JP5488816B2 - Dual refrigeration equipment - Google Patents

Dual refrigeration equipment Download PDF

Info

Publication number
JP5488816B2
JP5488816B2 JP2010081573A JP2010081573A JP5488816B2 JP 5488816 B2 JP5488816 B2 JP 5488816B2 JP 2010081573 A JP2010081573 A JP 2010081573A JP 2010081573 A JP2010081573 A JP 2010081573A JP 5488816 B2 JP5488816 B2 JP 5488816B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
evaporator
valve
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010081573A
Other languages
Japanese (ja)
Other versions
JP2011214754A (en
Inventor
亮 奥山
恵子 城本
俊彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010081573A priority Critical patent/JP5488816B2/en
Publication of JP2011214754A publication Critical patent/JP2011214754A/en
Application granted granted Critical
Publication of JP5488816B2 publication Critical patent/JP5488816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯や暖房に供される温水を生成するための第1および第2の2つの冷媒回路を備え、外気温度等に応じて、一方の冷媒回路のみを運転する単段サイクル運転と、双方の冷媒回路を運転する二元サイクル運転とに切り替え可能な二元冷凍装置に関するものである。   The present invention includes first and second refrigerant circuits for generating hot water used for hot water supply or heating, and a single-stage cycle operation in which only one refrigerant circuit is operated according to the outside air temperature or the like. The present invention relates to a binary refrigeration apparatus that can be switched to a binary cycle operation that operates both refrigerant circuits.

ヒートポンプにより、比較的高い温水を生成して例えば温水暖房を行う場合、一つの冷媒回路による単段サイクル運転では、外気温度が例えば氷点下の低外気温時には冷凍サイクルの運転を維持することが困難である。   For example, when performing hot water heating by generating relatively high warm water using a heat pump, it is difficult to maintain refrigeration cycle operation when the outside air temperature is low, for example, at a low outside air temperature, such as a single refrigerant circuit. is there.

すなわち、外気温度が氷点下になると、圧縮機の圧縮比が増大して、その吐出温度が軽く100℃以上になり、場合によっては許容限界とされている115℃超となるおそれがある。   That is, when the outside air temperature is below freezing point, the compression ratio of the compressor increases, and the discharge temperature is lightly over 100 ° C., possibly exceeding the allowable limit of 115 ° C. in some cases.

密閉型の圧縮機では、圧縮部より吐出される冷媒が一旦密閉容器内に吹き出されるため、その冷媒温度が115℃超となると、冷凍機油の劣化やそれに伴うコンタミネーションやスラッジの発生、それに圧縮機モータの絶縁性劣化等の問題が引き起こされる。   In a hermetic compressor, the refrigerant discharged from the compression section is once blown into the hermetic container, so if the refrigerant temperature exceeds 115 ° C, the refrigeration oil deteriorates, and contamination and sludge are generated. Problems such as insulation deterioration of the compressor motor are caused.

そこで、第1および第2の2つの冷媒回路を冷媒間熱交換器で接続し、外気温度に応じて、一方の冷媒回路のみを運転する単段サイクル運転と、双方の冷媒回路を同時に運転する二元サイクル運転とを適宜切り替える二元冷凍装置が提案されている(例えば、特許文献1参照)。   Therefore, the first and second refrigerant circuits are connected by an inter-refrigerant heat exchanger, and a single-stage cycle operation in which only one refrigerant circuit is operated according to the outside air temperature, and both refrigerant circuits are operated simultaneously. A binary refrigeration apparatus that switches between two-cycle operation as appropriate has been proposed (see, for example, Patent Document 1).

特許文献1に記載の二元冷凍装置は、2次側冷媒回路の蒸発器の両端に開閉弁を介して迂回配管が接続され、熱源側の1次側冷媒回路の凝縮器内には、1次側冷媒回路の冷媒循環系のパスと上記迂回配管のパスとが通される。二元サイクル運転時には、上記迂回配管の開閉弁を閉として、各冷媒回路をそれぞれ独立サイクルとして運転する。   In the binary refrigeration apparatus described in Patent Document 1, bypass pipes are connected to both ends of the evaporator of the secondary side refrigerant circuit via an open / close valve, and the condenser of the primary side refrigerant circuit on the heat source side has 1 The refrigerant circulation system path of the secondary refrigerant circuit and the bypass pipe path are passed through. During the dual cycle operation, the on-off valve of the bypass pipe is closed and each refrigerant circuit is operated as an independent cycle.

これに対して、単段サイクル運転時には、1次側冷媒回路の圧縮機の運転を停止するとともに、上記迂回配管の開閉弁を開として、2次側冷媒回路から冷媒間熱交換器を切り離し、2次側冷媒回路の凝縮器に1次側冷媒回路の凝縮器を使用する。   On the other hand, at the time of single-stage cycle operation, the operation of the compressor of the primary refrigerant circuit is stopped, the on-off valve of the bypass pipe is opened, and the inter-refrigerant heat exchanger is disconnected from the secondary refrigerant circuit, The condenser of a primary side refrigerant circuit is used for the condenser of a secondary side refrigerant circuit.

このようにして、二元サイクル運転と単段サイクル運転とが切り替えられるが、上記従来例によると、次のような問題がある。   In this way, the two-cycle operation and the single-cycle operation can be switched. However, according to the conventional example, there are the following problems.

第1に、2次側冷媒回路において、単段サイクル運転から二元サイクル運転に切り替える際、冷媒の一部が上記迂回配管内に残されることから、1次側から上記迂回配管内に残留した冷媒に伝熱してしまい、これが熱ロスとなり、その分、1次側凝縮の効率が低下する。   First, in the secondary refrigerant circuit, when switching from single-stage cycle operation to dual cycle operation, a part of the refrigerant remains in the bypass pipe, so that it remains in the bypass pipe from the primary side. Heat is transferred to the refrigerant, which becomes a heat loss, and the efficiency of the primary side condensation is reduced accordingly.

第2に、熱源側の1次側冷媒回路の凝縮器内には、1次側冷媒回路の冷媒循環系のパスと上記迂回配管のパスとが並列的に通されるため、1次側冷媒回路の凝縮器が大型になり、スペース的に好ましくない。   Second, since the path of the refrigerant circulation system of the primary refrigerant circuit and the path of the bypass pipe are passed in parallel in the condenser of the primary refrigerant circuit on the heat source side, the primary refrigerant The condenser of the circuit becomes large and is not preferable in terms of space.

特開2000−274848号公報JP 2000-274848 A

したがって、本発明の課題は、高元側と低元側2つの冷媒回路を有し、単段サイクル運転と二元サイクル運転とに切り替え可能な二元冷凍装置において、高元側の蒸発器に低元側の蒸発器を用いる単段サイクル運転時に、低元側の蒸発器内で低元側冷媒と高元側冷媒との間で熱ロスとなる伝熱が起こらないようにすることにある。また、熱源側の冷媒回路の蒸発器に通されるパスを共用とすることで、蒸発器の小型化をはかることにある。   Accordingly, an object of the present invention is to provide a high-side evaporator in a two-way refrigeration apparatus that has two refrigerant circuits of a high-side and a low-side, and can be switched between a single-stage cycle operation and a dual-cycle operation. In single-stage cycle operation using a low-side evaporator, the heat transfer that causes heat loss between the low-side refrigerant and the high-side refrigerant is prevented from occurring in the low-side evaporator. . In addition, the size of the evaporator can be reduced by sharing the path that passes through the evaporator of the refrigerant circuit on the heat source side.

上記課題を解決するため、請求項1に記載された発明は、温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、上記単段サイクル運転時に、上記第1冷媒循環系の上記第1蒸発部の代わりに、上記第2冷媒循環系の上記第2蒸発部を用いるとともに、上記二元サイクル運転時には、上記単段サイクル運転時と上記二元サイクル運転時とで上記第1,第2の各冷媒回路で使用できる冷媒量をほぼ同じとする配管切替手段を備えていることを特徴としている。
In order to solve the above-mentioned problem, the invention described in claim 1 is a first refrigerant including a hot water generating unit that generates hot water, a first compressor, a first condensing unit, a first expansion valve, and a first evaporating unit. A first refrigerant circuit having a circulation system, and a second refrigerant circuit having a second refrigerant circulation system including a second compressor, a second condensing unit, a second expansion valve, and a second evaporation unit, the first condensing A water-refrigerant heat exchanger is provided between the hot water generator and the hot water generator, and an inter-refrigerant heat exchanger is provided between the first evaporator and the second condenser. And the hot water temperature as a control factor, in the two-stage refrigeration apparatus in which single-stage cycle operation and dual-cycle operation are selected, instead of the first evaporator in the first refrigerant circulation system during the single-stage cycle operation In addition, the second evaporator of the second refrigerant circulation system is used, and the second During cycle operation, as characterized by comprising a pipe switching means for substantially the same said single-stage cycle operation time and the binary cycle operation during the above first, the amount of refrigerant can be used in the second respective refrigerant circuits Yes.

