JP5491764B2 - Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories - Google Patents

Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories Download PDF

Info

Publication number
JP5491764B2
JP5491764B2 JP2009105396A JP2009105396A JP5491764B2 JP 5491764 B2 JP5491764 B2 JP 5491764B2 JP 2009105396 A JP2009105396 A JP 2009105396A JP 2009105396 A JP2009105396 A JP 2009105396A JP 5491764 B2 JP5491764 B2 JP 5491764B2
Authority
JP
Japan
Prior art keywords
furnace
molten metal
iron
carbonaceous material
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009105396A
Other languages
Japanese (ja)
Other versions
JP2010255907A (en
Inventor
雅孝 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009105396A priority Critical patent/JP5491764B2/en
Publication of JP2010255907A publication Critical patent/JP2010255907A/en
Application granted granted Critical
Publication of JP5491764B2 publication Critical patent/JP5491764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、鉄含有原料を溶解して鉄を主とする溶融金属を製造する溶融金属製造炉に関し、詳しくは溶融金属製造炉の炉壁構造および炉壁耐火物の損耗抑制方法に関する。   The present invention relates to a molten metal production furnace for producing a molten metal mainly containing iron by melting an iron-containing raw material, and more particularly to a furnace wall structure of a molten metal production furnace and a method for suppressing wear of a furnace wall refractory.

電気炉あるいは転炉型の金属溶解炉や金属精錬炉等では、炉体保護のため内張り耐火物を使用しているが、溶湯や排ガスの温度が高く、内張り耐火物が溶損するため、定期的に溶損部に補修材を吹き付けて耐火物寿命を延長して使用している。   Liner refractories are used to protect the furnace body in electric furnaces or converter-type metal melting furnaces and metal smelting furnaces, but since the temperature of the molten metal and exhaust gas is high and the refractory liners melt, The repair material is sprayed on the damaged part to extend the life of the refractory.

しかしながら、補修材を吹き付けるためには、定期的に炉の稼動を停止する必要があり、炉の稼働率が低下する。特に、耐火物の溶損速度が大きい場合には、補修頻度が高くなり、また、補修材の原単位も上昇するため、結果的に溶融金属の製造コストが増加する。   However, in order to spray the repair material, it is necessary to periodically stop the operation of the furnace, and the operation rate of the furnace decreases. In particular, when the melting rate of the refractory is high, the repair frequency increases, and the basic unit of the repair material also increases, resulting in an increase in the manufacturing cost of the molten metal.

そこで、近年では、炉材コストの低減、補修作業の負担軽減等を目的として、耐火物の背面に水冷パネルを設置して強制冷却することや、溶湯面より上部の溶損(以下、「損耗」ともいう。)が著しい部分の炉壁を耐火物構造でなく水冷構造とすることで、炉全体としての耐火物の溶損を抑制する試みがなされている(例えば、特許文献1、2参照)。   Therefore, in recent years, for the purpose of reducing furnace material costs and reducing the burden of repair work, a water-cooled panel is installed on the back of the refractory to forcibly cool down, ”) Is made a water-cooled structure instead of a refractory structure, and attempts have been made to suppress refractory melting of the entire furnace (see, for example, Patent Documents 1 and 2). ).

しかしながら、上記水冷パネルや水冷構造を用いる方法では、水冷による抜熱量の増大で炉の熱効率が低下するために、エネルギー原単位が増加する。また、初期の設備コストが高いことに加え、操業上も、漏水した場合には炉内の溶湯と反応して水蒸気爆発を引き起こす危険性があり、管理が大変である。さらに、冷却水で回収したエネルギーは温度が低いため有効に活用できず、結果として溶融金属の製造コストが増加する。   However, in the method using the water-cooled panel or the water-cooled structure, the heat efficiency of the furnace decreases due to an increase in the amount of heat removed by water cooling, so the energy intensity increases. Moreover, in addition to high initial equipment costs, there is a risk of causing a water vapor explosion by reacting with the molten metal in the furnace in the case of water leakage in operation, which is difficult to manage. Furthermore, the energy recovered with the cooling water cannot be effectively used because of its low temperature, resulting in an increase in the manufacturing cost of the molten metal.

