JP5496122B2 - Method for producing high purity silica - Google Patents

Method for producing high purity silica Download PDF

Info

Publication number
JP5496122B2
JP5496122B2 JP2011018223A JP2011018223A JP5496122B2 JP 5496122 B2 JP5496122 B2 JP 5496122B2 JP 2011018223 A JP2011018223 A JP 2011018223A JP 2011018223 A JP2011018223 A JP 2011018223A JP 5496122 B2 JP5496122 B2 JP 5496122B2
Authority
JP
Japan
Prior art keywords
silica
less
liquid
ppm
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011018223A
Other languages
Japanese (ja)
Other versions
JP2012158486A5 (en
JP2012158486A (en
Inventor
幸輝 一坪
恒平 河野
惇 熊坂
賢太 増田
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2011018223A priority Critical patent/JP5496122B2/en
Publication of JP2012158486A publication Critical patent/JP2012158486A/en
Publication of JP2012158486A5 publication Critical patent/JP2012158486A5/ja
Application granted granted Critical
Publication of JP5496122B2 publication Critical patent/JP5496122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高純度シリカの製造方法に関する。   The present invention relates to a method for producing high-purity silica.

高純度シリコンは、半導体デバイス、触媒担体等に用いられている。
高純度シリコンの製造方法として、例えば、金属シリコンから製造された高純度のシリコン塩化物(トリクロロシラン)を原料として用いる方法が提案されている(特許文献1)。
特許文献1に記載の方法によると、非常に高純度のシリコンを得ることができる。しかし、この方法は、工程が煩雑でかつ高コストであるという問題がある。このような事情下において、高純度のシリコンを、低コストかつ大量に製造することのできる技術が望まれている。
これを解決すべく、二酸化ケイ素を含有しかつ多孔質で微細構造を有する原料を精製して高純度シリカを製造し、次いで、この高純度シリカを原料としてシリコンを生成し、得られたシリコンにレーザを照射することなどによって、高純度シリコンを製造する方法が提案されている(特許文献2)。
High purity silicon is used for semiconductor devices, catalyst carriers and the like.
As a method for producing high-purity silicon, for example, a method using high-purity silicon chloride (trichlorosilane) produced from metal silicon as a raw material has been proposed (Patent Document 1).
According to the method described in Patent Document 1, very high-purity silicon can be obtained. However, this method has a problem that the process is complicated and expensive. Under such circumstances, a technique capable of manufacturing high-purity silicon at a low cost and in large quantities is desired.
In order to solve this, a raw material containing silicon dioxide and having a porous and fine structure is purified to produce high-purity silica, and then silicon is produced using this high-purity silica as a raw material. A method for producing high-purity silicon by irradiating a laser has been proposed (Patent Document 2).

特開2006−001804号公報JP 2006-001804 A 特開2006−188367号公報JP 2006-188367 A

特許文献2に記載の方法によると、従来技術に比して、低コストでかつ簡易に、高純度のシリコンを得ることができる。シリコンの原料となる高純度シリカを、より低コストでかつ簡易に得ることができれば、好都合である。
そこで、本発明は、高純度シリカを、簡易にかつ低コストで製造することのできる方法を提供することを目的とする。
According to the method described in Patent Document 2, high-purity silicon can be obtained at a lower cost and more easily than in the prior art. It would be advantageous if high-purity silica as a raw material for silicon could be obtained at a lower cost and more easily.
Then, an object of this invention is to provide the method which can manufacture high purity silica simply and at low cost.

本発明者は、上記課題を解決するために鋭意検討した結果、ケイ酸アルカリ水溶液と鉱酸を混合して、非ゲル状の沈降性シリカとして析出するとともに、製造工程において原料と過酸化水素を混合することによって、前記の目的を達成することができることを見出し、本発明を完成した。   As a result of diligent studies to solve the above problems, the present inventor mixed an alkali silicate aqueous solution and a mineral acid to precipitate as non-gelled precipitated silica, and the raw material and hydrogen peroxide in the production process. The inventors have found that the above object can be achieved by mixing, and completed the present invention.

すなわち、本発明は、以下の[1]〜[12]を提供するものである。
[1](B)液分中のSi濃度が10.0質量%以上のケイ酸アルカリ水溶液と10.0体積%以上の濃度の鉱酸を混合して、液分中のSiを非ゲル状の沈降性シリカとして析出させた後、固液分離を行い、SiOを含む固形分と、不純物を含む液分を得るシリカ回収工程、を含み、前記工程(B)において、ケイ酸アルカリ水溶液、及び鉱酸の少なくともいずれか一方と過酸化水素を混合することを特徴とする高純度シリカの製造方法。
[2](C)工程(B)で得られたSiOを含む固形分と鉱酸を混合して、pHが3.0未満の酸性スラリーを調製し、上記固形分中に残存する不純物を溶解させた後、上記酸性スラリーを固液分離して、SiOを含む固形分と、不純物を含む液分を得る酸洗浄工程、を含む前記[1]に記載の高純度シリカの製造方法。
[3](B)液分中のSi濃度が10.0質量%以上のケイ酸アルカリ水溶液と10.0体積%以上の濃度の鉱酸を混合して、液分中のSiを非ゲル状の沈降性シリカとして析出させた後、固液分離を行い、SiOを含む固形分と、不純物を含む液分を得るシリカ回収工程と、(C)工程(B)で得られたSiOを含む固形分と鉱酸を混合して、pHが3.0未満の酸性スラリーを調製し、上記固形分中に残存する不純物を溶解させた後、上記酸性スラリーを固液分離して、SiOを含む固形分と、不純物を含む液分を得る酸洗浄工程、を含み、前記工程(C)において、鉱酸と過酸化水素を混合することを特徴とする高純度シリカの製造方法。
[4]工程(B)において、ケイ酸アルカリ水溶液と鉱酸の混合が、ケイ酸アルカリ水溶液を鉱酸に添加することによって行われる、前記[1]〜[3]のいずれかに記載の高純度シリカの製造方法。
[5]工程(B)において、ケイ酸アルカリ水溶液と鉱酸を、pH1.0以下に保ちながら混合する、前記[1]〜[4]のいずれかに記載の高純度シリカの製造方法。
[6]工程(B)において、ケイ酸アルカリ水溶液のSi濃度が10.0〜20.0質量%である、前記[1]〜[5]のいずれかに記載の高純度シリカの製造方法。
[7]過酸化水素の添加量が、シリカ(SiO)100質量%に対して、0.1〜15.0質量%である前記[1]〜[6]のいずれかに記載の高純度シリカの製造方法。
[8]工程(B)の前に、(A)シリカ含有鉱物とアルカリ水溶液を混合して、pHが11.5以上のアルカリ性スラリーを調製し、液分中のSi濃度が10.0質量%以上となるように、上記シリカ含有鉱物中のSiを液分中に溶解させた後、上記アルカリ性スラリーを固液分離して、Siを含むケイ酸アルカリ水溶液と、固形分を得るアルカリ溶解工程を含む、前記[1]〜[7]のいずれかに記載の高純度シリカの製造方法。
[9]工程(A)と工程(B)の間に、(B1)工程(A)で得られたケイ酸アルカリ水溶液と酸を混合して、pHを10.3を超え、11.5未満に調整し、液分中の不純物を析出させた後、固液分離を行い、ケイ酸アルカリ水溶液と、固形分を得る不純物回収工程、を含む、前記[8]に記載の高純度シリカの製造方法。
[10]工程(A)の前に、(A1)シリカ含有鉱物を水洗して、粘土分及び有機物を除去する原料水洗工程、を含む前記[8]または[9]に記載の高純度シリカの製造方法。
[11]工程(A)の前に、(A2)シリカ含有鉱物を300〜1000℃で0.5〜2時間焼成して、有機物を除去する原料焼成工程、を含む前記[8]〜[10]のいずれかに記載の高純度シリカの製造方法。
[12](D)前工程で得られたSiOを含む固形分と水を混合して、上記固形分中に残存する不純物を溶解させた後、上記スラリーを固液分離して、SiOを含む固形分と、不純物を含む液分を得る水洗浄工程、を含む前記[1]〜[11]のいずれかに記載の高純度シリカの製造方法。
That is, the present invention provides the following [1] to [12].
[1] (B) An alkali silicate aqueous solution having a Si concentration of 10.0% by mass or more and a mineral acid having a concentration of 10.0% by volume or more are mixed, and the Si in the liquid is non-gelled In the step (B), an aqueous solution of alkali silicate, and a silica recovery step for obtaining a solid content containing SiO 2 and a liquid content containing impurities are performed. And a method for producing high purity silica, wherein hydrogen peroxide is mixed with at least one of mineral acids.
[2] (C) The solid content containing SiO 2 obtained in step (B) and mineral acid are mixed to prepare an acidic slurry having a pH of less than 3.0, and impurities remaining in the solid content are removed. After dissolving, the acidic slurry is subjected to solid-liquid separation, and the method for producing high-purity silica according to the above [1], comprising an acid washing step for obtaining a solid content containing SiO 2 and a liquid content containing impurities.
[3] (B) An alkali silicate aqueous solution having a Si concentration of 10.0% by mass or more and a mineral acid having a concentration of 10.0% by volume or more are mixed, and the Si in the liquid is non-gelled. The silica is recovered as a precipitated silica, and then subjected to solid-liquid separation to obtain a solid content including SiO 2 and a liquid content including impurities, and (C) SiO 2 obtained in the step (B). The solid content and mineral acid included are mixed to prepare an acidic slurry having a pH of less than 3.0. After the impurities remaining in the solid content are dissolved, the acidic slurry is subjected to solid-liquid separation, and SiO 2 A method for producing high-purity silica, comprising: mixing a solid content containing an acid; and an acid washing step for obtaining a liquid containing an impurity, wherein the mineral acid and hydrogen peroxide are mixed in the step (C).
[4] In the step (B), the mixing of the alkali silicate aqueous solution and the mineral acid is performed by adding the alkali silicate aqueous solution to the mineral acid, according to any one of the above [1] to [3]. A method for producing pure silica.
[5] The method for producing high-purity silica according to any one of [1] to [4], wherein in the step (B), the alkali silicate aqueous solution and the mineral acid are mixed while being kept at pH 1.0 or lower.
[6] The method for producing high-purity silica according to any one of [1] to [5], wherein in the step (B), the Si concentration of the alkali silicate aqueous solution is 10.0 to 20.0 mass%.
[7] The addition amount of hydrogen peroxide, silica (SiO 2) with respect to 100 wt%, high purity according to any one of the is 0.1 to 15.0 wt% [1] - [6] A method for producing silica.
[8] Before step (B), (A) silica-containing mineral and alkaline aqueous solution are mixed to prepare an alkaline slurry having a pH of 11.5 or more, and the Si concentration in the liquid is 10.0% by mass. As described above, after dissolving Si in the silica-containing mineral in the liquid, the alkaline slurry is subjected to solid-liquid separation, and an alkali silicate aqueous solution containing Si and an alkali dissolution step for obtaining a solid content. The manufacturing method of the high purity silica in any one of said [1]-[7] containing.
[9] Between step (A) and step (B), (B1) alkaline silicate aqueous solution obtained in step (A) and an acid are mixed, and the pH exceeds 10.3 and less than 11.5 The high-purity silica according to [8], which includes an alkali silicate aqueous solution and an impurity recovery step for obtaining a solid content by performing solid-liquid separation after the impurities in the liquid are precipitated. Method.
[10] Before the step (A), (A1) The raw material water washing step of washing the silica-containing mineral with water to remove the clay and the organic matter, and the high-purity silica according to [8] or [9] Production method.
[11] Prior to step (A), (A2) a raw material firing step for removing the organic matter by firing the silica-containing mineral at 300 to 1000 ° C. for 0.5 to 2 hours. ] The manufacturing method of the high purity silica in any one of.
[12] (D) After mixing the solid content containing SiO 2 obtained in the previous step and water to dissolve impurities remaining in the solid content, the slurry is subjected to solid-liquid separation to obtain SiO 2. The manufacturing method of the high purity silica in any one of said [1]-[11] including the water washing process which obtains the solid content containing an impurity, and the liquid component containing an impurity.