請求項2に記載された発明は、温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、上記単段サイクル運転時に、上記第1冷媒循環系の上記第1蒸発部の代わりに、上記第2冷媒循環系の上記第2蒸発部を用いるとともに、上記二元サイクル運転時には、上記単段サイクル運転時と上記二元サイクル運転時とで上記第1,第2の各冷媒回路で使用できる冷媒量をほぼ同じとする配管切替手段を備え、上記配管切替手段は、上記第1膨張弁の冷媒出口と上記第1蒸発部の冷媒入口との間の配管部分から第1流路切替弁を介して分岐し、上記第2冷媒循環系の上記第2蒸発部の冷媒入口側に至る第1迂回配管と、上記第1蒸発部の冷媒出口と上記第1圧縮機の吸入側との間の配管部分から第2流路切替弁を介して分岐し、上記第2冷媒循環系の上記第2蒸発部の冷媒出口側に至る第2迂回配管と、上記第2冷媒循環系内で上記第2迂回配管の接続箇所と上記第2圧縮機の吸入側との間に設けられた開閉弁と、少なくとも上記各圧縮機、上記各膨張弁、上記各流路切替弁および上記開閉弁を制御する制御部とを備えていることを特徴としている。
The invention described in claim 2 is a first refrigerant having a first refrigerant circulation system including a hot water generator that generates hot water, and a first compressor, a first condenser, a first expansion valve, and a first evaporator. A circuit, and a second refrigerant circuit having a second refrigerant circulation system including a second compressor, a second condensing unit, a second expansion valve, and a second evaporating unit, the first condensing unit and the hot water generating unit, A water-refrigerant heat exchanger is provided between the first evaporator and the second condenser, and at least the outside air temperature and the hot water temperature are used as control factors. In the two-stage refrigeration apparatus in which the single-stage cycle operation and the dual-cycle operation are selected, the second refrigerant circulation is performed instead of the first evaporator of the first refrigerant circulation system during the single-stage cycle operation. When using the second evaporation part of the system and in the dual cycle operation, Single stage cycle operation time and the binary cycle operation during the above first, with a pipe switch means for substantially the same amount of refrigerant that can be used in the second respective refrigerant circuits, the piping switching means, the first expansion The pipe branches between the refrigerant outlet of the valve and the refrigerant inlet of the first evaporator through the first flow path switching valve and reaches the refrigerant inlet side of the second evaporator of the second refrigerant circulation system. The first bypass pipe branches from a pipe portion between the refrigerant outlet of the first evaporator and the suction side of the first compressor via a second flow path switching valve, and the second refrigerant circulation system A second bypass pipe reaching the refrigerant outlet side of the second evaporator, and an on-off valve provided between a connection point of the second bypass pipe and the suction side of the second compressor in the second refrigerant circulation system And control for controlling at least the compressors, the expansion valves, the flow path switching valves, and the on-off valves. It is characterized in that it comprises and.

請求項3に記載された発明は、上記請求項2において、上記二元サイクル運転から上記単段サイクル運転への切り替えにあたって、上記制御部は、上記第2膨張弁を全閉として上記第2圧縮機を運転して、上記第2膨張弁の出口側から上記第2蒸発部を経て上記第2圧縮機の吸入側に至る配管系内に存在する冷媒を上記第2圧縮機の吐出側から上記第2凝縮部を経て上記第2膨張弁に至る配管系内に回収した後、上記開閉弁を閉じ、上記第1流路切替弁の上記第2蒸発部側を開,上記第1蒸発部側を閉とし、上記第2流路切替弁の上記第1蒸発部側を閉,上記第2蒸発部側を開とすることを特徴としている。   According to a third aspect of the present invention, in the second aspect of the present invention, in switching from the dual cycle operation to the single stage cycle operation, the control unit fully closes the second expansion valve and performs the second compression. The refrigerant is present in the piping system from the outlet side of the second expansion valve through the second evaporator to the suction side of the second compressor from the discharge side of the second compressor. After being collected in the piping system that reaches the second expansion valve through the second condensing unit, the on-off valve is closed, the second evaporating unit side of the first flow path switching valve is opened, and the first evaporating unit side is opened. Is closed, the first evaporation section side of the second flow path switching valve is closed, and the second evaporation section side is opened.

請求項4に記載された発明は、上記請求項2において、上記単段サイクル運転から上記二元サイクル運転への切り替えにあたって、上記制御部は、上記第1膨張弁を全閉として上記第1圧縮機を運転して、上記第1膨張弁の冷媒出口側から上記第2蒸発部を経て上記第1圧縮機の吸入側に至る配管系内に存在する冷媒を上記第1圧縮機の吐出側から上記第1凝縮部を経て上記第1膨張弁に至る配管系内に回収した後、上記第1流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉とし、上記第2流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉とした後、上記開閉弁を開とすることを特徴としている。   According to a fourth aspect of the present invention, in the second aspect of the present invention, in switching from the single-stage cycle operation to the dual-cycle operation, the control unit fully closes the first expansion valve and performs the first compression. The refrigerant is present in the piping system from the refrigerant outlet side of the first expansion valve to the suction side of the first compressor from the refrigerant outlet side of the first expansion valve from the discharge side of the first compressor. After collecting in the piping system that reaches the first expansion valve through the first condensing unit, the first evaporation unit side of the first flow path switching valve is opened, the second evaporation unit side is closed, The on-off valve is opened after the first evaporation section side of the second flow path switching valve is opened and the second evaporation section side is closed.

請求項5に記載された発明は、上記請求項3または4において、上記冷媒回収時には、上記第2蒸発部が備える送風ファンの回転を停止することを特徴としている。   The invention described in claim 5 is characterized in that, in the above-mentioned claim 3 or 4, the rotation of the blower fan provided in the second evaporator is stopped when the refrigerant is recovered.

請求項に記載された発明は、温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、上記第1膨張弁の冷媒出口と上記第1蒸発部の冷媒入口との間の配管部分から第1流路切替弁を介して分岐し、上記第2蒸発部内を上記第2冷媒循環系のパス経路とは別のパス経路を通り、上記第1蒸発部の冷媒出口と上記第1圧縮機との間の配管部分に第2流路切替弁を介して接続される迂回配管と、上記第2冷媒循環系内で上記第2蒸発部の冷媒出口側と上記第2圧縮機の吸入側との間に設けられた開閉弁と、少なくとも上記各圧縮機、上記各膨張弁,上記各流路切替弁および上記開閉弁を制御する制御部とを備え、上記二元サイクル運転から上記単段サイクル運転への切り替えにあたって、上記制御部は、上記第1圧縮機の運転を停止した後、上記第1流路切替弁の上記第2蒸発部側を開,上記第1蒸発部側を閉にするとともに、上記第2流路切替弁の上記第1蒸発部側を閉,上記第2蒸発部側を開とし、上記第2膨張弁を全閉として上記第2圧縮機を運転して、上記第2膨張弁の出口側から上記第2蒸発部を経て上記第2圧縮機の吸入側に至る配管系内に存在する冷媒を上記第2圧縮機の吐出側から上記第2凝縮部を経て上記第2膨張弁に至る配管系内に回収した後、上記開閉弁を閉じることを特徴としている。
The invention described in claim 6 is a first refrigerant having a first refrigerant circulation system including a hot water generating unit that generates hot water, and a first compressor, a first condensing unit, a first expansion valve, and a first evaporating unit. A circuit, and a second refrigerant circuit having a second refrigerant circulation system including a second compressor, a second condensing unit, a second expansion valve, and a second evaporating unit, the first condensing unit and the hot water generating unit, A water-refrigerant heat exchanger is provided between the first evaporator and the second condenser, and at least the outside air temperature and the hot water temperature are used as control factors. In the binary refrigeration apparatus in which the single-stage cycle operation and the dual-cycle operation are selected, the first flow path from the pipe portion between the refrigerant outlet of the first expansion valve and the refrigerant inlet of the first evaporator Branching through a switching valve, the inside of the second evaporator is different from the path route of the second refrigerant circulation system A bypass pipe connected to a pipe portion between the refrigerant outlet of the first evaporator and the first compressor via a second flow path switching valve, and in the second refrigerant circulation system. An on-off valve provided between the refrigerant outlet side of the second evaporator and the suction side of the second compressor, at least the compressor, the expansion valve, the flow path switching valve, and the on-off valve. A controller for controlling the two-way cycle operation to the single-stage cycle operation, the control unit, after stopping the operation of the first compressor, The second evaporation section side is opened, the first evaporation section side is closed, the first evaporation section side of the second flow path switching valve is closed, the second evaporation section side is opened, and the second evaporation section side is opened. The second expansion valve is fully closed, the second compressor is operated, and the second evaporation is performed from the outlet side of the second expansion valve. The refrigerant existing in the piping system that reaches the suction side of the second compressor through the refrigerant is recovered from the discharge side of the second compressor into the piping system that reaches the second expansion valve via the second condensing unit. The on-off valve is closed.

