JP5495325B2 - Pile foundation structure, construction method of pile foundation structure and pile used for these - Google Patents

Pile foundation structure, construction method of pile foundation structure and pile used for these Download PDF

Info

Publication number
JP5495325B2
JP5495325B2 JP2010184869A JP2010184869A JP5495325B2 JP 5495325 B2 JP5495325 B2 JP 5495325B2 JP 2010184869 A JP2010184869 A JP 2010184869A JP 2010184869 A JP2010184869 A JP 2010184869A JP 5495325 B2 JP5495325 B2 JP 5495325B2
Authority
JP
Japan
Prior art keywords
pile
foundation structure
ground
foundation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010184869A
Other languages
Japanese (ja)
Other versions
JP2012041761A (en
Inventor
一彦 上野
敏弘 宮▲崎▼
康暖 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2010184869A priority Critical patent/JP5495325B2/en
Publication of JP2012041761A publication Critical patent/JP2012041761A/en
Application granted granted Critical
Publication of JP5495325B2 publication Critical patent/JP5495325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

本発明は、杭の引き抜きに対する抵抗力(安定性)を増大させることが可能な杭基礎構造、杭基礎構造の施工方法、およびこれらに用いる杭に関する。   The present invention relates to a pile foundation structure capable of increasing the resistance (stability) to pulling out of the pile, a method for constructing the pile foundation structure, and a pile used for these.

図10に従来の桟橋の杭基礎構造を概略的に示す。桟橋は、図10のように、複数本の鋼管からなる基礎杭P1、P2、・・・が水面S下の水底S1から地盤G内に支持層G1に達するように打設され、基礎杭P1、P2の上部に上部工Uが設置されることで構築される。   FIG. 10 schematically shows a conventional pile foundation structure of a pier. As shown in FIG. 10, the pier is driven so that foundation piles P1, P2,... Made of a plurality of steel pipes reach the support layer G1 from the bottom S1 below the water surface S into the ground G, and the foundation pile P1. , P2 is constructed by installing the superstructure U on the top.

ここで、桟橋の設計において性能照査項目のひとつに杭の引抜に関する検討がある。すなわち、船舶着桟時の衝撃や地震による慣性力等により桟橋の上載荷重Dに水平方向に水平力Hが発生すると、例えば、地盤Gに打ち込まれた桟橋の基礎杭P1を引き抜こうとする作用力(引抜力)V1、基礎杭P2を押し込もうとする作用力(押込力)V2がそれぞれ発生する。この引抜力V1に対し、杭P1と地盤Gとの間の周面摩擦力Fおよび杭P1の自重を抵抗力として、杭P1が引き抜かれるか否かを判定する。ここで、杭Pが引き抜かれると判定された場合は杭径を拡大するかあるいは杭長を延長して杭Pと地盤Gとの接触面積を増やすことで周面摩擦力Fを大きくする手法を採用することが一般的である。または、杭の打設本数を増やすなど、構造全体を大きく見直すこともある。   Here, one of the performance verification items in the design of the pier is a study on pulling out piles. That is, when a horizontal force H is generated in the horizontal load D due to an impact at the time of landing on the ship, an inertial force due to an earthquake, etc., for example, an acting force to pull out the foundation pile P1 of the pier driven into the ground G. (Drawing force) V1 and the acting force (pushing force) V2 which tries to push in the foundation pile P2 generate | occur | produce, respectively. Whether or not the pile P1 is pulled out is determined by using the peripheral friction force F between the pile P1 and the ground G and the dead weight of the pile P1 as resistance to the pulling force V1. Here, when it is determined that the pile P is pulled out, a method of increasing the circumferential friction force F by increasing the pile diameter or extending the pile length to increase the contact area between the pile P and the ground G. It is common to adopt. Or the whole structure may be reexamined greatly, such as increasing the number of piles to be laid.

しかし、安易に杭径を拡大すると、他の照査項目(たとえば、杭の応力度)に対しては過度に安全側な設計となり、非常に不経済な構造となることが多い。   However, if the pile diameter is easily increased, the design is excessively safe with respect to other verification items (for example, the degree of stress of the pile), and the structure is often very uneconomical.

また、杭長を延長する場合も、既に杭の先端が支持層G1に到達している場合は、支持層G1へ深く貫入することになり杭に負荷がかかり、杭先端の損傷や座屈が懸念される。また、支持層G1が薄い場合は、支持層を打ち抜いてしまい、杭の押込みに対する所定の支持力を得られなくなることも考えられる。   Also, when extending the pile length, if the pile tip has already reached the support layer G1, it will penetrate deeply into the support layer G1 and load will be applied to the pile, causing damage and buckling of the pile tip. Concerned. In addition, when the support layer G1 is thin, the support layer may be punched out, and it may be impossible to obtain a predetermined support force for pushing the pile.

引抜力が問題となるのは、図10のように、桟橋に地震時慣性力による水平力Hが作用した場合がほとんどであるので、桟橋の上部工Uや上載荷重D(たとえば、クレーン等の荷役機械)を軽量化することで、地震時慣性力(水平力H)を小さくすることも効果的である。しかし、上部工Uや上載荷重Dの軽量化はコストの増加(軽量コンクリートの利用など)や桟橋機能(荷役機械のスペックダウンなど)の低下を伴うため限度がある。   The pulling force becomes a problem as shown in FIG. 10 because the horizontal force H due to the inertial force at the time of earthquake acts on the pier as shown in FIG. It is also effective to reduce the inertia force during an earthquake (horizontal force H) by reducing the weight of the cargo handling machine. However, the weight reduction of the superstructure U and the loading load D is limited because it involves an increase in cost (such as the use of lightweight concrete) and a decrease in the pier function (such as the specification down of the loading machine).

本発明は、上記の現状を踏まえ、杭径の拡大または埋設長の増大(すなわち、杭と地盤との間の周面摩擦力)に頼らずに杭の引き抜きに対する抵抗力(安定性)を増大させることが可能な杭基礎構造、杭基礎構造の施工方法、およびこれらに用いる杭を提供することを目的とする。   Based on the above-mentioned present situation, the present invention increases the resistance (stability) against pulling out of the pile without relying on the expansion of the pile diameter or the increase in the buried length (ie, the peripheral frictional force between the pile and the ground). An object of the present invention is to provide a pile foundation structure that can be made, a construction method of the pile foundation structure, and a pile used for these.

上記目的を達成するための杭基礎構造は、中空管からなる基礎杭内に仕切部を設け、前記基礎杭を前記仕切部により鉛直方向の上部と下部とに分け、地盤内に打設された基礎杭の前記下部の少なくとも一部を水、または、水と地盤材料とで飽和させて密閉することにより、前記基礎杭に引抜力が作用したとき前記引抜力に抵抗する吸引力(サクション)を生じさせることを特徴とする。   A pile foundation structure for achieving the above object is provided with a partitioning portion in a foundation pile made of a hollow tube, and the foundation pile is divided into an upper part and a lower part in the vertical direction by the partitioning part and placed in the ground. A suction force (suction) that resists the pulling force when a pulling force acts on the foundation pile by sealing at least a part of the lower part of the pile with water or water and ground material. It is characterized by producing.