本発明の高純度シリカの製造方法によると、操作が簡易であり、処理効率が高いことなどに起因して、従来技術に比して低い製造コストで高純度シリカを得ることができる。
さらに、本発明の製造方法により得られる高純度シリカは、シリカの含有率が高く、またアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)、有機物(C)などの不純物、特にチタン(Ti)の含有率が低いという特長がある。
According to the method for producing high-purity silica of the present invention, high-purity silica can be obtained at a production cost lower than that of the prior art due to simple operation and high processing efficiency.
Furthermore, the high-purity silica obtained by the production method of the present invention has a high silica content, and aluminum (Al), iron (Fe), titanium (Ti), boron (B), phosphorus (P), organic matter ( It has a feature that the content of impurities such as C), particularly titanium (Ti), is low.

本発明の高純度シリカの製造方法の実施形態の一例を示すフロー図である。It is a flowchart which shows an example of embodiment of the manufacturing method of the high purity silica of this invention. 珪質頁岩の一例についてのCu−Kα線による粉末X線の回折強度を示すグラフである。It is a graph which shows the diffraction intensity | strength of the powder X-ray | X_line by Cu-K (alpha) ray about an example of a siliceous shale. 珪質頁岩の一例についてのオパールCTの半値幅を示すグラフである。It is a graph which shows the half value width of opal CT about an example of a siliceous shale.

以下、本発明の高純度シリカの製造方法を詳しく説明する。
なお、以下の工程(A1)〜工程(D)中、工程(B)は、本発明において必須の工程であるが、工程(A)は、シリカ含有鉱物を原料としてケイ酸アルカリ水溶液を調製する場合に追加される工程であり、工程(A1)、(A2)、(B1)、(C)及び(D)は、本発明において必須ではなく、任意で追加可能な工程である。
[工程(A1);原料水洗工程]
工程(A1)は、シリカ含有鉱物(岩石状又は粉末状)を水洗して、粘土分及び有機物を除去する工程である。水洗後のシリカ含有鉱物は、通常、フィルタープレス等を用いて、さらに脱水させる。
シリカ含有鉱物としては、珪藻土、珪質頁岩等が挙げられる。シリカ含有鉱物は、アルカリに対する溶解性が高いことが望ましい。
ここで、珪藻土とは、珪藻が海底や湖底に沈積し、長い年月の間に体内の原形質その他の有機物が分解し、非晶質シリカを主体とした珪藻殻が集積して堆積したものである。
珪質頁岩とは、珪質の生物遺骸等に由来する頁岩である。すなわち、海域には、珪質の殻を有する珪藻などのプランクトンが生息するが、このプランクトンの死骸が海底中に堆積すると、死骸中の有機物の部分は徐々に分解され、珪質(SiO;シリカ)の殻のみが残る。この珪質の殻(珪質堆積物)が、時間の経過や温度・圧力の変化などに伴い、続成作用により変質して、硬岩化することにより珪質頁岩となる。なお、珪質堆積物中のシリカは、続成作用によって、非晶質シリカから、結晶化してクリストバライト、トリデイマイトへ、さらに石英へと変化する。
Hereinafter, the manufacturing method of the high purity silica of this invention is demonstrated in detail.
In the following steps (A1) to (D), step (B) is an essential step in the present invention. In step (A), an alkali silicate aqueous solution is prepared using a silica-containing mineral as a raw material. Steps (A1), (A2), (B1), (C), and (D) are not essential in the present invention, and can be arbitrarily added.
[Step (A1); Raw material washing step]
The step (A1) is a step of washing the silica-containing mineral (rock or powder) with water to remove clay and organic matter. The silica-containing mineral after washing is usually further dehydrated using a filter press or the like.
Examples of the silica-containing mineral include diatomaceous earth and siliceous shale. The silica-containing mineral is desirably highly soluble in alkali.
Here, diatomaceous earth is a deposit of diatom shells mainly composed of amorphous silica, where diatoms are deposited on the sea floor and lake bottom, and protoplasms and other organic substances in the body decompose over a long period of time. It is.
Siliceous shale is shale derived from siliceous biological remains. That is, planktons such as diatoms with siliceous shells inhabit the sea area, but when the dead bodies of plankton are deposited in the seabed, the organic matter part in the dead bodies is gradually decomposed and siliceous (SiO 2 ; Only the silica shell remains. This siliceous shell (siliceous deposit) becomes siliceous shale when it changes in quality due to diagenesis and hardens as time passes and temperature and pressure change. Silica in the siliceous deposit is crystallized from crystallization to cristobalite, tridayite, and further to quartz by diagenesis.

珪藻土は、主に非晶質シリカであるオパールAからなる。珪質頁岩は、オパールAより結晶化が進んだオパールCTまたはオパールCを主に含む。オパールCTとは、クリストバライト構造とトリディマイト構造からなるシリカ鉱物である。オパールCとは、クリストバライト構造からなるシリカ鉱物である。このうち、本発明では、オパールCTを主とする珪質頁岩が好ましく用いられる。
さらに、Cu−Kα線による粉末X線回折において、石英の2θ=26.6degのピーク頂部の回折強度に対するオパールCTの2θ=21.5〜21.9degの回折強度は、石英を1とした場合の比率で0.2〜2.0の範囲が好ましく、0.4〜1.8の範囲がより好ましく、0.5〜1.5の範囲が特に好ましい。該値が0.2に満たない場合には、反応性に富むオパールCTの量が少ないため、シリカの収量が低下する。一方、該値が2.0を超える場合には、オパールCTの量が石英よりはるかに多くなり、このような珪質頁岩は資源的に少なく、経済性に劣る。
なお、石英に対するオパールCTの回折強度の比率は、以下の式で求める。
石英に対するオパールCTの回折強度の比率=(21.5〜21.9degのピーク頂部の回折強度)/(26.6degのピーク頂部の回折強度)
また、珪質頁岩のCu−Kα線による粉末X線回折において、オパールCTの2θ=21.5〜21.9degの間に存在するピークの半値幅は0.5°以上が好ましく、0.75°以上がより好ましく、1.0°以上がさらに好ましい。該値が0.5°未満では、オパールCTの結晶の結合力が増大し、アルカリとの反応性が低下して、シリカの収量が減少する。ここで、半値幅とは、ピーク頂部の回折強度の1/2に位置する回折線の幅をいう。
本発明で用いる珪質頁岩は、シリカ含有率が70質量%以上であることが好ましく、75質量%以上であることがより好ましい。このような珪質頁岩を用いることにより、より高純度のシリカを低コストで製造することができる。
シリカ含有鉱物は、例えば、珪質頁岩等のシリカ含有鉱物を粉砕装置(例えば、ジョークラッシャー、トップグラインダーミル、クロスビーターミル、ボールミル等)で粉砕することによって得ることができる。
[工程(A2);原料焼成工程]
工程(A2)は、シリカ含有鉱物を300〜1000℃で0.5〜2時間焼成し、有機物を除去する工程である。
なお、工程(A1)と工程(A2)の双方を実施する場合、その順序は特に限定されないが、有機物の除去効率の観点から工程(A1)を先に行うことが好ましい。
Diatomaceous earth is mainly composed of opal A, which is amorphous silica. The siliceous shale mainly contains opal CT or opal C which has been crystallized more than opal A. Opal CT is a silica mineral having a cristobalite structure and a tridymite structure. Opal C is a silica mineral having a cristobalite structure. Of these, siliceous shale mainly composed of opal CT is preferably used in the present invention.
Further, in the powder X-ray diffraction by Cu-Kα ray, the diffraction intensity of 2θ = 21.5 to 21.9 deg of opal CT with respect to the diffraction intensity of 2θ = 26.6 deg peak of quartz is 1 when quartz is 1. The ratio of 0.2 to 2.0 is preferable, the range of 0.4 to 1.8 is more preferable, and the range of 0.5 to 1.5 is particularly preferable. When the value is less than 0.2, the amount of opal CT rich in reactivity is small, and the yield of silica is reduced. On the other hand, when the value exceeds 2.0, the amount of opal CT is much larger than that of quartz, and such siliceous shale is less resource and less economical.
In addition, the ratio of the diffraction intensity of opal CT with respect to quartz is calculated | required with the following formula | equation.
Ratio of diffraction intensity of opal CT to quartz = (diffraction intensity at peak top of 21.5 to 21.9 deg) / (diffraction intensity at peak top of 26.6 deg)
Moreover, in the powder X-ray diffraction of the siliceous shale by Cu—Kα ray, the half width of the peak existing between 2θ = 21.5 to 21.9 deg of the opal CT is preferably 0.5 ° or more, and 0.75 More preferably, the angle is more than 1.0 °, and more preferably more than 1.0 °. If the value is less than 0.5 °, the bonding strength of the opal CT crystals increases, the reactivity with alkali decreases, and the yield of silica decreases. Here, the half-value width means the width of a diffraction line located at half the diffraction intensity at the peak top.
The siliceous shale used in the present invention preferably has a silica content of 70% by mass or more, and more preferably 75% by mass or more. By using such siliceous shale, higher purity silica can be produced at low cost.
The silica-containing mineral can be obtained, for example, by pulverizing a silica-containing mineral such as siliceous shale with a pulverizer (eg, jaw crusher, top grinder mill, cross beater mill, ball mill, etc.).
[Step (A2); raw material firing step]
The step (A2) is a step of removing the organic matter by baking the silica-containing mineral at 300 to 1000 ° C. for 0.5 to 2 hours.
In addition, when implementing both a process (A1) and a process (A2), the order is not specifically limited, However, It is preferable to perform a process (A1) previously from a viewpoint of the removal efficiency of organic substance.

