JP5496331B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP5496331B2
JP5496331B2 JP2012521547A JP2012521547A JP5496331B2 JP 5496331 B2 JP5496331 B2 JP 5496331B2 JP 2012521547 A JP2012521547 A JP 2012521547A JP 2012521547 A JP2012521547 A JP 2012521547A JP 5496331 B2 JP5496331 B2 JP 5496331B2
Authority
JP
Japan
Prior art keywords
grain boundary
boundary phase
rare earth
magnesium
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012521547A
Other languages
Japanese (ja)
Other versions
JPWO2011162371A1 (en
Inventor
雅昭 名古屋
勇介 東
伸悟 稲山
洋一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012521547A priority Critical patent/JP5496331B2/en
Publication of JPWO2011162371A1 publication Critical patent/JPWO2011162371A1/en
Application granted granted Critical
Publication of JP5496331B2 publication Critical patent/JP5496331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子によって構成され、薄層化が可能なコンデンサに関する。   The present invention relates to a capacitor which is made of crystal particles mainly composed of barium titanate and can be thinned.

従来より、積層セラミックコンデンサの誘電体材料には、比誘電率が高いという理由によりチタン酸バリウムが用いられており、また、積層セラミックコンデンサの内部電極層には、安価な卑金属(Niなど)が用いられている。チタン酸バリウムを主成分とする誘電体層と内部電極層とを同時に焼成する場合、Niを酸化させないために酸素分圧を低くする(例えば、1300℃で0.03Pa以下)必要があるが、この場合、誘電体層が還元され絶縁性が低下し、実用的な特性が得られなくなるという問題がある。   Conventionally, barium titanate has been used as a dielectric material for multilayer ceramic capacitors because of its high relative dielectric constant, and inexpensive base metals (such as Ni) have been used for the internal electrode layers of multilayer ceramic capacitors. It is used. When the dielectric layer mainly composed of barium titanate and the internal electrode layer are fired at the same time, it is necessary to reduce the oxygen partial pressure (for example, 0.03 Pa or less at 1300 ° C.) in order not to oxidize Ni. In this case, there is a problem that the dielectric layer is reduced and the insulating property is lowered, so that practical characteristics cannot be obtained.

そこで、例えば、EIA規格のX5R特性(またはJIS規格B特性)を満足する積層セラミックコンデンサの場合、誘電体材料として、例えば、チタン酸バリウムを主成分とし、これに希土類元素の酸化物や、Mn,V,Cr,Mo,Fe,Ni,Cu,Co等のアクセプタ型、ドナー型元素の化合物を添加した、耐還元性の誘電体磁器が使用されている(例えば、特許文献1を参照)。チタン酸バリウムに、このような複数の添加成分を固溶させた結晶粒子は、結晶構造が正方晶系のコア部(通常は純粋なBaTiO)と、コア部を取り囲み添加成分が固溶したシェル部とから構成されたコアシェル構造を有するものとなっている。Therefore, for example, in the case of a multilayer ceramic capacitor satisfying the X5R characteristic (or JIS standard B characteristic) of the EIA standard, as a dielectric material, for example, barium titanate as a main component, rare earth element oxide, Mn , V, Cr, Mo, Fe, Ni, Cu, Co and the like, reduction-resistant dielectric ceramics to which compounds of acceptor type and donor type elements are added are used (see, for example, Patent Document 1). A crystal particle in which a plurality of such additive components are dissolved in barium titanate has a tetragonal core part (usually pure BaTiO 3 ) and a core part surrounding the core part. It has the core-shell structure comprised from the shell part.

また、チタン酸バリウムを主成分とする結晶粒子がコアシェル構造を有し、EIA規格のX5R特性を満足する誘電体磁器として、チタン酸バリウムに、バナジウム、マグネシウム、イットリウム等の希土類元素およびマンガンを添加したものも提案されている(例えば、特許文献2を参照)。   In addition, rare earth elements such as vanadium, magnesium, yttrium and manganese are added to barium titanate as dielectric ceramics that have a core-shell structure in the crystal grains mainly composed of barium titanate and satisfy the X5R characteristics of the EIA standard. Have also been proposed (see, for example, Patent Document 2).

特開2001−230150号公報JP 2001-230150 A 特開2008−239407号公報JP 2008-239407 A

そして、近年、携帯電話などの電子機器は、小型化と実装の高密度化が進められているが、このような小型の電子機器に用いられる積層セラミックコンデンサについても、EIA規格のX5R特性を満足しつつ、さらなる高容量化が求められている。   In recent years, electronic devices such as mobile phones have been reduced in size and increased in mounting density. However, multilayer ceramic capacitors used in such small electronic devices also satisfy the X5R characteristics of the EIA standard. However, further increase in capacity is required.

従って、本発明は、EIA規格のX5R特性を満足しつつ、高誘電率のコンデンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a capacitor having a high dielectric constant while satisfying the X5R characteristic of the EIA standard.

本発明のコンデンサは、誘電体層が、チタン酸バリウムを主成分とし、結晶構造が正方晶系のコア部と、結晶構造が立方晶系で、バナジウムが固溶したシェル部とを有する結晶粒子により構成されており、前記シェル部の厚みが11.8〜2.5nmであるとともに、前記結晶粒子の平均粒径が0.15〜0.35μmである誘電体磁器からなることを特徴とする。
The capacitor of the present invention is a crystal particle in which the dielectric layer has a barium titanate as a main component, a core part having a tetragonal crystal structure , and a shell part having a cubic crystal structure and vanadium solid solution. The thickness of the shell portion is 11.8 to 2 4 . The dielectric ceramic is characterized in that it is 5 nm and the average grain size of the crystal grains is 0.15 to 0.35 μm.

また、本発明のコンデンサでは、前記誘電体磁器が、バナジウムと、マグネシウムと、イットリウム,ジスプロシウム,ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)と、マンガンとを含み、チタン酸バリウム100モルに対して、前記バナジウムがV換算で0.04〜0.10モル、前記マグネシウムがMgO換算で0.4〜1.2モル、前記希土類元素(RE)がRE換算で0.12〜0.48モルおよびマンガンがMnO換算で0.05〜0.35モル含有する誘電体磁器からなることが望ましい。In the capacitor of the present invention, the dielectric ceramic contains vanadium, magnesium, at least one rare earth element (RE) selected from yttrium, dysprosium, holmium, terbium and ytterbium, and manganese, and titanate. With respect to 100 mol of barium, the vanadium is 0.04 to 0.10 mol in terms of V 2 O 5 , the magnesium is 0.4 to 1.2 mol in terms of MgO, and the rare earth element (RE) is RE 2 O. It is desirable to be made of a dielectric ceramic containing 0.12 to 0.48 mol in terms of 3 and 0.05 to 0.35 mol in terms of manganese in terms of MnO.

また、本発明のコンデンサでは、前記誘電体磁器が、バナジウムと、マグネシウムと、イットリウム,ジスプロシウム,ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)と、マンガンとを含み、チタン酸バリウム100モルに対して、前記バナジウムをV換算で0.04〜0.10モル、前記マグネシウムをMgO換算で0.4〜1.2モル、前記希土類元素(RE)をRE換算で0.30〜0.48モルおよび前記マンガンをMnO換算で0.05〜0.35モル含有することが望ましい。In the capacitor of the present invention, the dielectric ceramic contains vanadium, magnesium, at least one rare earth element (RE) selected from yttrium, dysprosium, holmium, terbium and ytterbium, and manganese, and titanate. The vanadium is 0.04 to 0.10 mol in terms of V 2 O 5 , the magnesium is 0.4 to 1.2 mol in terms of MgO, and the rare earth element (RE) is RE 2 O with respect to 100 mol of barium. It is desirable to contain 0.30 to 0.48 mol in terms of 3 and 0.05 to 0.35 mol of manganese in terms of MnO.

また、本発明のコンデンサでは、前記誘電体磁器が前記結晶粒子間に粒界相を有し、該粒界相が複数の前記結晶粒子により形成される二面間粒界相と三重点粒界相とから構成されているとともに、前記希土類元素、前記マグネシウムおよびケイ素を含み、前記二面間粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC1、前記三重点粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC2としたときの各元素のうち2種の元素の濃度比C2/C1が0.8〜1.2であることが望ましい。   Further, in the capacitor of the present invention, the dielectric ceramic has a grain boundary phase between the crystal grains, and the grain boundary phase is formed by a plurality of crystal grains and an interfacial grain boundary phase and a triple point grain boundary. The rare earth element, magnesium and silicon, and the concentration of the rare earth element, magnesium and silicon in the interfacial grain boundary phase is C1, and the triple point grain boundary phase. It is desirable that the concentration ratio C2 / C1 of the two elements among the respective elements when the respective concentrations of the rare earth element, magnesium and silicon in C are C2 is 0.8 to 1.2.

また、本発明のコンデンサでは、前記誘電体磁器が前記結晶粒子間に粒界相を有し、前記粒界相が複数の前記結晶粒子により形成される二面間粒界相と三重点粒界相とから構成されているとともに、前記希土類元素、前記マグネシウムおよびケイ素を含み、前記二面間粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC1、前記三重点粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC2としたときの各元素の濃度比C2/C1がいずれも0.8〜1.2であることが望ましい。   Further, in the capacitor of the present invention, the dielectric ceramic has a grain boundary phase between the crystal grains, and the grain boundary phase is formed by a plurality of the crystal grains and the interfacial grain boundary phase and the triple point grain boundary. The rare earth element, magnesium and silicon, and the concentration of the rare earth element, magnesium and silicon in the interfacial grain boundary phase is C1, and the triple point grain boundary phase. It is desirable that the concentration ratio C2 / C1 of each element is 0.8 to 1.2 when the concentration of each of the rare earth element, magnesium and silicon is C2.

本発明によれば、EIA規格のX5R特性を満足しつつ、高誘電率のコンデンサを得ることができる。   According to the present invention, a capacitor having a high dielectric constant can be obtained while satisfying the X5R characteristic of the EIA standard.

(a)は、本発明のコンデンサの一例を示す概略断面図であり、(b)は、内部の拡大図である。(A) is a schematic sectional drawing which shows an example of the capacitor | condenser of this invention, (b) is an internal enlarged view. 本実施形態のコンデンサを構成する誘電体層である誘電体磁器におけるチタン酸バリウムを主成分とする結晶粒子の内部構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the internal structure of the crystal grain which has a barium titanate as a main component in the dielectric material ceramic which is a dielectric material layer which comprises the capacitor | condenser of this embodiment. 本実施形態のコンデンサを構成する誘電体層である誘電体磁器において、希土類元素、マグネシウムおよびケイ素の濃度比を測定するための、複数の結晶粒子により形成される二面間粒界相および三重点粒界相の測定位置を示す断面模式図である。In a dielectric ceramic that is a dielectric layer constituting the capacitor of the present embodiment, a grain boundary phase between two faces and a triple point formed by a plurality of crystal grains for measuring the concentration ratio of rare earth elements, magnesium and silicon It is a cross-sectional schematic diagram which shows the measurement position of a grain boundary phase.