この杭基礎構造によれば、仕切部で上部と下部とに分けた基礎杭を地盤に打設し、仕切部の下部の少なくとも一部を水、または、水と地盤材料とで飽和させて密閉することにより、打設された基礎杭に引抜力が作用したとき、引抜力に抵抗する吸引力(サクション)を生じさせることができる。このため、杭径の拡大や埋設長の増大に頼らずに杭の引き抜きに対する抵抗力(安定性)を増大させることができる。   According to this pile foundation structure, a foundation pile divided into an upper part and a lower part in the partition is placed on the ground, and at least a part of the lower part of the partition is saturated with water or water and ground material and sealed. Thus, when a pulling force is applied to the foundation pile that has been laid, a suction force (suction) that resists the pulling force can be generated. For this reason, it is possible to increase the resistance (stability) to the pulling out of the pile without depending on the enlargement of the pile diameter or the increase in the buried length.

上記杭基礎構造において前記上部内に中詰材を配置することで前記引抜力に対する抵抗力を得ることが好ましい。基礎杭の上部内に中詰材を配置することで杭の引抜力に対してカウンターとして抵抗することができる。   In the pile foundation structure, it is preferable that a resistance against the pulling-out force is obtained by disposing a filling material in the upper part. By placing the filling material in the upper part of the foundation pile, it can resist the pulling force of the pile as a counter.

また、前記下部において前記仕切部と前記基礎杭内の地盤面とに囲まれた空間を上記飽和状態の代わりに負圧にすることで、吸引力(サクション)を効果的に生じさせることができる。また、基礎杭外側の地盤に浸透流が発生し、周辺地盤の有効応力が増し、杭と地盤との間の周面摩擦力の増加に寄与できる。   Moreover, suction force (suction) can be effectively produced by making the space surrounded by the partition part and the ground surface in the foundation pile in the lower part into a negative pressure instead of the saturated state. . Moreover, the seepage flow is generated in the ground outside the foundation pile, the effective stress of the surrounding ground is increased, and it can contribute to the increase in the peripheral friction force between the pile and the ground.

前記基礎杭が水底に打設され、前記上部の水位を外水位と同レベル(水頭差が生じない)とすることが好ましい。   It is preferable that the foundation pile is placed on the bottom of the water and the upper water level is the same level as the external water level (no water head difference occurs).

上記目的を達成するための杭基礎構造の施工方法は、中空管からなる基礎杭内に仕切部を設け、前記基礎杭を前記仕切部により鉛直方向の上部と下部とに分け、前記基礎杭を地盤内に打設してから、前記下部の少なくとも一部を水、または、水と地盤材料とで飽和させてから密閉することを特徴とする。   A method for constructing a pile foundation structure for achieving the above object is to provide a partition portion in a foundation pile made of a hollow tube, divide the foundation pile into an upper part and a lower part in the vertical direction by the partition part, and Is placed in the ground, and at least a part of the lower part is saturated with water or water and ground material, and then sealed.

この杭基礎構造の施工方法によれば、仕切部で上部と下部とに分けた基礎杭を地盤に打設し、仕切部の下部の少なくとも一部を水、または、水と地盤材料とで飽和させて密閉することにより、打設された基礎杭に引抜力が作用したとき、引抜力に抵抗する吸引力(サクション)を生じさせることができる。このため、杭径の拡大や埋設長の増大に頼らずに杭の引き抜きに対する抵抗力(安定性)を増大させることができる。   According to the construction method of this pile foundation structure, the foundation pile divided into the upper part and the lower part in the partition is placed on the ground, and at least a part of the lower part of the partition is saturated with water or water and the ground material By making it seal | tighten, when drawing-out force acts on the foundation pile placed, the suction force (suction) which resists drawing-out force can be produced. For this reason, it is possible to increase the resistance (stability) to the pulling out of the pile without depending on the enlargement of the pile diameter or the increase in the buried length.

上記杭基礎構造の施工方法において前記基礎杭の打設後、前記上部内に中詰材を投入することが好ましい。これにより、杭の引抜力に対する抵抗力を得ることができる。このように、基礎杭の上部内に中詰材を配置することで杭の引抜力に対してカウンターとして抵抗することができる。   In the construction method of the pile foundation structure, it is preferable that the filling material is thrown into the upper part after the foundation pile is placed. Thereby, the resistance force with respect to the pulling-out force of a pile can be obtained. Thus, it can resist as a counter with respect to the drawing-out force of a pile by arrange | positioning a filling material in the upper part of a foundation pile.

また、前記下部において前記仕切部と前記基礎杭内の地盤面とに囲まれた空間を上記飽和状態の代わりに負圧にすることで、打設された基礎杭において吸引力(サクション)を効果的に生じさせることができる。また、基礎杭外側の地盤に浸透流が発生し、周辺地盤の有効応力が増し、杭と地盤との間の周面摩擦力の増加に寄与できる。   In addition, the space surrounded by the partition and the ground surface in the foundation pile at the lower part is made negative pressure instead of the saturated state, so that suction force (suction) is effective in the placed foundation pile. Can be generated automatically. Moreover, the seepage flow is generated in the ground outside the foundation pile, the effective stress of the surrounding ground is increased, and it can contribute to the increase in the peripheral friction force between the pile and the ground.

また、前記基礎杭を水底に打設し、前記上部の水位を外水位と同レベル(水頭差が生じない)とすることが好ましい。   Moreover, it is preferable that the foundation pile is placed on the bottom of the water, and the upper water level is the same level as the outside water level (no water head difference occurs).

なお、上記杭基礎構造とするために、例えば、前記基礎杭の下部内と連通するようにバルブを設け、前記バルブを開き、前記基礎杭を地盤内に打設し、前記下部の少なくとも一部を水、または、水と地盤材料とで飽和させてから、前記バルブを閉じ、前記下部内を密閉することで上記杭基礎構造を構築できる。   In order to obtain the pile foundation structure, for example, a valve is provided so as to communicate with the lower portion of the foundation pile, the valve is opened, the foundation pile is driven into the ground, and at least a part of the lower portion is provided. The pile foundation structure can be constructed by saturating the water with water or water and the ground material, then closing the valve and sealing the inside of the lower part.

上記目的を達成するための杭は、上述の杭基礎構造または上述の杭基礎構造の施工方法に用いられる中空管からなる杭であって、杭内に仕切部を設けたことを特徴とする。   A pile for achieving the above object is a pile made of a hollow tube used in the construction method of the above-mentioned pile foundation structure or the above-mentioned pile foundation structure, wherein a partition portion is provided in the pile. .

この杭によれば、仕切部で上部と下部とに分けた杭を地盤に打設し、仕切部の下部の少なくとも一部を水、または、水と地盤材料とで飽和させて密閉することにより、打設された杭に引抜力が作用したとき引抜力に抵抗する吸引力(サクション)を生じさせることができる。このため、杭径の拡大や埋設長の増大に頼らずに杭の引き抜きに対する抵抗力(安定性)を増大させることができる。   According to this pile, the pile divided into the upper part and the lower part in the partition part is placed on the ground, and at least a part of the lower part of the partition part is saturated with water or water and the ground material and sealed. When a pulling force is applied to the pile that has been laid, a suction force (suction) that resists the pulling force can be generated. For this reason, it is possible to increase the resistance (stability) to the pulling out of the pile without depending on the enlargement of the pile diameter or the increase in the buried length.