請求項に記載された発明は、温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、上記第1膨張弁の冷媒出口と上記第1蒸発部の冷媒入口との間の配管部分から第1流路切替弁を介して分岐し、上記第2蒸発部内を上記第2冷媒循環系のパス経路とは別のパス経路を通り、上記第1蒸発部の冷媒出口と上記第1圧縮機との間の配管部分に第2流路切替弁を介して接続される迂回配管と、上記第2冷媒循環系内で上記第2蒸発部の冷媒出口側と上記第2圧縮機の吸入側との間に設けられた開閉弁と、少なくとも上記各圧縮機、上記各膨張弁,上記各流路切替弁および上記開閉弁を制御する制御部とを備え、上記単段サイクル運転から上記二元サイクル運転への切り替えにあたって、上記制御部は、上記第1膨張弁を全閉、上記第1流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉とし、上記第2流路切替弁の上記第1蒸発部側を閉,上記第2蒸発部側を開として、上記第1圧縮機を運転して、上記迂回配管内に存在する冷媒を上記第1圧縮機の吐出側から上記第1凝縮部を経て上記第1膨張弁に至る配管系内に回収した後、上記第2流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉にすることを特徴としている。
The invention described in claim 7 is a first refrigerant having a first refrigerant circulation system including a hot water generator that generates hot water, and a first compressor, a first condenser, a first expansion valve, and a first evaporator. A circuit, and a second refrigerant circuit having a second refrigerant circulation system including a second compressor, a second condensing unit, a second expansion valve, and a second evaporating unit, the first condensing unit and the hot water generating unit, A water-refrigerant heat exchanger is provided between the first evaporator and the second condenser, and at least the outside air temperature and the hot water temperature are used as control factors. In the binary refrigeration apparatus in which the single-stage cycle operation and the dual-cycle operation are selected, the first flow path from the pipe portion between the refrigerant outlet of the first expansion valve and the refrigerant inlet of the first evaporator Branching through a switching valve, the inside of the second evaporator is different from the path route of the second refrigerant circulation system A bypass pipe connected to a pipe portion between the refrigerant outlet of the first evaporator and the first compressor via a second flow path switching valve, and in the second refrigerant circulation system. An on-off valve provided between the refrigerant outlet side of the second evaporator and the suction side of the second compressor, at least the compressor, the expansion valve, the flow path switching valve, and the on-off valve. A controller that controls the first stage valve, and when switching from the single-stage cycle operation to the dual cycle operation, the control unit fully closes the first expansion valve and the first flow path switching valve. The first compressor is operated by opening the evaporator side, closing the second evaporator side, closing the first evaporator side of the second flow path switching valve, and opening the second evaporator side. Then, the refrigerant present in the bypass pipe is transferred from the discharge side of the first compressor to the first condenser through the first condensing part. After collecting in the pipe system leading to the expansion valve, the first evaporator side of the second channel switching valve opens, it is characterized in that to close the said second evaporation unit side.

本発明によれば、第1冷媒回路(高元側)のみを運転する単段サイクル運転時に、その第1冷媒循環系の第1蒸発部の代わりに、第2冷媒回路(低元側)の第2蒸発部が用いられるが、単段サイクル運転に先だって、第2冷媒回路の第2蒸発部側の冷媒が第2圧縮機により第2凝縮部側の配管内に回収(ポンプダウン)されることにより、各冷媒回路の冷媒が混ざり合わないため、第2蒸発部のパスを共用することができ、第2蒸発部が小型でよいものとなる。   According to the present invention, at the time of single-stage cycle operation in which only the first refrigerant circuit (high source side) is operated, instead of the first evaporator of the first refrigerant circulation system, the second refrigerant circuit (low source side) Although the second evaporator is used, prior to the single-stage cycle operation, the refrigerant on the second evaporator side of the second refrigerant circuit is recovered (pumped down) into the pipe on the second condenser side by the second compressor. Thereby, since the refrigerant of each refrigerant circuit does not mix, the path of the second evaporation unit can be shared, and the second evaporation unit can be small.

また、単段サイクル運転から二元サイクル運転への切り替え時には、第1,第2迂回配管を介して第2蒸発部側に流されていた第1冷媒循環系の冷媒が、第1圧縮機により第1凝縮部側の配管内に回収され、上記迂回配管内や共有する熱交換器内に残留する冷媒が第2冷媒循環系の冷媒と熱交換することによる熱ロスが解消されるため、能力にばらつきが生じない。   In addition, when switching from single-stage cycle operation to dual-cycle operation, the refrigerant in the first refrigerant circulation system that has flowed to the second evaporator side via the first and second bypass pipes is transferred by the first compressor. Since the refrigerant recovered in the pipe on the first condensing part side and remaining in the bypass pipe or the shared heat exchanger exchanges heat with the refrigerant in the second refrigerant circulation system, the heat loss is eliminated. Variation does not occur.

本発明の第1実施形態に係る二元冷凍装置の冷媒回路図。The refrigerant circuit figure of the binary refrigeration apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る二元冷凍装置の冷媒回路図。The refrigerant circuit figure of the dual freezing apparatus which concerns on 2nd Embodiment of this invention. 上記第1実施形態における二元サイクル運転から単段サイクル運転への切り替え時の動作フローチャート。The operation | movement flowchart at the time of the switch from the dual cycle operation in the said 1st Embodiment to a single stage cycle operation. 上記第1実施形態における単段サイクル運転から二元サイクル運転への切り替え時の動作フローチャート。The operation | movement flowchart at the time of the switch from the single stage cycle driving | operation in the said 1st Embodiment to a dual cycle driving | operation.

次に、図1ないし図により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 4 , but the present invention is not limited to this.

まず、図1を参照して、第1実施形態に係る二元冷凍装置は、高元側の第1冷媒回路10と、低元側の第2冷媒回路20と、温水生成部30とを備える。第1冷媒回路10と温水生成部30は、水−冷媒熱交換器Aを介して接続され、第1冷媒回路10と第2冷媒回路20は、冷媒間熱交換器Bを介して接続されている。   First, referring to FIG. 1, the binary refrigeration apparatus according to the first embodiment includes a high-side first refrigerant circuit 10, a low-side second refrigerant circuit 20, and a hot water generator 30. . The 1st refrigerant circuit 10 and the warm water production | generation part 30 are connected via the water-refrigerant heat exchanger A, and the 1st refrigerant circuit 10 and the 2nd refrigerant circuit 20 are connected via the heat exchanger B between refrigerant | coolants. Yes.

温水生成部30は、ポンプ32を含む水循環回路31を有し、水循環回路31の一部分が受熱部31aとして水−冷媒熱交換器A内に配管されている。水循環回路31には、温水利用端末33が含まれている。   The hot water generation unit 30 includes a water circulation circuit 31 including a pump 32, and a part of the water circulation circuit 31 is piped in the water-refrigerant heat exchanger A as a heat receiving unit 31a. The water circulation circuit 31 includes a hot water use terminal 33.

この実施形態において、温水利用端末33には、送風ファン35を有する温水ファンコンベクタ34が用いられているが、床暖房パネルヒータやラジエータであってもよい。また、温水利用端末33は、貯湯タンクを有する給湯設備であってもよい。   In this embodiment, the hot water use terminal 33 uses the hot water fan convector 34 having the blower fan 35, but may be a floor heating panel heater or a radiator. Moreover, the hot water use terminal 33 may be a hot water supply facility having a hot water storage tank.