本実施形態のコンデンサについて、図1に示した積層セラミックコンデンサの概略断面図をもとに詳細に説明する。図1(a)は、本発明のコンデンサの一例を示す概略断面図であり、(b)は、内部の拡大図である。図2は、本実施形態のコンデンサを構成する誘電体層である誘電体磁器におけるチタン酸バリウムを主成分とする結晶粒子の内部構造を示す断面模式図である。   The capacitor of this embodiment will be described in detail based on the schematic cross-sectional view of the multilayer ceramic capacitor shown in FIG. FIG. 1A is a schematic cross-sectional view showing an example of the capacitor of the present invention, and FIG. 1B is an enlarged view of the inside. FIG. 2 is a schematic cross-sectional view showing the internal structure of crystal grains mainly composed of barium titanate in a dielectric ceramic that is a dielectric layer constituting the capacitor of this embodiment.

この実施形態のコンデンサは、コンデンサ本体1の両端部に外部電極3が形成されている。外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。   In the capacitor of this embodiment, external electrodes 3 are formed at both ends of the capacitor body 1. The external electrode 3 is formed, for example, by baking Cu or an alloy paste of Cu and Ni.

コンデンサ本体1は、誘電体磁器からなる誘電体層5と内部電極層7とが交互に積層され構成されている。図1では誘電体層5と内部電極層7との積層状態を単純化して示しているが、この実施形態のコンデンサは誘電体層5と内部電極層7とが数百層にも及ぶ積層体となっている。   The capacitor body 1 is configured by alternately laminating dielectric layers 5 made of dielectric ceramics and internal electrode layers 7. In FIG. 1, the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner, but the capacitor of this embodiment is a laminated body in which the dielectric layer 5 and the internal electrode layer 7 are several hundred layers. It has become.

誘電体磁器からなる誘電体層5は、結晶粒子9と粒界相11とから構成されており、その厚みは3μm以下、特に、2μm以下が望ましく、これにより積層セラミックコンデンサを小型、高容量化することが可能となる。なお、誘電体層5の厚みが0.5μm以上であると静電容量の温度特性を安定化させることが可能になる。   The dielectric layer 5 made of dielectric porcelain is composed of crystal grains 9 and grain boundary phases 11, and the thickness is preferably 3 μm or less, particularly 2 μm or less, thereby reducing the size and increasing the capacity of the multilayer ceramic capacitor. It becomes possible to do. If the thickness of the dielectric layer 5 is 0.5 μm or more, it becomes possible to stabilize the temperature characteristics of the capacitance.

内部電極層7は、高積層化しても製造コストを抑制できるとともに、誘電体層5との同時焼成が図れるという点でニッケル(Ni)が好適である。   The internal electrode layer 7 is preferably made of nickel (Ni) in that the manufacturing cost can be suppressed even when the internal electrode layer 7 is made highly laminated, and simultaneous firing with the dielectric layer 5 can be achieved.

この実施形態のコンデンサは、誘電体層が、チタン酸バリウムを主成分とし、結晶構造が正方晶系のコア部と、結晶構造が立方晶系で、バナジウムが固溶したシェル部とを有する結晶粒子により構成されており、前記シェル部の厚みが11.8〜2.5nmであるとともに、前記結晶粒子の平均粒径が0.15〜0.35μmである誘電体磁器からなる。
In the capacitor according to this embodiment, the dielectric layer is composed of a barium titanate as a main component, a crystal structure having a tetragonal core part, and a crystal part having a cubic crystal structure and a shell part in which vanadium is dissolved. is constituted by particles, the thickness of the shell portion is from 11.8 to 2 4. The dielectric ceramic is 5 nm and the average grain size of the crystal grains is 0.15 to 0.35 μm.

積層セラミックコンデンサを構成する誘電体層5が、上記平均粒径の範囲の結晶粒子を有し、かつ結晶粒子9の結晶構造が正方晶系のコア部9aと立方晶系のシェル部9bとを有するコアシェル構造であり、シェル部9bの厚みtが上記範囲であると、コンデンサを構成する誘電体層5の室温(25℃)における比誘電率が3950以上であるとともに、静電容量の温度特性がEIA規格のX5R特性(−55〜85℃の温度範囲において、25℃を基準にしたときの静電容量の変化率が±15%以内を示すもの)を満足する積層セラミックコンデンサとすることができる。   The dielectric layer 5 constituting the multilayer ceramic capacitor has crystal grains in the above average particle diameter range, and the crystal structure of the crystal grains 9 is a tetragonal core portion 9a and a cubic shell portion 9b. When the thickness t of the shell portion 9b is in the above range, the dielectric layer 5 constituting the capacitor has a relative dielectric constant of 3950 or more at room temperature (25 ° C.) and the temperature characteristics of the capacitance. A multilayer ceramic capacitor satisfying the EIA standard X5R characteristics (in the temperature range of −55 to 85 ° C., the change rate of the capacitance is within ± 15% with respect to 25 ° C.) it can.

なお、EIA規格のX5R特性とは、−55〜85℃の温度範囲において、25℃を基準にしたときの静電容量の変化率が±15%以内を示すものをいう。   Note that the X5R characteristic of the EIA standard means that the change rate of the capacitance when the temperature is in the range of −55 to 85 ° C. with 25 ° C. as a reference is within ± 15%.

この実施形態のコンデンサは、コアシェル構造を持つ結晶粒子9のシェル部9bの厚みが11.8〜26.5nmである。シェル部9bの厚みが11.8nmよりも薄くなると、静電容量の温度特性がX5R特性を満足し難くなり、一方、シェル部9bの厚みが26.5nmよりも厚くなると比誘電率が3950よりも低くなる。   In the capacitor of this embodiment, the thickness of the shell portion 9b of the crystal particle 9 having the core-shell structure is 11.8 to 26.5 nm. When the thickness of the shell portion 9b is less than 11.8 nm, the temperature characteristic of the capacitance becomes difficult to satisfy the X5R characteristic. On the other hand, when the thickness of the shell portion 9b is greater than 26.5 nm, the relative dielectric constant is from 3950. Also lower.

また、この実施形態のコンデンサは、誘電体層5である誘電体磁器を構成する結晶粒子9の平均粒径が0.15〜0.35μmである。結晶粒子9の平均粒径が0.15μmよりも小さいと、結晶粒子9中にコアシェル構造を形成し難くなり、結晶粒子9の中心部にまで添加成分が固溶した構造に変化してしまい、このため静電容量の温度変化率が±15%より大きくなりEIA規格のX5R特性を満足しないものとなる。一方、結晶粒子9の平均粒径が0.35μmよりも大きいと、静電容量の温度変化率が±15%より大きくなりEIA規格のX5R特性を満足しないものとなる。   In the capacitor of this embodiment, the average particle diameter of the crystal particles 9 constituting the dielectric ceramic that is the dielectric layer 5 is 0.15 to 0.35 μm. When the average particle diameter of the crystal particles 9 is smaller than 0.15 μm, it becomes difficult to form a core-shell structure in the crystal particles 9, and the structure is changed to a structure in which the additive component is dissolved in the center of the crystal particles 9. For this reason, the temperature change rate of the capacitance is larger than ± 15%, and the X5R characteristic of the EIA standard is not satisfied. On the other hand, if the average grain size of the crystal grains 9 is larger than 0.35 μm, the temperature change rate of the capacitance is larger than ± 15%, which does not satisfy the EIA standard X5R characteristics.

また、本実施形態のコンデンサでは、誘電体層5を構成する誘電体磁器が、バナジウムと、マグネシウムと、イットリウム,ジスプロシウム,ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)と、マンガンとを含み、チタン酸バリウム100モルに対して、バナジウムをV換算で0.04〜0.10モル、マグネシウムをMgO換算で0.4〜1.2モル、イットリウム,ジスプロシウム、ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)をRE換算で0.12〜0.48モルおよびマンガンをMnO換算で0.05〜0.35モル含有する誘電体磁器からなることが望ましい。In the capacitor of the present embodiment, the dielectric ceramic constituting the dielectric layer 5 includes vanadium, magnesium, at least one rare earth element (RE) selected from yttrium, dysprosium, holmium, terbium and ytterbium, Manganese, with respect to 100 mol of barium titanate, vanadium is 0.04 to 0.10 mol in terms of V 2 O 5 , magnesium is 0.4 to 1.2 mol in terms of MgO, yttrium, dysprosium, holmium , Terbium and ytterbium containing at least one rare earth element (RE) in the range of 0.12 to 0.48 mol in terms of RE 2 O 3 and manganese in the range of 0.05 to 0.35 mol in terms of MnO It is desirable to consist of.

誘電体層5を構成する誘電体磁器の組成を上記範囲にすると、静電容量の温度特性がX5R特性を満足させた状態で比誘電率を4500以上にできるとともに、ACバイアス特性が30%以下であり、かつ誘電損失が5%以下の積層セラミックコンデンサを得ることができる。ここでACバイアス特性とは交流0.01V/umを印加した際の誘電率に対する交流1V/umを印加した際の誘電率の変化量の比である。   When the composition of the dielectric ceramic constituting the dielectric layer 5 is in the above range, the relative permittivity can be increased to 4500 or more while the temperature characteristic of the capacitance satisfies the X5R characteristic, and the AC bias characteristic is 30% or less. In addition, a multilayer ceramic capacitor having a dielectric loss of 5% or less can be obtained. Here, the AC bias characteristic is a ratio of a change amount of a dielectric constant when an alternating current of 1 V / um is applied to a dielectric constant when an alternating current of 0.01 V / um is applied.

また、本実施形態のコンデンサでは、誘電体層5を構成する誘電体磁器が、チタン酸バリウム100モルに対して、バナジウムをV換算で0.04〜0.10モル、マグネシウムをMgO換算で0.5〜1.2モル、希土類元素(RE)をRE換算で0.30〜0.48モルおよびマンガンをMnO換算で0.05〜0.35モル含有する誘電体磁器からなることが望ましい。誘電体層5を構成する誘電体磁器を上記組成にすると、ACバイアス特性をさらに小さくすることができる。In the capacitor according to the present embodiment, the dielectric ceramic constituting the dielectric layer 5 is composed of 0.04 to 0.10 mol of vanadium in terms of V 2 O 5 and Mg of MgO with respect to 100 mol of barium titanate. Dielectric porcelain containing 0.5 to 1.2 mol in terms of conversion, rare earth element (RE) in an amount of 0.30 to 0.48 mol in terms of RE 2 O 3 and manganese in an amount of 0.05 to 0.35 mol in terms of MnO It is desirable to consist of. When the dielectric ceramic constituting the dielectric layer 5 has the above composition, the AC bias characteristic can be further reduced.

この実施形態のコンデンサでは、所望の誘電特性を維持できる範囲であれば焼結性を高めるための助剤としてガラス成分や他の添加成分を誘電体磁器中に4質量%以下の割合で含有させてもよい。   In the capacitor of this embodiment, a glass component and other additive components are contained in the dielectric ceramic in an amount of 4% by mass or less as an aid for enhancing the sinterability as long as desired dielectric characteristics can be maintained. May be.