本発明の杭基礎構造、杭基礎構造の施工方法、およびこれらに用いる杭によれば、杭径の拡大または埋設長の増大(杭と地盤との間の周面摩擦力)に頼らずに杭の引き抜きに対する抵抗力(安定性)を増大させることができる。   According to the pile foundation structure of the present invention, the method for constructing the pile foundation structure, and the piles used for these, the piles are not relied on without increasing the pile diameter or increasing the buried length (the peripheral frictional force between the pile and the ground). It is possible to increase the resistance (stability) to the pulling out.

第1の実施形態による杭基礎構造を概略的に示す図である。It is a figure showing roughly the pile foundation structure by a 1st embodiment. 第2の実施形態による杭基礎構造を概略的に示す図である。It is a figure which shows schematically the pile foundation structure by 2nd Embodiment. 第3の実施形態による杭基礎構造を概略的に示す図である。It is a figure which shows schematically the pile foundation structure by 3rd Embodiment. 第4の実施形態による鋼管杭の構成を概略的に示す図である。It is a figure which shows roughly the structure of the steel pipe pile by 4th Embodiment. 図4の鋼管杭を用いて図1の杭基礎構造を構築し上部工を設置するまでの工程を説明するためのフローチャートである。It is a flowchart for demonstrating the process until the pile foundation structure of FIG. 1 is constructed | assembled using the steel pipe pile of FIG. 4, and a superstructure is installed. 図4の鋼管杭を用いて図2の杭基礎構造を構築し上部工を設置するまでの工程を説明するためのフローチャートである。It is a flowchart for demonstrating the process until the pile foundation structure of FIG. 2 is constructed | assembled using the steel pipe pile of FIG. 4, and a superstructure is installed. 図4の鋼管杭を用いて図3の杭基礎構造を構築し上部工を設置するまでの工程を説明するためのフローチャートである。It is a flowchart for demonstrating the process until the pile foundation structure of FIG. 3 is constructed | assembled using the steel pipe pile of FIG. 4, and a superstructure is installed. 図1の杭基礎構造の効果を確認するための実験装置を概略的に示す図である。It is a figure which shows roughly the experimental apparatus for confirming the effect of the pile foundation structure of FIG. 図8の実験装置によりアクリル管を引き抜いた時の引抜量と荷重との関係を示すグラフである。It is a graph which shows the relationship between the drawing amount when a acryl tube is pulled out by the experimental apparatus of FIG. 8, and a load. 従来の桟橋の杭基礎構造を概略的に示す図である。It is a figure which shows roughly the pile foundation structure of the conventional jetty.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1の実施形態〉
図1は第1の実施形態による杭基礎構造を概略的に示す図である。
<First Embodiment>
FIG. 1 is a diagram schematically showing a pile foundation structure according to the first embodiment.

図1のように、本実施形態による杭基礎構造は、桟橋の構築のために鋼管杭Pが水面S下の水底S1から地盤G内に打ち込まれるようにして必要本数が打設されてから、杭Pの上部に上部工Uが設置されるが、杭Pの内部に上部と下部とを隔てる仕切部として仕切板10を設けておき、その下部12の一部12aを密閉飽和状態としたものである。   As shown in FIG. 1, the pile foundation structure according to the present embodiment has the steel pipe pile P driven into the ground G from the bottom S1 below the water surface S for the construction of the pier. The superstructure U is installed on the upper part of the pile P, but the partition plate 10 is provided as a partition part separating the upper part and the lower part inside the pile P, and a part 12a of the lower part 12 is in a sealed saturated state. It is.

すなわち、図1の鋼管杭Pは、管内に設けられた仕切板10を有し、仕切板10により上部11と下部12とに分けられる。仕切板10は、鋼材からなり、打設前に例えば工場等で鋼管杭P内に溶接等により取り付けられ、鋼管杭Pの上部11と下部12とを完全に遮断する構造にする。   That is, the steel pipe pile P of FIG. 1 has a partition plate 10 provided in the pipe, and is divided into an upper portion 11 and a lower portion 12 by the partition plate 10. The partition plate 10 is made of a steel material, and is attached to the steel pipe pile P by welding or the like, for example, at a factory or the like before placing, so that the upper portion 11 and the lower portion 12 of the steel pipe pile P are completely cut off.

図1のように、鋼管杭Pが水底S1から地盤G内に打設されると、鋼管杭Pの仕切板10の上部11は水で満たされ、上部11内の水位は外水位である水面Sと同レベルにし、杭Pの内外で水頭差を生じないようにする。   As shown in FIG. 1, when the steel pipe pile P is driven into the ground G from the water bottom S1, the upper part 11 of the partition plate 10 of the steel pipe pile P is filled with water, and the water level in the upper part 11 is the water level that is the outside water level. The level is the same as S, so that there is no head difference between the inside and outside of the pile P.

また、鋼管杭Pの打設後、鋼管杭Pの仕切板10の下部12の一部12aを密閉飽和状態とする。すなわち、鋼管杭Pの打設により、鋼管杭Pの下部12の内部において仕切板10と地盤表面S2との間に形成される一部12aは、水と地盤材料(粘性土、砂質土、礫、石材等)で満たされて飽和状態とされて下部12は密閉状態とされる。なお、下部12の一部12aは水のみで満たされて密閉飽和状態とされるようにしてもよい。ただし、地盤表面S2の高さ位置は、杭周辺の地盤条件等により、水底S1と杭Pの先端Zとの間となる。   Moreover, after placing the steel pipe pile P, a part 12a of the lower part 12 of the partition plate 10 of the steel pipe pile P is brought into a sealed saturated state. That is, by placing the steel pipe pile P, a part 12a formed between the partition plate 10 and the ground surface S2 in the lower part 12 of the steel pipe pile P is water and ground material (viscous soil, sandy soil, Filled with gravel, stone, etc.) and saturated, the lower part 12 is sealed. Note that a part 12a of the lower part 12 may be filled with water only to be in a sealed saturated state. However, the height position of the ground surface S2 is between the bottom S1 and the tip Z of the pile P depending on the ground conditions around the pile.

上述のように、地震時慣性力による水平力により杭Pに鉛直方向上方に引抜力V1が作用したとき、鋼管杭P内の下部12を密閉飽和状態としておくことにより、鋼管杭Pの下部12に吸引力(サクション)が生じて引抜力V1に抵抗する抵抗力として作用する。このようにして、杭径の拡大や埋設長の増大(杭と地盤との間の周面摩擦力)に頼らずに杭Pの引き抜きに対する抵抗力・安定性を増大させることができる。このため、桟橋等の杭基礎構造物の地震等に対する安定性を向上させることができ、しかも杭径の拡大や埋設長の増大が伴わないので、コストがさほど嵩まず、経済的である。   As described above, when the pulling force V1 is applied to the pile P in the vertical direction due to the horizontal force due to the inertial force at the time of the earthquake, the lower portion 12 of the steel pipe pile P is set in a hermetic saturated state by keeping the lower portion 12 in the steel pipe pile P hermetically saturated. As a result, a suction force (suction) is generated and acts as a resistance force that resists the pull-out force V1. In this way, the resistance force / stability against pulling out of the pile P can be increased without depending on the expansion of the pile diameter or the increase in the buried length (the circumferential frictional force between the pile and the ground). For this reason, it is possible to improve the stability of the pile foundation structure such as a pier against earthquakes and the like, and the pile diameter is not increased and the embedment length is not increased. Therefore, the cost is not so bulky and economical.