第1冷媒回路10は、基本的な構成として、第1圧縮機11,第1凝縮部12,第1膨張弁13,第1蒸発部15および第1アキュムレータ17を含む第1冷媒循環系10aを備え、第1凝縮部12が水−冷媒熱交換器A内に配置され、第1蒸発部15が冷媒間熱交換器B内に配置されている。第1膨張弁13には、好ましくは電子膨張弁が用いられる。   The first refrigerant circuit 10 includes, as a basic configuration, a first refrigerant circulation system 10 a including a first compressor 11, a first condensing unit 12, a first expansion valve 13, a first evaporation unit 15, and a first accumulator 17. The 1st condensation part 12 is arranged in water-refrigerant heat exchanger A, and the 1st evaporation part 15 is arranged in heat exchanger B between refrigerants. An electronic expansion valve is preferably used as the first expansion valve 13.

同様に、第2冷媒回路20も、基本的な構成として、第2圧縮機21,第2凝縮部22,第2膨張弁23,第2蒸発部24および第2アキュムレータ27を含む第2冷媒循環系20aを備え、第2凝縮部22が冷媒間熱交換器B内に配置されている。第2蒸発部24は、送風ファン25を有する空気−冷媒熱交換器で室外に配置される。第2膨張弁23にも、好ましくは電子膨張弁が用いられる。   Similarly, the second refrigerant circuit 20 includes a second compressor 21, a second condensing unit 22, a second expansion valve 23, a second evaporating unit 24, and a second accumulator 27 as a basic configuration. The system 20a is provided, and the second condensing unit 22 is disposed in the inter-refrigerant heat exchanger B. The second evaporator 24 is an air-refrigerant heat exchanger having a blower fan 25 and is disposed outdoors. An electronic expansion valve is preferably used for the second expansion valve 23 as well.

二元サイクル運転と単段サイクル運転とを切り替えるため、第1冷媒回路10の第1冷媒循環系10aから第2冷媒回路20の第2冷媒循環系20aにかけて第1,第2迂回配管18,19が配管される。   In order to switch between the dual cycle operation and the single-stage cycle operation, the first and second bypass pipes 18, 19 extend from the first refrigerant circulation system 10 a of the first refrigerant circuit 10 to the second refrigerant circulation system 20 a of the second refrigerant circuit 20. Is piped.

そのため、第1冷媒循環系10aのうちの第1膨張弁13の冷媒出口と第1蒸発部15の冷媒入口15aとの間の配管部分に第1流路切替弁14が設けられるとともに、第1蒸発部15の冷媒出口15bと第1アキュムレータ17との間の配管部分に第2流路切替弁16が設けられている。第1流路切替弁14,第2流路切替弁16には、ともに三方弁が用いられる。   Therefore, a first flow path switching valve 14 is provided in a pipe portion between the refrigerant outlet of the first expansion valve 13 and the refrigerant inlet 15a of the first evaporator 15 in the first refrigerant circulation system 10a, and the first A second flow path switching valve 16 is provided in a piping portion between the refrigerant outlet 15 b of the evaporation unit 15 and the first accumulator 17. A three-way valve is used for both the first flow path switching valve 14 and the second flow path switching valve 16.

第1流路切替弁14は、1つの流入口14aと、選択的に開閉される2つの流出口14b,14cとを有し、流入口14aが第1膨張弁13の冷媒出口側に接続され、一方の流出口14bが第1蒸発部15の冷媒入口15a側に接続される。   The first flow path switching valve 14 has one inflow port 14 a and two outflow ports 14 b and 14 c that are selectively opened and closed, and the inflow port 14 a is connected to the refrigerant outlet side of the first expansion valve 13. One outlet 14b is connected to the refrigerant inlet 15a side of the first evaporator 15.

他方の流出口14cには、第1迂回配管18の一端が接続され、第1迂回配管18の他端は、第2冷媒循環系20a内の第2膨張弁23と第2蒸発部24の冷媒入口24aとの間の配管部分に接続される。   One end of the first bypass pipe 18 is connected to the other outlet 14c, and the other end of the first bypass pipe 18 is the refrigerant of the second expansion valve 23 and the second evaporator 24 in the second refrigerant circulation system 20a. It is connected to a pipe portion between the inlet 24a.

第2流路切替弁16は、1つの流出口16aと、選択的に開閉される2つの流入口16b,16cとを有し、流出口16aが第1アキュムレータ17側に接続され、一方の流入口16bが第1蒸発部15の冷媒出口15b側に接続される。   The second flow path switching valve 16 has one outlet 16a and two inlets 16b and 16c that are selectively opened and closed, and the outlet 16a is connected to the first accumulator 17 side, The inlet 16b is connected to the refrigerant outlet 15b side of the first evaporator 15.

他方の流入口16cには、第2迂回配管19の一端が接続され、第2迂回配管19の他端は、第2冷媒循環系20a内の第2蒸発部24の冷媒出口24bと第2アキュムレータ27との間の配管部分に接続される。   One end of the second bypass pipe 19 is connected to the other inlet 16c, and the other end of the second bypass pipe 19 is connected to the refrigerant outlet 24b of the second evaporator 24 and the second accumulator in the second refrigerant circulation system 20a. 27 is connected to the piping portion between the two.

第2冷媒循環系20aに対する第2迂回配管19の他端の接続点を19aとすると、第2冷媒回路20側には、その接続点19aから第2アキュムレータ27に至る配管部分に開閉弁26が設けられる。   If the connection point of the other end of the second bypass pipe 19 with respect to the second refrigerant circulation system 20a is 19a, an opening / closing valve 26 is provided on the second refrigerant circuit 20 side at a pipe portion extending from the connection point 19a to the second accumulator 27. Provided.

第2蒸発部24内には、冷媒流路としてのパス24cが通されているが、この第1実施形態において、パス24cは、二元サイクル運転時と単段サイクル運転時の双方で共用される。   A path 24c serving as a refrigerant flow path is passed through the second evaporator 24. In this first embodiment, the path 24c is shared both during dual cycle operation and during single stage cycle operation. The

次に、第1実施形態の動作について説明する。第1,第2圧縮機11,21、第1,第2膨張弁13,23、第1,第2流路切替弁14,16および開閉弁26は、制御部40により制御される。制御部40には、制御要因として、指示出湯温度t1,外気温度t2,各圧縮機の吸入圧Ps,吐出圧Pd等が入力される。   Next, the operation of the first embodiment will be described. The first and second compressors 11 and 21, the first and second expansion valves 13 and 23, the first and second flow path switching valves 14 and 16, and the on-off valve 26 are controlled by the control unit 40. The control unit 40 is input with the indicated hot water temperature t1, the outside air temperature t2, the suction pressure Ps of each compressor, the discharge pressure Pd, and the like as control factors.

〔第1実施形態における二元サイクル運転から単段サイクル運転への切替〕
図3の動作フローチャートを参照して、指示出湯温度t1が予め設定された基準温度tA未満で、かつ、外気温度t2が予め設定された基準温度tC(例えば、−2℃)よりも高い場合には、まず、第1冷媒回路10の第1圧縮機11を一旦停止する。
[Switching from dual cycle operation to single-stage cycle operation in the first embodiment]
Referring to the operation flowchart of FIG. 3, when the indicated hot water temperature t1 is lower than a preset reference temperature tA and the outside air temperature t2 is higher than a preset reference temperature tC (for example, −2 ° C.). First, the first compressor 11 of the first refrigerant circuit 10 is temporarily stopped.

次に、第2冷媒回路20の第2膨張弁23を全閉にするとともに、好ましくは第2蒸発部24の送風ファン25の回転を停止し、第2圧縮機21を低速で運転して、第2膨張弁23の冷媒出口側から第2アキュムレータ27に至る配管内に存在している冷媒を、第2圧縮機21の吐出側から第2膨張弁23に至る配管内に回収(ポンプダウン)する。   Next, the second expansion valve 23 of the second refrigerant circuit 20 is fully closed, preferably the rotation of the blower fan 25 of the second evaporator 24 is stopped, and the second compressor 21 is operated at a low speed, Refrigerant existing in the pipe from the refrigerant outlet side of the second expansion valve 23 to the second accumulator 27 is recovered (pump down) in the pipe from the discharge side of the second compressor 21 to the second expansion valve 23. To do.