本実施形態のコンデンサでは、シェル部9bがコア部9aを取り囲む構造となっているが、コア部9aをシェル部9bが取り囲む結晶粒子9については、元素分析器(EDS)を付設した透過電子顕微鏡を用いた分析によって確認する。分析する試料としては、積層セラミックコンデンサを加工して作製した試料から平均粒径の±30%の範囲にある結晶粒子9を10〜20個抽出する。元素分析を行う際の電子線のスポットサイズは1〜3nmとし、分析する箇所は結晶粒子9の表面である粒界から中央部までの領域とする。この場合、結晶粒子9の表面である粒界から中央部にかけて5〜10nm毎に元素(マグネシウムまたは希土類元素)の濃度を求め、横軸を距離、縦軸を元素の濃度としたグラフを作成する。ここで、グラフにおいて、最も粒界側にある測定点から順番に3点とり、この3点を用いて近似直線を引き、その直線の傾きを表層部側の元素の濃度勾配とし、また、結晶粒子9の粒界から30〜100nmの範囲内にある測定点のうち最も結晶粒子9の中央側にある測定点から順番に3点とり、この3点から近似直線を引き、その直線の傾きを中央部側の元素の濃度勾配とする。そして、表層部側の元素の濃度勾配が0.15原子%/nm以上であり、中央部側の元素の濃度勾配が0.5原子%/nm以下である場合に、コアシェル構造となっているものとする。   In the capacitor according to this embodiment, the shell portion 9b surrounds the core portion 9a. However, the crystal particle 9 surrounding the core portion 9a by the shell portion 9b has a transmission electron microscope provided with an element analyzer (EDS). Confirm by analysis using. As a sample to be analyzed, 10 to 20 crystal particles 9 in the range of ± 30% of the average particle diameter are extracted from a sample produced by processing a multilayer ceramic capacitor. The spot size of the electron beam at the time of performing the elemental analysis is 1 to 3 nm, and the site to be analyzed is a region from the grain boundary to the center of the crystal grain 9. In this case, the concentration of the element (magnesium or rare earth element) is obtained every 5 to 10 nm from the grain boundary which is the surface of the crystal grain 9 to the center, and a graph is created with the horizontal axis representing the distance and the vertical axis representing the element concentration. . Here, in the graph, three points are taken in order from the measurement point closest to the grain boundary side, an approximate straight line is drawn using these three points, the slope of the straight line is taken as the concentration gradient of the element on the surface layer side, and the crystal From the measurement points within the range of 30 to 100 nm from the grain boundary of the particle 9, three points are taken in order from the measurement point closest to the center of the crystal particle 9, and an approximate straight line is drawn from these three points, and the inclination of the straight line is obtained. The concentration gradient of the element on the center side is used. When the concentration gradient of the element on the surface layer side is 0.15 atomic% / nm or more and the concentration gradient of the element on the center side is 0.5 atomic% / nm or less, the core-shell structure is formed. Shall.

次に、結晶粒子9を構成するコア部9aおよびシェル部9bのそれぞれの結晶構造についてはX線回折法により求める。まず、誘電体層5のX線回折パターンから、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(004)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(400)面および(004)面のうちのいずれか一方の回折強度と同等かもしくはそれよりも大きくなっているときに結晶粒子9が正方晶系および立方晶系の結晶構造を有するものとする。   Next, the crystal structures of the core portion 9a and the shell portion 9b constituting the crystal particle 9 are obtained by an X-ray diffraction method. First, from the X-ray diffraction pattern of the dielectric layer 5, the (004) plane showing the cubic system of barium titanate appearing between the (004) plane showing the tetragonal system of barium titanate and the (400) plane (( (040) plane and (400) plane overlap)) or the diffraction intensity of any one of the (400) plane and (004) plane showing the tetragonal system of barium titanate, or It is assumed that the crystal grains 9 have tetragonal and cubic crystal structures when larger than that.

そして、結晶粒子9がコア部9aと、コア部9aを取り囲むシェル部9bとを有することを確認した透過電子顕微鏡による分析結果と、結晶粒子9が正方晶系および立方晶系の結晶構造を有するものであることの結果とから、結晶粒子9が、正方晶系のコア部9aと、コア部9aを取り囲む立方晶系のシェル部9bとを有するものと判定する。   And the analysis result by the transmission electron microscope which confirmed that the crystal grain 9 had the core part 9a and the shell part 9b surrounding the core part 9a, and the crystal grain 9 have a tetragonal crystal system and a cubic crystal structure Based on the result, the crystal particle 9 is determined to have a tetragonal core portion 9a and a cubic shell portion 9b surrounding the core portion 9a.

次に、結晶粒子9が、正方晶系のコア部9aと、コア部9aを取り囲む立方晶系のシェル部9bとからなるものと判定したものについて結晶粒子9のシェル部の厚みを求める。結晶粒子9のシェル部9bの厚みは、特開2006−137647号公報やJ.Am.Ceram.Soc.,90[4]1107-1111(2007)に示されているX線回折法を用いた評価方法に基づいて、以下の式より求める。   Next, the thickness of the shell portion of the crystal particle 9 is determined for the crystal particle 9 determined to be composed of a tetragonal core portion 9a and a cubic shell portion 9b surrounding the core portion 9a. The thickness of the shell portion 9b of the crystal grain 9 was determined using the X-ray diffraction method disclosed in Japanese Patent Application Laid-Open No. 2006-137647 and J. Am. Ceram. Soc., 90 [4] 1107-1111 (2007). Based on the evaluation method, the following formula is used.

対象とする結晶粒子9の結晶構造は、測定したX線回折パターンにおいて、選択したX線回折パターンが純粋な正方晶(h k l)または立方晶(h' k' l')の反射に比較してブロードになっており、ピーク位置の同定から正方晶(h k l)および立方晶(h' k' l')の反射が含まれているものとする。   The crystal structure of the target crystal grain 9 is compared with the reflection of a pure tetragonal crystal (h k l) or cubic crystal (h ′ k ′ l ′) in the measured X-ray diffraction pattern. It is assumed that the reflection of the tetragonal crystal (h k l) and the cubic crystal (h ′ k ′ l ′) is included from the identification of the peak position.

そして、対象とする回折データは、正方晶(h k l)および立方晶(h' k' l')の反射であり、回折ピークから、ピーク強度(=積分強度)、ピークトップの2θ位置、半値幅、ピークの形状関数等のパラメータを得る。その際、必要に応じて、ピーク分離を行う。この場合、ピーク分離の条件は、バックグラウンド関数:0次多項式、放射光:Kα1、プロファイル関数:the psedo-Voigt関数、半値幅:すべての反射に対し異なる半値幅、プロファイルの対象性:対象、およびデータ分解能:シャープ(最小半値幅:約0.1°)とする。なお、ピーク分離には市販ソフト(例えば、PROFIT)を用いることができ、ピーク分離のためのツールは特に限定されるものではない。   The target diffraction data are reflections of tetragonal crystals (h k l) and cubic crystals (h ′ k ′ l ′). From the diffraction peak, the peak intensity (= integrated intensity), the 2θ position of the peak top, Parameters such as half width and peak shape function are obtained. At that time, peak separation is performed as necessary. In this case, the conditions for peak separation are as follows: background function: 0th order polynomial, synchrotron radiation: Kα1, profile function: the psedo-Voigt function, half width: different half width for all reflections, object of profile: object, Data resolution: Sharp (minimum half-value width: about 0.1 °). Note that commercially available software (for example, PROFIT) can be used for peak separation, and the tool for peak separation is not particularly limited.

Figure 0005496331
Figure 0005496331

Figure 0005496331
Figure 0005496331

また、結晶粒子9の平均粒径は、以下の手順で測定する。まず、焼成後のコンデンサ本体1である試料の破断面を研磨する。この後、研磨した試料を走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上で結晶粒子が50〜100個入る円を描き、円内および円周にかかった結晶粒子を選択する。次いで、各結晶粒子の輪郭を画像処理して、各結晶粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求める。   The average particle size of the crystal particles 9 is measured by the following procedure. First, the fracture surface of the sample which is the capacitor body 1 after firing is polished. Thereafter, a photograph of the internal structure is taken of the polished sample using a scanning electron microscope, a circle containing 50 to 100 crystal particles is drawn on the photograph, and crystal particles that fall within and around the circle are selected. . Next, image processing is performed on the outline of each crystal particle to determine the area of each crystal particle, and the diameter when the crystal particle is replaced with a circle having the same area is calculated and obtained from the average value.

また、誘電体磁器の組成は、積層セラミックコンデンサを酸に溶解させた溶液をICP(Inductively Coupled Plasma)分析および原子吸光分析を用いて求められる。この場合、各元素の価数を周期表に示される価数として酸素量を求める。   The composition of the dielectric ceramic is determined by using a solution in which the multilayer ceramic capacitor is dissolved in an acid, using ICP (Inductively Coupled Plasma) analysis and atomic absorption analysis. In this case, the amount of oxygen is determined using the valence of each element as the valence shown in the periodic table.

また、本実施形態のコンデンサでは、誘電体層5である誘電体磁器を形成している粒界相11が複数の結晶粒子9により形成される二面間粒界相と三重点粒界相とを有し、誘電体磁器中に含まれる希土類元素、マグネシウムおよびケイ素は、二面間粒界相と三重点粒界相との間で、二面間粒界相における希土類元素、マグネシウムおよびケイ素のそれぞれの濃度をC1、三重点粒界相における希土類元素、マグネシウムおよびケイ素のそれぞれの濃度をC2としたときに、希土類元素、マグネシウムおよびケイ素うち2種の元素のC2/C1が0.8〜1.2であることが望ましい。希土類元素、マグネシウムおよびケイ素うち2種の元素のC2/C1が0.8〜1.2であると、室温(25℃)よりも高い温度(例えば、85℃)において、コンデンサの静電容量のばらつき(CV)を小さくすることが可能となる。さらに、希土類元素、マグネシウムおよびケイ素の全ての元素のC2/C1が0.8〜1.2である場合には、室温(25℃)よりも高い温度(例えば、85℃)におけるコンデンサの静電容量のばらつき(CV)をさらに小さくすることができる。   Further, in the capacitor of this embodiment, the grain boundary phase 11 forming the dielectric ceramic that is the dielectric layer 5 is formed by a plurality of crystal grains 9 between the two-sided grain boundary phase and the triple point grain boundary phase. The rare earth elements, magnesium and silicon contained in the dielectric ceramic are between the interfacial grain boundary phase and the triple point intergranular phase, and the rare earth elements, magnesium and silicon in the interfacial grain boundary phase. When the respective concentrations are C1, and the respective concentrations of rare earth elements, magnesium and silicon in the triple-point grain boundary phase are C2, C2 / C1 of two kinds of rare earth elements, magnesium and silicon are 0.8 to 1 .2 is desirable. When C2 / C1 of two elements of rare earth elements, magnesium and silicon is 0.8 to 1.2, at a temperature higher than room temperature (25 ° C.) (for example, 85 ° C.), the capacitance of the capacitor The variation (CV) can be reduced. Further, when C2 / C1 of all elements of rare earth elements, magnesium and silicon is 0.8 to 1.2, the electrostatic capacity of the capacitor at a temperature higher than room temperature (25 ° C.) (for example, 85 ° C.). Capacitance variation (CV) can be further reduced.