[工程(A);アルカリ溶解工程]
工程(A)は、シリカ含有鉱物とアルカリ水溶液を混合して、pHが11.5以上のアルカリ性スラリーを調製し、液分中のSi濃度が10.0質量%以上となるように、上記シリカ含有鉱物中のSiを液分中に溶解させた後、上記アルカリ性スラリーを固液分離して、Siを含むケイ酸アルカリ水溶液と、固形分を得るアルカリ溶解工程である。
ここで、ケイ酸アルカリ水溶液とは、化学式中にケイ酸(SiO)を含む物質を含有するアルカリ性の水溶液をいう。
シリカ含有鉱物とアルカリ水溶液を混合してなるアルカリ性スラリーのpHは、11.5以上、好ましくは12.5以上、より好ましくは13.0以上となるように調整される。該pHが11.5未満であると、シリカを十分に溶解させることができず、シリカが固形分中に残存してしまうため、得られるシリカの収量が減少する。
pHを上記数値範囲内に調整するためのアルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が用いられる。
スラリーの固液比(アルカリ水溶液1リットルに対するシリカ含有鉱物の質量)は、好ましくは100〜500g/リットル、より好ましくは200〜400g/リットルである。該固液比が100g/リットル未満では、スラリーの固液分離に要する時間が増大するなど、処理効率が低下する。該固液比が400g/リットルを超えると、シリカ等を十分に溶出させることができないことがある。
スラリーは、通常、所定時間(例えば、30〜90分間)攪拌される。
攪拌後のスラリーは、フィルタープレス等の固液分離手段を用いて、固形分と液分に分離される。液分は、Si及び他の成分(Al、Fe等の不純物)を含むケイ酸アルカリ水溶液であり、次の工程(B1)または工程(B)で処理される。液分中に含まれるSiの濃度は、10.0質量%以上、好ましくは10.0〜20.0質量%、より好ましくは12.0〜18.0質量%、特に好ましくは13.0〜16.0質量%である。Si濃度が10.0質量%未満であると、後述する工程(B)においてシリカがゲル状で析出する場合があり、固液分離に時間がかかるとともに、得られるシリカの量が低下する。
なお、本工程においてアルカリ性スラリーを得る際の液温は、エネルギーコストの観点から、5〜100℃に保持されることが好ましく、10〜80℃に保持されることがより好ましく、10〜40℃に保持されることが特に好ましい。液温を上記範囲内とすることにより、処理効率を高めることができる。
[Step (A); alkali dissolution step]
In the step (A), the silica-containing mineral and the aqueous alkali solution are mixed to prepare an alkaline slurry having a pH of 11.5 or higher, and the silica concentration is set to 10.0% by mass or higher. This is an alkali dissolution step in which Si in the contained mineral is dissolved in the liquid, and then the alkaline slurry is subjected to solid-liquid separation to obtain an alkali silicate aqueous solution containing Si and a solid.
Here, the alkali silicate aqueous solution refers to an alkaline aqueous solution containing a substance containing silicic acid (SiO 2 ) in the chemical formula.
The pH of the alkaline slurry formed by mixing the silica-containing mineral and the alkaline aqueous solution is adjusted to be 11.5 or higher, preferably 12.5 or higher, more preferably 13.0 or higher. When the pH is less than 11.5, the silica cannot be sufficiently dissolved, and the silica remains in the solid content, so that the yield of the resulting silica is reduced.
Examples of the alkaline aqueous solution for adjusting the pH within the above numerical range include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
The solid-liquid ratio of the slurry (the mass of the silica-containing mineral with respect to 1 liter of the aqueous alkali solution) is preferably 100 to 500 g / liter, more preferably 200 to 400 g / liter. When the solid-liquid ratio is less than 100 g / liter, the processing efficiency decreases, for example, the time required for solid-liquid separation of the slurry increases. If the solid-liquid ratio exceeds 400 g / liter, silica or the like may not be sufficiently eluted.
The slurry is usually stirred for a predetermined time (for example, 30 to 90 minutes).
The slurry after stirring is separated into a solid content and a liquid content using a solid-liquid separation means such as a filter press. The liquid component is an alkali silicate aqueous solution containing Si and other components (impurities such as Al and Fe), and is treated in the next step (B1) or step (B). The concentration of Si contained in the liquid component is 10.0% by mass or more, preferably 10.0 to 20.0% by mass, more preferably 12.0 to 18.0% by mass, and particularly preferably 13.0 to 16.0% by mass. When the Si concentration is less than 10.0% by mass, silica may precipitate in a gel form in the step (B) described later, and it takes time for solid-liquid separation, and the amount of silica obtained is reduced.
In addition, it is preferable that the liquid temperature at the time of obtaining an alkaline slurry in this process is 5-100 degreeC from a viewpoint of energy cost, It is more preferable to hold | maintain at 10-80 degreeC, 10-40 degreeC It is particularly preferable that the By setting the liquid temperature within the above range, the processing efficiency can be increased.

[工程(B1);不純物回収工程]
本工程は、工程(A)で得られたケイ酸アルカリ水溶液と酸を混合して、pHを10.3を超え、11.5未満に調整し、液分中のSi以外の不純物(例えば、Al及びFe)を析出させた後、固液分離を行い、Siを含むケイ酸アルカリ水溶液と、固形分を得る工程である。
なお、本工程で回収されずに液分中に残存する不純物は、工程(B)以降の工程で回収される。
本工程において、酸との混合後の液分のpHは、10.3を超え、11.5未満、好ましくは10.4以上、11.0以下、特に好ましくは10.5以上、10.8以下である。該pHが10.3以下であると、不純物(例えば、Al及びFe)と共にSiも析出してしまう。一方、該pHが11.5以上では、十分に析出せずに液分中に残存する不純物(例えば、Al及びFe)の量が多くなる。
pHを上記数値範囲内に調整するための酸としては、硫酸、塩酸、シュウ酸等が用いられる。
pH調整後、フィルタープレス等の固液分離手段を用いて、固形分と液分に分離する。
このうち、固形分(ケーキ)は、不純物(例えば、Al及びFe)を含むものである。
液分は、Siを含むものであり、次の工程(B)で処理される。
なお、本工程においてpH調整を行う際の液温は、エネルギーコストの観点から、5
〜100℃に保持されることが好ましく、10〜80℃に保持されることがより好ましく、10〜40℃に保持されることが特に好ましい。液温を上記範囲内とすることにより、処理効率を高めることができる。
[Step (B1); impurity recovery step]
In this step, the alkali silicate aqueous solution obtained in step (A) and an acid are mixed to adjust the pH to more than 10.3 and less than 11.5, and impurities other than Si in the liquid (for example, After Al and Fe) are precipitated, solid-liquid separation is performed to obtain an alkali silicate aqueous solution containing Si and a solid content.
Impurities remaining in the liquid without being recovered in this step are recovered in the steps after the step (B).
In this step, the pH of the liquid after mixing with the acid is more than 10.3 and less than 11.5, preferably 10.4 or more, 11.0 or less, particularly preferably 10.5 or more, 10.8. It is as follows. When the pH is 10.3 or less, Si is also precipitated together with impurities (for example, Al and Fe). On the other hand, when the pH is 11.5 or more, the amount of impurities (for example, Al and Fe) remaining in the liquid without being sufficiently precipitated increases.
As the acid for adjusting the pH within the above numerical range, sulfuric acid, hydrochloric acid, oxalic acid and the like are used.
After the pH adjustment, the solid and liquid components are separated using a solid-liquid separation means such as a filter press.
Among these, solid content (cake) contains impurities (for example, Al and Fe).
The liquid component contains Si and is processed in the next step (B).
In addition, the liquid temperature at the time of pH adjustment in this step is 5 from the viewpoint of energy cost.
It is preferable to hold | maintain at -100 degreeC, It is more preferable to hold | maintain at 10-80 degreeC, It is especially preferable to hold | maintain at 10-40 degreeC. By setting the liquid temperature within the above range, the processing efficiency can be increased.

