside the tube (shell side). The shell side water flow was set at a flow rate of 0.1 m / s, and heat exchange of ΔT 5 ° C. (cooling water inlet temperature 30 ° C. → cooling water outlet temperature 35 ° C.) was performed by steam heating. The basic treatment was carried out in this state for 3 days.

約1ヶ月間保持処理(条件:(水質)pH8.5〜9.0、カルシウム硬度150〜250mgCaCO/L、Mアルカリ度150〜250mgCaCO/L (添加薬剤)ヒドロキシエチリデンジホスホン酸、塩化亜鉛、アクリル酸/アリロキシヒドロキシプロパンスルホン酸(AA/HAPS)共重合体をそれぞれ全リン酸3〜7mgPO/L、亜鉛濃度1〜3mgZn/L、5〜15mgsolid/Lとなるように添加)を行った後、モニター熱交換器ユニットから炭素鋼チューブを取り出し、孔食深さを測定した。その結果、最大孔食深さは0.4mmであった。 Retention treatment for about 1 month (conditions: (water quality) pH 8.5 to 9.0, calcium hardness 150 to 250 mg CaCO 3 / L, M alkalinity 150 to 250 mg CaCO 3 / L (addition agent) hydroxyethylidene diphosphonic acid, zinc chloride , Acrylic acid / allyloxyhydroxypropane sulfonic acid (AA / HAPS) copolymer added to total phosphoric acid 3-7 mg PO 4 / L, zinc concentration 1-3 mg Zn / L, 5-15 mg solid / L, respectively) After that, the carbon steel tube was removed from the monitor heat exchanger unit and the pitting depth was measured. As a result, the maximum pitting depth was 0.4 mm.

[比較例1]
実施例1において、最初にpH6.5に調整したが、それ以降はpH調整を行わないようにした。その結果、循環ポンプ始動後、10分が経過した時点でpHは7.1となった。3日経過後のpHは7.5であった。それ以外は実施例1と同一条件で試験を行い、腐食速度を測定したところ、最大孔食深さは0.6mmであり、実施例1の1.5倍であった。
[Comparative Example 1]
In Example 1, the pH was first adjusted to 6.5, but the pH was not adjusted thereafter. As a result, pH became 7.1 when 10 minutes passed after the circulation pump was started. The pH after 3 days was 7.5. Otherwise, the test was performed under the same conditions as in Example 1, and the corrosion rate was measured. As a result, the maximum pitting depth was 0.6 mm, which was 1.5 times that of Example 1.

このように、実施例1の最大孔食深さは、比較例1の約67%であり、防食効果が改善されている。この結果、本発明によると、熱交換器の寿命延長が可能であることが確認された。   Thus, the maximum pitting corrosion depth of Example 1 is about 67% of Comparative Example 1, and the anticorrosion effect is improved. As a result, according to the present invention, it was confirmed that the life of the heat exchanger can be extended.

Claims (3)

冷却水系の起動時に該水系にリン酸塩及び亜鉛化合物を添加して該冷却水系の金属部材表面に初期防食皮膜を形成する基礎処理工程を行う冷却水系の処理方法において、
該基礎処理工程において、
全リン酸濃度70〜120mgPO/L、
亜鉛濃度10〜30mgZn/L、
カルシウム硬度25〜75mgCaCO/L、
pH6.0以上7.0未満
とした条件下に5〜36時間維持して前期基礎処理工程を行った後、pHを7.0〜7.5としてさらに基礎処理を行うことを特徴とする冷却水系の処理方法。
In the cooling water system treatment method of performing a basic treatment step of forming an initial anticorrosive film on the surface of a metal member of the cooling water system by adding a phosphate and a zinc compound to the water system at the time of starting the cooling water system,
In the basic processing step,
Total phosphate concentration 70~120mgPO 4 / L,
Zinc concentration 10-30 mg Zn / L,
Calcium hardness 25-75 mg CaCO 3 / L,
Cooling is characterized in that after the basic treatment step is performed for 5 to 36 hours under the condition of pH 6.0 or more and less than 7.0, the basic treatment is further performed at pH 7.0 to 7.5. Water treatment method.
請求項1において、該前期基礎処理工程を5〜24時間行うことを特徴とする冷却水系の処理方法。   2. The cooling water treatment method according to claim 1, wherein the first basic treatment step is performed for 5 to 24 hours. 請求項1又は2において、該前期基礎処理工程でカルシウム硬度を40〜60mgCaCO/Lとすることを特徴とする冷却水系の処理方法。 The cooling water treatment method according to claim 1 or 2, wherein the calcium hardness is set to 40 to 60 mg CaCO 3 / L in the basic treatment step in the previous period.
JP2010071677A 2010-03-26 2010-03-26 Cooling water treatment method Active JP5499823B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010071677A JP5499823B2 (en) 2010-03-26 2010-03-26 Cooling water treatment method
SG2012067948A SG184056A1 (en) 2010-03-26 2011-03-09 Treatment method of cooling water system
PCT/JP2011/055497 WO2011118389A1 (en) 2010-03-26 2011-03-09 Treatment method of cooling water system
DE112011101068.0T DE112011101068B4 (en) 2010-03-26 2011-03-09 Process for treating a cooling water system
CN201180012481.2A CN102782190B (en) 2010-03-26 2011-03-09 Treatment method of cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071677A JP5499823B2 (en) 2010-03-26 2010-03-26 Cooling water treatment method