図3は、本実施形態のコンデンサを構成する誘電体層5である誘電体磁器において、希土類元素、マグネシウムおよびケイ素の濃度比を測定するための、複数の結晶粒子9により形成される二面間粒界相11aおよび三重点粒界相11bの測定位置を示す断面模式図である。   FIG. 3 shows a two-sided surface formed by a plurality of crystal grains 9 for measuring a concentration ratio of rare earth elements, magnesium and silicon in a dielectric ceramic that is the dielectric layer 5 constituting the capacitor of the present embodiment. It is a cross-sectional schematic diagram which shows the measurement position of the grain boundary phase 11a and the triple point grain boundary phase 11b.

二面間粒界相11aおよび三重点粒界相11bにおける希土類元素、マグネシウムおよびケイ素の濃度は、透過電子顕微鏡に付設のX線マイクロアナライザー(XMA)によって求める。この場合、分析に用いる試料は、コンデンサの誘電体層5から切り出した薄板状の誘電体磁器にイオンミリング加工を行ったものを用いる。分析する領域は、複数の結晶粒子9より形成されている二面間粒界相11aおよび三重点粒界相11bを断面視したときに、少なくとも3個の結晶粒子9の最大径が平均粒径の±20%以内の範囲にある結晶粒子9群からなる箇所とする。そして、X線マイクロアナライザー(XMA)を用いて、図3に示すように、二面間粒界相11aの位置S1および三重点粒界相11bの位置S2における希土類元素、マグネシウムおよびケイ素のそれぞれの濃度を求め、二面間粒界相11aにおける各元素の濃度C1と三重点粒界相11bにおける各元素の濃度C2との比C2/C1をそれぞれ求める。このとき、分析する二面間粒界相11aの位置S1は粒界相11の幅のほぼ中央であり、三重点粒界相11bの位置S2は三重点粒界相11bの中央である。また、二面間粒界相11aの位置S1は三重点粒界相11bの位置S2を定めた位置から50nm以上離れた位置とする。   The concentrations of rare earth elements, magnesium and silicon in the interfacial grain boundary phase 11a and the triple point grain boundary phase 11b are determined by an X-ray microanalyzer (XMA) attached to the transmission electron microscope. In this case, a sample used for analysis is a thin plate-shaped dielectric ceramic cut out from the dielectric layer 5 of the capacitor and subjected to ion milling. The region to be analyzed is that when the two-sided grain boundary phase 11a and the triple point grain boundary phase 11b formed from the plurality of crystal grains 9 are viewed in cross section, the maximum diameter of at least three crystal grains 9 is the average grain diameter. Of crystal grains in a range within ± 20%. Then, using an X-ray microanalyzer (XMA), as shown in FIG. 3, each of the rare earth elements, magnesium and silicon at the position S1 of the intergranular grain boundary phase 11a and the position S2 of the triple point grain boundary phase 11b, respectively. The concentration is obtained, and the ratio C2 / C1 between the concentration C1 of each element in the interfacial grain boundary phase 11a and the concentration C2 of each element in the triple point grain boundary phase 11b is obtained. At this time, the position S1 of the interfacial grain boundary phase 11a to be analyzed is substantially the center of the width of the grain boundary phase 11, and the position S2 of the triple point grain boundary phase 11b is the center of the triple point grain boundary phase 11b. In addition, the position S1 of the interfacial grain boundary phase 11a is a position separated by 50 nm or more from the position where the position S2 of the triple point grain boundary phase 11b is determined.

次に、本実施形態のコンデンサを製造する方法について説明する。   Next, a method for manufacturing the capacitor of this embodiment will be described.

まず、誘電体粉末をポリビニルブチラール樹脂などの有機樹脂やトルエンおよびアルコールなどの溶媒とともにボールミルなどを用いてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いて基材上にセラミックグリーンシートを形成する。セラミックグリーンシートの厚みは誘電体層5の高容量化のための薄層化、高絶縁性を維持するという点で1〜5μmが好ましい。   First, a ceramic slurry is prepared by using a ball mill or the like together with a dielectric powder, an organic resin such as polyvinyl butyral resin, a solvent such as toluene and alcohol, and then the ceramic slurry is subjected to a sheet molding method such as a doctor blade method or a die coater method. A ceramic green sheet is formed on the substrate. The thickness of the ceramic green sheet is preferably 1 to 5 μm from the viewpoint of reducing the thickness of the dielectric layer 5 to increase the capacity and maintaining high insulation.

本実施形態の積層セラミックコンデンサの製法で用いる誘電体粉末は、チタン酸バリウム粉末(以下、BT粉末という。Ba/Tiのモル比が1.001〜1.009)を用いる。また、BT粉末の平均粒径は0.21〜0.30μmであることが望ましい。本実施形態の積層セラミックコンデンサを製造するための方法では、誘電体層5となる誘電体磁器を構成する結晶粒子9を形成するためのBT粉末として、平均粒径が0.21〜0.30μmの範囲のものを用いることにより、BT粉末に対して希土類元素(RE)を含めた添加成分の固溶を抑え、後述する厚みのシェル部を形成できる。これにより誘電体層5の薄層化を容易にし、BT粉末として、後述する焼成条件により高誘電率であり、EIA規格のX5R特性を満足する結晶粒子9とすることが可能になる。   The dielectric powder used in the manufacturing method of the multilayer ceramic capacitor of the present embodiment is a barium titanate powder (hereinafter referred to as BT powder; Ba / Ti molar ratio is 1.001 to 1.009). The average particle size of the BT powder is preferably 0.21 to 0.30 μm. In the method for manufacturing the multilayer ceramic capacitor of the present embodiment, the average particle size is 0.21 to 0.30 μm as BT powder for forming the crystal particles 9 constituting the dielectric ceramic serving as the dielectric layer 5. By using the material in the range, it is possible to suppress the solid solution of the additive component including the rare earth element (RE) in the BT powder and to form a shell portion having a thickness described later. This facilitates the thinning of the dielectric layer 5, and the BT powder can be made into crystal particles 9 having a high dielectric constant under the firing conditions described later and satisfying the X5R characteristics of the EIA standard.

この実施形態のコンデンサを製造する際に用いる誘電体粉末は、後述のチタン酸バリウムを主成分とし、これに、例えば、バナジウム、マグネシウム、希土類元素、マンガンおよび焼結助剤の全成分を所定量被覆したものを用いるのがよい。   The dielectric powder used in manufacturing the capacitor of this embodiment is mainly composed of barium titanate, which will be described later, and, for example, vanadium, magnesium, rare earth elements, manganese, and a predetermined amount of all components of the sintering aid. It is good to use what was coat | covered.

この場合、用いる誘電体粉末は、例えば、以下のようにして調製する。まず、純度が99.9%以上、Ba/Tiのモル比が1.001〜1.009であり、平均粒径が0.21〜0.30μmであるチタン酸バリウム粉末(BT粉末)の懸濁液に、pH調整剤としてアンモニア水を用いて、pHを6〜8の範囲とし、これに、リチウム水溶液、シリカゾル、炭酸バリウム水溶液、水酸化マグネシウム水溶液、水酸化カルシウム水溶液、バナジン酸アンモニウム水溶液、酢酸マンガン水溶液およびイットリウム,ジスプロシウム、ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素の水溶液を、この順に、添加し混合してセラミックスラリを調製する。なお、これらの原料試薬の純度は、得られる誘電体磁器への不純物の混入を抑制し、高い誘電特性を得るという理由からいずれも99.5%以上であるのがよい。   In this case, the dielectric powder to be used is prepared as follows, for example. First, a suspension of barium titanate powder (BT powder) having a purity of 99.9% or more, a Ba / Ti molar ratio of 1.001 to 1.009, and an average particle diameter of 0.21 to 0.30 μm. Ammonia water is used as a pH adjusting agent in the turbid liquid to adjust the pH to a range of 6 to 8, and this includes a lithium aqueous solution, silica sol, barium carbonate aqueous solution, magnesium hydroxide aqueous solution, calcium hydroxide aqueous solution, ammonium vanadate aqueous solution, An aqueous solution of manganese acetate and an aqueous solution of at least one rare earth element selected from yttrium, dysprosium, holmium, terbium and ytterbium are added and mixed in this order to prepare a ceramic slurry. Note that the purity of these raw material reagents is preferably 99.5% or more for the purpose of suppressing the mixing of impurities into the obtained dielectric ceramic and obtaining high dielectric properties.

次に、このセラミックスラリを4流体ノズルを備えた噴霧乾燥機に投入し、4流体ノズルから直径が10μm以下の液滴を生成させ、200℃付近の温度で乾燥処理して、誘電体粉末の前駆体を作製し、次いで、この誘電体粉末の前駆体を乾燥処理の温度よりも高い温度にて加熱処理することにより調製する。   Next, the ceramic slurry is put into a spray dryer equipped with a four-fluid nozzle, droplets having a diameter of 10 μm or less are generated from the four-fluid nozzle, and dried at a temperature of about 200 ° C. A precursor is prepared, and then the dielectric powder precursor is prepared by heat treatment at a temperature higher than the temperature of the drying treatment.

誘電体粉末の組成としては、BT粉末を100モルとしたときに、バナジン酸アンモニウム水溶液をV換算で0.04〜0.10モル、水酸化マグネシウム水溶液をMgO換算で0.5〜1.2モル、酢酸マンガン水溶液をMnO換算で0.05〜0.35モル、イットリウム,ジスプロシウム、ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)の水溶液をRE換算で0.12〜0.48モルの組成とすることが望ましく、これにより高誘電率であり静電容量の温度特性がX5R特性を満足し、ACバイアス特性および誘電損失の小さい積層セラミックコンデンサを得ることが可能になる。As the composition of the dielectric powder, when the BT powder is 100 mol, the ammonium vanadate aqueous solution is 0.04 to 0.10 mol in terms of V 2 O 5 , and the magnesium hydroxide aqueous solution is 0.5 to 0.5 in terms of MgO. 1.2 mol, 0.05 to 0.35 mol of manganese acetate aqueous solution in terms of MnO, and an aqueous solution of at least one rare earth element (RE) selected from yttrium, dysprosium, holmium, terbium and ytterbium in terms of RE 2 O 3 It is desirable that the composition be 0.12 to 0.48 mol, thereby obtaining a multilayer ceramic capacitor having a high dielectric constant, a capacitance temperature characteristic satisfying the X5R characteristic, and a low AC bias characteristic and dielectric loss. It becomes possible.

また、焼結助剤の添加量はBT粉末100質量部に対して0.5〜2.0質量部になるように調製する。これにより誘電体磁器の焼結性をより高めることができる。その組成は、LiO=1〜15モル%、SiO=40〜60モル%、BaO=15〜35モル%、およびCaO=5〜25モル%が好ましい。Moreover, the addition amount of a sintering auxiliary agent is prepared so that it may become 0.5-2.0 mass parts with respect to 100 mass parts of BT powder. Thereby, the sinterability of the dielectric ceramic can be further enhanced. The composition is preferably Li 2 O = 1-15 mol%, SiO 2 = 40-60 mol%, BaO = 15-35 mol%, and CaO = 5-25 mol%.