一方、本出願人は、従来の高炉や溶融還元法に代わる新しい製鉄法として、炭材内装塊成鉱を回転炉床炉で予備還元して固体還元鉄とし、この固体還元鉄を溶解炉で溶解して溶銑を得る溶銑製造プロセスを提案した(特許文献3参照)。   On the other hand, as a new iron making method that replaces the conventional blast furnace and smelting reduction method, the applicant of the present invention preliminarily reduced the carbonaceous agglomerate in a rotary hearth furnace to form solid reduced iron. The hot metal manufacturing process which melt | dissolves and obtains hot metal was proposed (refer patent document 3).

しかしながら、本プロセスを実用化するにあたり、銑鉄などの鉄を主とする溶融金属の製造コストをさらに低減するため、溶解炉(溶融金属製造炉)において、水冷パネルや水冷構造を用いることなく、内張り耐火物(炉壁耐火物)の損耗を抑制しうる技術の開発が強く要請されていた。   However, when this process is put to practical use, in order to further reduce the manufacturing cost of molten metal mainly composed of iron such as pig iron, a lining is used in a melting furnace (molten metal manufacturing furnace) without using a water cooling panel or a water cooling structure. There has been a strong demand for the development of technology that can suppress the wear of refractories (furnace wall refractories).

特開平8−20814号公報JP-A-8-20814 特開平8−291316号公報JP-A-8-291316 特開2007−291452号公報JP 2007-291252 A

そこで、本発明は、溶融金属製造炉において、水冷パネルや水冷構造を用いることなく、炉壁耐火物の損耗を抑制しうる炉壁構造および炉壁耐火物の損耗抑制方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a furnace wall structure and a method for suppressing the wear of a furnace wall refractory that can suppress the wear of the furnace wall refractory without using a water cooling panel or a water cooling structure in a molten metal production furnace. And

請求項1に記載の発明は、鉄含有原料を溶解して鉄を主とする溶融金属を製造するための溶融金属製造炉の炉壁構造であって、鉄皮の内側に耐火物層を備え、該耐火物層のさらに内側に一定の間隙を設けて保護鉄板を降下可能に備え、前記間隙に炭材内装塊成鉱および/または該炭材内装塊成鉱由来の還元鉄(以下、「炭材内装塊成鉱等」と総称する。)を供給する供給手段を備え、前記保護鉄板は、その下端部をスラグ層に浸漬させておき、溶損した分を補うために炉天井から順次供給できるように構成されたものであることを特徴とする溶融金属製造炉の炉壁構造である。 The invention according to claim 1 is a furnace wall structure of a molten metal production furnace for producing a molten metal mainly composed of iron by melting an iron-containing raw material, and includes a refractory layer inside the iron skin. The protective iron plate can be lowered by providing a certain gap inside the refractory layer, and a carbonaceous material agglomerated ore and / or reduced iron derived from the carbonaceous material agglomerated mineral (hereinafter, “ A supply means for supplying a carbonaceous material-incorporated agglomerated mineral or the like.) The protective iron plate is soaked in a slag layer at its lower end, and in order from the furnace ceiling in order to compensate for the melted portion A furnace wall structure of a molten metal production furnace, characterized in that it can be supplied .

請求項2に記載の発明は、前記溶融金属製造炉が円筒状である請求項1に記載の溶融金属製造炉の炉壁構造である。   The invention according to claim 2 is the furnace wall structure of the molten metal production furnace according to claim 1, wherein the molten metal production furnace is cylindrical.