その後、第2圧縮機21が所定時間運転されるか、もしくは第2圧縮機21の吸入圧Psと吐出圧Pdとがそれぞれ所定圧となった時点で、開閉弁26を全閉し、第2圧縮機21を停止して冷媒回収を終了する。   After that, when the second compressor 21 is operated for a predetermined time or when the suction pressure Ps and the discharge pressure Pd of the second compressor 21 become predetermined pressures, the on-off valve 26 is fully closed, The compressor 21 is stopped and the refrigerant recovery is finished.

ポンプダウン終了後、第1流路切替弁14の流出口14c側を開,流出口14b側を閉にするとともに、第2流路切替弁16の流入口16c側を開,流入口16b側を閉にして、第1冷媒循環系10a内の冷媒を第1,第2迂回配管18,19を介して第2冷媒回路20側の第2蒸発部24に流し込むことにより、冷媒間熱交換器Bを使用しない単段サイクルが完成する。   After the pump-down is completed, the outlet 14c side of the first flow path switching valve 14 is opened, the outlet 14b side is closed, the inlet 16c side of the second flow path switching valve 16 is opened, and the inlet 16b side is opened. It is closed and the refrigerant in the first refrigerant circulation system 10a flows into the second evaporator 24 on the second refrigerant circuit 20 side via the first and second bypass pipes 18 and 19, whereby the inter-refrigerant heat exchanger B A single-stage cycle that does not use is completed.

単段サイクル運転への切り替え時に、低元側の第2冷媒回路20で冷媒回収のポンプダウンを行うことにより、第2蒸発部24のパスを共用しても、第2冷媒回路20における冷媒の初期封入量を可及的に維持することができる。   Even when the path of the second evaporator 24 is shared by performing the refrigerant recovery pump-down in the low refrigerant side second refrigerant circuit 20 when switching to the single-stage cycle operation, the refrigerant in the second refrigerant circuit 20 is shared. The initial enclosed amount can be maintained as much as possible.

また、ポンプダウンを行う際に、第2蒸発部24の送風ファン25の回転を停止することにより、吸入圧が下げられ冷媒の回収が容易に行われる。   Further, when pumping down is performed, by stopping the rotation of the blower fan 25 of the second evaporator 24, the suction pressure is reduced and the refrigerant is easily recovered.

〔第1実施形態における単段サイクル運転から二元サイクル運転への切替〕
図4の動作フローチャートを参照して、指示出湯温度t1が予め設定された基準温度tA以上か、もしくは外気温度t2が予め設定された基準温度tC(例えば、−2℃)よりも低い場合には、まず、第1冷媒回路10の第1膨張弁13を全閉にし、第1流路切替弁14の流出口14c側を開,流出口14b側を閉とする。なお、第1流路切替弁16の流入口16b側は閉、流入口16c側は開となっている。
[Switching from single-stage cycle operation to dual-cycle operation in the first embodiment]
Referring to the operation flowchart of FIG. 4, when the indicated hot water temperature t1 is equal to or higher than a preset reference temperature tA, or the outside air temperature t2 is lower than a preset reference temperature tC (for example, −2 ° C.). First, the first expansion valve 13 of the first refrigerant circuit 10 is fully closed, the outlet 14c side of the first flow path switching valve 14 is opened, and the outlet 14b side is closed. The inlet 16b side of the first flow path switching valve 16 is closed and the inlet 16c side is open.

次に、好ましくは第2蒸発部24の送風ファン25の回転を停止した後、第1圧縮機11を低速で運転して、第1迂回配管18,第2蒸発部24のパス24cおよび第2迂回配管19内に存在している第1冷媒循環系10aの冷媒を、第1圧縮機11の吐出側から第1膨張弁13に至る配管内に回収(ポンプダウン)する。   Next, preferably after the rotation of the blower fan 25 of the second evaporator 24 is stopped, the first compressor 11 is operated at a low speed, and the first bypass pipe 18, the path 24 c of the second evaporator 24, and the second The refrigerant of the first refrigerant circulation system 10 a existing in the bypass pipe 19 is collected (pumped down) into the pipe from the discharge side of the first compressor 11 to the first expansion valve 13.

その後、第1圧縮機11が所定時間運転されるか、もしくは第1圧縮機11の吸入圧Psと吐出圧Pdとがそれぞれ所定圧となった時点で、第1流路切替弁14の流出口14c側を閉,流出口14b側を開にするとともに、第2流量切替弁16の流入口16c側を閉,流入口16b側を開として、第1圧縮機11を停止して冷媒回収(ポンプダウン)を終了する。   Thereafter, when the first compressor 11 is operated for a predetermined time, or when the suction pressure Ps and the discharge pressure Pd of the first compressor 11 reach the predetermined pressure, the outlet of the first flow path switching valve 14 14c side is closed, outlet 14b side is opened, inlet 16c side of second flow rate switching valve 16 is closed, inlet 16b side is opened, first compressor 11 is stopped, and refrigerant recovery (pump DOWN).

ポンプダウン終了後、第1冷媒回路10側では、第1膨張弁13を任意のステップで開放または全開として、第1冷媒循環系10a内に冷媒が流れる状態とし、第2冷媒回路20側では、開閉弁26を開として、第2冷媒循環系20a内に冷媒が流れる状態にする。   After the pump-down, the first refrigerant circuit 10 side opens or fully opens the first expansion valve 13 in an arbitrary step so that the refrigerant flows into the first refrigerant circulation system 10a. On the second refrigerant circuit 20 side, The on-off valve 26 is opened so that the refrigerant flows into the second refrigerant circulation system 20a.

このようにして、第1冷媒回路10の冷媒を第2冷媒回路20の冷媒に混合することなく、また、第1冷媒回路10における冷媒の初期封入量を可及的に維持して、二元サイクルに切り替えることができる。   In this way, the refrigerant of the first refrigerant circuit 10 is not mixed with the refrigerant of the second refrigerant circuit 20, and the initial amount of refrigerant enclosed in the first refrigerant circuit 10 is maintained as much as possible to achieve the binary. You can switch to a cycle.

上記第1実施形態において、第1冷媒回路10と第2冷媒回路20の各冷媒は、同一冷媒(ともに例えば、R410A)であることが好ましい。   In the said 1st Embodiment, it is preferable that each refrigerant | coolant of the 1st refrigerant circuit 10 and the 2nd refrigerant circuit 20 is the same refrigerant | coolant (both are R410A for example).

第1冷媒回路10と第2冷媒回路20とで、異種冷媒(例えば、高元側がR134aで、低元側がR410A)を使用する場合には、図2に示す第2実施形態を採用すればよい。   When different refrigerants are used in the first refrigerant circuit 10 and the second refrigerant circuit 20 (for example, the high element side is R134a and the low element side is R410A), the second embodiment shown in FIG. 2 may be adopted. .

すなわち、第2実施形態では、単段サイクル運転で共用される第2蒸発部24内に、第2冷媒循環系20a用のパス24cとは別に、第1迂回配管18と第2迂回配管19との間に接続される第1冷媒循環系10a用のパス24dを設けて完全分離形式とする。その他の構成は、上記第1実施形態と同じであってよい。   That is, in the second embodiment, the first bypass pipe 18 and the second bypass pipe 19 are provided in the second evaporator 24 shared by the single-stage cycle operation separately from the path 24c for the second refrigerant circulation system 20a. A path 24d for the first refrigerant circulation system 10a connected between the two is provided to provide a complete separation type. Other configurations may be the same as those in the first embodiment.

次に、第2実施形態の動作について説明する。なお、二元サイクル運転から単段サイクル運転への切替時の動作フローチャートは図3を援用し、単段サイクル運転から二元サイクル運転への切替時の動作フローチャートは図4を援用する。   Next, the operation of the second embodiment will be described. Note that FIG. 3 is used as the operation flowchart when switching from the two-cycle operation to the single-cycle operation, and FIG. 4 is used as the operation flowchart when switching from the single-cycle operation to the two-cycle operation.

〔第2実施形態における二元サイクル運転から単段サイクル運転への切替〕
指示出湯温度t1が予め設定された基準温度tA未満で、かつ、外気温度t2が予め設定された基準温度tC(例えば、−2℃)よりも高い場合には、まず、第1冷媒回路10の第1圧縮機11を一旦停止する。
[Switching from dual cycle operation to single-stage cycle operation in the second embodiment]
When the indicated hot water temperature t1 is lower than a preset reference temperature tA and the outside air temperature t2 is higher than a preset reference temperature tC (for example, −2 ° C.), first, the first refrigerant circuit 10 The first compressor 11 is temporarily stopped.