次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストは、Niもしくはこれらの合金粉末を主成分金属とし、これに共材としてのセラミック粉末を混合し、有機バインダ、溶剤および分散剤を添加して調製する。また、セラミックグリーンシート上の内部電極パターンによる段差を解消するために、内部電極パターンの周囲にセラミックパターンを内部電極パターンと実質的に同一厚みで形成することが好ましい。この場合、セラミックパターンを構成するセラミック成分は、同時焼成での焼成収縮を同じにするという点でセラミックグリーンシートに用いた誘電体粉末を用いることが好ましい。   Next, a rectangular internal electrode pattern is printed and formed on the main surface of the obtained ceramic green sheet. The conductor paste used as the internal electrode pattern is prepared by mixing Ni or an alloy powder thereof as a main component metal, mixing ceramic powder as a co-material with this, and adding an organic binder, a solvent and a dispersant. Further, in order to eliminate the step due to the internal electrode pattern on the ceramic green sheet, it is preferable to form the ceramic pattern with substantially the same thickness as the internal electrode pattern around the internal electrode pattern. In this case, it is preferable to use the dielectric powder used for the ceramic green sheet as the ceramic component constituting the ceramic pattern in that the firing shrinkage in the simultaneous firing is the same.

次に、内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねて仮積層体を形成する。仮積層体中における内部電極パターンは長寸方向に半パターンずつずらしてある。このような積層工法により切断後の積層体の端面に内部電極パターンが交互に露出されるように形成できる。   Next, a desired number of ceramic green sheets with internal electrode patterns are stacked, and a plurality of ceramic green sheets without internal electrode patterns are stacked on top and bottom of the ceramic green sheets so that the upper and lower layers have the same number. Form the body. The internal electrode patterns in the temporary laminate are shifted by half patterns in the longitudinal direction. By such a laminating method, the internal electrode pattern can be formed so as to be alternately exposed on the end face of the cut laminate.

なお、本実施形態のコンデンサは、セラミックグリーンシートの主面に内部電極パターンを予め形成した後に積層する工法の他に、セラミックグリーンシートを一旦下層側の機材に密着させた後に、内部電極パターンを印刷し、乾燥させ、印刷、乾燥された内部電極パターン上に、内部電極パターンを印刷していないセラミックグリーンシートを重ねて仮密着させ、セラミックグリーンシートの密着と内部電極パターンの印刷を逐次行う工法によっても形成できる。   In addition to the method of laminating after the internal electrode pattern is formed in advance on the main surface of the ceramic green sheet, the capacitor according to the present embodiment has the internal electrode pattern formed after the ceramic green sheet is once brought into close contact with the underlying equipment. Printed, dried, printed and dried internal electrode patterns are stacked with a ceramic green sheet that is not printed with an internal electrode pattern, temporarily adhered, and the ceramic green sheet is adhered and the internal electrode pattern is printed sequentially. Can also be formed.

次に、仮積層体を上記仮積層時の温度圧力よりも高温、高圧の条件にてプレスを行い、セラミックグリーンシートと内部電極パターンとが強固に密着された積層体を形成する。   Next, the temporary laminate is pressed under conditions of higher temperature and higher pressure than the temperature and pressure at the time of temporary lamination to form a laminate in which the ceramic green sheet and the internal electrode pattern are firmly adhered.

次に、積層体を格子状に切断することにより内部電極パターンの端部が露出するコンデンサ本体成形体を形成する。   Next, the capacitor body molded body in which the end portions of the internal electrode patterns are exposed is formed by cutting the laminate into a lattice shape.

次に、得られたコンデンサ本体成形体を脱脂した後、焼成する。焼成は、最高温度を1150〜1230℃、保持時間を0.1〜4時間とし、水素−窒素の雰囲気中にて行うことが望ましい。この後、900〜1100℃の温度範囲で再酸化処理を行うことによってコンデンサ本体1を得る。この後、必要に応じて、コンデンサ本体1の稜線部分の面取りを行うとともに、コンデンサ本体1の対向する端面から露出する内部電極層7を露出させるためにバレル研磨を施しても良い。焼成をこのような条件で行うことにより、誘電体層5を構成する結晶粒子9の平均粒径を0.15〜0.35μmの範囲とし、結晶粒子9の結晶構造が正方晶系のコア部9aと、コア部を取り囲み前記バナジウム、マグネシウム、希土類元素(RE)およびマンガンのうち少なくとも1種の添加成分が固溶した立方晶系のシェル部9bとからなり、シェル部9bの厚みが10〜20nmであるコンデンサ本体1を得ることができる。   Next, the obtained capacitor body molded body is degreased and fired. The firing is desirably performed in a hydrogen-nitrogen atmosphere at a maximum temperature of 1150 to 1230 ° C. and a holding time of 0.1 to 4 hours. Then, the capacitor body 1 is obtained by performing reoxidation treatment in the temperature range of 900 to 1100 ° C. Thereafter, if necessary, the ridge line portion of the capacitor body 1 may be chamfered and barrel polishing may be performed to expose the internal electrode layer 7 exposed from the opposing end surface of the capacitor body 1. By performing the firing under such conditions, the average particle diameter of the crystal particles 9 constituting the dielectric layer 5 is in the range of 0.15 to 0.35 μm, and the crystal structure of the crystal particles 9 is a tetragonal core part. 9a and a cubic shell portion 9b that surrounds the core portion and in which at least one additive component of vanadium, magnesium, rare earth element (RE), and manganese is in solid solution, and the thickness of the shell portion 9b is 10 to 10. A capacitor body 1 having a thickness of 20 nm can be obtained.

また、本実施形態のコンデンサを製造する場合に、得られたコンデンサ本体成形体を脱脂した後、水素−窒素雰囲気中、最高温度に達する前に、一旦、900〜1000℃の温度にて0.5〜3時間ほど保持する熱処理工程を設けることが望ましい。このような熱処理工程を設けることにより結晶粒子9の二面間粒界相11aおよび三重点粒界相11bにおける希土類元素、マグネシウムおよびガラス成分の組成の差を小さくすることができ、これによりコンデンサの室温(25℃)よりも高い温度(約85℃)における静電容量のばらつき(CV)を小さくすることができる。ここで、静電容量のばらつき(CV)は、複数個の試料の静電容量の測定値を母数として求めた平均値(x)と標準偏差(σ)の比(σ/x)で表される値である。   Moreover, when manufacturing the capacitor | condenser of this embodiment, after degreasing the obtained capacitor main body molded object, before reaching maximum temperature in hydrogen-nitrogen atmosphere, it is once at the temperature of 900-1000 degreeC. It is desirable to provide a heat treatment step for holding for about 5 to 3 hours. By providing such a heat treatment step, the difference in the composition of rare earth elements, magnesium and glass components in the interfacial grain boundary phase 11a and the triple-point grain boundary phase 11b of the crystal grain 9 can be reduced, and thus the capacitor Capacitance variation (CV) at a temperature (about 85 ° C.) higher than room temperature (25 ° C.) can be reduced. Here, the variation in capacitance (CV) is expressed by a ratio (σ / x) of an average value (x) and a standard deviation (σ) obtained by using a measured value of the capacitance of a plurality of samples as a parameter. Is the value to be

上述したように、本実施形態のコンデンサは、誘電体層5を作製するのに、チタン酸バリウムを主成分とし、これに、バナジウム、マグネシウム、希土類元素(RE)、マンガンおよび焼結助剤の全成分を所定量被覆したものを用い、得られた生のコンデンサ本体成形体を昇温速度の高い焼成条件で焼成することにより、シェル部9bの平均厚みの小さい結晶粒子9を得ることができる。   As described above, the capacitor according to the present embodiment is mainly composed of barium titanate to produce the dielectric layer 5, and vanadium, magnesium, rare earth element (RE), manganese, and a sintering aid. Crystal grains 9 having a small average thickness of the shell portion 9b can be obtained by firing the obtained raw capacitor body molded body with a predetermined amount of all components and firing the obtained raw capacitor body under firing conditions with a high heating rate. .

次に、このコンデンサ本体1の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極3を形成する。また、場合によっては、この外部電極3の表面に実装性を高めるためにメッキ膜を形成する。こうして本発明のコンデンサを得ることができる。   Next, an external electrode paste is applied to the opposing ends of the capacitor body 1 and baked to form the external electrodes 3. In some cases, a plating film is formed on the surface of the external electrode 3 in order to improve mountability. Thus, the capacitor of the present invention can be obtained.

まず、原料粉末として、純度が99.9%であり、Ba/Tiのモル比が1.005のチタン酸バリウム粉末(以下、BT粉末という)を準備した。   First, barium titanate powder (hereinafter referred to as BT powder) having a purity of 99.9% and a Ba / Ti molar ratio of 1.005 was prepared as a raw material powder.

次に、BT粉末の懸濁液に、アンモニア水をpH調整剤として用いて、pHを6〜8の範囲になるようにした。次に、これに、リチウム水溶液、シリカゾル、炭酸バリウム水溶液、水酸化マグネシウム水溶液、水酸化カルシウム水溶液、バナジン酸アンモニウム水溶液、酢酸マンガン水溶液およびイットリウム,ジスプロシウム、ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素の水溶液を、この順に、添加し混合してセラミックスラリを調製した。   Next, ammonia water was used as a pH adjuster in the suspension of BT powder so that the pH was in the range of 6-8. Next, to this, at least one selected from lithium aqueous solution, silica sol, barium carbonate aqueous solution, magnesium hydroxide aqueous solution, calcium hydroxide aqueous solution, ammonium vanadate aqueous solution, manganese acetate aqueous solution and yttrium, dysprosium, holmium, terbium and ytterbium An aqueous solution of rare earth elements was added and mixed in this order to prepare a ceramic slurry.

次に、このセラミックスラリを4流体ノズルを備えた噴霧乾燥機に投入し、4流体ノズルから直径が10μm以下の液滴を生成させ、200℃付近の温度で乾燥処理して、誘電体粉末の前駆体を作製し、次いで、この誘電体粉末の前駆体を400℃にて加熱処理を行ってBT粉末の表面にバナジウム、マグネシウム、希土類元素、マンガンおよび焼結助剤の全成分が所定量被覆された誘電体粉末を調製した。焼結助剤は、SiO=55,BaO=20,CaO=15,LiO=10(モル%)組成となるように組成を調整し、また、その焼結助剤の添加量はBT粉末100質量部に対して1質量部になるように調整した。また、バナジウム、マグネシウム、希土類元素およびマンガンを所定量被覆したBT粉末に対して、焼結助剤としてガラス粉末を添加した試料を作製した(試料No.33)。Next, the ceramic slurry is put into a spray dryer equipped with a four-fluid nozzle, droplets having a diameter of 10 μm or less are generated from the four-fluid nozzle, and dried at a temperature of about 200 ° C. A precursor is prepared, and then the dielectric powder precursor is heat-treated at 400 ° C. to cover the surface of the BT powder with a predetermined amount of all components of vanadium, magnesium, rare earth element, manganese and sintering aid. A dielectric powder was prepared. The sintering aid was adjusted to have a composition of SiO 2 = 55, BaO = 20, CaO = 15, Li 2 O = 10 (mol%), and the amount of the sintering aid added was BT. It adjusted so that it might become 1 mass part with respect to 100 mass parts of powder. A sample was prepared by adding glass powder as a sintering aid to BT powder coated with a predetermined amount of vanadium, magnesium, rare earth element and manganese (sample No. 33).