請求項3に記載の発明は、請求項1または2に記載の炉壁構造を有する溶融金属製造炉において、前記保護鉄板は、その下端部を炉内のスラグ層内に浸漬させておき、前記間隙に炭材内装塊成鉱等を充填し、前記保護鉄板は、溶損した分を補うために前記溶融金属製造炉の炉天井から順次供給するとともに、前記炭材内装塊成鉱等は、溶解した分を順次補給するように構成したことを特徴とする溶融金属製造炉の炉壁耐火物の損耗抑制方法である。   The invention according to claim 3 is the molten metal manufacturing furnace having the furnace wall structure according to claim 1 or 2, wherein the protective iron plate has its lower end immersed in a slag layer in the furnace, Filling gaps with carbonaceous material agglomerated minerals, etc., the protective iron plate is sequentially supplied from the furnace ceiling of the molten metal production furnace to compensate for the melted, A method for suppressing wear of a furnace wall refractory in a molten metal production furnace, wherein the melted portions are sequentially replenished.

請求項4に記載の発明は、前記炭材内装塊成鉱等が、その内部において内装炭材の炭素で酸化金属を金属まで還元した後に残留する炭素量が前記炭材内装塊成鉱等の質量に対して5質量%以上となるものである請求項3に記載の溶融金属製造炉の炉壁耐火物の損耗抑制方法である。   In the invention according to claim 4, the amount of carbon remaining after the carbonaceous material agglomerated mineral or the like has reduced the metal oxide to the metal with carbon of the interior carbonaceous material is the carbonaceous material agglomerated mineral or the like. 4. The method for suppressing wear of a furnace wall refractory in a molten metal production furnace according to claim 3, wherein the content is 5% by mass or more based on mass.

本発明によれば、耐火物層の熱負荷の高い部分を保護鉄板および炭材内装塊成鉱等で覆うことで、耐火物層への熱負荷が軽減され、水冷パネルや水冷構造を用いることなく、耐火物層の溶損速度を低下させることができる。その結果として、エネルギー原単位を低減できるとともに、耐火物寿命の延長化が図れ、溶融金属コストのさらなる低減が実現できる。   According to the present invention, the heat load on the refractory layer is reduced by covering the high heat load portion of the refractory layer with a protective iron plate and a carbonaceous material-incorporated agglomerate, and a water-cooled panel or a water-cooled structure is used. In addition, the melting rate of the refractory layer can be reduced. As a result, the energy intensity can be reduced, the refractory life can be extended, and the molten metal cost can be further reduced.

本発明の実施に係る溶銑製造設備の概略を示すフロー図である。It is a flowchart which shows the outline of the hot metal manufacturing equipment based on implementation of this invention. 本発明の実施に係る溶銑製造炉の炉壁構造の概略を示す断面斜視図である。It is a section perspective view showing the outline of the furnace wall structure of the hot metal manufacturing furnace concerning the implementation of the present invention.

(実施形態)
本発明について、鉄含有原料として炭材内装塊成鉱由来の還元鉄(HBI)を、鉄を主とする溶融金属として溶銑を、溶融金属製造炉として溶融金属製造炉をそれぞれ例に挙げてさらに詳細に説明する。
(Embodiment)
Regarding the present invention, reduced iron (HBI) derived from a carbonaceous material agglomerated ore as an iron-containing raw material, hot metal as a molten metal mainly composed of iron, and a molten metal production furnace as an example of a molten metal production furnace This will be described in detail.

図1に本発明の実施に係る溶銑製造設備の概略フローを示す。炭材内装塊成鉱を、図示しない回転炉床炉で加熱し還元して還元鉄Aを製造し、この還元鉄Aを高温のままホットブリケットマシンで熱間成形してHBI(ホットブリケットアイアン)A’とする。そして、この鉄含有原料としてのHBI A’を、溶解熱源兼加炭材としての石炭と、フラックスとしての生石灰等とともに鉄浴溶解炉(溶銑製造炉)1に装入し、酸素を上吹きしてHBI A’を溶解して溶融金属としての溶銑Bを製造する。   FIG. 1 shows a schematic flow of hot metal production equipment according to the embodiment of the present invention. Carbonaceous material agglomerated ore is heated and reduced in a rotary hearth furnace (not shown) to produce reduced iron A, and this reduced iron A is hot-formed with a hot briquette machine at a high temperature to form HBI (hot briquette iron). A ′. Then, HBI A ′ as an iron-containing raw material is charged into an iron bath melting furnace (hot metal production furnace) 1 together with coal as a melting heat source and carburizing material, quick lime as a flux, etc., and oxygen is blown up. Then, HBI A ′ is dissolved to produce hot metal B as a molten metal.