[工程(B);シリカ回収工程]
本工程は、液分中のSi濃度が10.0質量%以上のケイ酸アルカリ水溶液と10.0体積%以上の濃度の鉱酸を混合して、液分中のSiを非ゲル状の沈降性シリカとして析出させた後、固液分離を行い、SiOを含む固形分と、不純物を含む液分を得る工程である。
なお、沈降性シリカは、ケイ酸アルカリ水溶液と鉱酸との混合と同時に生成する。
本工程において用いられるケイ酸アルカリ水溶液は、特に限定されないが、具体的には前工程(工程(A)または工程(B1))で得られたケイ酸アルカリ水溶液、及び水ガラス等が挙げられる。
本発明で用いられる水ガラスは、市販のものを使用することができ、JIS規格により規定される1号、2号、3号の他に各水ガラスメーカーで製造販売されているJIS規格外の製品も使用することができる。
ケイ酸アルカリ水溶液中に含まれるSiの濃度は、10.0質量%以上、好ましくは
10.0〜20.0質量%、より好ましくは12.0〜18.0質量%、特に好ましくは13.0〜16.0質量%である。Si濃度が10.0質量%未満であると、シリカがゲル状で析出する場合があり、固液分離に時間がかかるとともに、得られるシリカの量が低下する。
Si濃度が20質量%を超えると、ケイ酸アルカリ水溶液のハンドリング(輸送等)が悪化するとともに、不純物の除去が不十分となる場合がある。
本工程において用いられる鉱酸は、例えば硫酸、塩酸、硝酸等が挙げられ、硫酸を用いることが薬剤コスト低減の理由で好ましい。
鉱酸の濃度は、10.0体積%以上、より好ましくは10.0〜20.0体積%、特に好ましくは10.0〜15.0体積%である。鉱酸の濃度が、10.0体積%未満の場合には、沈降性シリカが生成しない、あるいは沈降性シリカとゲル状シリカの両方が生成するおそれがある。このゲル状シリカが生成すると、最終シリカ生成物中の不純物濃度が高くなる。20.0体積%を超えるとコストの面から好ましくない。
ケイ酸アルカリ水溶液と鉱酸の混合方法は、特に限定されるものではないが、沈降性シリカのみを生成させる観点から、ケイ酸アルカリ水溶液を鉱酸に添加する方法が好ましい。具体的には、ケイ酸アルカリ水溶液を鉱酸に滴下する方法や、ケイ酸アルカリ水溶液を、1.0mmφ以上、好ましくは4.0mmφ以上のチューブ等から、鉱酸中に直接押し出す方法等が挙げられる。
また、混合する際のpHは好ましくは1.0以下、より好ましくは0.9以下に保つことが望ましい。pHが1.0を超えるとシリカがゲル状で析出する場合があり、固液分離に時間がかかるとともに、得られるシリカの量が低下する。
また、ケイ酸アルカリ水溶液の鉱酸中への流出速度は限定されないが、混合する際にpHが1.0を超え、かつ流出速度が大きい場合には、沈降性シリカが生成しない、あるいは沈降性シリカとゲル状シリカの両方が生成するおそれがある。
本工程において、ケイ酸アルカリ水溶液と鉱酸を混合する際の沈降性シリカの析出温度は、特に限定されるものではないが、好ましくは10〜80℃、より好ましくは15〜40℃、特に好ましくは20〜30℃であり、通常、常温(例えば10〜40℃)である。80℃を超えると、エネルギーコストが上昇するとともに、設備の腐食が生じ易くなる。
上記ケイ酸アルカリ水溶液中のSiを沈降性シリカとして析出させた後、フィルタープレス等の固液分離手段を用いて、SiOを含む固形分と、不純物を含む液分に分離する。得られた沈降性シリカはゲル状ではなく、粒子状であるため、固液分離に要する時間を短くすることができる。
[Step (B); silica recovery step]
In this step, an alkali silicate aqueous solution having a Si concentration of 10.0% by mass or more and a mineral acid having a concentration of 10.0% by volume or more are mixed to precipitate Si in the liquid in a non-gelled state. This is a step of performing solid-liquid separation after depositing as crystalline silica to obtain a solid content containing SiO 2 and a liquid content containing impurities.
Precipitated silica is produced simultaneously with the mixing of the alkali silicate aqueous solution and the mineral acid.
Although the alkali silicate aqueous solution used in this step is not particularly limited, specifically, the alkali silicate aqueous solution obtained in the previous step (step (A) or step (B1)), water glass and the like can be mentioned.
As the water glass used in the present invention, commercially available ones can be used. In addition to Nos. 1, 2, and 3 defined by the JIS standard, the water glass is manufactured and sold by each water glass manufacturer. Products can also be used.
The concentration of Si contained in the alkali silicate aqueous solution is 10.0% by mass or more, preferably 10.0 to 20.0% by mass, more preferably 12.0 to 18.0% by mass, and particularly preferably 13. It is 0-16.0 mass%. When the Si concentration is less than 10.0% by mass, silica may precipitate in a gel state, and it takes time for solid-liquid separation, and the amount of silica to be obtained decreases.
When the Si concentration exceeds 20% by mass, handling (transportation, etc.) of the alkali silicate aqueous solution deteriorates, and removal of impurities may be insufficient.
Examples of the mineral acid used in this step include sulfuric acid, hydrochloric acid, nitric acid and the like, and it is preferable to use sulfuric acid for the reason of reducing the chemical cost.
The concentration of the mineral acid is 10.0% by volume or more, more preferably 10.0 to 20.0% by volume, and particularly preferably 10.0 to 15.0% by volume. When the concentration of the mineral acid is less than 10.0% by volume, the precipitated silica may not be generated, or both precipitated silica and gel silica may be generated. When this gel silica is generated, the impurity concentration in the final silica product is increased. When it exceeds 20.0 volume%, it is not preferable from the surface of cost.
The method for mixing the alkali silicate aqueous solution and the mineral acid is not particularly limited, but a method of adding the alkali silicate aqueous solution to the mineral acid is preferable from the viewpoint of producing only precipitated silica. Specifically, a method of dropping an alkali silicate aqueous solution onto a mineral acid, a method of directly extruding an alkali silicate aqueous solution into a mineral acid from a tube of 1.0 mmφ or more, preferably 4.0 mmφ or more, etc. It is done.
Further, the pH during mixing is preferably 1.0 or less, and more preferably 0.9 or less. If the pH exceeds 1.0, silica may precipitate in a gel form, and it takes time for solid-liquid separation, and the amount of silica to be obtained decreases.
Moreover, the outflow rate of the aqueous alkali silicate solution into the mineral acid is not limited. However, when the pH exceeds 1.0 and the outflow rate is high when mixing, no precipitated silica is formed or the settling property is increased. Both silica and gel silica may be generated.
In this step, the precipitation temperature of the precipitated silica when mixing the alkali silicate aqueous solution and the mineral acid is not particularly limited, but is preferably 10 to 80 ° C, more preferably 15 to 40 ° C, and particularly preferably. Is 20-30 degreeC and is normal temperature (for example, 10-40 degreeC) normally. When the temperature exceeds 80 ° C., the energy cost increases and the equipment is easily corroded.
After precipitating Si in the alkali silicate aqueous solution as precipitated silica, it is separated into a solid content containing SiO 2 and a liquid content containing impurities using a solid-liquid separation means such as a filter press. Since the obtained precipitated silica is not in a gel form but in a particulate form, the time required for solid-liquid separation can be shortened.

本発明では、工程(B)において、ケイ酸アルカリ水溶液、及び鉱酸の少なくともいずれか一方と過酸化水素を混合することで、不純物(特にTi)が低減された高純度シリカを得ることができる。
混合方法は特に限定されるものではなく、(1)ケイ酸アルカリ水溶液と過酸化水素を混合し、次いで得られた混合物と鉱酸を混合する方法、(2)鉱酸と過酸化水素を混合し、次いで得られた混合物とケイ酸アルカリ水溶液を混合する方法、(3)ケイ酸アルカリ水溶液と鉱酸を混合し、次いで得られた混合物と過酸化水素を混合する方法、(4)ケイ酸アルカリ水溶液と、鉱酸と、過酸化水素を同時に混合する方法が挙げられる。中でも、工程の上流側で不純物(特にTi)の低減を図るという観点から(1)が好ましい。
過酸化水素の添加量は、シリカ(SiO)の質量(100質量%)に対して、好ましくは0.1〜15.0質量%、より好ましくは0.1〜10.0質量%、特に好ましくは0.1〜5.0質量%である。過酸化水素の添加量が0.1質量%未満では、不純物(例えばTi)の低減効果が十分ではなく、15.0質量%を超えると、不純物(例えばTi)の低減効果が飽和状態となる。
In the present invention, high purity silica with reduced impurities (particularly Ti) can be obtained by mixing hydrogen peroxide with at least one of an alkali silicate aqueous solution and a mineral acid in step (B). .
The mixing method is not particularly limited. (1) A method in which an alkali silicate aqueous solution and hydrogen peroxide are mixed, and then the resulting mixture and mineral acid are mixed. (2) A mineral acid and hydrogen peroxide are mixed. Next, a method of mixing the obtained mixture and an alkali silicate aqueous solution, (3) a method of mixing an alkali silicate aqueous solution and mineral acid, and then mixing the resulting mixture and hydrogen peroxide, (4) silicic acid A method of simultaneously mixing an alkaline aqueous solution, a mineral acid, and hydrogen peroxide is mentioned. Among these, (1) is preferable from the viewpoint of reducing impurities (particularly Ti) on the upstream side of the process.
The amount of hydrogen peroxide added is preferably 0.1 to 15.0% by mass, more preferably 0.1 to 10.0% by mass, and particularly preferably 0.1% to 10.0% by mass with respect to the mass (100% by mass) of silica (SiO 2 ). Preferably it is 0.1-5.0 mass%. If the amount of hydrogen peroxide added is less than 0.1% by mass, the effect of reducing impurities (eg, Ti) is not sufficient, and if it exceeds 15.0% by mass, the effect of reducing impurities (eg, Ti) becomes saturated. .

工程(B)において用いられる鉱酸が硫酸である場合、工程(B)で得られた不純物を含む液分を中和処理することで、液分中の不純物を石膏として析出し、セメントの原料として再利用してもよい。   When the mineral acid used in the step (B) is sulfuric acid, by neutralizing the liquid containing the impurities obtained in the step (B), the impurities in the liquid are precipitated as gypsum, and the raw material for cement May be reused as

[工程(C);酸洗浄工程]
工程(B)で得られたSiOを含む固形分は、Al、Fe、Ti、B、P等の不純物が低減された高純度シリカである。
工程(B)で得られたSiOを含む固形分に対して、適宜、工程(C)(酸洗浄工程)を行うことができる。酸洗浄工程を行うことにより、より高純度のシリカを得ることができる。
工程(C)は、工程(B)で得られたSiOを含む固形分と鉱酸を混合して、pHが3.0未満の酸性スラリーを調製し、上記固形分中に残存する不純物(例えば、Al、Fe)を溶解させた後、上記酸性スラリーを固液分離して、SiOを含む固形分と、不純物(例えば、Al、Fe)を含む液分を得る工程である。
本工程における酸性スラリーのpHは、3.0未満、好ましくは2.0以下である。酸性スラリーのpHを上記範囲内に調整して酸洗浄を行うことにより、工程(B)で得られた固形分にわずかに残存するアルミニウム分、鉄分等の不純物を溶解して液分中へ移行させることができ、固形分中のシリカ含有率を上昇させることができるため、さらに高純度のシリカを得ることができる。
pHを上記数値範囲内に調整するための鉱酸としては、硫酸、塩酸、シュウ酸等が用いられる。
pH調整後、フィルタープレス等の固液分離手段を用いて、固形分と液分に分離する。
なお、本工程においてpH調整を行う際の液温は、特に限定されるものではないが、エネルギーコストの観点から、好ましくは10〜80℃、より好ましくは15〜40℃、特に好ましくは20℃〜30℃であり、通常、常温(例えば10〜40℃)である。液温を上記範囲内とすることにより、処理効率を高めることができる。
また、酸洗浄工程後の液分を回収し、工程(B)に用いられる鉱酸、および工程(C)に用いられる鉱酸として再利用してもよい。
[Step (C); acid washing step]
The solid content containing SiO 2 obtained in the step (B) is high-purity silica in which impurities such as Al, Fe, Ti, B, and P are reduced.
The step (C) (acid cleaning step) can be appropriately performed on the solid content containing SiO 2 obtained in the step (B). By performing the acid washing step, higher purity silica can be obtained.
In step (C), the solid content containing SiO 2 obtained in step (B) and mineral acid are mixed to prepare an acidic slurry having a pH of less than 3.0, and impurities remaining in the solid content ( For example, after dissolving Al, Fe), the acidic slurry is subjected to solid-liquid separation to obtain a solid content containing SiO 2 and a liquid content containing impurities (for example, Al, Fe).
The pH of the acidic slurry in this step is less than 3.0, preferably 2.0 or less. By adjusting the pH of the acidic slurry to the above range and performing acid cleaning, impurities such as aluminum and iron remaining slightly in the solid content obtained in step (B) are dissolved and transferred into the liquid. Since the silica content in the solid content can be increased, silica with higher purity can be obtained.
As the mineral acid for adjusting the pH within the above numerical range, sulfuric acid, hydrochloric acid, oxalic acid and the like are used.
After the pH adjustment, the solid and liquid components are separated using a solid-liquid separation means such as a filter press.
In addition, although the liquid temperature at the time of adjusting pH in this process is not specifically limited, From a viewpoint of energy cost, Preferably it is 10-80 degreeC, More preferably, it is 15-40 degreeC, Most preferably, it is 20 degreeC. It is -30 degreeC and is normal temperature (for example, 10-40 degreeC) normally. By setting the liquid temperature within the above range, the processing efficiency can be increased.
Moreover, you may collect | recover the liquid components after an acid washing process, and may reuse as a mineral acid used for a process (B), and a mineral acid used for a process (C).