次に、得られた誘電体粉末を、ポリビニルブチラール樹脂と、トルエンおよびアルコールの混合溶媒中に投入し、直径1mmのジルコニアボールを用いて湿式混合してセラミックスラリを調製し、ドクターブレード法により厚み2μmのセラミックグリーンシートを作製した。   Next, the obtained dielectric powder is put into a mixed solvent of polyvinyl butyral resin, toluene and alcohol, and wet-mixed using a zirconia ball having a diameter of 1 mm to prepare a ceramic slurry. A 2 μm ceramic green sheet was prepared.

次に、このセラミックグリーンシートの上面にNiを主成分とする導体ペーストを矩形状の内部電極パターンとなるように複数形成した。内部電極パターンを形成するための導体ペーストは、平均粒径が0.3μmのNi粉末100質量部に対してBT粉末を添加したものを用いた。   Next, a plurality of conductive pastes containing Ni as a main component were formed on the upper surface of the ceramic green sheet so as to form a rectangular internal electrode pattern. The conductor paste for forming the internal electrode pattern was obtained by adding BT powder to 100 parts by mass of Ni powder having an average particle size of 0.3 μm.

次に、内部電極パターンを印刷したセラミックグリーンシートを200枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で密着させて積層体を作製し、しかる後、この積層体を、所定の寸法に切断してコンデンサ本体成形体を形成した。Next, 200 ceramic green sheets on which internal electrode patterns were printed were laminated, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively, using a press machine at a temperature of 60 ° C. and pressure A laminated body was prepared by closely adhering under conditions of 10 7 Pa and time 10 minutes, and then the laminated body was cut into a predetermined size to form a capacitor body molded body.

次に、コンデンサ本体成形体を大気中で脱バインダ処理した後、水素−窒素中、昇温速度を2000℃/hとし、表1に示す温度で焼成してコンデンサ本体を作製した。この焼成では、ローラーハースキルンを用いて行った。また、昇温速度を500℃/hとした試料を作製した(試料No.34)。   Next, the capacitor body molded body was treated to remove the binder in the air, and then fired at a temperature rising rate of 2000 ° C./h in hydrogen-nitrogen at a temperature shown in Table 1 to produce a capacitor body. This firing was performed using a roller hearth kiln. Moreover, the sample which made the temperature increase rate 500 degreeC / h was produced (sample No. 34).

作製したコンデンサ本体は、続いて、窒素雰囲気中1000℃で4時間再酸化処理を行った。このコンデンサ本体の大きさは2.05×1.28×1.28mm、誘電体層の厚みは2.0μm、内部電極層の1層の有効面積は1.78mmであった。なお、有効面積とは、コンデンサ本体の異なる端面にそれぞれ露出するように積層方向に交互に形成された内部電極層同士の重なる部分の面積のことである。The produced capacitor body was subsequently reoxidized at 1000 ° C. for 4 hours in a nitrogen atmosphere. The size of the capacitor body was 2.05 × 1.28 × 1.28 mm 3 , the thickness of the dielectric layer was 2.0 μm, and the effective area of one internal electrode layer was 1.78 mm 2 . The effective area is the area of the overlapping portion of the internal electrode layers that are alternately formed in the stacking direction so as to be exposed at different end faces of the capacitor body.

次に、コンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスとを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行って外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。   Next, after barrel-polishing the capacitor body, an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサについて以下の評価を行った。室温(25℃)における比誘電率は静電容量をLCRメータ(ヒューレットパッカード社製)を用いて、温度25℃、周波数1.0kHz、AC電圧を1.0V/μmとして測定し、誘電体層の厚みと内部電極層の有効面積から求めた。   Next, the following evaluation was performed on these multilayer ceramic capacitors. The dielectric constant at room temperature (25 ° C.) was measured by using an LCR meter (manufactured by Hewlett-Packard Co.) with a capacitance of 25 ° C., a frequency of 1.0 kHz, and an AC voltage of 1.0 V / μm. And the effective area of the internal electrode layer.

誘電損失も同LCRメータを用いて静電容量と同条件で測定した。また、静電容量の温度特性は静電容量を温度−55〜85℃の範囲で測定した。   Dielectric loss was also measured under the same conditions as the capacitance using the same LCR meter. Moreover, the temperature characteristic of the capacitance was measured in a temperature range of −55 to 85 ° C.

ACバイアス特性は、温度25℃、周波数1.0kHz、AC電圧0.01〜3.5V/μmの条件において、交流(AC)電圧0.01V/μm印加時の静電容量をC1、温度25℃、周波数1.0kHz、AC電圧3.5V/μm印加時の静電容量をC2としたときに、((C2−C1)/C1)×100(%)から求めた。   The AC bias characteristic is that the capacitance when an alternating current (AC) voltage of 0.01 V / μm is applied is C1, and the temperature is 25 at a temperature of 25 ° C., a frequency of 1.0 kHz, and an AC voltage of 0.01 to 3.5 V / μm. The capacitance was determined from ((C2−C1) / C1) × 100 (%), where C2 was the electrostatic capacity when applying an AC voltage of 3.5 V / μm at a temperature of 1.0 ° C.

誘電体層を構成する結晶粒子の平均粒径は、焼成後のコンデンサ本体である試料の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上で結晶粒子が30個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積を持つ円に置き換えたときの直径を算出し、その平均値より求めた。   The average particle size of the crystal particles constituting the dielectric layer is determined by polishing the fracture surface of the sample that is the capacitor body after firing, and then taking a picture of the internal structure using a scanning electron microscope. Draw a circle that contains 30 circles, select the crystal particles that fall within and around the circle, image the outline of each crystal particle, determine the area of each particle, and replace it with a circle with the same area Was calculated from the average value.

次に、コア部とシェル部とを有する結晶粒子がシェル部がコア部を取り囲むものであるか否かについては、元素分析器(EDS)を付設した透過電子顕微鏡を用いた分析によって確認した。分析した試料としては、積層セラミックコンデンサを加工して作製したTEM用の試料から平均粒径の±30%の範囲にある結晶粒子を10〜20個抽出した。元素分析を行う際の電子線のスポットサイズは1〜3nmとし、分析する箇所は結晶粒子の表面である粒界から中央部までの領域とした。この場合、結晶粒子の表面である粒界から中央部にかけて5〜10nm毎に希土類元素の濃度を求め、横軸を距離、縦軸を元素の濃度としたグラフを作成した。ここで、グラフにおいて、最も粒界側にある測定点から順番に3点とり、この3点を用いて近似直線を引き、その直線の傾きを表層部側の元素の濃度勾配とした。また、結晶粒子の粒界から30〜100nmの範囲内にある測定点のうち最も結晶粒子の中央側にある測定点から順番に3点とり、この3点から近似直線を引き、その直線の傾きを中央部側の元素の濃度勾配とした。この場合、粒界側の元素の濃度勾配が0.15原子%/nm以上であり、中央部側の元素の濃度勾配が0.5原子%/nm以下である場合に、コアシェル構造となっているものとした。   Next, whether or not the crystal particles having the core portion and the shell portion are those in which the shell portion surrounds the core portion was confirmed by analysis using a transmission electron microscope provided with an element analyzer (EDS). As an analyzed sample, 10 to 20 crystal particles in a range of ± 30% of the average particle diameter were extracted from a TEM sample manufactured by processing a multilayer ceramic capacitor. The spot size of the electron beam at the time of performing the elemental analysis was 1 to 3 nm, and the site to be analyzed was the region from the grain boundary to the central part which is the surface of the crystal grain. In this case, the concentration of the rare earth element was determined every 5 to 10 nm from the grain boundary, which is the surface of the crystal grain, to the center, and a graph was created with the horizontal axis representing the distance and the vertical axis representing the element concentration. Here, in the graph, three points were taken in order from the measurement point closest to the grain boundary, and an approximate straight line was drawn using these three points, and the slope of the straight line was taken as the concentration gradient of the element on the surface layer side. In addition, from the measurement points within the range of 30 to 100 nm from the grain boundary of the crystal grain, three points are taken in order from the measurement point closest to the center of the crystal grain, and an approximate line is drawn from these three points, and the slope of the straight line is obtained. Is the concentration gradient of the element on the center side. In this case, when the concentration gradient of the element on the grain boundary side is 0.15 atomic% / nm or more and the concentration gradient of the element on the center side is 0.5 atomic% / nm or less, the core-shell structure is obtained. It was supposed to be.

次に、結晶粒子を構成するコア部およびシェル部のそれぞれの結晶構造についてX線回折法により求めた。まず、誘電体層を粉砕した試料のX線回折パターンから、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(004)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(400)面および(004)面のうちのいずれか一方の回折強度と同等かもしくはそれよりも大きくなっているときに結晶粒子が正方晶系および立方晶系の結晶構造を有するものとした。   Next, the respective crystal structures of the core portion and the shell portion constituting the crystal particles were determined by an X-ray diffraction method. First, from the X-ray diffraction pattern of the sample obtained by grinding the dielectric layer, the cubic system of barium titanate appearing between the (004) plane and the (400) plane showing the tetragonal system of barium titanate is shown (004). The diffraction intensity of the plane (the (040) plane and (400) plane overlap) is the diffraction intensity of any one of the (400) plane and (004) plane showing the tetragonal system of barium titanate. The crystal grains had tetragonal and cubic crystal structures when they were equal or larger.

そして、結晶粒子がコア部と、コア部を取り囲むシェル部とを有することを確認した透過電子顕微鏡による分析結果と、結晶粒子が正方晶系および立方晶系の結晶構造を有するものであることの結果とから、結晶粒子が、正方晶系のコア部と、コア部を取り囲む立方晶系のシェル部とを有するものであると判定した。   And the analysis result by the transmission electron microscope which confirmed that the crystal particle has a core part and a shell part surrounding the core part, and that the crystal particle has a tetragonal crystal system and a cubic crystal structure From the results, it was determined that the crystal particles had a tetragonal core part and a cubic shell part surrounding the core part.

次に、結晶粒子9が、正方晶系のコア部と、コア部を取り囲む立方晶系のシェル部とを有するものと判定したものについて結晶粒子のシェル部の厚みを以下の方法により求めた。   Next, the thickness of the shell portion of the crystal particle was determined by the following method for the crystal particle 9 determined to have a tetragonal core portion and a cubic shell portion surrounding the core portion.

結晶粒子のシェル厚みは、前述の数式1および数式2を用いて求めた。このとき、X線回折装置はPanalytical社製のX‘Pertproを用いた。このとき対象とする結晶粒子の結晶構造は、測定したX線回折パターンにおいて、選択したX線回折パターンが純粋な正方晶(h k l)または立方晶(h' k' l')の反射に比較してブロードになっており、ピーク位置の同定から正方晶(h k l)および立方晶(h' k' l')の反射が含まれているものを選択した。   The shell thickness of the crystal grains was obtained using the above-described Equation 1 and Equation 2. At this time, X′Pertpro manufactured by Panallytical was used as the X-ray diffractometer. At this time, the crystal structure of the target crystal particle is that the selected X-ray diffraction pattern is reflected in pure tetragonal (h k l) or cubic (h ′ k ′ l ′) in the measured X-ray diffraction pattern. In comparison, the peak was identified, and the one containing tetragonal (h k l) and cubic (h ′ k ′ l ′) reflections was selected.