また、仕切板10の設置位置(設置深度)は、できるだけ鋼管杭P内の地盤表面S2と密着させて仕切板10と地盤表面S2との距離tが小さいほど吸引力(サクション)の効果が高く、好ましい。また、鋼管杭Pの地盤Gへの根入れ長が長いほど吸引力(サクション)の効果が高くなる。   Moreover, the installation position (installation depth) of the partition plate 10 is brought into close contact with the ground surface S2 in the steel pipe pile P as much as possible, and the effect of the suction force (suction) is higher as the distance t between the partition plate 10 and the ground surface S2 is smaller. ,preferable. Moreover, the effect of a suction force (suction) becomes high, so that the penetration length to the ground G of the steel pipe pile P is long.

〈第2の実施形態〉
図2は第2の実施形態による杭基礎構造を概略的に示す図である。
<Second Embodiment>
FIG. 2 is a diagram schematically showing a pile foundation structure according to the second embodiment.

図2の杭基礎構造は、図1の杭基礎構造の鋼管杭Pの上部11(仕切板10の上)に地盤材料等の中詰材13を充填した点が図1の杭基礎構造と異なる。すなわち、図2のように、鋼管杭Pの仕切板10の上部11に地盤材料からなる中詰材13を充填する。中詰材13は、地盤材料に加えて、鋼さいやコンクリートガラ等であってもよい。中詰材13を杭P内に充填することで杭Pの引抜力V1に対するカウンターとしての役割を期待できる。杭Pの引抜力V1に対する、鋼管杭Pの密閉飽和状態とされた下部12に生じる吸引力(サクション)による抵抗力が増していっそう効果的になる。   The pile foundation structure in FIG. 2 is different from the pile foundation structure in FIG. 1 in that the upper portion 11 (on the partition plate 10) of the steel pipe pile P of the pile foundation structure in FIG. . That is, as shown in FIG. 2, the filling material 13 made of a ground material is filled in the upper part 11 of the partition plate 10 of the steel pipe pile P. In addition to the ground material, the filling material 13 may be a steel pad or concrete glass. By filling the filling material 13 in the pile P, a role as a counter for the pulling force V1 of the pile P can be expected. The resistance force due to the suction force (suction) generated in the lower portion 12 of the steel pipe pile P that is in the hermetically saturated state of the steel pipe pile P with respect to the pulling force V1 of the pile P increases and becomes more effective.

なお、中詰材13の充填高さは、なるべく水面Sよりも下で留めるほうが好ましい。杭頭付近まで投入し充填すると、杭重を過度に増やすことになり、杭先端における支持力不足を考慮する必要性が生じ、また、地震時などには慣性力を大きくする可能性も生じるので、杭頭付近まで充填することは好ましくない。中詰材13の上部は水で満たされ、上部11内の水位は図1と同様に、外水位である水面Sと同レベルにし、杭Pの内外で水頭差を生じないようにする。   The filling height of the filling material 13 is preferably kept below the water surface S as much as possible. If it is filled to the vicinity of the pile head, the pile weight will be increased excessively, and it will be necessary to consider the lack of bearing capacity at the tip of the pile, and there is also the possibility of increasing the inertial force during earthquakes etc. It is not preferable to fill up to the vicinity of the pile head. The upper part of the filling material 13 is filled with water, and the water level in the upper part 11 is set to the same level as the water surface S, which is the outer water level, in the same manner as in FIG.

〈第3の実施形態〉
図3は第3の実施形態による杭基礎構造を概略的に示す図である。
<Third Embodiment>
FIG. 3 is a diagram schematically showing a pile foundation structure according to the third embodiment.

図3の杭基礎構造は、図2の杭基礎構造において仕切板10の下部12の一部12aに負圧を与えた点が図2の杭基礎構造と異なる。このように、下部12の一部12aを図1,図2の密閉飽和状態ではなく負圧状態とすることで、吸引力(サクション)の効果が高まり、図1,図2の密閉飽和状態とされた下部12に生じる吸引力(サクション)よりも大きくなるので、杭Pの引抜力V1に対する抵抗力がいっそう大きくなる。   The pile foundation structure of FIG. 3 differs from the pile foundation structure of FIG. 2 in that negative pressure is applied to a part 12a of the lower portion 12 of the partition plate 10 in the pile foundation structure of FIG. Thus, by making the portion 12a of the lower part 12 a negative pressure state instead of the sealed saturation state of FIGS. 1 and 2, the effect of the suction force (suction) is enhanced, and the sealed saturation state of FIGS. Since the suction force (suction) generated in the lower portion 12 is increased, the resistance force of the pile P to the pulling force V1 is further increased.

また、鋼管杭Pの外側には水面Sと鋼管杭Pの下部12内の水位h2との水頭差kに応じた鋼管杭Pの先端に向かう浸透流j(下向き浸透流)が生じる。鋼管杭Pの先端に向かう浸透流jは杭Pの周辺の地盤に対して有効応力の増加をもたらすことになり、杭Pと地盤Gとの間の周面摩擦力の増加に寄与することが期待できる。   Further, an osmotic flow j (downward osmotic flow) directed toward the tip of the steel pipe pile P according to the water head difference k between the water surface S and the water level h2 in the lower portion 12 of the steel pipe pile P is generated outside the steel pipe pile P. The seepage flow j toward the tip of the steel pipe pile P will cause an increase in effective stress on the ground around the pile P and contribute to an increase in the peripheral friction force between the pile P and the ground G. I can expect.

なお、鋼管杭P内には上向きの浸透流が発生し、鋼管杭P内の地盤は有効応力の低下が想定されるが、杭Pの引抜力V1に対して鋼管杭P内の周面と地盤との摩擦は考慮しないため影響はない。ただし、上向きの浸透流により鋼管杭内の地盤がヒービングやボイリングを生じないように注意する必要がある。   In addition, although the upward seepage flow is generated in the steel pipe pile P and the ground in the steel pipe pile P is assumed to decrease in effective stress, the circumferential surface in the steel pipe pile P with respect to the pulling force V1 of the pile P There is no impact because friction with the ground is not considered. However, care must be taken so that the ground in the steel pipe pile does not heave or boiling due to upward seepage flow.

〈第4の実施形態〉
図4は第4の実施形態による鋼管杭の構成を概略的に示す図である。
<Fourth Embodiment>
FIG. 4 is a diagram schematically showing a configuration of a steel pipe pile according to the fourth embodiment.