本発明では、工程(B)における過酸化水素の使用に代えて、または、工程(B)における過酸化水素の使用とともに、工程(C)において、鉱酸と過酸化水素を混合することで、不純物(特にTi)が低減された高純度シリカを得ることができる。
混合方法は特に限定されるものではなく、(1)工程(B)で得られたSiOを含む固形分と過酸化水素を混合し、次いで得られた混合物と鉱酸を混合する方法、(2)鉱酸と過酸化水素を混合し、次いで得られた混合物と工程(B)で得られたSiOを含む固形分を混合する方法、(3)工程(B)で得られたSiOを含む固形分と鉱酸を混合し、次いで得られた混合物と過酸化水素を混合する方法、(4)工程(B)で得られたSiOを含む固形分と、鉱酸と、過酸化水素を同時に混合する方法が挙げられる。中でも、工程の上流側で不純物(特にTi)の低減を図るという観点から(1)が好ましい。
過酸化水素の添加量は、シリカ(SiO)の質量(100質量%)に対して、好ましくは0.1〜15.0質量%、より好ましくは0.1〜10.0質量%、特に好ましくは0.1〜5.0質量%である。過酸化水素の添加量が0.1質量%未満では不純物(例えばTi)の低減効果が十分ではなく、15.0質量%を超えると、不純物(例えばTi)低減効果が飽和状態となる。
本発明においては、本明細書の段落0014、及び、段落0017に記載された方法に従い、工程(B)及び工程(C)の少なくともいずれか一方において過酸化水素を混合することで、本発明の効果を得ることができる。
In the present invention, in place of the use of hydrogen peroxide in the step (B) or together with the use of hydrogen peroxide in the step (B), in the step (C), the mineral acid and hydrogen peroxide are mixed, High purity silica with reduced impurities (particularly Ti) can be obtained.
The mixing method is not particularly limited, and (1) a method in which the solid content containing SiO 2 obtained in step (B) and hydrogen peroxide are mixed, and then the resulting mixture and mineral acid are mixed. 2) A method of mixing mineral acid and hydrogen peroxide, and then mixing the resulting mixture with the solid content containing SiO 2 obtained in step (B), (3) SiO 2 obtained in step (B). A method of mixing a solid content containing mineral and a mineral acid, and then mixing the resulting mixture and hydrogen peroxide, (4) a solid content containing SiO 2 obtained in step (B), a mineral acid, and peroxidation The method of mixing hydrogen simultaneously is mentioned. Among these, (1) is preferable from the viewpoint of reducing impurities (particularly Ti) on the upstream side of the process.
The amount of hydrogen peroxide added is preferably 0.1 to 15.0% by mass, more preferably 0.1 to 10.0% by mass, and particularly preferably 0.1% to 10.0% by mass with respect to the mass (100% by mass) of silica (SiO 2 ). Preferably it is 0.1-5.0 mass%. If the amount of hydrogen peroxide added is less than 0.1% by mass, the effect of reducing impurities (eg, Ti) is not sufficient, and if it exceeds 15.0% by mass, the effect of reducing impurities (eg, Ti) becomes saturated.
In the present invention, hydrogen peroxide is mixed in at least one of the step (B) and the step (C) according to the method described in paragraphs 0014 and 0017 of the present specification. An effect can be obtained.

[工程(D);水洗浄工程]
本工程は、前工程(工程(B)または工程(C))で得られたSiOを含む固形分に対して、適宜、水洗浄を行うことにより、より高純度のシリカを得る工程である。水洗浄を行うことにより、前工程で得られた固形分にわずかに残存するナトリウム、硫黄等の不純物を溶解して液分中へ移行させることができ、固形分中のシリカ含有率を上昇させることができるため、さらに高純度のシリカを得ることができる。
水洗浄後、フィルタープレス等の固液分離手段を用いて、固形分と液分に分離する。
また、水洗浄工程後の液分を回収し、工程(A1)、工程(A)、工程(B)、工程(C)、及び工程(D)に用いられる水として再利用してもよい。
[Step (D); water washing step]
This step is a step of obtaining higher-purity silica by appropriately washing the solid content containing SiO 2 obtained in the previous step (step (B) or step (C)). . By washing with water, impurities such as sodium and sulfur remaining slightly in the solid content obtained in the previous step can be dissolved and transferred into the liquid content, and the silica content in the solid content is increased. Therefore, silica with higher purity can be obtained.
After washing with water, the solid and liquid components are separated using a solid-liquid separation means such as a filter press.
Moreover, you may collect | recover the liquid components after a water washing process, and may reuse as water used for a process (A1), a process (A), a process (B), a process (C), and a process (D).

さらに、工程(A)と工程(B)の間で、適宜、イオン交換処理及び/又は活性炭処理を行うことができる。
イオン交換処理及び/又は活性炭処理で回収される不純物は、ホウ素(B)、リン(P)、アルミニウム(Al)、鉄(Fe)、ナトリウム(Na)、チタン(Ti)、カルシウム(Ca)、カリウム(K)、マグネシウム(Mg)、及び有機物(C)からなる群より選ばれる一種以上である。
イオン交換処理は、キレート樹脂、イオン交換樹脂等のイオン交換媒体を用いて行なうことができる。
イオン交換媒体の種類は、除去対象元素に対する選択性を考慮して、適宜定めればよい。例えば、ホウ素を除去する場合、グルカミン基を有するキレート樹脂や、N−メチルグルカミン基を有するイオン交換樹脂等を用いることができる。
イオン交換媒体の形態は、特に限定されるものではなく、ビーズ状、繊維状、クロス状等が挙げられる。イオン交換媒体への液分の通液方法もなんら限定されるものではなく、例えばカラムにキレート樹脂またはイオン交換樹脂を充填して連続的に通液する方法などを用いることができる。
イオン交換処理及び/又は活性炭処理を行う際の液温は、各処理に用いる材料の耐用温度以下であれば、特に限定されない。
Furthermore, an ion exchange treatment and / or an activated carbon treatment can be appropriately performed between the step (A) and the step (B).
Impurities recovered by ion exchange treatment and / or activated carbon treatment are boron (B), phosphorus (P), aluminum (Al), iron (Fe), sodium (Na), titanium (Ti), calcium (Ca), It is 1 or more types chosen from the group which consists of potassium (K), magnesium (Mg), and organic substance (C).
The ion exchange treatment can be performed using an ion exchange medium such as a chelate resin or an ion exchange resin.
The type of ion exchange medium may be appropriately determined in consideration of the selectivity with respect to the element to be removed. For example, when removing boron, a chelate resin having a glucamine group, an ion exchange resin having an N-methylglucamine group, or the like can be used.
The form of the ion exchange medium is not particularly limited, and examples thereof include beads, fibers, and cloths. The method for passing the liquid through the ion exchange medium is not limited at all, and for example, a method in which a column is filled with a chelate resin or an ion exchange resin and continuously passed can be used.
The liquid temperature at the time of performing an ion exchange process and / or activated carbon process will not be specifically limited if it is below the durable temperature of the material used for each process.

本発明の製造方法によって最終的に得られたシリカを含む固形分は、適宜、乾燥処理及び/又は焼成処理を行うことができる。乾燥処理及び/又は焼成処理の条件は、例えば、100〜1000℃で1〜5時間である。
また、最終的に得られたシリカを含む固形分をアルカリ溶液(例えば水酸化ナトリウム)に溶解させ、工程(B)のケイ酸アルカリ水溶液として用い、工程(B)から工程(D)を複数回繰り返すことによって、より高純度のシリカを得ることができる。
The solid content containing silica finally obtained by the production method of the present invention can be appropriately subjected to a drying treatment and / or a firing treatment. The conditions for the drying treatment and / or the firing treatment are, for example, 100 to 1000 ° C. and 1 to 5 hours.
Moreover, the solid content containing silica finally obtained is dissolved in an alkali solution (for example, sodium hydroxide) and used as the alkali silicate aqueous solution in the step (B), and the steps (B) to (D) are performed a plurality of times. By repeating, higher purity silica can be obtained.

本発明の製造方法で得られるシリカは、シリカの含有率が高く、またアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)等の不純物の含有量が低いものである。
本発明の製造方法で得られる高純度シリカ中のSiOの含有率は、好ましくは99.0質量%以上である。また、高純度シリカ中のNa、S、Al、Fe、Ca、B、P、Tiの含有率は、各々、好ましくは5.0ppm以下、5.0ppm以下、1.0ppm以下、1.0ppm以下、1.0ppm以下、0.1ppm以下、1.0ppm以下、1.0ppm以下である。
Silica obtained by the production method of the present invention has a high silica content, and also contains impurities such as aluminum (Al), iron (Fe), titanium (Ti), boron (B), and phosphorus (P). It is low.
The content of SiO 2 in the high-purity silica obtained by the production method of the present invention is preferably 99.0% by mass or more. Further, the content of Na, S, Al, Fe, Ca, B, P, and Ti in the high purity silica is preferably 5.0 ppm or less, 5.0 ppm or less, 1.0 ppm or less, 1.0 ppm or less, respectively. 1.0 ppm or less, 0.1 ppm or less, 1.0 ppm or less, or 1.0 ppm or less.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに、水35gを加えて混合し、次いで35質量%の過酸化水素水4.7mlを添加することによって、過酸化水素が添加されたSi濃度10.0質量%の水ガラス溶液を得た。
得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%(水165.6mlに濃硫酸20mlを混合したもの)の硫酸200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)19.4gと、不純物を含む液分246.8gを得た。なお、pHは滴下終了時まで1.0以下に保った。
得られたSiOを含む固形分(沈降性シリカ)に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ9.7gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
なお、表1中、「過酸化水素の添加量」は、SiOの質量(100質量%)に対する過酸化水素水中の過酸化水素(H)の量(質量%)を示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:2.1ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.7ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は65%であった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Example 1]
To 140 g of a water glass solution (Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20), 35 g of water was added and mixed, and then 4.7 ml of 35 mass% hydrogen peroxide water was added. By adding, a water glass solution having a Si concentration of 10.0% by mass to which hydrogen peroxide was added was obtained.
66.2 g of the aqueous water glass solution thus obtained was dropped into 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume (165.6 ml of water mixed with 20 ml of concentrated sulfuric acid), and precipitated silica was added at room temperature (25 ° C.). After precipitation, solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain 19.4 g of a solid content (precipitating silica) containing SiO 2 and 246.8 g of a liquid content containing impurities. The pH was kept at 1.0 or less until the end of dropping.
200 g of sulfuric acid having a sulfuric acid concentration of 10.7 vol% was added to the solid content (precipitating silica) containing SiO 2 at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. The slurry was subjected to solid-liquid separation, and the obtained solid content was washed with distilled water. Thereafter, it was dried at 105 ° C. for 1 day to obtain 9.7 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
In Table 1, “amount of hydrogen peroxide added” indicates the amount (mass%) of hydrogen peroxide (H 2 O 2 ) in the hydrogen peroxide water with respect to the mass of SiO 2 (100 mass%).
The obtained purified silica is, after drying, SiO 2 : 99.999% by mass, Na: 2.1 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.7 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 65%.