次に、図2に溶銑製造炉の炉壁構造の概略を示す。この溶銑製造炉1は、鉄皮2の内側に耐火物層3を備え、該耐火物層3のさらに内側に一定の間隙4を設けて保護鉄板5を降下可能に備え、前記間隙4に炭材内装塊成鉱由来の還元鉄(冷却後のもの)6を供給する供給手段7を備えたことを特徴とする。   Next, FIG. 2 shows an outline of the furnace wall structure of the hot metal production furnace. The hot metal production furnace 1 includes a refractory layer 3 inside an iron shell 2, a fixed gap 4 is further provided inside the refractory layer 3, and a protective iron plate 5 can be lowered. A supply means 7 for supplying reduced iron (after cooling) 6 derived from a material-incorporated agglomerated mineral is provided.

これにより、耐火物層3の表面が還元鉄6の充填層、さらには保護鉄板5で覆われているので、耐火物層3が、腐食性の高温ガスやスラグと直接接触することがなく、しかも、還元鉄6の充填層が断熱層として機能するので、耐火物3の表面温度が低く保たれ、耐火物層3の溶損が効果的に防止される。   Thereby, since the surface of the refractory layer 3 is covered with the packed layer of the reduced iron 6 and further with the protective iron plate 5, the refractory layer 3 does not come into direct contact with the corrosive hot gas or slag, Moreover, since the packed layer of reduced iron 6 functions as a heat insulating layer, the surface temperature of the refractory 3 is kept low, and the refractory layer 3 is effectively prevented from being damaged.

保護鉄板5は、耐火物層3の表面を腐食性の高温ガスから完全に隔離することができるように、その下端部が炉内のスラグ層D中に浸漬した状態としておくことが好ましい。保護鉄板5は、高温の炉内雰囲気に曝されてもすぐに溶損しないように高融点の低炭素(例えばC:0.5質量%以下)鋼板で製作するのが好ましい。また、たとえその一部が溶損しても、保護鉄板5は降下可能に構成されているので、溶損した分だけ、保護鉄板5を順次降下させてやればよい。また、保護鉄板5は、溶銑製造炉1の炉天井より上方に突き出るように設置しておき、溶損量に応じて炉天井から順次供給できるように構成しておくことで、長期間にわたって耐火物層3を保護することが可能となる。   The protective iron plate 5 is preferably in a state where its lower end is immersed in the slag layer D in the furnace so that the surface of the refractory layer 3 can be completely isolated from the corrosive high temperature gas. The protective iron plate 5 is preferably made of a high melting point low carbon (for example, C: 0.5 mass% or less) steel plate so as not to melt immediately even when exposed to a high-temperature furnace atmosphere. Further, even if a part of the protective iron plate 5 is melted, the protective iron plate 5 is configured to be lowered. Therefore, the protective iron plate 5 may be lowered sequentially by the amount of the molten metal. Moreover, the protective iron plate 5 is installed so as to protrude upward from the furnace ceiling of the hot metal production furnace 1, and is configured so that it can be sequentially supplied from the furnace ceiling according to the amount of erosion loss. The physical layer 3 can be protected.

また、保護鉄板5は、鉄製であるので、溶解しても溶銑の一部になるだけであるので問題は生じない。   Further, since the protective iron plate 5 is made of iron, even if it is melted, it only becomes a part of the hot metal, so there is no problem.