図4の構成は、図1〜図3の杭基礎構造を実現するための鋼管杭の一例である。すなわち、鋼管杭Pは、鋼材からなる仕切板10が事前に工場で溶接されて取り付けられて杭Pの上部11と下部12を完全に遮断する構造を有し、さらに、図4に示すように開閉バルブ21,22,23を取り付けることで、鋼管杭Pの内外の通水と遮断とを調整できる構造を有する。   The structure of FIG. 4 is an example of the steel pipe pile for implement | achieving the pile foundation structure of FIGS. 1-3. That is, the steel pipe pile P has a structure in which a partition plate 10 made of a steel material is welded and attached in advance in a factory to completely block the upper portion 11 and the lower portion 12 of the pile P, and as shown in FIG. By attaching the open / close valves 21, 22, and 23, the steel pipe pile P has a structure that can adjust water flow inside and outside and shut off.

バルブ21は、鋼管杭Pの仕切板10の上部11に対応する位置に取り付ける。バルブ22,23は、鋼管杭Pの仕切板10の下部12の一部12aに対応する位置であって、バルブ22は仕切板10の直下に取り付け、バルブ23はバルブ22の下方で水底S1よりも上方に位置するように取り付ける。   The valve 21 is attached at a position corresponding to the upper part 11 of the partition plate 10 of the steel pipe pile P. The valves 22 and 23 are positions corresponding to a part 12a of the lower part 12 of the partition plate 10 of the steel pipe pile P. The valve 22 is attached immediately below the partition plate 10, and the valve 23 is located below the valve 22 from the bottom S1. Attach it so that it is positioned above.

なお、図4のバルブ21を省略してもよく、鋼管杭Pに、バルブ21の代わりに、杭Pの内外を連通させるようにたとえば25mm程度の通水孔を設けるようにしてもよい。   Note that the valve 21 of FIG. 4 may be omitted, and a water passage hole of, for example, about 25 mm may be provided in the steel pipe pile P instead of the valve 21 so as to communicate the inside and outside of the pile P.

また、図1,図2の杭基礎構造を構築する場合には、バルブ23を省略してもよい。   Moreover, when constructing the pile foundation structure of FIGS. 1 and 2, the valve 23 may be omitted.

次に、図4の鋼管杭Pを用いて図1〜図3の各杭基礎構造を構築し上部工を設置するまでの工程について図5,図6,図7の各フローチャートを参照して説明する。   Next, with reference to the flowcharts of FIGS. 5, 6, and 7, steps for constructing each pile foundation structure of FIGS. 1 to 3 using the steel pipe pile P of FIG. 4 and installing the superstructure will be described. To do.

(1)図1の杭基礎構造と上部工を構築する工程につき図5を参照して説明する。まず、バルブ21,22,23を開き(S01)、鋼管杭Pの上部11の内外に水頭差が生じない状態にする。   (1) The process of constructing the pile foundation structure and superstructure shown in FIG. 1 will be described with reference to FIG. First, the valves 21, 22 and 23 are opened (S 01) so that a water head difference does not occur inside and outside the upper portion 11 of the steel pipe pile P.

次に、鋼管杭Pを水底S1から地盤Gへと杭先端Zが支持層G1まで達するように打設する(S02)。これらの工程S01,S02を繰り返し、所定本数の鋼管杭Pを打設する(S03)。次に、すべての杭Pのバルブ21,22,23を閉じる(S04)。上述のようにして、図1の杭基礎構造を完成させる(S05)。次に、鋼管杭Pの上部に上部工を設置する(S06)。   Next, the steel pipe pile P is driven from the bottom S1 to the ground G so that the pile tip Z reaches the support layer G1 (S02). These steps S01 and S02 are repeated to place a predetermined number of steel pipe piles P (S03). Next, the valves 21, 22, and 23 of all the piles P are closed (S04). As described above, the pile foundation structure shown in FIG. 1 is completed (S05). Next, an upper work is installed on the upper part of the steel pipe pile P (S06).

以上のようにして、図1の杭基礎構造および上部工Uを完成させることができる。このとき、鋼管杭P内の下部12は密閉飽和状態となっている。   As described above, the pile foundation structure and the superstructure U of FIG. 1 can be completed. At this time, the lower part 12 in the steel pipe pile P is in a sealed saturation state.

(2)図2の杭基礎構造と上部工を構築する工程につき図6を参照して説明する。まず、バルブ21,22,23を開き(S11)、次に、鋼管杭Pを水底S1から地盤Gへと杭先端Zが支持層G1まで達するように打設する(S12)。これらの工程S11,S12を繰り返し、所定本数の鋼管杭Pを打設する(S13)。次に、すべての鋼管杭Pに中詰材を杭頭より所定量投入する(S14)。次に、すべての杭Pのバルブ21,22,23を閉じる(S15)。   (2) The process of constructing the pile foundation structure and superstructure shown in FIG. 2 will be described with reference to FIG. First, the valves 21, 22, and 23 are opened (S11), and then the steel pipe pile P is driven from the bottom S1 to the ground G so that the pile tip Z reaches the support layer G1 (S12). These steps S11 and S12 are repeated to place a predetermined number of steel pipe piles P (S13). Next, a predetermined amount of filling material is put into all the steel pipe piles P from the pile head (S14). Next, the valves 21, 22, and 23 of all the piles P are closed (S15).

上述のようにして図2の杭基礎構造を完成させる(S16)。次に、鋼管杭Pの上部に上部工を設置する(S17)。   The pile foundation structure of FIG. 2 is completed as described above (S16). Next, an upper work is installed on the upper part of the steel pipe pile P (S17).

以上のようにして、図2の杭基礎構造および上部工を完成させることができる。このとき、鋼管杭P内の下部12は密閉飽和状態となっている。   As described above, the pile foundation structure and superstructure shown in FIG. 2 can be completed. At this time, the lower part 12 in the steel pipe pile P is in a sealed saturation state.

(3)図3の杭基礎構造と上部工を構築する工程につき図7を参照して説明する。まず、バルブ21,22,23を開き(S21)、次に、鋼管杭Pを水底S1から地盤Gへと杭先端Zが支持層G1まで達するように打設する(S22)。これらの工程S21,S22を繰り返し、所定本数の鋼管杭Pを打設する(S23)。次に、すべての鋼管杭Pに中詰材を杭頭より所定量投入する(S24)。   (3) The process of constructing the pile foundation structure and superstructure shown in FIG. 3 will be described with reference to FIG. First, the valves 21, 22, and 23 are opened (S21), and then the steel pipe pile P is driven from the bottom S1 to the ground G so that the pile tip Z reaches the support layer G1 (S22). These steps S21 and S22 are repeated to drive a predetermined number of steel pipe piles P (S23). Next, a predetermined amount of filling material is put into all the steel pipe piles P from the pile head (S24).

次に、バルブ22にサクションホースを接続し、そのサクションホースのもう一方の端部を大気に開放する(S25)。そして、バルブ23にホースを接続し、そのホースのもう一方の端部に揚水ポンプを接続する(S26)。次に、バルブ23に接続した揚水ポンプにより鋼管杭Pの下部12の一部12a(仕切板10と鋼管杭P内の地盤表面S2との間)内の水を空気に置換する(S27)。その後、バルブ22,23を閉じ、バルブ23のホース、揚水ポンプを取り外す(S28)。   Next, a suction hose is connected to the valve 22, and the other end of the suction hose is opened to the atmosphere (S25). Then, a hose is connected to the valve 23, and a pump is connected to the other end of the hose (S26). Next, the water in the part 12a of the lower part 12 of the steel pipe pile P (between the partition plate 10 and the ground surface S2 in the steel pipe pile P) is replaced with air by a pumping pump connected to the valve 23 (S27). Thereafter, the valves 22 and 23 are closed, and the hose of the valve 23 and the pump are removed (S28).