そして、回折ピークは、正方晶の(002),(200)、立方晶の(200)を測定の対象とした。ビームの大きさは、縦方向に0.5mm、水平方向に5mmとした。波長は1.54982Åとした。誘電体磁器の測定は、ステップ幅を0.02°とし、1点あたりの計数時間を5.0秒とした。また、繰返し回数を10回とし、10回分の積算を回折強度とした。なお、評価においては、回折ピークからピーク分離ソフト(PROFIT)を用いて以下の条件で正方晶の(002),(200)、立方晶の(200)をピーク分離を行った。ピーク分離の条件は、バックグラウンド関数:0次多項式、放射光:Kα1、プロファイル関数:the psedo-Voigt関数、半値幅:すべての反射に対し異なる半値幅、プロファイルの対象性:対象、データ分解能:シャープ(最小半値幅:約0.1°)および解析範囲:44°<2θ<47°、とした。   The diffraction peaks of tetragonal (002) and (200) and cubic (200) were measured. The size of the beam was 0.5 mm in the vertical direction and 5 mm in the horizontal direction. The wavelength was 1.54982 mm. In the measurement of the dielectric ceramic, the step width was 0.02 °, and the counting time per point was 5.0 seconds. Further, the number of repetitions was 10, and the integration for 10 times was defined as the diffraction intensity. In the evaluation, peak separation was performed for tetragonal (002), (200), and cubic (200) from the diffraction peak using peak separation software (PROFIT) under the following conditions. The conditions for peak separation are as follows: background function: 0th order polynomial, synchrotron radiation: Kα1, profile function: the psedo-Voigt function, half width: different half width for all reflections, profile subjectivity: subject, data resolution: Sharp (minimum half width: about 0.1 °) and analysis range: 44 ° <2θ <47 °.

また、得られた焼結体である試料の組成分析はICP(Inductively Coupled Plasma)分析および原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。なお、得られた積層セラミックコンデンサを構成する誘電体層の組成は、表1に示した組成と一致した。   The composition analysis of the obtained sintered body sample was performed by ICP (Inductively Coupled Plasma) analysis and atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table. The composition of the dielectric layer constituting the obtained multilayer ceramic capacitor matched the composition shown in Table 1.

調合組成および焼成条件を表1に、得られた積層セラミックコンデンサにおける誘電体層を構成する結晶粒子の平均粒径および誘電特性(比誘電率、静電容量の温度特性、ACバイアス特性,誘電損失)の結果を表2にそれぞれ示す。尚、表1、表2における試料No.I−5、I−11、I−14、I−20、I−25、I−30、I−34およびI−35は参考試料である。 The composition and firing conditions are shown in Table 1, and the average grain size and dielectric characteristics (relative permittivity, capacitance temperature characteristics, AC bias characteristics, dielectric loss) of the dielectric particles in the obtained multilayer ceramic capacitor ) Shows the results in Table 2. In Tables 1 and 2, the sample Nos. I-5, I-11, I-14, I-20, I-25, I-30, I-34 and I-35 are reference samples.

Figure 0005496331
Figure 0005496331

Figure 0005496331
Figure 0005496331

表1、2の結果から明らかなように、試料No.I−1〜4,I−6〜10,I−12,I−13,I−15〜19,I−21〜24,I−26〜29およびI−31〜34では、室温(25℃)における比誘電率が3950以上であり、かつ静電容量の温度特性がX5R特性を満足するものとなった。   As is apparent from the results in Tables 1 and 2, sample No. Room temperature (25 ° C.) for I-1-4, I-6-10, I-12, I-13, I-15-19, I-21-24, I-26-29 and I-31-34 The relative dielectric constant at 3950 was 3950 or more, and the temperature characteristics of the capacitance satisfied the X5R characteristics.

また、試料No.I−2〜4,I−6〜10,I−12,I−13,I−16〜19,I−22〜24,I−27〜29,I−31およびI−32では、室温(25℃)における比誘電率が4500以上であり、かつ静電容量の温度特性がX5R特性を満足し、ACバイアス特性が30%以下であり、さらに、誘電損失が5%以下であった。   Sample No. At I-2-4, I-6-10, I-12, I-13, I-16-19, I-22-22, I-27-29, I-31 and I-32, room temperature (25 The relative dielectric constant at 4 ° C. was 4500 or more, the temperature characteristics of the capacitance satisfied the X5R characteristics, the AC bias characteristics were 30% or less, and the dielectric loss was 5% or less.

特に、チタン酸バリウム100モルに対して、前記バナジウムをV換算で0.04〜0.1モル、前記マグネシウムをMgO換算で0.5〜1.2モル、前記希土類元素(RE)をRE換算で0.3〜0.48モルおよび前記マンガンをMnO換算で0.05〜0.35モル含有する誘電体磁器を誘電体層とした試料No.No.I−2〜3,I−6〜10,I−12,I−13,I−16〜19,I−22〜24,I−27〜29,I−31およびI−32では、室温(25℃)における比誘電率を4500以上、静電容量の温度特性がX5R特性を満足し、ACバイアス特性が29.00%以下であり、さらに、誘電損失が5%以下であった。In particular, with respect to 100 mol of barium titanate, the vanadium is 0.04 to 0.1 mol in terms of V 2 O 5 , the magnesium is 0.5 to 1.2 mol in terms of MgO, and the rare earth element (RE) Is a dielectric ceramic layer containing a dielectric ceramic containing 0.3 to 0.48 mol in terms of RE 2 O 3 and 0.05 to 0.35 mol in terms of MnO in terms of manganese. No. For I-2 to 3, I-6 to 10, I-12, I-13, I-16 to 19, I-22 to 24, I-27 to 29, I-31 and I-32, room temperature (25 The relative dielectric constant at 4 ° C. was 4500 or more, the temperature characteristic of the capacitance satisfied the X5R characteristic, the AC bias characteristic was 29.00% or less, and the dielectric loss was 5% or less.

これに対して、試料No.I−5,I−11,I−14,I−20,I−25,I−30およびI−35では、室温(25℃)における比誘電率が3950以上および静電容量の温度特性がX5R特性を満足すること、のいずれかの特性を満足しないものであった。   In contrast, sample no. In I-5, I-11, I-14, I-20, I-25, I-30, and I-35, the relative dielectric constant at room temperature (25 ° C.) is 3950 or more, and the temperature characteristic of capacitance is X5R. Any of the characteristics of satisfying the characteristics was not satisfied.

次に、焼成工程において、作製したコンデンサ成形体を脱脂した後、最高温度にて焼成する前に、一旦、表3に示す温度にて1時間の熱処理を行った他は、全て実施例1と同様の方法により試料を作製し、同様の評価を行い、さらに、85℃における静電容量を測定し、そのばらつき(CV)を求めた。静電容量のばらつきはそれぞれ32個の試料から求めた。   Next, in the firing process, after degreasing the produced capacitor molded body, and before firing at the maximum temperature, heat treatment was performed at the temperature shown in Table 3 for 1 hour, and all the results were as in Example 1. A sample was prepared by the same method, the same evaluation was performed, and the capacitance at 85 ° C. was measured to determine the variation (CV). The variation in capacitance was determined from 32 samples.

また、誘電体磁器中の二面間粒界相および三重点粒界相における希土類元素、マグネシウムおよびケイ素の濃度は、透過電子顕微鏡に付設のX線マイクロアナライザー(XMA)によって求めた。この場合、分析に用いた試料は、作製した積層セラミックコンデンサの誘電体層から切り出した薄板状の誘電体磁器にイオンミリング加工を行ったものを用いた。分析する領域は、二面間粒界相および三重点粒界相を断面視したときに、少なくとも3個の結晶粒子の最大径が平均粒径の±20%以内の範囲にある結晶粒子群からなる箇所を5箇所選択した。そして、X線マイクロアナライザー(XMA)を用いて、図3に示すように、二面間粒界相の位置S1および三重点粒界相の位置S2における希土類元素、マグネシウムおよびケイ素の濃度を求め、二面間粒界相における元素の濃度C1と三重点粒界相における元素の濃度C2との比C2/C1の平均値を求めた。このとき、分析する二面間粒界相の位置S1は粒界相の幅のほぼ中央とし、三重点粒界相の位置S2は三重点粒界相の中央とした。また、二面間粒界相の位置S1は三重点粒界相の位置S2を定めた位置から約50nm離れた位置とした。作製条件を表3に、誘電特性等の評価結果を表4に示す。なお、試料No.II−1〜28は、いずれもコアシェル構造を有し、コア部は正方晶系であり、シェル部は立方晶系であることを確認した。   The concentrations of rare earth elements, magnesium and silicon in the interfacial grain boundary phase and triple point grain boundary phase in the dielectric ceramic were determined by an X-ray microanalyzer (XMA) attached to the transmission electron microscope. In this case, the sample used for the analysis was a thin plate-shaped dielectric ceramic cut out from the dielectric layer of the produced multilayer ceramic capacitor and subjected to ion milling. The region to be analyzed is a crystal grain group in which the maximum diameter of at least three crystal grains is within a range of ± 20% of the average grain size when the cross-sectional view of the intergranular grain boundary phase and the triple point grain boundary phase is viewed. 5 locations were selected. Then, using an X-ray microanalyzer (XMA), as shown in FIG. 3, the concentrations of rare earth elements, magnesium and silicon at the position S1 of the intergranular grain boundary phase and the position S2 of the triple point grain boundary phase are determined, The average value of the ratio C2 / C1 between the element concentration C1 in the interfacial grain boundary phase and the element concentration C2 in the triple-point grain boundary phase was determined. At this time, the position S1 of the intergranular phase to be analyzed was set to be approximately the center of the width of the grain boundary phase, and the position S2 of the triple point grain boundary phase was set to the center of the triple point grain boundary phase. The position S1 of the intergranular grain boundary phase was set at a position about 50 nm away from the position where the position S2 of the triple point grain boundary phase was determined. The production conditions are shown in Table 3, and the evaluation results such as dielectric properties are shown in Table 4. Sample No. Each of II-1 to 28 had a core-shell structure, and the core portion was tetragonal and the shell portion was confirmed to be cubic.