また、保護鉄板5と耐火物層3との間隙4に充填された還元鉄6は、メタル層C表面から上方に充填層を形成するが、メタル層Cに接した還元鉄6は、メタル層C中に順次溶解していくが、供給手段7により、溶解した分に相当する分を順次補給することで、前記間隙4内に還元鉄6の充填層を維持することができる。また、還元鉄6は、溶解しても溶銑とスラグの一部になるだけであるのでやはり問題は生じない。   The reduced iron 6 filled in the gap 4 between the protective iron plate 5 and the refractory layer 3 forms a filled layer upward from the surface of the metal layer C, but the reduced iron 6 in contact with the metal layer C is Although it dissolves sequentially in C, it is possible to maintain a packed bed of reduced iron 6 in the gap 4 by sequentially supplying the amount corresponding to the dissolved amount by the supply means 7. Further, even if the reduced iron 6 is melted, it only becomes a part of the hot metal and slag, so no problem arises.

保護鉄板5の厚みは、薄すぎると強度が不足し、一方厚すぎると重量が過大になり降下させるための機構が大型化してコスト増となるので、例えば、2〜10mm、さらに3〜8mm、特に4〜6mmとするのが推奨される。   If the thickness of the protective iron plate 5 is too thin, the strength will be insufficient. On the other hand, if the thickness is too thick, the weight will be excessive and the mechanism for lowering will be increased in size and cost will increase. For example, 2-10 mm, 3-8 mm, In particular, 4 to 6 mm is recommended.

また、保護鉄板5の熱による変形や歪による応力集中を避けるため、溶銑製造炉1は縦型円筒状とし、保護鉄板5も縦型円筒状に形成するのが好ましい。この場合、保護鉄板5の内径は例えば2m程度であれば製作上問題はない。   Moreover, in order to avoid the stress concentration by the deformation | transformation and distortion by the heat | fever of the protection iron plate 5, it is preferable that the hot metal manufacturing furnace 1 is made into a vertical cylinder shape, and the protection iron plate 5 is also formed in a vertical cylinder shape. In this case, there is no problem in manufacturing if the inner diameter of the protective iron plate 5 is about 2 m, for example.

耐火物3と保護鉄板5との間隙4の大きさは、還元鉄6の充填層による断熱効果を十分に発揮させるため、還元鉄6の平均直径の少なくとも2倍以上、さらには3倍以上とするのが好ましい。ただし、間隙4を大きくしすぎると、炉壁全体の厚みが過大となり、炉体全容積に対する溶解部の有効容積の割合が減少するので、還元鉄6の平均直径の6倍以下、さらには5倍以下に抑えるのが推奨される。   The size of the gap 4 between the refractory 3 and the protective iron plate 5 is at least twice as large as the average diameter of the reduced iron 6 and more than three times in order to sufficiently exhibit the heat insulation effect by the packed bed of the reduced iron 6. It is preferable to do this. However, if the gap 4 is too large, the thickness of the entire furnace wall becomes excessive, and the ratio of the effective volume of the melting part to the total volume of the furnace body decreases, so that the average diameter of the reduced iron 6 is 6 times or less, and further 5 It is recommended to keep it under twice.

還元鉄6は、その内部において、上記回転炉床炉での還元で消費されずに残留した内装炭材の炭素で、同じく未還元の酸化鉄(酸化金属)を金属鉄(金属)まで還元した後に残留する炭素量が、還元鉄6の質量に対して5質量%以上となるように、炭素を含有させるのが好ましい。これにより、還元鉄6が含有炭素で浸炭されて1200℃程度の非常に低い温度で溶融するので、還元鉄6と接する保護鉄板5の表面温度を1200℃程度の低い温度に留めることができ、保護鉄板5の溶損をより確実に防止することができる。このような還元鉄6を得るには、上記回転炉床炉に装入する前(還元前)の炭材内装塊成鉱の内装炭材配合量を調整するとよい。   The reduced iron 6 is the carbon of the interior carbonaceous material remaining without being consumed by the reduction in the rotary hearth furnace, and the unreduced iron oxide (metal oxide) is reduced to metallic iron (metal). It is preferable to contain carbon so that the amount of carbon remaining later is 5 mass% or more with respect to the mass of the reduced iron 6. Thereby, since the reduced iron 6 is carburized with the contained carbon and melts at a very low temperature of about 1200 ° C., the surface temperature of the protective iron plate 5 in contact with the reduced iron 6 can be kept at a low temperature of about 1200 ° C., It is possible to more reliably prevent the protective iron plate 5 from being melted. In order to obtain such reduced iron 6, it is preferable to adjust the amount of interior carbon material blended in the carbon material interior agglomerated before being charged into the rotary hearth furnace (before reduction).