次に、バルブ22のサクションホースの大気に開放した端部に真空ポンプを接続する(S29)。次に、バルブ22を開き、真空ポンプにより鋼管杭Pの下部12の空間内を減圧し、負圧を作用させる(S30)。所定の負圧を作用させた後、バルブ22を閉じ、サクションホース、真空ポンプを取り外す(S31)。上述の工程S25〜S31を所定本数の鋼管杭Pに対して繰り返す(S32)。なお、鋼管杭の本数が多い場合等には、すべての杭のサクションホースの端部及びホースの端部をそれぞれ一個口にまとめて、工程S25〜S31をすべての杭に対し一回で実施するようにしてもよい。   Next, a vacuum pump is connected to the end of the suction hose of the valve 22 opened to the atmosphere (S29). Next, the valve 22 is opened, the space in the lower part 12 of the steel pipe pile P is reduced by a vacuum pump, and a negative pressure is applied (S30). After applying a predetermined negative pressure, the valve 22 is closed, and the suction hose and the vacuum pump are removed (S31). The above steps S25 to S31 are repeated for a predetermined number of steel pipe piles P (S32). In addition, when there are many numbers of steel pipe piles, the ends of the suction hoses and the ends of the hoses of all the piles are combined into one piece respectively, and steps S25 to S31 are performed once for all the piles. You may do it.

上述のようにして図3の杭基礎構造を完成させる(S33)。次に、鋼管杭Pの上部に上部工を設置する(S34)。   The pile foundation structure of FIG. 3 is completed as described above (S33). Next, an upper work is installed on the upper part of the steel pipe pile P (S34).

以上のようにして、図3の杭基礎構造および上部工を完成させることができる。
このとき、鋼管杭Pの下部12の一部12aは負圧空間となっている。
As described above, the pile foundation structure and the superstructure shown in FIG. 3 can be completed.
At this time, a part 12a of the lower part 12 of the steel pipe pile P is a negative pressure space.

実験例Experimental example

図1の杭基礎構造を模擬した図8の実験装置を用いて、図1の杭基礎構造の効果を確認した。すなわち、図8のように槽内に飽和粘性土地盤を作成し、その地盤に直径5cm、長さ50cm、厚さ1mmのアクリル管2本を45cmの深さで設置し、地盤の上には水を満たした。   The effect of the pile foundation structure of FIG. 1 was confirmed using the experimental apparatus of FIG. 8 simulating the pile foundation structure of FIG. That is, as shown in FIG. 8, a saturated viscous ground is created in the tank, and two acrylic tubes with a diameter of 5 cm, a length of 50 cm, and a thickness of 1 mm are installed on the ground at a depth of 45 cm. Filled with water.

実験例として一方のアクリル管の上端に塩ビ製の円板で蓋をして、隙間を水中パテで埋めて完全に密閉した。比較例として他方のアクリル管は上端に蓋をせず、そのまま用いた。   As an experimental example, the top end of one acrylic tube was covered with a vinyl disc and the gap was filled with underwater putty to completely seal it. As a comparative example, the other acrylic tube was used without being capped at the upper end.

実験例および比較例の各アクリル管を鉛直上方に同じ速さで引き抜き、その時の抵抗力(荷重)をロードセルにより計測した。図9にその計測結果としてアクリル管の引き抜き時の引抜量と荷重との関係を示す。   Each acrylic tube of the experimental example and the comparative example was drawn vertically upward at the same speed, and the resistance force (load) at that time was measured with a load cell. FIG. 9 shows the relationship between the drawing amount and the load when the acrylic tube is drawn as the measurement result.

図中の理論値1,2とは管の引き抜き時にサクション(吸引力)は考慮せず周面摩擦力のみが作用すると仮定した場合の計算値である。理論値1はアクリル管内外の全周面において摩擦力が作用するとした場合である。理論値2はアクリル管の外周面にのみ摩擦力が作用し、内部は粘性土もアクリル管と一緒に伴上がりするものとした場合である。なお、ここでは、粘性土地盤の飽和単位堆積重量を16kN/m3、粘着力を50kN/m2とした。 The theoretical values 1 and 2 in the figure are calculated values when it is assumed that only the peripheral frictional force acts without considering the suction (attraction force) when the pipe is pulled out. The theoretical value 1 is a case where friction force acts on the entire peripheral surface inside and outside the acrylic tube. Theoretical value 2 is a case where the frictional force acts only on the outer peripheral surface of the acrylic tube, and the inside of the clay tube is accompanied by the viscous soil along with the acrylic tube. Here, the saturated unit sediment weight of the viscous ground is 16 kN / m 3 and the adhesive strength is 50 kN / m 2 .

図9からわかるように、実験例は比較例に対して引き抜き初期(引抜量10mm前後)で約2倍、引き抜き後半(引抜量80mm前後)で約5倍の抵抗力(荷重)を示した。また、周面摩擦力のみ考慮した場合(管内外の全周面で摩擦力が作用)の理論値1に対しても3倍弱の抵抗力を示し、管の外周面にのみ摩擦力が作用した場合の理論値2に対しても5倍近い抵抗力を示している。これらの結果から、図1の杭基礎構造を模擬した本実験例は、サクションの作用がない比較例と比べて、鉛直上方への引抜力に対してサクション(吸引力)が抵抗力として有効に作用していることがわかった。   As can be seen from FIG. 9, in the experimental example, the resistance (load) was about twice as large in the initial drawing (drawing amount of about 10 mm) and about five times in the latter half of drawing (about 80 mm of drawing). In addition, when only the peripheral surface friction force is taken into consideration (the friction force acts on the entire peripheral surface inside and outside the pipe), the resistance value is slightly less than three times the theoretical value 1, and the friction force acts only on the outer peripheral surface of the pipe. It shows a resistance force close to 5 times the theoretical value 2 in this case. From these results, the experimental example simulating the pile foundation structure in FIG. 1 is more effective as a resistance force for suction (suction force) than the comparative example without the suction action. I found it working.

計算例Calculation example

(1)図2における中詰材投入の効果の検証   (1) Verification of the effect of filling material in Fig. 2

鋼管杭φ700−9t,φ1100−12t,φ1500−16tの3ケースの杭仕様に対し、水深10m、仕切板を水底地盤と同レベルとし、中詰材として砂を4m、8m投入した場合について、引き抜きにおけるバラスト投入効果に関する計算例を次の表1に示す。   Pull out when steel pipe piles φ700-9t, φ1100-12t, φ1500-16t 3 case pile specifications, water depth is 10m, partition plate is the same level as the bottom of the ground, sand is inserted 4m and 8m as filling material Table 1 below shows an example of calculation related to the ballast charging effect.