Figure 0005496331
Figure 0005496331

Figure 0005496331
Figure 0005496331

表3、4の結果から明らかなように、作製した試料(試料No.II−1〜28)は、いずれも実施例1の方法にて作製した試料と同様に、室温(25℃)における比誘電率が3950以上であり、かつ静電容量の温度特性がX5R特性を満足するものであった。また、ACバイアス特性は30%以下であり、誘電損失は5%以下であった。この中で、製造中に、得られたコンデンサ本体成形体を脱脂した後、水素−窒素雰囲気中、最高温度に達する前に、表3に示す温度にて保持する熱処理工程を加えて作製した積層セラミックコンデンサの試料(試料No.II−1〜23、25〜28)は、熱処理工程を設けずに焼成した試料(試料No.II−24)に比較して、静電容量のばらつき(CV)がいずれも2%以下と小さく、特に、熱処理工程の温度を900〜1000℃とした試料(試料No.II−1〜21、25〜28)では、静電容量のばらつき(CV)がいずれも1.5%以下であった。   As is clear from the results in Tables 3 and 4, the prepared samples (Sample Nos. II-1 to 28) are all in the same ratio as that of the sample prepared by the method of Example 1 at room temperature (25 ° C.). The dielectric constant was 3950 or more, and the temperature characteristic of the capacitance satisfied the X5R characteristic. The AC bias characteristic was 30% or less, and the dielectric loss was 5% or less. In this, after degreasing the obtained capacitor body molded body during manufacturing, before the maximum temperature is reached in a hydrogen-nitrogen atmosphere, a laminated layer produced by adding a heat treatment step held at the temperature shown in Table 3 The ceramic capacitor samples (Sample Nos. II-1 to 23, 25 to 28) are more variable in capacitance (CV) than the samples (Sample No. II-24) fired without the heat treatment step. Are both as small as 2% or less, and in particular, in the samples (sample Nos. II-1 to 21, 25 to 28) in which the temperature of the heat treatment step is 900 to 1000 ° C., the variation in capacitance (CV) is all It was 1.5% or less.

1 コンデンサ本体
3 外部電極
5 誘電体層
7 内部電極層
9 結晶粒子
9a コア部
9b シェル部
11 粒界相
11a 二面間粒界相
11b 三重点粒界相
DESCRIPTION OF SYMBOLS 1 Capacitor body 3 External electrode 5 Dielectric layer 7 Internal electrode layer 9 Crystal grain 9a Core part 9b Shell part 11 Grain boundary phase 11a Interfacial grain boundary phase 11b Triple point grain boundary phase

Claims (5)

誘電体層が、チタン酸バリウムを主成分とし、結晶構造が正方晶系のコア部と、結晶構造が立方晶系で、バナジウムが固溶したシェル部とを有する結晶粒子により構成されており、前記シェル部の厚みが11.8〜2.5nmであるとともに、前記結晶粒子の平均粒径が0.15〜0.35μmである誘電体磁器からなることを特徴とするコンデンサ。 The dielectric layer is composed of crystal particles having a barium titanate as a main component, a crystal structure having a tetragonal core part, and a crystal structure having a cubic structure and a shell part in which vanadium is dissolved , The thickness of the shell portion is 11.8 to 2 4 . A capacitor comprising a dielectric ceramic having an average particle diameter of 5 nm and a crystal grain size of 0.15 to 0.35 μm. 前記誘電体磁器が、バナジウムと、マグネシウムと、イットリウム,ジスプロシウム,ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)と、マンガンとを含み、チタン酸バリウム100モルに対して、前記バナジウムがV換算で0.04〜0.10モル、前記マグネシウムがMgO換算で0.4〜1.2モル、前記希土類元素(RE)がRE換算で0.12〜0.48モルおよびマンガンがMnO換算で0.05〜0.35モル含有することを特徴とする請求項1に記載のコンデンサ。 The dielectric ceramic contains vanadium, magnesium, at least one rare earth element (RE) selected from yttrium, dysprosium, holmium, terbium and ytterbium, and manganese, Vanadium is 0.04 to 0.10 mol in terms of V 2 O 5 , the magnesium is 0.4 to 1.2 mol in terms of MgO, and the rare earth element (RE) is 0.12 to 0 in terms of RE 2 O 3. The capacitor according to claim 1, wherein .48 mol and manganese are contained in an amount of 0.05 to 0.35 mol in terms of MnO. 前記誘電体磁器が、バナジウムと、マグネシウムと、イットリウム,ジスプロシウム,ホルミウム,テルビウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)と、マンガンとを含み、チタン酸バリウム100モルに対して、前記バナジウムをV換算で0.04〜0.10モル、前記マグネシウムをMgO換算で0.4〜1.2モル、前記希土類元素(RE)をRE換算で0.30〜0.48モルおよび前記マンガンをMnO換算で0.05〜0.35モル含有することを特徴とする請求項1に記載のコンデンサ。 The dielectric ceramic contains vanadium, magnesium, at least one rare earth element (RE) selected from yttrium, dysprosium, holmium, terbium and ytterbium, and manganese, Vanadium is 0.04 to 0.10 mol in terms of V 2 O 5 , the magnesium is 0.4 to 1.2 mol in terms of MgO, and the rare earth element (RE) is 0.30 to 0 in terms of RE 2 O 3. The capacitor according to claim 1, containing .48 mol and 0.05 to 0.35 mol of manganese in terms of MnO. 前記誘電体磁器が前記結晶粒子間に粒界相を有し、該粒界相が複数の前記結晶粒子により形成される二面間粒界相と三重点粒界相とから構成されているとともに、前記希土類元素、前記マグネシウムおよびケイ素を含み、前記二面間粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC1、前記三重点粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC2としたときの各元素のうち2種の元素の濃度比C2/C1が0.8〜1.2であることを特徴とする請求項1乃至3のうちいずれかに記載のコンデンサ。   The dielectric ceramic has a grain boundary phase between the crystal grains, and the grain boundary phase is composed of a two-sided grain boundary phase formed by a plurality of the crystal grains and a triple point grain boundary phase. The rare earth element, the magnesium and silicon, and the concentration of each of the rare earth element, the magnesium and the silicon in the interfacial grain boundary phase is C1, the rare earth element in the triple point grain boundary phase, the magnesium and The concentration ratio C2 / C1 of two kinds of elements when the respective concentrations of silicon are C2 is 0.8 to 1.2. Capacitor described in. 前記誘電体磁器が前記結晶粒子間に粒界相を有し、前記粒界相が複数の前記結晶粒子により形成される二面間粒界相と三重点粒界相とから構成されているとともに、前記希土類元素、前記マグネシウムおよびケイ素を含み、前記二面間粒界相における前記希土類元素
、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC1、前記三重点粒界相における前記希土類元素、前記マグネシウムおよび前記ケイ素のそれぞれの濃度をC2としたときの各元素の濃度比C2/C1がいずれも0.8〜1.2であることを特徴とする請求項1乃至4のうちいずれかに記載のコンデンサ。
The dielectric ceramic has a grain boundary phase between the crystal grains, and the grain boundary phase is composed of a two-sided grain boundary phase formed by a plurality of the crystal grains and a triple point grain boundary phase. The rare earth element, the magnesium and silicon, and the concentration of each of the rare earth element, the magnesium and the silicon in the interfacial grain boundary phase is C1, the rare earth element in the triple point grain boundary phase, the magnesium and 5. The capacitor according to claim 1, wherein the concentration ratio C2 / C1 of each element is 0.8 to 1.2 when the concentration of each silicon is C2. .
JP2012521547A 2010-06-25 2011-06-24 Capacitor Active JP5496331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521547A JP5496331B2 (en) 2010-06-25 2011-06-24 Capacitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010145241 2010-06-25
JP2010145241 2010-06-25
JP2011038566 2011-02-24
JP2011038566 2011-02-24
JP2012521547A JP5496331B2 (en) 2010-06-25 2011-06-24 Capacitor
PCT/JP2011/064528 WO2011162371A1 (en) 2010-06-25 2011-06-24 Capacitor

Publications (2)

Publication Number Publication Date
JPWO2011162371A1 JPWO2011162371A1 (en) 2013-08-22
JP5496331B2 true JP5496331B2 (en) 2014-05-21

Family

ID=45371537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012521547A Active JP5496331B2 (en) 2010-06-25 2011-06-24 Capacitor

Country Status (3)

Country Link
JP (1) JP5496331B2 (en)
CN (1) CN102959655B (en)
WO (1) WO2011162371A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668037B2 (en) * 2012-09-27 2015-02-12 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP5857116B2 (en) * 2014-12-15 2016-02-10 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
KR101933417B1 (en) * 2016-12-28 2018-12-28 삼성전기 주식회사 Dielectric Powder and Multilayered Capacitor Using the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085780A (en) * 2003-09-04 2005-03-31 Matsushita Electric Ind Co Ltd Method for manufacturing multilayer varistor
JP2008072072A (en) * 2006-09-15 2008-03-27 Taiyo Yuden Co Ltd Multilayer ceramic capacitor
JP2008081350A (en) * 2006-09-27 2008-04-10 Kyocera Corp Dielectric ceramic, its production method, and capacitor
JP2009073721A (en) * 2007-07-27 2009-04-09 Kyocera Corp Dielectric porcelain and laminated ceramic capacitor
JP2009084112A (en) * 2007-09-28 2009-04-23 Tdk Corp Dielectric porcelain composition and electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965435B2 (en) * 2005-03-25 2012-07-04 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
CN101317280B (en) * 2005-11-29 2010-12-22 京瓷株式会社 Laminated electronic component and method for manufacturing same
CN101346784B (en) * 2005-12-26 2011-08-03 京瓷株式会社 Multilayer ceramic capacitor
KR100946016B1 (en) * 2007-11-16 2010-03-09 삼성전기주식회사 Dielectric Ceramic Compositions for Low Temperature Sintering and High HOT-IR, and Multilayer Ceramic Capacitor Using the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085780A (en) * 2003-09-04 2005-03-31 Matsushita Electric Ind Co Ltd Method for manufacturing multilayer varistor
JP2008072072A (en) * 2006-09-15 2008-03-27 Taiyo Yuden Co Ltd Multilayer ceramic capacitor
JP2008081350A (en) * 2006-09-27 2008-04-10 Kyocera Corp Dielectric ceramic, its production method, and capacitor
JP2009073721A (en) * 2007-07-27 2009-04-09 Kyocera Corp Dielectric porcelain and laminated ceramic capacitor
JP2009084112A (en) * 2007-09-28 2009-04-23 Tdk Corp Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
CN102959655B (en) 2016-04-06
CN102959655A (en) 2013-03-06
WO2011162371A1 (en) 2011-12-29
JPWO2011162371A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP4925958B2 (en) Multilayer ceramic capacitor
TWI399766B (en) Multilayer ceramic capacitor and production method of the same
JP4937068B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4999987B2 (en) Multilayer ceramic capacitor
WO2008066140A1 (en) Multilayered ceramic capacitor
JP5094494B2 (en) Multilayer ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5578882B2 (en) Multilayer ceramic capacitor
JP5558249B2 (en) Multilayer ceramic capacitor
US9786435B2 (en) Method for producing multilayer ceramic capacitor
JP5106626B2 (en) Multilayer ceramic capacitor
JP4771818B2 (en) Multilayer ceramic capacitor
JP5046699B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5496331B2 (en) Capacitor
JP5127837B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5578881B2 (en) Multilayer ceramic capacitor
JP2011132056A (en) Laminated ceramic capacitor
WO2009157232A1 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP5100592B2 (en) Multilayer ceramic capacitor
JP4771817B2 (en) Multilayer ceramic capacitor
JP5084657B2 (en) Multilayer ceramic capacitor
JP5322723B2 (en) Multilayer ceramic capacitor
JP6091760B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5496331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150