Publications (2)

Publication Number Publication Date
JP2011202243A JP2011202243A (en) 2011-10-13
JP5499823B2 true JP5499823B2 (en) 2014-05-21

Family

ID=44672952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071677A Active JP5499823B2 (en) 2010-03-26 2010-03-26 Cooling water treatment method

Country Status (5)

Country Link
JP (1) JP5499823B2 (en)
CN (1) CN102782190B (en)
DE (1) DE112011101068B4 (en)
SG (1) SG184056A1 (en)
WO (1) WO2011118389A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599763B2 (en) * 2010-11-17 2014-10-01 株式会社神戸製鋼所 Water-soluble resin, fin material for heat exchanger using the same, and heat exchanger
JP6113992B2 (en) * 2012-10-03 2017-04-12 栗田工業株式会社 Cooling water treatment method
US9273192B1 (en) * 2014-11-06 2016-03-01 George Reck Method of preventing microbial growth on water treatment dispersant
JP6589286B2 (en) * 2015-02-13 2019-10-16 栗田工業株式会社 Initial processing agent for circulating cooling water and initial processing method of circulating cooling water system
JP6750705B2 (en) * 2018-05-30 2020-09-02 栗田工業株式会社 Initial treatment agent for circulating cooling water and method for preventing corrosion of circulating cooling water system
JP6635173B1 (en) 2018-11-01 2020-01-22 栗田工業株式会社 Corrosion protection method for metal members of cooling water system
JP7415160B2 (en) * 2020-02-18 2024-01-17 日本製鉄株式会社 Rust prevention treatment liquid and surface treated steel plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073866A (en) * 2001-09-06 2003-03-12 Kurita Water Ind Ltd Corrosion prevention composition and corrosion prevention method
JP3945202B2 (en) * 2001-09-28 2007-07-18 伯東株式会社 Corrosion prevention method
JP4089648B2 (en) 2004-03-31 2008-05-28 栗田工業株式会社 Corrosion prevention method
JP5099884B2 (en) * 2007-03-29 2012-12-19 伯東株式会社 Corrosion inhibitor
JP2010071677A (en) 2008-09-16 2010-04-02 Fuji Xerox Co Ltd Position measuring system

Also Published As

Publication number Publication date
CN102782190A (en) 2012-11-14
DE112011101068T5 (en) 2013-01-03
SG184056A1 (en) 2012-10-30
DE112011101068B4 (en) 2023-06-15
WO2011118389A1 (en) 2011-09-29
CN102782190B (en) 2014-07-02
JP2011202243A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5499823B2 (en) Cooling water treatment method
JP5946363B2 (en) Silica scale prevention method and scale inhibitor in water system, and water treatment method and water treatment agent that suppress silica scale and suppress metal corrosion
KR100320359B1 (en) A method for preventing corrosion of water system
JP5099884B2 (en) Corrosion inhibitor
US8163105B2 (en) Corrosion inhibition method
JP6589286B2 (en) Initial processing agent for circulating cooling water and initial processing method of circulating cooling water system
JP4361812B2 (en) Treatment method for open circulating cooling water system
EP0866148B1 (en) Method for inhibiting corrosion in water systems
JPS5913595B2 (en) Metal corrosion inhibitor and corrosion prevention method
JP3945202B2 (en) Corrosion prevention method
JPH09176872A (en) Corrosion suppression of metal in water system and suppressing method of silica based scale
JP2013208568A (en) Water quality control method of circulating cooling water
TWI786339B (en) Anti-corrosion method for metal components of cooling water system
KR100285937B1 (en) Method for restraining scale formation and corrosion by using gluconate
JPH1129885A (en) Preventing method of pitting corrosion of metal in water system
JP2009299161A (en) Metal corrosion suppression method of water system
JP2007017056A (en) Corrosion suppression method for heat exchanger for reactor
KR100315437B1 (en) Water treatment agent for preventing scale deposition in pipes and corrosion of pipes, and water treatment method using the same
JPH1128461A (en) Method for suppressing corrosion of metal in water system
JP6750705B2 (en) Initial treatment agent for circulating cooling water and method for preventing corrosion of circulating cooling water system
JP2006083454A (en) Microcapsule for corrosion inhibition, and method for inhibiting corrosion of metal in water system using the same
TW201925102A (en) Metal corrosion inhibitor for cooling water and method for treating cooling water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250