次に、第2冷媒回路20の第2膨張弁23を全閉にするとともに、好ましくは第2蒸発部24の送風ファン25の回転を停止し、第2圧縮機21を低速で運転して、第2膨張弁23の冷媒出口側から第2アキュムレータ27に至る配管内に存在している冷媒を、第2圧縮機21の吐出側から第2膨張弁23に至る配管内に回収(ポンプダウン)する。   Next, the second expansion valve 23 of the second refrigerant circuit 20 is fully closed, preferably the rotation of the blower fan 25 of the second evaporator 24 is stopped, and the second compressor 21 is operated at a low speed, Refrigerant existing in the pipe from the refrigerant outlet side of the second expansion valve 23 to the second accumulator 27 is recovered (pump down) in the pipe from the discharge side of the second compressor 21 to the second expansion valve 23. To do.

その後、第2圧縮機21が所定時間運転されるか、もしくは第2圧縮機21の吸入圧Psと吐出圧Pdとがそれぞれ所定圧となった時点で、開閉弁26を全閉し、第2圧縮機21を停止して冷媒回収を終了する。   After that, when the second compressor 21 is operated for a predetermined time or when the suction pressure Ps and the discharge pressure Pd of the second compressor 21 become predetermined pressures, the on-off valve 26 is fully closed, The compressor 21 is stopped and the refrigerant recovery is finished.

ポンプダウン終了後、第1流路切替弁14の流出口14c側を開,流出口14b側を閉にするとともに、第2流路切替弁16の流入口16c側を開,流入口16b側を閉にして、第1冷媒循環系10a内の冷媒を第1,第2迂回配管18,19を介して第2蒸発部24のパス24dに流し込むことにより、冷媒間熱交換器Bを使用しない単段サイクルが完成する。   After the pump-down is completed, the outlet 14c side of the first flow path switching valve 14 is opened, the outlet 14b side is closed, the inlet 16c side of the second flow path switching valve 16 is opened, and the inlet 16b side is opened. It is closed and the refrigerant in the first refrigerant circulation system 10a flows into the path 24d of the second evaporator 24 through the first and second bypass pipes 18 and 19, so that the inter-refrigerant heat exchanger B is not used. The stage cycle is completed.

単段サイクル運転への切り替え時に、低元側の第2冷媒回路20で冷媒回収のポンプダウンを行い、低元側のパス24c内を空にすることにより、第2蒸発器24内で低元側冷媒と高元側冷媒との間で熱ロスとなる伝熱を防止できる。   At the time of switching to single-stage cycle operation, the low refrigerant side second refrigerant circuit 20 pumps down the refrigerant recovery, and the low element side path 24c is emptied, so that the low element inside the second evaporator 24 is low. Heat transfer that causes heat loss between the side refrigerant and the high-side refrigerant can be prevented.

また、ポンプダウンを行う際に、上記第1実施形態と同じく、第2蒸発部24の送風ファン25の回転を停止することにより吸入圧が下げられ、冷媒の回収が容易に行われる。   Further, when pumping down, as in the first embodiment, the suction pressure is lowered by stopping the rotation of the blower fan 25 of the second evaporator 24, and the refrigerant is easily recovered.

〔第2実施形態における単段サイクル運転から二元サイクル運転への切替〕
指示出湯温度t1が予め設定された基準温度tA以上か、もしくは外気温度t2が予め設定された基準温度tC(例えば、−2℃)よりも低い場合には、まず、第1冷媒回路10の第1膨張弁13を全閉にし、第1流路切替弁14の流出口14c側を開,流出口14b側を閉とする。なお、第1流路切替弁16の流入口16b側は閉、流入口16c側は開となっている。
[Switching from single-stage cycle operation to dual-cycle operation in the second embodiment]
When the indicated hot water temperature t1 is equal to or higher than a preset reference temperature tA or the outside air temperature t2 is lower than a preset reference temperature tC (for example, −2 ° C.), first, the first refrigerant circuit 10 The first expansion valve 13 is fully closed, the outlet 14c side of the first flow path switching valve 14 is opened, and the outlet 14b side is closed. The inlet 16b side of the first flow path switching valve 16 is closed and the inlet 16c side is open.

次に、好ましくは第2蒸発部24の送風ファン25の回転を停止する。これは、先にも説明したように、第1圧縮機11が始動したら高元高圧側への冷媒の回収を容易にするため、吸入圧を下げるという目的で行われる。   Next, the rotation of the blower fan 25 of the second evaporator 24 is preferably stopped. As described above, this is performed for the purpose of lowering the suction pressure in order to facilitate the recovery of the refrigerant to the high original high pressure side when the first compressor 11 is started.

そして、第1圧縮機11を低速で運転して、第1迂回配管18,パス24dおよび第2迂回配管19内に存在している第1冷媒循環系10aの冷媒を、第1圧縮機11の吐出側から第1膨張弁13に至る配管内に回収(ポンプダウン)する。   Then, the first compressor 11 is operated at a low speed, and the refrigerant in the first refrigerant circulation system 10 a existing in the first bypass pipe 18, the path 24 d and the second bypass pipe 19 is supplied to the first compressor 11. Recovery (pump down) is performed in the piping from the discharge side to the first expansion valve 13.

その後、第1圧縮機11が所定時間運転されるか、もしくは第1圧縮機11の吸入圧Psと吐出圧Pdとがそれぞれ所定圧となった時点で、第1流路切替弁14の流出口14c側を開,流出口14b側を閉にするとともに、第2流量切替弁16の流入口16c側を閉,流入口16b側を開として、第1圧縮機11を停止して冷媒回収(ポンプダウン)を終了する。   Thereafter, when the first compressor 11 is operated for a predetermined time, or when the suction pressure Ps and the discharge pressure Pd of the first compressor 11 reach the predetermined pressure, the outlet of the first flow path switching valve 14 14c side is opened, outlet 14b side is closed, inlet 16c side of second flow rate switching valve 16 is closed, inlet 16b side is opened, first compressor 11 is stopped, and refrigerant recovery (pump DOWN).

ポンプダウン終了後、第1冷媒回路10の第1膨張弁13を任意のステップで開放または全開として、第1冷媒循環系10a内に冷媒が流れる状態とし、また、第2冷媒回路20の開閉弁26を開として第2冷媒循環系20a内に冷媒が流れる状態にする。   After the pump-down is completed, the first expansion valve 13 of the first refrigerant circuit 10 is opened or fully opened in an arbitrary step so that the refrigerant flows into the first refrigerant circulation system 10a, and the on-off valve of the second refrigerant circuit 20 26 is opened so that the refrigerant flows into the second refrigerant circulation system 20a.

このようにして、第2実施形態によれば、単段サイクル運転時と二元サイクル運転時のいずれの場合においても、第1冷媒回路10の冷媒と第2冷媒回路20の冷媒とが完全に分離され、冷媒の混合が一切生ずることがなく、また、第1冷媒回路10における冷媒の初期封入量を可及的に維持して、単段サイクルから二元サイクルに容易に切り替えることができる。また、単段サイクル運転時における第2蒸発器24内での低元側冷媒と高元側冷媒との間で熱ロスとなる伝熱を防止できる。   In this way, according to the second embodiment, the refrigerant in the first refrigerant circuit 10 and the refrigerant in the second refrigerant circuit 20 are completely supplied in both cases of single-stage cycle operation and dual-cycle operation. Thus, the refrigerant is not mixed at all, and the initial charging amount of the refrigerant in the first refrigerant circuit 10 can be maintained as much as possible to easily switch from the single-stage cycle to the dual cycle. Further, heat transfer that causes a heat loss between the low-side refrigerant and the high-side refrigerant in the second evaporator 24 during the single-stage cycle operation can be prevented.