[実施例2]
35質量%の過酸化水素水の添加量を4.7mlから3.4mlに変更する以外は実施例1と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:3.6ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.6ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 2]
10.0 g of purified silica was obtained in the same manner as in Example 1 except that the addition amount of the 35 mass% hydrogen peroxide solution was changed from 4.7 ml to 3.4 ml.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999% by mass, Na: 3.6 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.6 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例3]
35質量%の過酸化水素水の添加量を4.7mlから2.1mlに変更する以外は実施例1と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:3.9ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.8ppm、Ca:0.6ppm、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 3]
10.0 g of purified silica was obtained in the same manner as in Example 1 except that the addition amount of 35% by mass of hydrogen peroxide was changed from 4.7 ml to 2.1 ml.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 3.9 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.8 ppm, Ca: 0.6 ppm, B: Less than detection limit (less than 0.05 ppm), P: Less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例4]
35質量%の過酸化水素水の添加量を4.7mlから1.1mlに変更する以外は実施例1と同様にして精製シリカ9.9gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:2.0ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.9ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 4]
9.9 g of purified silica was obtained in the same manner as in Example 1 except that the addition amount of 35% by mass hydrogen peroxide was changed from 4.7 ml to 1.1 ml.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999% by mass, Na: 2.0 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.9 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例5]
35質量%の過酸化水素水の添加量を4.7mlから0.2mlに変更する以外は実施例1と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:1.5ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.5ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 5]
10.0 g of purified silica was obtained in the same manner as in Example 1 except that the addition amount of 35% by mass of hydrogen peroxide was changed from 4.7 ml to 0.2 ml.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 1.5 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.5 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例6]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに水35gを加えて、Si濃度10.0質量%の水ガラス溶液を得た。
一方、水165.6mlに濃硫酸20mlを加えて混合し、次いで35質量%の過酸化水素水1.0mlを添加することによって、過酸化水素が添加された硫酸濃度10.7体積%の鉱酸を得た。
前記Si濃度10.0質量%の水ガラス溶液66.2gを前記鉱酸に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)19.9gと、不純物を含む液分246.3gを得た。なお、pHは滴下終了時まで1.0以下に保った。
得られたSiOを含む固形分(沈降性シリカ)に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ9.9gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:1.7ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.9ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は66%であった。
[Example 6]
35 g of water was added to 140 g of a water glass solution (Fuji Chemical Co., Ltd. product: SiO 2 / Na 2 O (molar ratio) = 3.20) to obtain a water glass solution having a Si concentration of 10.0% by mass.
On the other hand, 20 ml of concentrated sulfuric acid was added to 165.6 ml of water and mixed, and then 1.0 ml of 35% by weight hydrogen peroxide solution was added, so that a mineral having a sulfuric acid concentration of 10.7% by volume added with hydrogen peroxide was added. The acid was obtained.
66.2 g of a water glass solution having a Si concentration of 10.0% by mass was dropped into the mineral acid, and precipitated silica was precipitated at room temperature (25 ° C.), followed by solid-liquid separation using a Buchner funnel under reduced pressure. As a result, 19.9 g of a solid content containing SiO 2 (precipitating silica) and 246.3 g of a liquid content containing impurities were obtained. The pH was kept at 1.0 or less until the end of dropping.
200 g of sulfuric acid having a sulfuric acid concentration of 10.7 vol% was added to the solid content (precipitating silica) containing SiO 2 at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. After this slurry was subjected to solid-liquid separation, the obtained solid content was washed with distilled water. Then, it was dried at 105 ° C. for 1 day to obtain 9.9 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999% by mass, Na: 1.7 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.9 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Further, the recovery rate of Si was 66%.

[実施例7]
水の量を165.6mlから166.1mlに変更し、かつ、35質量%の過酸化水素水の添加量を1.0mlから0.5mlに変更する以外は実施例6と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:2.5ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.8ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 7]
Purified silica in the same manner as in Example 6 except that the amount of water was changed from 165.6 ml to 166.1 ml, and the addition amount of 35% by mass hydrogen peroxide was changed from 1.0 ml to 0.5 ml. 10.0 g was obtained.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999% by mass, Na: 2.5 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.8 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例8]
水の量を165.6mlから166.5mlに変更し、かつ、35質量%の過酸化水素水の添加量を1.0mlから0.1mlに変更する以外は実施例6と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:2.4ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.7ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 8]
Purified silica in the same manner as in Example 6 except that the amount of water was changed from 165.6 ml to 166.5 ml, and the addition amount of 35% by mass hydrogen peroxide was changed from 1.0 ml to 0.1 ml. 10.0 g was obtained.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999% by mass, Na: 2.4 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.7 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例9]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに水35gを加えて、Si濃度10.0質量%の水ガラス溶液を得た。
得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%の硫酸200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)19.4gと、不純物を含む液分246.8gを得た。なお、pHは滴下終了時まで1.0以下に保った。
一方、水165.6mlに濃硫酸20mlを加えて混合し、次いで35質量%の過酸化水素水1.0mlを添加することによって硫酸濃度10.7体積%の鉱酸を得た。この鉱酸を常温(25℃)下で前記の固形分(沈降性シリカ)に対して、200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ9.7gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:2.0ppm、S:検出限界未満(3.3ppm未満)、Al:0.5ppm、Fe:0.8ppm、Ca:0.5ppm、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は65%であった。
[Example 9]
35 g of water was added to 140 g of a water glass solution (Fuji Chemical Co., Ltd. product: SiO 2 / Na 2 O (molar ratio) = 3.20) to obtain a water glass solution having a Si concentration of 10.0% by mass.
66.2 g of the aqueous water glass solution thus obtained was dropped into 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume, and precipitated silica was precipitated at room temperature (25 ° C.), and then solidified using a Buchner funnel under reduced pressure. Liquid separation was performed to obtain 19.4 g of a solid content (precipitating silica) containing SiO 2 and 246.8 g of a liquid content containing impurities. The pH was kept at 1.0 or less until the end of dropping.
On the other hand, 20 ml of concentrated sulfuric acid was added to 165.6 ml of water and mixed, and then 1.0 ml of 35% by mass hydrogen peroxide solution was added to obtain a mineral acid having a sulfuric acid concentration of 10.7% by volume. 200 g of this mineral acid was added to the solid content (precipitating silica) at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. After this slurry was subjected to solid-liquid separation, the obtained solid content was washed with distilled water. Thereafter, it was dried at 105 ° C. for 1 day to obtain 9.7 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 2.0 ppm, S: less than detection limit (less than 3.3 ppm), Al: 0.5 ppm, Fe: 0.8 ppm, Ca : 0.5 ppm, B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 65%.

[実施例10]
水の量を165.6mlから166.1mlに変更し、かつ、35質量%の過酸化水素水の添加量を1.0mlから0.5mlに変更する以外は実施例9と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:1.9ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.9ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 10]
Purified silica in the same manner as in Example 9 except that the amount of water was changed from 165.6 ml to 166.1 ml, and the addition amount of 35% by mass hydrogen peroxide was changed from 1.0 ml to 0.5 ml. 10.0 g was obtained.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 1.9 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.9 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例11]
水の量を165.6mlから166.5mlに変更し、かつ、35質量%の過酸化水素水の添加量を1.0mlから0.1mlに変更する以外は実施例9と同様にして精製シリカ10.0gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:1.8ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:1.0ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は67%であった。
[Example 11]
Purified silica in the same manner as in Example 9 except that the amount of water was changed from 165.6 ml to 166.5 ml and the addition amount of 35% by mass hydrogen peroxide was changed from 1.0 ml to 0.1 ml. 10.0 g was obtained.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 1.8 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 1.0 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 67%.

[実施例12]
35質量%の過酸化水素水の添加量を4.7mlから1.1mlに変更し、かつ、蒸留水を用いた水洗を行わない以外は実施例1と同様にして精製シリカ9.8gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後にNa:310ppm、S:425ppm、Al:0.9ppm、Fe:0.9ppm、Ca:1.0ppm、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は66%であった。
[Example 12]
9.8 g of purified silica was obtained in the same manner as in Example 1 except that the addition amount of 35% by mass of hydrogen peroxide was changed from 4.7 ml to 1.1 ml and no washing with distilled water was performed. It was.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica, after drying , Na: 310 ppm, S: 425 ppm, Al: 0.9 ppm, Fe: 0.9 ppm, Ca: 1.0 ppm, B: less than detection limit (less than 0.05 ppm), P: It had a component composition below the detection limit (less than 1.0 ppm). Further, the recovery rate of Si was 66%.

[実施例13]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに、水35gを加えて混合し、次いで35質量%の過酸化水素水1.1mlを添加することによって、過酸化水素が添加されたSi濃度10.0質量%の水ガラス溶液を得た。
得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%(水165.6mlに濃硫酸20mlを混合したもの)の硫酸200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)19.5gと、不純物を含む液分246.7gを得た。なお、pHは滴下終了時まで1.0以下に保った。
得られたSiOを含む固形分(沈降性シリカ)を蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ9.7gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:2.0ppm、S:検出限界未満(3.3ppm未満)、Al:3.9ppm、Fe:4.0ppm、Ca:1.1ppm、B:0.1ppm、P:1.2ppmの成分組成を有していた。また、Siの回収率は65%であった。
[Example 13]
To 140 g of a water glass solution (Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20) 35 g of water was added and mixed, and then 1.1 ml of 35% by mass hydrogen peroxide was added. By adding, a water glass solution having a Si concentration of 10.0% by mass to which hydrogen peroxide was added was obtained.
66.2 g of the aqueous water glass solution thus obtained was dropped into 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume (165.6 ml of water mixed with 20 ml of concentrated sulfuric acid), and precipitated silica was added at room temperature (25 ° C.). After precipitation, solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain 19.5 g of a solid content (precipitating silica) containing SiO 2 and 246.7 g of a liquid content containing impurities. The pH was kept at 1.0 or less until the end of dropping.
The obtained solid content (precipitating silica) containing SiO 2 was washed with distilled water. Thereafter, it was dried at 105 ° C. for 1 day to obtain 9.7 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 2.0 ppm, S: less than detection limit (less than 3.3 ppm), Al: 3.9 ppm, Fe: 4.0 ppm, Ca : 1.1 ppm, B: 0.1 ppm, P: 1.2 ppm. Moreover, the recovery rate of Si was 65%.

[実施例14]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに、水35gを加えて混合し、次いで35質量%の過酸化水素水1.1mlを添加することによって、過酸化水素が添加されたSi濃度10.0質量%の水ガラス溶液を得た。
得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%の硫酸200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)19.4gと、不純物を含む液分246.8gを得た。なお、pHは滴下終了時まで1.0以下に保った。その後、105℃で1日乾燥させ、精製シリカ9.7gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後にNa:246ppm、S:308ppm、Al:9.5ppm、Fe:8.2ppm、Ca:2.6ppm、B:0.5ppm、P:1.3ppmの成分組成を有していた。また、Siの回収率は65%であった。
[Example 14]
To 140 g of a water glass solution (Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20) 35 g of water was added and mixed, and then 1.1 ml of 35% by mass hydrogen peroxide was added. By adding, a water glass solution having a Si concentration of 10.0% by mass to which hydrogen peroxide was added was obtained.
66.2 g of the aqueous water glass solution thus obtained was dropped into 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume, and precipitated silica was precipitated at room temperature (25 ° C.), and then solidified using a Buchner funnel under reduced pressure. Liquid separation was performed to obtain 19.4 g of a solid content (precipitating silica) containing SiO 2 and 246.8 g of a liquid content containing impurities. The pH was kept at 1.0 or less until the end of dropping. Thereafter, it was dried at 105 ° C. for 1 day to obtain 9.7 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica was dried, and Na: 246 ppm, S: 308 ppm, Al: 9.5 ppm, Fe: 8.2 ppm, Ca: 2.6 ppm, B: 0.5 ppm, P: 1.3 ppm Had. Moreover, the recovery rate of Si was 65%.