Figure 0005495325
Figure 0005495325

表1の計算結果では、中詰材を投入することにより、14.6〜135.4kNの引き抜きに対する抵抗力(押し込み力)が得られる。たとえば、引抜力が1000kNであった場合、1%〜14%程度の分担率となる。なお、当然ではあるが、杭径および中詰材投入高さは大きいほど、また中詰材の水中単位体積重量が重いほど効果的である。   In the calculation result of Table 1, the resistance force (push-in force) against the extraction of 14.6 to 135.4 kN can be obtained by inserting the filling material. For example, when the pulling force is 1000 kN, the share is about 1% to 14%. As a matter of course, the larger the pile diameter and the filling height of the filling material, the more effective the medium unit weight of the filling material in water.

(2)図3における浸透流による効果の検証   (2) Verification of the effect of osmotic flow in Fig. 3

鋼管杭の根入れ長を10m,水深を10m,鋼管杭内の水位を水底地盤より2m下がり、仕切板を水底地盤と同レベル、鋼管杭の下部の空隙圧力を大気圧と等しいとして鋼管杭内外の導水勾配iを次の式により計算する。   The steel pipe pile depth is 10m, the water depth is 10m, the water level in the steel pipe pile is lowered by 2m from the bottom floor, the partition plate is at the same level as the bottom floor, and the void pressure at the bottom of the steel pipe pile is equal to the atmospheric pressure. Is calculated by the following equation.

i = h / L = (10+2) / (10+8) = 0.667
ここに、h:水頭差、L:透水長
i = h / L = (10 + 2) / (10 + 8) = 0.667
Where, h: hydraulic head difference, L: permeability length

図3の下向き浸透流jのように鋼管杭の外側に下向きに生じる浸透圧pwを次の式により計算する。 The osmotic pressure p w generated downward on the outside of the steel pipe pile as shown in the downward osmotic flow j in FIG. 3 is calculated by the following equation.

pw = i × γw × L = 0.667×10 × l = 6.67×L (kN/m2)
ここに、γw:水の単位体積重量(=10kN/m3)、L:浸透距離(m)
p w = i × γ w × L = 0.667 × 10 × l = 6.67 × L (kN / m 2 )
Where γ w : unit volume weight of water (= 10 kN / m 3 ), L: penetration distance (m)

次に、鋼管杭外側の地盤の有効応力σ’は次の式により求めることができる。   Next, the effective stress σ 'of the ground outside the steel pipe pile can be obtained by the following equation.

σ’ = (γsat - γw)×z = ( 17 - 10 )×z = 7 ×z (kN/m2)
ここに、γsat:土の飽和単位体積重量(=17kN/m3)、z:地盤深度(m)
σ '= (γ satw ) × z = ( 17-10 ) × z = 7 × z (kN / m 2 )
Where γ sat : Saturated unit volume weight of soil (= 17kN / m 3 ), z: Depth of ground (m)

よって、浸透圧を考慮した有効応力σ’wは、次のように有効応力σ’に浸透圧pwを加えた値となる。 Therefore, the effective stress σ ′ w considering the osmotic pressure is a value obtained by adding the osmotic pressure p w to the effective stress σ ′ as follows.

σ’w= σ’ + pw = 6.67×L + 7×z σ ' w = σ' + p w = 6.67 × L + 7 × z

ここで、浸透距離Lと地盤深度zは等しいことから浸透圧を考慮した有効応力は次式にまとめられる。   Here, since the infiltration distance L is equal to the ground depth z, the effective stress considering the osmotic pressure is summarized as follows.

σ’w= 13.67×z σ ' w = 13.67 × z

したがって、有効応力σ’と浸透圧を考慮したσ’wとの比は、
σ’w/σ’=13.67 / 7 =1.95 ≒ 2.0
となり、浸透圧により有効応力は約2倍となる。
Therefore, the ratio between the effective stress σ 'and σ' w considering osmotic pressure is
σ ' w /σ'=13.67 / 7 = 1.95 ≒ 2.0
Thus, the effective stress is doubled by the osmotic pressure.

鋼管杭周辺の地盤が粘性土の場合、粘性土の粘着力cuは、有効土被り圧の1次関数として次式により与えられる。 When the ground around the steel pipe pile is cohesive soil, the cohesive force c u of cohesive soil is given by the following equation as a linear function of effective soil covering pressure.

cu/p = 0.28〜0.30
ここに、p:圧密応力(=有効応力σ’)
c u / p = 0.28 ~ 0.30
Where p: consolidation stress (= effective stress σ ')

したがって、浸透圧を加えることで粘着力cuも2倍となり、杭と地盤との間の周面摩擦力は杭の外周面積と地盤の粘着力cuの積として求めるため、周面摩擦力も2倍となる。このように、図3の水面Sと鋼管杭Pの下部12内の水位h2との水頭差kに応じて生じる鋼管杭P外側における下向き浸透流jにより、杭Pと地盤Gとの間の周面摩擦力が増加することがわかる。 Therefore, by applying osmotic pressure, the adhesive force c u is also doubled, and the peripheral friction force between the pile and the ground is obtained as the product of the outer peripheral area of the pile and the adhesive force c u of the ground. Doubled. In this manner, the downward osmotic flow j on the outer side of the steel pipe pile P generated according to the water head difference k between the water surface S of FIG. It can be seen that the surface friction force increases.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本実施形態では港湾において代表的な杭基礎構造物である桟橋について記述したが、本発明はこれに限られず、水上または陸上における他の杭基礎構造物であってもよい。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in the present embodiment, a pier that is a typical pile foundation structure in a harbor is described, but the present invention is not limited to this, and may be another pile foundation structure on water or on land.

また、杭P内に仕切板10を取り付ける方法は溶接があるが、これに限定されず、他の方法によって取り付けるようにしてもよいことはもちろんである。   Moreover, although the method of attaching the partition plate 10 in the pile P has welding, it is not limited to this, Of course, you may make it attach by another method.

また、図1の杭基礎構造において図3のように仕切板10の下部12の一部12aに負圧を与えるようにしてもよい。   Moreover, you may make it give a negative pressure to the part 12a of the lower part 12 of the partition plate 10 like FIG. 3 in the pile foundation structure of FIG.

本発明の杭基礎構造、杭基礎構造の施工方法、およびこれらに用いる杭によれば、杭径の拡大または埋設長の増大に頼らずに杭の引き抜きに対する抵抗力を増大させることができるので、杭基礎構造物の地震等に対する安定性を経済的に向上させることができる。   According to the pile foundation structure of the present invention, the pile foundation structure construction method, and the pile used for these, the resistance to pulling out the pile can be increased without relying on the expansion of the pile diameter or the increase in the buried length, The stability of pile foundations against earthquakes can be improved economically.