10 第1冷媒回路(高元側)
11 第1圧縮機
12 第1凝縮部
13 第1膨張弁
14 第1流路切替弁
15 第1蒸発部
16 第2流路切替弁
17 第1アキュムレータ
20 第2冷媒回路(低元側)
21 第2圧縮機
22 第2凝縮部
23 第2膨張弁
24 第2蒸発部
25 送風ファン
26 開閉弁
27 第2アキュムレータ
30 温水生成部
33 温水ファンコンベクタ
40 制御部
A 水−冷媒熱交換器
B 冷媒間熱交換器
10 First refrigerant circuit (high-end side)
DESCRIPTION OF SYMBOLS 11 1st compressor 12 1st condensation part 13 1st expansion valve 14 1st flow path switching valve 15 1st evaporation part 16 2nd flow path switching valve 17 1st accumulator 20 2nd refrigerant circuit (low original side)
DESCRIPTION OF SYMBOLS 21 2nd compressor 22 2nd condensation part 23 2nd expansion valve 24 2nd evaporation part 25 Blower fan 26 On-off valve 27 2nd accumulator 30 Hot water production | generation part 33 Hot water fan convector 40 Control part A Water-refrigerant heat exchanger B Refrigerant Heat exchanger

Claims (7)

温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、
上記単段サイクル運転時に、上記第1冷媒循環系の上記第1蒸発部の代わりに、上記第2冷媒循環系の上記第2蒸発部を用いるとともに、上記二元サイクル運転時には、上記単段サイクル運転時と上記二元サイクル運転時とで上記第1,第2の各冷媒回路で使用できる冷媒量をほぼ同じとする配管切替手段を備えていることを特徴とする二元冷凍装置。
A first refrigerant circuit having a first refrigerant circulation system including a hot water generating unit for generating hot water, a first compressor, a first condensing unit, a first expansion valve and a first evaporating unit; a second compressor; A second refrigerant circuit having a second refrigerant circulation system including a condensing unit, a second expansion valve, and a second evaporating unit, and a water-refrigerant heat exchanger between the first condensing unit and the hot water generating unit. And an inter-refrigerant heat exchanger is provided between the first evaporator and the second condensing unit, and at least the outside air temperature and the hot water temperature are used as control factors, and a single-stage cycle operation and a dual cycle In the dual refrigeration system for which operation is selected,
During the single-stage cycle operation, the second evaporator section of the second refrigerant circulation system is used instead of the first evaporation section of the first refrigerant circulation system, and during the dual cycle operation, the single-stage cycle is used. A binary refrigeration apparatus comprising pipe switching means for making the amount of refrigerant usable in each of the first and second refrigerant circuits substantially the same during operation and during the dual cycle operation.
温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、
上記単段サイクル運転時に、上記第1冷媒循環系の上記第1蒸発部の代わりに、上記第2冷媒循環系の上記第2蒸発部を用いるとともに、上記二元サイクル運転時には、上記単段サイクル運転時と上記二元サイクル運転時とで上記第1,第2の各冷媒回路で使用できる冷媒量をほぼ同じとする配管切替手段を備え、
上記配管切替手段は、上記第1膨張弁の冷媒出口と上記第1蒸発部の冷媒入口との間の配管部分から第1流路切替弁を介して分岐し、上記第2冷媒循環系の上記第2蒸発部の冷媒入口側に至る第1迂回配管と、上記第1蒸発部の冷媒出口と上記第1圧縮機の吸入側との間の配管部分から第2流路切替弁を介して分岐し、上記第2冷媒循環系の上記第2蒸発部の冷媒出口側に至る第2迂回配管と、上記第2冷媒循環系内で上記第2迂回配管の接続箇所と上記第2圧縮機の吸入側との間に設けられた開閉弁と、
少なくとも上記各圧縮機、上記各膨張弁、上記各流路切替弁および上記開閉弁を制御する制御部とを備えていることを特徴とする二元冷凍装置。
A first refrigerant circuit having a first refrigerant circulation system including a hot water generating unit for generating hot water, a first compressor, a first condensing unit, a first expansion valve and a first evaporating unit; a second compressor; A second refrigerant circuit having a second refrigerant circulation system including a condensing unit, a second expansion valve, and a second evaporating unit, and a water-refrigerant heat exchanger between the first condensing unit and the hot water generating unit. And an inter-refrigerant heat exchanger is provided between the first evaporator and the second condensing unit, and at least the outside air temperature and the hot water temperature are used as control factors, and a single-stage cycle operation and a dual cycle In the dual refrigeration system for which operation is selected,
During the single-stage cycle operation, the second evaporator section of the second refrigerant circulation system is used instead of the first evaporation section of the first refrigerant circulation system, and during the dual cycle operation, the single-stage cycle is used. Pipe switching means for making the amount of refrigerant that can be used in the first and second refrigerant circuits substantially the same during operation and during the dual cycle operation,
The pipe switching means branches from a pipe portion between a refrigerant outlet of the first expansion valve and a refrigerant inlet of the first evaporation section via a first flow path switching valve, and the pipe of the second refrigerant circulation system Branches from the first bypass pipe reaching the refrigerant inlet side of the second evaporation section and the pipe section between the refrigerant outlet of the first evaporation section and the suction side of the first compressor via the second flow path switching valve. And a second bypass pipe reaching the refrigerant outlet side of the second evaporator in the second refrigerant circulation system, a connection point of the second bypass pipe in the second refrigerant circulation system, and an intake of the second compressor An on-off valve provided between the side and
A binary refrigeration apparatus comprising at least each compressor, each expansion valve, each flow path switching valve, and a control unit that controls the on-off valve.
上記二元サイクル運転から上記単段サイクル運転への切り替えにあたって、上記制御部は、上記第2膨張弁を全閉として上記第2圧縮機を運転して、上記第2膨張弁の出口側から上記第2蒸発部を経て上記第2圧縮機の吸入側に至る配管系内に存在する冷媒を上記第2圧縮機の吐出側から上記第2凝縮部を経て上記第2膨張弁に至る配管系内に回収した後、上記開閉弁を閉じ、上記第1流路切替弁の上記第2蒸発部側を開,上記第1蒸発部側を閉とし、上記第2流路切替弁の上記第1蒸発部側を閉,上記第2蒸発部側を開とすることを特徴とする請求項2に記載の二元冷凍装置。   In switching from the dual cycle operation to the single-stage cycle operation, the control unit operates the second compressor with the second expansion valve fully closed, and performs the above operation from the outlet side of the second expansion valve. The refrigerant existing in the piping system that reaches the suction side of the second compressor through the second evaporation section passes through the second condensation section from the discharge side of the second compressor to the second expansion valve in the piping system. The first on-off valve is closed, the second evaporation side of the first flow path switching valve is opened, the first evaporation side is closed, and the first evaporation of the second flow path switching valve is closed. The two-sided refrigeration apparatus according to claim 2, wherein the section side is closed and the second evaporation section side is opened. 上記単段サイクル運転から上記二元サイクル運転への切り替えにあたって、上記制御部は、上記第1膨張弁を全閉として上記第1圧縮機を運転して、上記第1膨張弁の冷媒出口側から上記第2蒸発部を経て上記第1圧縮機の吸入側に至る配管系内に存在する冷媒を上記第1圧縮機の吐出側から上記第1凝縮部を経て上記第1膨張弁に至る配管系内に回収した後、上記第1流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉とし、上記第2流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉とした後、上記開閉弁を開とすることを特徴とする請求項2に記載の二元冷凍装置。   In switching from the single-stage cycle operation to the dual cycle operation, the control unit operates the first compressor with the first expansion valve fully closed, from the refrigerant outlet side of the first expansion valve. Piping system in which the refrigerant existing in the piping system that reaches the suction side of the first compressor through the second evaporation section passes from the discharge side of the first compressor to the first expansion valve through the first condensation section. The first evaporation section side of the first flow path switching valve is opened, the second evaporation section side is closed, and the first evaporation section side of the second flow path switching valve is opened. The two-way refrigeration apparatus according to claim 2, wherein the on-off valve is opened after closing the second evaporation section. 上記冷媒回収時には、上記第2蒸発部が備える送風ファンの回転を停止することを特徴とする請求項3または4に記載の二元冷凍装置。   5. The dual refrigeration apparatus according to claim 3, wherein during the refrigerant recovery, the rotation of the blower fan included in the second evaporator is stopped. 温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、
上記第1膨張弁の冷媒出口と上記第1蒸発部の冷媒入口との間の配管部分から第1流路切替弁を介して分岐し、上記第2蒸発部内を上記第2冷媒循環系のパス経路とは別のパス経路を通り、上記第1蒸発部の冷媒出口と上記第1圧縮機との間の配管部分に第2流路切替弁を介して接続される迂回配管と、上記第2冷媒循環系内で上記第2蒸発部の冷媒出口側と上記第2圧縮機の吸入側との間に設けられた開閉弁と、少なくとも上記各圧縮機、上記各膨張弁,上記各流路切替弁および上記開閉弁を制御する制御部とを備え
上記二元サイクル運転から上記単段サイクル運転への切り替えにあたって、上記制御部は、上記第1圧縮機の運転を停止した後、上記第1流路切替弁の上記第2蒸発部側を開,上記第1蒸発部側を閉にするとともに、上記第2流路切替弁の上記第1蒸発部側を閉,上記第2蒸発部側を開とし、上記第2膨張弁を全閉として上記第2圧縮機を運転して、上記第2膨張弁の出口側から上記第2蒸発部を経て上記第2圧縮機の吸入側に至る配管系内に存在する冷媒を上記第2圧縮機の吐出側から上記第2凝縮部を経て上記第2膨張弁に至る配管系内に回収した後、上記開閉弁を閉じることを特徴とする二元冷凍装置。
A first refrigerant circuit having a first refrigerant circulation system including a hot water generating unit for generating hot water, a first compressor, a first condensing unit, a first expansion valve and a first evaporating unit; a second compressor; A second refrigerant circuit having a second refrigerant circulation system including a condensing unit, a second expansion valve, and a second evaporating unit, and a water-refrigerant heat exchanger between the first condensing unit and the hot water generating unit. And an inter-refrigerant heat exchanger is provided between the first evaporator and the second condensing unit, and at least the outside air temperature and the hot water temperature are used as control factors, and a single-stage cycle operation and a dual cycle In the dual refrigeration system for which operation is selected,
A pipe portion between the refrigerant outlet of the first expansion valve and the refrigerant inlet of the first evaporator is branched via a first flow path switching valve, and the second evaporator circulation path passes through the second evaporator. A bypass pipe that passes through a path different from the path and is connected to a pipe portion between the refrigerant outlet of the first evaporator and the first compressor via a second flow path switching valve; and the second pipe An on-off valve provided between the refrigerant outlet side of the second evaporator and the suction side of the second compressor in the refrigerant circulation system, at least the compressors, the expansion valves, and the flow path switches. A control unit for controlling the valve and the on-off valve ,
In switching from the dual cycle operation to the single stage cycle operation, the control unit opens the second evaporation unit side of the first flow path switching valve after stopping the operation of the first compressor, The first evaporation section side is closed, the first evaporation section side of the second flow path switching valve is closed, the second evaporation section side is opened, and the second expansion valve is fully closed. Operating the two compressors, the refrigerant present in the piping system from the outlet side of the second expansion valve through the second evaporator to the suction side of the second compressor is discharged to the discharge side of the second compressor The two- way refrigeration apparatus is characterized in that the on-off valve is closed after being collected in a piping system that reaches the second expansion valve through the second condensing part .
温水を生成する温水生成部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む第1冷媒循環系を有する第1冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む第2冷媒循環系を有する第2冷媒回路とを備え、上記第1凝縮部と上記温水生成部との間に水−冷媒熱交換器が設けられているとともに、上記第1蒸発部と上記第2凝縮部との間に冷媒間熱交換器が設けられ、少なくとも外気温度と温水温度を制御要因として、単段サイクル運転と、二元サイクル運転とが選択される二元冷凍装置において、
上記第1膨張弁の冷媒出口と上記第1蒸発部の冷媒入口との間の配管部分から第1流路切替弁を介して分岐し、上記第2蒸発部内を上記第2冷媒循環系のパス経路とは別のパス経路を通り、上記第1蒸発部の冷媒出口と上記第1圧縮機との間の配管部分に第2流路切替弁を介して接続される迂回配管と、上記第2冷媒循環系内で上記第2蒸発部の冷媒出口側と上記第2圧縮機の吸入側との間に設けられた開閉弁と、少なくとも上記各圧縮機、上記各膨張弁,上記各流路切替弁および上記開閉弁を制御する制御部とを備え、
上記単段サイクル運転から上記二元サイクル運転への切り替えにあたって、上記制御部は、上記第1膨張弁を全閉、上記第1流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉とし、上記第2流路切替弁の上記第1蒸発部側を閉,上記第2蒸発部側を開として、上記第1圧縮機を運転して、上記迂回配管内に存在する冷媒を上記第1圧縮機の吐出側から上記第1凝縮部を経て上記第1膨張弁に至る配管系内に回収した後、上記第2流路切替弁の上記第1蒸発部側を開,上記第2蒸発部側を閉にすることを特徴とする二元冷凍装置。
A first refrigerant circuit having a first refrigerant circulation system including a hot water generating unit for generating hot water, a first compressor, a first condensing unit, a first expansion valve and a first evaporating unit; a second compressor; A second refrigerant circuit having a second refrigerant circulation system including a condensing unit, a second expansion valve, and a second evaporating unit, and a water-refrigerant heat exchanger between the first condensing unit and the hot water generating unit. And an inter-refrigerant heat exchanger is provided between the first evaporator and the second condensing unit, and at least the outside air temperature and the hot water temperature are used as control factors, and a single-stage cycle operation and a dual cycle In the dual refrigeration system for which operation is selected,
A pipe portion between the refrigerant outlet of the first expansion valve and the refrigerant inlet of the first evaporator is branched via a first flow path switching valve, and the second evaporator circulation path passes through the second evaporator. A bypass pipe that passes through a path different from the path and is connected to a pipe portion between the refrigerant outlet of the first evaporator and the first compressor via a second flow path switching valve; and the second pipe An on-off valve provided between the refrigerant outlet side of the second evaporator and the suction side of the second compressor in the refrigerant circulation system, at least the compressors, the expansion valves, and the flow path switches. A control unit for controlling the valve and the on-off valve,
In switching from the single-stage cycle operation to the dual cycle operation, the control unit fully closes the first expansion valve, opens the first evaporation unit side of the first flow path switching valve, and The evaporator side is closed, the first evaporator side of the second flow path switching valve is closed, the second evaporator part side is opened, and the first compressor is operated to exist in the bypass pipe. The refrigerant to be recovered is collected from the discharge side of the first compressor into the piping system that reaches the first expansion valve through the first condensing unit, and then opens the first evaporation unit side of the second flow path switching valve. , characterized in that said second evaporation unit side in a closed two-way refrigeration system.
JP2010081573A 2010-03-31 2010-03-31 Dual refrigeration equipment Active JP5488816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081573A JP5488816B2 (en) 2010-03-31 2010-03-31 Dual refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081573A JP5488816B2 (en) 2010-03-31 2010-03-31 Dual refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2011214754A JP2011214754A (en) 2011-10-27
JP5488816B2 true JP5488816B2 (en) 2014-05-14