[実施例15]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)100gに含まれる水分を乾燥機にて蒸発させて、Si濃度16.4質量%に調製した水ガラス溶液80.5gを得た。次いで35質量%の過酸化水素水0.8mlを添加することによって、過酸化水素が添加されたSi濃度16.4質量%の水ガラス溶液を得た。
得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%の硫酸200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)47gと、不純物を含む液分219gを得た。なお、pHは滴下終了時まで1.0以下に保った。
得られたSiOを含む固形分(沈降性シリカ)に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ23.2gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.9質量%、Na:205ppm、S:354ppm、Al:1.8ppm、Fe:2.2ppm、Ca:1.3ppm、B:0.6ppm、P:1.2ppmの成分組成を有していた。また、Siの回収率は65%であった。
[Example 15]
Water contained in 100 g of a water glass solution (Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20) was evaporated in a dryer to prepare a Si concentration of 16.4% by mass. 80.5 g of a water glass solution was obtained. Subsequently, 0.8 ml of 35 mass% hydrogen peroxide water was added to obtain a water glass solution having a Si concentration of 16.4 mass% to which hydrogen peroxide was added.
66.2 g of the aqueous water glass solution thus obtained was dropped into 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume, and precipitated silica was precipitated at room temperature (25 ° C.), and then solidified using a Buchner funnel under reduced pressure. Liquid separation was performed to obtain 47 g of a solid content (precipitating silica) containing SiO 2 and 219 g of a liquid content containing impurities. The pH was kept at 1.0 or less until the end of dropping.
200 g of sulfuric acid having a sulfuric acid concentration of 10.7 vol% was added to the solid content (precipitating silica) containing SiO 2 at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. The slurry was subjected to solid-liquid separation, and the obtained solid content was washed with distilled water. Then, it was dried at 105 ° C. for 1 day to obtain 23.2 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.9% by mass, Na: 205 ppm, S: 354 ppm, Al: 1.8 ppm, Fe: 2.2 ppm, Ca: 1.3 ppm, B: 0.6 ppm , P: It had a component composition of 1.2 ppm. Moreover, the recovery rate of Si was 65%.

[実施例16]
35質量%の過酸化水素水の添加量を4.7mlから1.1mlに変更し、かつ、pHを滴下終了時まで2.0に保った以外は実施例1と同様にして精製シリカ9.8gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後にNa:62ppm、S:91ppm、Al:検出限界未満(0.5ppm未満)、Fe:0.9ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は66%であった。
[Example 16]
Purified silica in the same manner as in Example 1 except that the addition amount of 35% by mass of hydrogen peroxide was changed from 4.7 ml to 1.1 ml and the pH was kept at 2.0 until the end of dropping. 8 g was obtained.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica, after drying , Na: 62 ppm, S: 91 ppm, Al: less than detection limit (less than 0.5 ppm), Fe: 0.9 ppm, Ca: less than detection limit (less than 0.5 ppm), B: The component composition was less than the detection limit (less than 0.05 ppm) and P: less than the detection limit (less than 1.0 ppm). Further, the recovery rate of Si was 66%.

[実施例17]
珪質頁岩(成分組成;SiO:80質量%、Al:10質量%、Fe:5質量%、B:150ppm、P:330ppm)を、ボールミルを用いて粉砕し、珪質頁岩粉末(最大粒径:0.5mm)を得た。
原料として使用した珪質頁岩について、Cu−Kα線による粉末X線の回折強度、オパールCTの半値幅を、粉末X線回折装置(株式会社リガク製、RINT2000)を用いて測定した。回折強度を図2に、半値幅を図3にそれぞれ示す。使用した珪質頁岩は、石英の2θ=26.6degのピーク頂部の回折強度に対するオパールCTの2θ=21.5〜21.9degのピーク頂部の回折強度の比率が、0.68であった。また、オパールCTの半値幅は、1.4°であった。
次いで、得られた珪質頁岩粉末250gと、2.5N水酸化ナトリウム水溶液1000gを混合して、70℃に加温した後に、60分間混合撹拌し、pHが13.5であるスラリーを得た。
このスラリーを減圧下でブフナー漏斗で固液分離し、Siの濃度が10.0質量%の液分700gを得た。
[Example 17]
Siliceous shale (component composition; SiO 2 : 80 mass%, Al 2 O 3 : 10 mass%, Fe 2 O 3 : 5 mass%, B: 150 ppm, P: 330 ppm) is pulverized using a ball mill, A quality shale powder (maximum particle size: 0.5 mm) was obtained.
About the siliceous shale used as a raw material, the diffraction intensity of powder X-rays by Cu-Kα ray and the half width of opal CT were measured using a powder X-ray diffractometer (RINT2000, manufactured by Rigaku Corporation). The diffraction intensity is shown in FIG. 2, and the half width is shown in FIG. The siliceous shale used had a ratio of the diffraction intensity at the peak top of 2θ = 21.5 to 21.9 deg of opal CT to the diffraction intensity at the peak top of 2θ = 26.6 deg of quartz of 0.68. The half width of the opal CT was 1.4 °.
Next, 250 g of the obtained siliceous shale powder and 1000 g of 2.5N sodium hydroxide aqueous solution were mixed and heated to 70 ° C., and then mixed and stirred for 60 minutes to obtain a slurry having a pH of 13.5. .
This slurry was subjected to solid-liquid separation with a Buchner funnel under reduced pressure to obtain 700 g of a liquid having a Si concentration of 10.0% by mass.

得られた液分(ケイ酸アルカリ水溶液)に35質量%の過酸化水素水4.4mlを添加し、次いで、過酸化水素が添加されたケイ酸アルカリ水溶液66.2gを硫酸濃度10.7体積%の硫酸200g中に滴下し、析出温度を20℃に保ちながら沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)14.6gと、不純物を含む液分251.6gを得た。なお、pHは滴下終了まで1.0以下に保った。
得られたSiOを含む固形分(沈降性シリカ)に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ7.3gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.999質量%、Na:1.2ppm、S:2.4ppm、Al:検出限界未満(0.5ppm未満)、Fe:0.4ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は49%であった。
To the obtained liquid (alkaline silicate aqueous solution) was added 4.4 ml of 35% by mass hydrogen peroxide solution, and then 66.2 g of the alkali silicate aqueous solution to which hydrogen peroxide was added was added to 10.7 volumes of sulfuric acid. The solution was added dropwise to 200 g of 1% sulfuric acid, and precipitated silica was precipitated while maintaining the precipitation temperature at 20 ° C., and then solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain a solid content containing SiO 2 (precipitated silica). 14.6 g and 251.6 g of a liquid containing impurities were obtained. The pH was kept at 1.0 or lower until the end of dropping.
200 g of sulfuric acid having a sulfuric acid concentration of 10.7 vol% was added to the solid content (precipitating silica) containing SiO 2 at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. The slurry was subjected to solid-liquid separation, and the obtained solid content was washed with distilled water. Then, it was dried at 105 ° C. for 1 day to obtain 7.3 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.999 mass%, Na: 1.2 ppm, S: 2.4 ppm, Al: less than detection limit (less than 0.5 ppm), Fe: 0.4 ppm, Ca : Less than detection limit (less than 0.5 ppm), B: Less than detection limit (less than 0.05 ppm), P: Less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 49%.

[比較例1]
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに水35gを加えて、Si濃度10.0質量%の水ガラス溶液を得た。
得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%の硫酸200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)19.4gと、不純物を含む液分246.8gを得た。なお、pHは滴下終了時まで1.0以下に保った。
得られたSiOを含む固形分(沈降性シリカ)に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、105℃で1日乾燥させ、精製シリカ9.7gを得た。
得られた精製シリカ中のチタン(Ti)の濃度を測定した。その結果を表1に示す。
得られた精製シリカは、乾燥後に、SiO:99.99質量%、Na:1.8ppm、S:検出限界未満(3.3ppm未満)、Al:検出限界未満(0.5ppm未満)、Fe:0.9ppm、Ca:検出限界未満(0.5ppm未満)、B:検出限界未満(0.05ppm未満)、P:検出限界未満(1.0ppm未満)の成分組成を有していた。また、Siの回収率は65%であった。
[Comparative Example 1]
35 g of water was added to 140 g of a water glass solution (Fuji Chemical Co., Ltd. product: SiO 2 / Na 2 O (molar ratio) = 3.20) to obtain a water glass solution having a Si concentration of 10.0% by mass.
66.2 g of the aqueous water glass solution thus obtained was dropped into 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume, and precipitated silica was precipitated at room temperature (25 ° C.), and then solidified using a Buchner funnel under reduced pressure. Liquid separation was performed to obtain 19.4 g of a solid content (precipitating silica) containing SiO 2 and 246.8 g of a liquid content containing impurities. The pH was kept at 1.0 or less until the end of dropping.
200 g of sulfuric acid having a sulfuric acid concentration of 10.7 vol% was added to the solid content (precipitating silica) containing SiO 2 at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. After this slurry was subjected to solid-liquid separation, the obtained solid content was washed with distilled water. Thereafter, it was dried at 105 ° C. for 1 day to obtain 9.7 g of purified silica.
The concentration of titanium (Ti) in the obtained purified silica was measured. The results are shown in Table 1.
The obtained purified silica is, after drying, SiO 2 : 99.99% by mass, Na: 1.8 ppm, S: less than detection limit (less than 3.3 ppm), Al: less than detection limit (less than 0.5 ppm), Fe : 0.9 ppm, Ca: less than detection limit (less than 0.5 ppm), B: less than detection limit (less than 0.05 ppm), P: less than detection limit (less than 1.0 ppm). Moreover, the recovery rate of Si was 65%.

Figure 0005496122
Figure 0005496122

実施例1〜17の結果から、本発明の製造方法により得られたシリカは、シリカの含有率が高いと共に、比較例1に比べて、不純物の一つであるチタンの含有率が少ない。また、他の不純物(Na、S、Al、Fe、Ca、B、P)の含有率も少ないことがわかる。   From the results of Examples 1 to 17, the silica obtained by the production method of the present invention has a high silica content and a lower content of titanium, which is one of the impurities, than Comparative Example 1. Moreover, it turns out that the content rate of other impurities (Na, S, Al, Fe, Ca, B, P) is also small.

Claims (12)

(B)液分中のSi濃度が10.0質量%以上のケイ酸アルカリ水溶液と10.0体積%以上の濃度の鉱酸を混合して、液分中のSiを非ゲル状の沈降性シリカとして析出させた後、固液分離を行い、SiOを含む固形分と、不純物を含む液分を得るシリカ回収工程、を含み、
前記工程(B)において、ケイ酸アルカリ水溶液、及び鉱酸の少なくともいずれか一方と過酸化水素を混合することを特徴とする高純度シリカの製造方法。
(B) An alkali silicate aqueous solution having a Si concentration in the liquid of 10.0% by mass or more and a mineral acid having a concentration of 10.0% by volume or more are mixed so that the Si in the liquid is non-gelled. After precipitation as silica, solid-liquid separation is performed, and includes a silica recovery step of obtaining a solid content containing SiO 2 and a liquid content containing impurities,
In the step (B), hydrogen peroxide is mixed with at least one of an alkali silicate aqueous solution and a mineral acid, and a method for producing high purity silica.
(C)工程(B)で得られたSiOを含む固形分と鉱酸を混合して、pHが3.0未満の酸性スラリーを調製し、上記固形分中に残存する不純物を溶解させた後、上記酸性スラリーを固液分離して、SiOを含む固形分と、不純物を含む液分を得る酸洗浄工程、を含む請求項1に記載の高純度シリカの製造方法。 (C) The solid content containing SiO 2 obtained in the step (B) and the mineral acid were mixed to prepare an acidic slurry having a pH of less than 3.0, and the impurities remaining in the solid content were dissolved. 2. The method for producing high-purity silica according to claim 1, further comprising an acid washing step of solid-liquid separation of the acidic slurry to obtain a solid content containing SiO 2 and a liquid content containing impurities. (B)液分中のSi濃度が10.0質量%以上のケイ酸アルカリ水溶液と10.0体積%以上の濃度の鉱酸を混合して、液分中のSiを非ゲル状の沈降性シリカとして析出させた後、固液分離を行い、SiOを含む固形分と、不純物を含む液分を得るシリカ回収工程と、
(C)工程(B)で得られたSiOを含む固形分と鉱酸を混合して、pHが3.0未満の酸性スラリーを調製し、上記固形分中に残存する不純物を溶解させた後、上記酸性スラリーを固液分離して、SiOを含む固形分と、不純物を含む液分を得る酸洗浄工程、を含み、
前記工程(C)において、鉱酸と過酸化水素を混合することを特徴とする高純度シリカの製造方法。
(B) An alkali silicate aqueous solution having a Si concentration in the liquid of 10.0% by mass or more and a mineral acid having a concentration of 10.0% by volume or more are mixed so that the Si in the liquid is non-gelled. After precipitation as silica, solid-liquid separation is performed, and a silica recovery step for obtaining a solid content containing SiO 2 and a liquid content containing impurities,
(C) The solid content containing SiO 2 obtained in the step (B) and the mineral acid were mixed to prepare an acidic slurry having a pH of less than 3.0, and the impurities remaining in the solid content were dissolved. Thereafter, the acidic slurry is subjected to solid-liquid separation to obtain a solid content containing SiO 2 and an acid cleaning step of obtaining a liquid content containing impurities.
In the step (C), a mineral acid and hydrogen peroxide are mixed.
工程(B)において、ケイ酸アルカリ水溶液と鉱酸の混合が、ケイ酸アルカリ水溶液を鉱酸に添加することによって行われる、請求項1〜3のいずれか1項に記載の高純度シリカの製造方法。   The process for producing high-purity silica according to any one of claims 1 to 3, wherein in step (B), mixing of the alkali silicate aqueous solution and the mineral acid is performed by adding the alkali silicate aqueous solution to the mineral acid. Method. 工程(B)において、ケイ酸アルカリ水溶液と鉱酸を、pH1.0以下に保ちながら混合する、請求項1〜4のいずれか1項に記載の高純度シリカの製造方法。   The method for producing high-purity silica according to any one of claims 1 to 4, wherein in the step (B), the aqueous alkali silicate solution and the mineral acid are mixed while maintaining the pH at 1.0 or lower. 工程(B)において、ケイ酸アルカリ水溶液のSi濃度が10.0〜20.0質量%である、請求項1〜5のいずれか1項に記載の高純度シリカの製造方法。   The manufacturing method of the high purity silica of any one of Claims 1-5 whose Si density | concentration of alkali silicate aqueous solution is 10.0-20.0 mass% in a process (B). 過酸化水素の添加量が、シリカ(SiO)100質量%に対して、0.1〜15.0質量%である請求項1〜6のいずれか1項に記載の高純度シリカの製造方法。 The addition amount of hydrogen peroxide, silica (SiO 2) with respect to 100 mass%, the production method of high purity silica according to any one of claims 1 to 6 is 0.1 to 15.0 wt% . 工程(B)の前に、(A)シリカ含有鉱物とアルカリ水溶液を混合して、pHが11.5以上のアルカリ性スラリーを調製し、液分中のSi濃度が10.0質量%以上となるように、上記シリカ含有鉱物中のSiを液分中に溶解させた後、上記アルカリ性スラリーを固液分離して、Siを含むケイ酸アルカリ水溶液と、固形分を得るアルカリ溶解工程を含む、請求項1〜7のいずれか1項に記載の高純度シリカの製造方法。   Before step (B), (A) silica-containing mineral and alkaline aqueous solution are mixed to prepare an alkaline slurry having a pH of 11.5 or more, and the Si concentration in the liquid becomes 10.0% by mass or more. As described above, after dissolving Si in the silica-containing mineral in a liquid component, the alkaline slurry is subjected to solid-liquid separation, and an alkali silicate aqueous solution containing Si and an alkali dissolution step for obtaining a solid content are included. Item 8. The method for producing high-purity silica according to any one of Items 1 to 7. 工程(A)と工程(B)の間に、(B1)工程(A)で得られたケイ酸アルカリ水溶液と酸を混合して、pHを10.3を超え、11.5未満に調整し、液分中の不純物を析出させた後、固液分離を行い、ケイ酸アルカリ水溶液と、固形分を得る不純物回収工程、を含む、請求項8に記載の高純度シリカの製造方法。   Between step (A) and step (B), (B1) the alkali silicate aqueous solution obtained in step (A) and an acid are mixed to adjust the pH to more than 10.3 and less than 11.5. The method for producing high-purity silica according to claim 8, further comprising: an alkali silicate aqueous solution and an impurity recovery step of obtaining a solid content by performing solid-liquid separation after depositing impurities in the liquid component. 工程(A)の前に、(A1)シリカ含有鉱物を水洗して、粘土分及び有機物を除去する原料水洗工程、を含む請求項8または9に記載の高純度シリカの製造方法。   The method for producing high-purity silica according to claim 8 or 9, comprising, before the step (A), (A1) a raw material water-washing step in which the silica-containing mineral is washed with water to remove clay and organic matter. 工程(A)の前に、(A2)シリカ含有鉱物を300〜1000℃で0.5〜2時間焼成して、有機物を除去する原料焼成工程、を含む請求項8〜10のいずれか1項に記載の高純度シリカの製造方法。   Prior to step (A), (A2) a raw material firing step of firing a silica-containing mineral at 300 to 1000 ° C. for 0.5 to 2 hours to remove organic matter, 11. A method for producing high-purity silica as described in 1. (D)前工程で得られたSiOを含む固形分と水を混合して、上記固形分中に残存する不純物を溶解させた後、上記スラリーを固液分離して、SiOを含む固形分と、不純物を含む液分を得る水洗浄工程、
を含む請求項1〜11のいずれか1項に記載の高純度シリカの製造方法。
(D) The solid content containing SiO 2 obtained in the previous step and water are mixed to dissolve impurities remaining in the solid content, and then the slurry is solid-liquid separated to obtain a solid containing SiO 2 And a water washing step for obtaining a liquid containing impurities.
The manufacturing method of the high purity silica of any one of Claims 1-11 containing these.
JP2011018223A 2011-01-31 2011-01-31 Method for producing high purity silica Active JP5496122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018223A JP5496122B2 (en) 2011-01-31 2011-01-31 Method for producing high purity silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018223A JP5496122B2 (en) 2011-01-31 2011-01-31 Method for producing high purity silica

Publications (3)

Publication Number Publication Date
JP2012158486A JP2012158486A (en) 2012-08-23
JP2012158486A5 JP2012158486A5 (en) 2013-11-28
JP5496122B2 true JP5496122B2 (en) 2014-05-21

Family

ID=46839337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018223A Active JP5496122B2 (en) 2011-01-31 2011-01-31 Method for producing high purity silica

Country Status (1)

Country Link
JP (1) JP5496122B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689038B2 (en) * 2011-07-27 2015-03-25 太平洋セメント株式会社 Method for producing high purity silica
JP2014141400A (en) * 2012-12-28 2014-08-07 Taiheiyo Cement Corp Method for preparing mixture of silica with carbon
JP6791769B2 (en) * 2017-01-24 2020-11-25 太平洋セメント株式会社 Method for manufacturing purified silica
CN112811433A (en) * 2019-11-18 2021-05-18 光宇材料股份有限公司 Process for preparing silicon dioxide
WO2021132765A1 (en) * 2019-12-26 2021-07-01 어업회사법인(주)제이앤씨 바이오 Method for separating and purifying water-soluble silicon from diatom-derived silica

Also Published As

Publication number Publication date
JP2012158486A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
KR101428120B1 (en) Preparation of molecular sieve SSZ-13
JP5496122B2 (en) Method for producing high purity silica
JP5688946B2 (en) Method for producing high purity silica
JP6645202B2 (en) Composition containing silicotitanate having cinnamite structure and method for producing the same
CN104959108B (en) A kind of sewage ammonia nitrogen purifies absorption attapulgite/bryozoatum composite filtering material and preparation method thereof
ES2910701T3 (en) New procedure for the preparation of silicate and new procedure for the preparation of precipitated silica
JP6037823B2 (en) Method for producing high-purity silicon carbide
JP2016506903A5 (en)
JP2006273710A (en) Method for synthesizing aluminophosphates
JP6804315B2 (en) Method for manufacturing purified silica
JP5843684B2 (en) Method for producing high purity silica
JP5501008B2 (en) Method for producing high purity silica
JP6005045B2 (en) Method for producing a mixture of silica and carbon
JP5797086B2 (en) Method for producing high purity silicon carbide powder
JP2013107783A (en) Method for manufacturing silicon carbide sintered compact
JP5484039B2 (en) Method for producing high purity silica
JP5424981B2 (en) Method for producing high purity silica
JP5689038B2 (en) Method for producing high purity silica
JP2013248555A (en) Cesium adsorbing material, and method for manufacturing the same
JP2003327427A (en) Method of producing high specific surface area calcium hydroxide grain
JP6791769B2 (en) Method for manufacturing purified silica
JP5094614B2 (en) Method for producing high purity silica
JP2011162391A (en) Method for producing mesoporous silica
JP2014141400A (en) Method for preparing mixture of silica with carbon
WO2017217424A1 (en) Method for producing beta zeolite

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5496122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250