(変形例)
上記実施形態では、鉄含有原料Aとして高温還元鉄を熱間成形したHBIを例示したが、熱間成形することなくそのままの形状(ペレット状やブリケット状)で冷却した還元鉄を用いてもよい。
(Modification)
In the said embodiment, although HBI which hot-formed high temperature reduced iron was illustrated as the iron containing raw material A, you may use the reduced iron cooled by the shape (pellet shape or briquette shape) as it is, without hot forming. .

また、上記実施形では、鉄含有原料Aとして炭材内装塊成鉱由来の還元鉄(HBI)を例示したが、ガスベース還元鉄、スクラップ、冷銑等を、それぞれ単独で用いてもよく、またはこれらの2種類以上を併用することもできる。   Moreover, in the said embodiment, although reduced iron (HBI) derived from a carbonaceous material agglomerated ore was exemplified as the iron-containing raw material A, gas-based reduced iron, scrap, cold iron, etc. may be used alone, Alternatively, two or more of these can be used in combination.

また、上記実施形態では、鉄を主とする溶融金属Bとして溶銑を製造する場合を例示したが、本発明はフェロクロム、フェロマンガン、フェロニッケルなどの溶融合金鉄を製造する場合にも適用できる。この場合は、鉄含有原料AとしてFeの他Cr、Mn、Niなどの非鉄金属をも主要成分として含有する合金鉄原料を用いればよい。   Moreover, in the said embodiment, although the case where hot metal was manufactured as the molten metal B mainly containing iron was illustrated, this invention is applicable also when manufacturing molten alloy irons, such as ferrochrome, ferromanganese, and ferronickel. In this case, the iron-containing raw material A may be an alloy iron raw material containing non-ferrous metals such as Cr, Mn, and Ni as main components in addition to Fe.

また、上記実施形態では、炭材内装塊成鉱等6として炭材内装塊成鉱由来の還元鉄(還元後のもの)のみを用いる例を示したが、炭材内装塊成鉱(未還元のもの)のみを用いてもよいし、これらを併用してもよい。   Moreover, in the said embodiment, although the example using only reduced iron (thing after reduction | restoration) derived from a carbonaceous material agglomerated mineral was shown as carbonaceous material agglomerated mineral 6 etc., a carbonaceous material agglomerated mineral (unreduced) May be used alone or in combination.

特に、未還元のもののみを用いる場合、または、未還元のものと還元後のものを併用する場合は、炉内高温部からの伝熱により加熱されて、炭材内装塊成鉱の内部で未還元の酸化鉄が内装炭材により還元され、COを主成分とするカロリーガスが多量に発生するので、例えば間隙4の上方の炉天井にガス抜き孔を設け、このカロリーガスを回収して有効利用するようにするとよい。   In particular, when using only unreduced materials, or when using both unreduced materials and those after reduction, they are heated by heat transfer from the high temperature part in the furnace, Since unreduced iron oxide is reduced by the interior carbon material and a large amount of caloric gas mainly composed of CO is generated, for example, a vent hole is provided in the furnace ceiling above the gap 4, and this caloric gas is recovered. It is recommended to use it effectively.

なお、上記未還元のもののみを用いる場合、または、未還元のものと還元後のものを併用する場合は、上記内装炭材による酸化鉄の還元が吸熱反応であることから、還元後のもののみを用いる場合よりも、断熱効果が強化されることが期待できる。   In addition, when using only the above unreduced one, or when using both the unreduced one and the one after reduction, the reduction of iron oxide by the interior carbon material is an endothermic reaction. It can be expected that the heat insulation effect is enhanced as compared with the case of using only.