Family

ID=44944684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081573A Active JP5488816B2 (en) 2010-03-31 2010-03-31 Dual refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5488816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766353B (en) * 2016-12-26 2019-11-22 天津商业大学 It is able to achieve the refrigeration system of Two-stage Compression and autocascade cycle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169779U (en) * 1984-10-11 1986-05-13
JP2000274848A (en) * 1999-03-23 2000-10-06 Daikin Ind Ltd Twin freezer device
JP4415853B2 (en) * 2004-12-28 2010-02-17 ダイキン工業株式会社 Variable temperature test equipment
JP5222494B2 (en) * 2007-06-22 2013-06-26 エスペック株式会社 Environmental tester

Also Published As

Publication number Publication date
JP2011214754A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
KR101391775B1 (en) Heat pump system
EP2381180B1 (en) Heat pump type hot water supply apparatus
US8616017B2 (en) Air conditioning apparatus
JP6678332B2 (en) Outdoor unit and control method for air conditioner
EP2388532A2 (en) Hot water supply device associated with heat pump
WO2018025318A1 (en) Heat pump device
WO2021039087A1 (en) Heat source unit and refrigeration device
JP2006170537A (en) Heat exchange system
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2006194565A (en) Air conditioner
KR101151006B1 (en) Heat pump system using ground heat source
WO2012121326A1 (en) Binary refrigeration cycle device
JP2009156496A (en) Air conditioner
JP2010084975A (en) Heating device
JP6092731B2 (en) Air conditioner
JP5488816B2 (en) Dual refrigeration equipment
JP5216557B2 (en) Refrigeration cycle equipment
WO2013014145A1 (en) A heat pump system for a laundry dryer
JP5447968B2 (en) Heat pump equipment
JP2013108730A (en) Air conditioner
JP2013108729A (en) Air conditioner
WO2018097124A1 (en) Air conditioning device
JP5582294B2 (en) Hot water / hot water heating system with dual refrigeration cycle
KR101137266B1 (en) Air conditioner type heat pump
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140211

R151 Written notification of patent or utility model registration

Ref document number: 5488816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350