10 仕切板(仕切部)
11 上部
12 下部
12a 下部の一部
13 中詰材
21,22,23 開閉バルブ、バルブ
P 鋼管杭、基礎杭、杭
F 周面摩擦力
G 地盤
G1 支持層
V1 杭Pに対する引抜力
j 浸透流
S 水面
S1 水底
S2 杭P内の地盤表面
h2 下部12内の水位
k 水面Sと水位h2との水頭差
Z 杭Pの先端
10 Partition plate (partition)
11 Upper part 12 Lower part 12a Lower part 13 Filling material 21, 22, 23 Opening and closing valve, valve P Steel pipe pile, foundation pile, pile F Peripheral friction force G Ground G1 Support layer V1 Pulling force against pile P J seepage flow S Water surface S1 Water bottom S2 Ground surface h2 in pile P Water level k in lower part 12 Water head difference Z between water surface S and water level h2 Tip of pile P

Claims (9)

中空管からなる基礎杭内に仕切部を設け、前記基礎杭を前記仕切部により鉛直方向の上部と下部とに分け、
地盤内に打設された基礎杭の前記下部の少なくとも一部を水、または、水と地盤材料とで飽和させて密閉することにより、前記基礎杭に引抜力が作用したとき前記引抜力に抵抗する吸引力を生じさせることを特徴とする杭基礎構造。
A partition part is provided in a foundation pile made of a hollow tube, and the foundation pile is divided into an upper part and a lower part in the vertical direction by the partition part,
Resist the pulling force when a pulling force acts on the foundation pile by sealing at least a part of the lower part of the foundation pile placed in the ground with water or water and ground material. Pile foundation structure characterized by generating suction force
前記上部内に中詰材を配置することで前記引抜力に対する抵抗力を得る請求項1に記載の杭基礎構造。   The pile foundation structure according to claim 1, wherein resistance to the pulling force is obtained by disposing a filling material in the upper part. 前記下部において前記仕切部と前記基礎杭内の地盤面とに囲まれた空間を負圧にした請求項1または2に記載の杭基礎構造。   The pile foundation structure according to claim 1 or 2, wherein a space surrounded by the partition portion and a ground surface in the foundation pile is set to a negative pressure in the lower part. 前記基礎杭が水底に打設され、前記上部の水位を外水位と同レベルとした請求項1乃至3のいずれか1項に記載の杭基礎構造。   The pile foundation structure according to any one of claims 1 to 3, wherein the foundation pile is placed on a water bottom, and the water level of the upper part is set to the same level as an external water level. 中空管からなる基礎杭内に仕切部を設け、前記基礎杭を前記仕切部により鉛直方向の上部と下部とに分け、
前記基礎杭を地盤内に打設してから、前記下部の少なくとも一部を水、または、水と地盤材料とで飽和させてから密閉することを特徴とする杭基礎構造の施工方法。
A partition part is provided in a foundation pile made of a hollow tube, and the foundation pile is divided into an upper part and a lower part in the vertical direction by the partition part,
A method for constructing a pile foundation structure, wherein the foundation pile is placed in the ground, and then at least a part of the lower portion is saturated with water or water and ground material and then sealed.
前記基礎杭の打設後、前記上部内に中詰材を投入する請求項5に記載の杭基礎構造の施工方法。   The method for constructing a pile foundation structure according to claim 5, wherein after the foundation pile is placed, a filling material is introduced into the upper portion. 前記下部において前記仕切部と前記基礎杭内の地盤面とに囲まれた空間を負圧にする請求項5または6に記載の杭基礎構造の施工方法。   The construction method of a pile foundation structure according to claim 5 or 6, wherein a space surrounded by the partition portion and a ground surface in the foundation pile is made negative pressure in the lower part. 前記基礎杭を水底に打設し、前記上部の水位を外水位と同レベルとする請求項5乃至7のいずれか1項に記載の杭基礎構造の施工方法。   The construction method for a pile foundation structure according to any one of claims 5 to 7, wherein the foundation pile is placed on a water bottom, and the water level of the upper part is set to the same level as an external water level. 請求項1乃至4のいずれか1項に記載の杭基礎構造または請求項5乃至8のいずれか1項に記載の杭基礎構造の施工方法に用いられる中空管からなる杭であって、杭内に仕切部を設けたことを特徴とする杭。   A pile comprising a hollow tube used in the construction method of the pile foundation structure according to any one of claims 1 to 4 or the pile foundation structure according to any one of claims 5 to 8, A stake characterized by providing a partition inside.
JP2010184869A 2010-08-20 2010-08-20 Pile foundation structure, construction method of pile foundation structure and pile used for these Active JP5495325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184869A JP5495325B2 (en) 2010-08-20 2010-08-20 Pile foundation structure, construction method of pile foundation structure and pile used for these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184869A JP5495325B2 (en) 2010-08-20 2010-08-20 Pile foundation structure, construction method of pile foundation structure and pile used for these

Publications (2)

Publication Number Publication Date
JP2012041761A JP2012041761A (en) 2012-03-01
JP5495325B2 true JP5495325B2 (en) 2014-05-21

Family

ID=45898374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184869A Active JP5495325B2 (en) 2010-08-20 2010-08-20 Pile foundation structure, construction method of pile foundation structure and pile used for these

Country Status (1)

Country Link
JP (1) JP5495325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174639B2 (en) * 2019-01-29 2022-11-17 鹿島建設株式会社 Substructure of foundation for offshore wind power generation and construction method for substructure of foundation for offshore wind power generation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434116A (en) * 1990-05-30 1992-02-05 Taisei Corp Constructing method of underground structure body
JP2002121754A (en) * 2000-10-13 2002-04-26 Ohbayashi Corp Method for constructing underwater foundation
JP3918461B2 (en) * 2001-06-06 2007-05-23 株式会社大林組 Construction method for underwater foundation

Also Published As

Publication number Publication date
JP2012041761A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US8221033B2 (en) Extensible shells and related methods for constructing a support pier
US20220098817A1 (en) Method for constructing structure
CN104878835B (en) Strip footing increases basement structure behind house
CN202559361U (en) Precast high strength concrete thin-wall steel pipe pile foundation pit supporting structure
CN106759442A (en) A kind of single-pile elevated bearing-platform and anchor cable tower-crane foundation structure and its construction method
JP2014005597A (en) Floatation prevention pile for underground structure and floatation prevention method for underground structure
JP5382900B2 (en) How to prevent underground structures from floating due to liquefaction
CN103572770B (en) A kind of stake case hydraulic structures and construction method thereof
CN104074195B (en) A kind of method controlling the outer surface subsidence of foundation ditch by horizontal grouting
JP5495325B2 (en) Pile foundation structure, construction method of pile foundation structure and pile used for these
CN110241863B (en) Soft soil foundation pit excavation process pipe gallery deformation control device and control method thereof
KR101630522B1 (en) Suction foundation for pre-loading and construction method thereof
CN209760247U (en) Adopt combination stagnant water support system of Larsen steel sheet pile and spray anchor bank protection
CN201202114Y (en) Bearing pile
JP6277755B2 (en) Ground improvement method and ground improvement system
CN105951863A (en) Construction device of active assembling type open caisson and construction method using same
JP6132144B2 (en) Structure liquefaction damage reducing structure and liquefaction damage reducing method
JP2000008623A (en) Restoration method of structure
CN213571956U (en) Combined construction method pile supporting structure
CN104895058B (en) The all-hydraulic two-tube compound club-footed pile machine of static pressure and its construction method
CN104153356B (en) The constructing device of concrete-pile and construction method thereof
CN113789796A (en) Steel sheet pile cofferdam construction method for high-flow-rate sandy gravel area
JP5519722B2 (en) Ground improvement method
CN111827307A (en) Pile supporting structure in combined construction method and construction method thereof
JP4475116B2 (en) Vertical shaft structure and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5495325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250