上記実施形態では、耐火物層3と保護鉄板5との間隙4に還元鉄Aを充填する例を示したが、耐火物層3の内面に接するようにもう1枚別の保護鉄板を設置し、2枚の保護鉄板の間に還元鉄Aを充填するようにしてもよい。これにより、設備コストは上昇するものの、耐火物層の損耗をさらに確実に抑制することが可能となる。   In the above embodiment, an example in which the reduced iron A is filled in the gap 4 between the refractory layer 3 and the protective iron plate 5 is shown. However, another protective iron plate is installed so as to be in contact with the inner surface of the refractory layer 3. Reduced iron A may be filled between two protective iron plates. Thereby, although equipment cost rises, it becomes possible to suppress the wear of a refractory layer more reliably.

また、上記実施例では、溶銑製造炉として鉄浴溶解炉を例示したが、本発明は電気炉にも適用できる。   Moreover, in the said Example, although the iron bath melting furnace was illustrated as a hot metal manufacturing furnace, this invention is applicable also to an electric furnace.

1:溶融金属製造炉(溶銑製造炉)
2:鉄皮
3:耐火物層
4:間隙
5:保護鉄板
6:炭材内装塊成鉱等(炭材内装塊成鉱由来の還元鉄)
7:供給手段
A:鉄含有原料(炭材内装塊成鉱由来の還元鉄、HBI)
B:溶融金属(溶銑)
C:メタル層
D:スラグ層
1: Molten metal production furnace (hot metal production furnace)
2: Iron skin 3: Refractory layer 4: Gap 5: Protective iron plate 6: Carbonaceous material agglomerated mineral (reduced iron derived from carbonaceous material agglomerated mineral)
7: Supply means A: Iron-containing raw material (reduced iron derived from carbonaceous material agglomerated ore, HBI)
B: Molten metal (hot metal)
C: Metal layer D: Slag layer

Claims (4)

鉄含有原料を溶解して鉄を主とする溶融金属を製造するための溶融金属製造炉の炉壁構造であって、鉄皮の内側に耐火物層を備え、該耐火物層のさらに内側に一定の間隙を設けて保護鉄板を降下可能に備え、前記間隙に炭材内装塊成鉱および/または該炭材内装塊成鉱由来の還元鉄(以下、「炭材内装塊成鉱等」と総称する。)を供給する供給手段を備え、前記保護鉄板は、その下端部をスラグ層に浸漬させておき、溶損した分を補うために炉天井から順次供給できるように構成されたものであることを特徴とする溶融金属製造炉の炉壁構造。 A furnace wall structure of a molten metal production furnace for producing a molten metal mainly containing iron by melting an iron-containing raw material, comprising a refractory layer on the inner side of the iron shell, and further on the inner side of the refractory layer Provided with a certain gap so that a protective iron plate can be lowered, and in the gap, a carbonaceous material agglomerated mineral and / or reduced iron derived from the carbonaceous material agglomerated mineral (hereinafter referred to as “carbonaceous material agglomerated mineral”) The protective iron plate is constructed so that its lower end is immersed in a slag layer and can be sequentially supplied from the furnace ceiling in order to compensate for the melted portion. A furnace wall structure for a molten metal manufacturing furnace, characterized in that: 前記溶融金属製造炉が円筒状である請求項1に記載の溶融金属製造炉の炉壁構造。   The furnace wall structure of the molten metal production furnace according to claim 1, wherein the molten metal production furnace is cylindrical. 請求項1または2に記載の炉壁構造を有する溶融金属製造炉において、前記保護鉄板は、その下端部を炉内のスラグ層内に浸漬させておき、前記間隙に炭材内装塊成鉱等を充填し、前記保護鉄板は、溶損した分を補うために前記溶融金属製造炉の炉天井ら順次供給するとともに、前記炭材内装塊成鉱等は、溶解した分を順次補給するように構成したことを特徴とする溶融金属製造炉の炉壁耐火物の損耗抑制方法。 The molten metal manufacturing furnace having a furnace wall structure according to claim 1 or 2, wherein the protective iron plate has its lower end immersed in a slag layer in the furnace, and a carbonaceous material agglomerated mineral or the like in the gap. filled with the protective iron plate, as well as the manufacturing molten metal furnace of the furnace roof or al sequentially supplied to compensate for erosion was divided, the carbonaceous material interior mass Naruko etc., to sequentially supply the dissolved amount A method for suppressing the wear of a furnace wall refractory in a molten metal production furnace. 前記炭材内装塊成鉱等が、その内部において内装炭材の炭素で酸化金属を金属まで還元した後に残留する炭素量が前記炭材内装塊成鉱等の質量に対して5質量%以上となるものである請求項3に記載の溶融金属製造炉の炉壁耐火物の損耗抑制方法。   The amount of carbon remaining after the carbonaceous material agglomerated or the like has reduced the metal oxide to the metal with the carbon of the interior carbonaceous material is 5% by mass or more based on the mass of the carbonaceous material agglomerated mineral or the like. The method for suppressing wear of a furnace wall refractory in a molten metal production furnace according to claim 3.
JP2009105396A 2009-04-23 2009-04-23 Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories Expired - Fee Related JP5491764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105396A JP5491764B2 (en) 2009-04-23 2009-04-23 Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105396A JP5491764B2 (en) 2009-04-23 2009-04-23 Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories

Publications (2)

Publication Number Publication Date
JP2010255907A JP2010255907A (en) 2010-11-11
JP5491764B2 true JP5491764B2 (en) 2014-05-14

Family

ID=43317030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105396A Expired - Fee Related JP5491764B2 (en) 2009-04-23 2009-04-23 Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories

Country Status (1)

Country Link
JP (1) JP5491764B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981097B (en) * 2021-02-07 2022-09-20 甘肃金麓银峰冶金科技有限公司 Furnace wall and slag adhering method of water-cooling-wall-free nickel-iron ore thermoelectric furnace
CN114160780A (en) * 2021-12-01 2022-03-11 中国重型机械研究院股份公司 Air curtain control device for improving quality of molten steel and service life of tundish lining

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624397Y2 (en) * 1975-02-13 1981-06-08

Also Published As

Publication number Publication date
JP2010255907A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP4317580B2 (en) Method for producing reduced iron pellets and method for producing pig iron
KR101171576B1 (en) Process for producing molten metal
TW564261B (en) Method and device for producing molten iron
JP2012007225A (en) Method for producing molten steel using particulate metallic iron
EP2210959B1 (en) Process for producing molten iron
CN102230054A (en) Novel process for producing super high manganese steel casting
JP2009102746A (en) Method for producing pig iron
JP5491764B2 (en) Furnace wall structure of molten metal manufacturing furnace and method for suppressing wear of furnace wall refractories
JP4326581B2 (en) How to operate a vertical furnace
JP6429190B2 (en) Electric furnace for melting steelmaking slag
WO2021100565A1 (en) Method for producing molten steel
JP5368243B2 (en) Molten metal production equipment
AU2010304230B2 (en) Apparatus for manufacturing molten metal
JPWO2009028416A1 (en) Iron bath smelting reduction furnace
JP6097407B2 (en) Method for reusing iron-containing by-products and apparatus therefor
JP5400553B2 (en) Molten metal production equipment
CN107619902A (en) The technique that a kind of electric furnace converts hot metal charging injection blast furnace dust
Steppich 6.5. 3 Graphite Electrodes for Electric Arc Furnaces
KR20180060095A (en) METHOD FOR RECOVERING Fe FROM CONVERTER SLAG CONTAINING Fe
JPH0867907A (en) Operation of vertical iron scrap melting furnace
JP2783894B2 (en) Iron bath smelting reduction method
JP5426988B2 (en) Molten metal production equipment
Coetzee et al. Application of UCAR® Chill Kote™ lining to ilmenite smelting
Duncanson et al. New refractory lining direction at Jindal stainless–first Indian FeCr producer to install UCAR Chillkote® linings
JPH06102808B2 (en) Melt reduction method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees