JP5484380B2 - Evaluation method for optical fiber preform - Google Patents

Evaluation method for optical fiber preform Download PDF

Info

Publication number
JP5484380B2
JP5484380B2 JP2011046509A JP2011046509A JP5484380B2 JP 5484380 B2 JP5484380 B2 JP 5484380B2 JP 2011046509 A JP2011046509 A JP 2011046509A JP 2011046509 A JP2011046509 A JP 2011046509A JP 5484380 B2 JP5484380 B2 JP 5484380B2
Authority
JP
Japan
Prior art keywords
optical fiber
base material
heating
drawn
transmission loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011046509A
Other languages
Japanese (ja)
Other versions
JP2012184123A (en
Inventor
大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2011046509A priority Critical patent/JP5484380B2/en
Publication of JP2012184123A publication Critical patent/JP2012184123A/en
Application granted granted Critical
Publication of JP5484380B2 publication Critical patent/JP5484380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、主に通信用に使用される光ファイバ用の母材、特に棒状の部材と大型の筒状の部材を加熱・融着して製造するRIT法(ロッド・イン・チューブ法)により製造された光ファイバ用母材の評価方法に関する。   The present invention is based on the RIT method (rod-in-tube method), which is manufactured by heating and fusing a base material for an optical fiber mainly used for communication, particularly a rod-shaped member and a large cylindrical member. The present invention relates to an evaluation method for a manufactured optical fiber preform.

一般に光ファイバは、光を伝送するコア部とその周囲を取り囲むクラッド部からなる。コア部はクラッド部より屈折率が高いのが一般的である。光ファイバは光ファイバ用母材を電気炉で加熱・軟化させ、所望の太さに線引きされる。
光ファイバ用母材は、まずコア部と場合によってはクラッド部の一部を含むコアロッドを製造し、このコアロッドの外側にさらにクラッド部を付与することで製造されることが多い。
In general, an optical fiber includes a core portion that transmits light and a cladding portion that surrounds the core portion. The core part generally has a higher refractive index than the clad part. The optical fiber is drawn to a desired thickness by heating and softening the optical fiber preform in an electric furnace.
In many cases, the optical fiber preform is manufactured by first manufacturing a core rod including a core portion and, in some cases, a part of the cladding portion, and further adding a cladding portion to the outside of the core rod.

コア部の製造にはVAD法、OVD法、MCVD法、PCVD法といった方法が用いられる。コア部の外側に付与されるクラッド部は、OVD法などでコアロッド上に直接堆積され、加熱炉で透明ガラス化して付与する場合と、別途製造された筒状体をコアロッドにかぶせて付与する場合がある。   For the production of the core part, methods such as VAD, OVD, MCVD, and PCVD are used. The clad part to be applied to the outside of the core part is deposited directly on the core rod by the OVD method, etc. and applied by transparent vitrification in a heating furnace, or by applying a separately manufactured cylindrical body to the core rod There is.

後者のコアロッドに筒状体をかぶせる方法は、RIT(ロッド・イン・チューブ) 法あるいはRIC(ロッド・イン・シリンダ)法と呼ばれる。通常、別途製造された筒状体を延伸して所望の太さにしたものがチューブと称され、製造された筒状体そのものはシリンダと称されている。すなわち、RIT法に比べてRIC法のほうが使用する筒状体のサイズが大きいが、技術的には同様であり、その境目はあいまいである。従って、以後RIT法と総称する。   The latter method of covering the core rod with a cylindrical body is called the RIT (rod-in-tube) method or the RIC (rod-in-cylinder) method. Usually, a separately manufactured cylindrical body is stretched to have a desired thickness is called a tube, and the manufactured cylindrical body itself is called a cylinder. In other words, the size of the cylindrical body used by the RIC method is larger than that of the RIT method, but technically the size is the same, and the boundary is ambiguous. Therefore, it is generically called RIT method hereinafter.

RIT法においては、筒状体の中にコアロッドを挿入し、加熱・一体化が行われるが、一体化する際に所望の太さに延伸する場合と、単に一体化のみが行われる場合がある。当然、設備的には単に一体化のみを行うほうが単純である。逆に、設備的には複雑になるが、一体化と同時に延伸まで行う方が、その後の線引き炉に合わせた大きさの母材を製造できるという利点がある。後者の場合、線引き炉の大きさに制限されることなく、元の筒状体及びコアロッドの大きさを大きくできるため、前者に比べて生産性を高めることができる。なお、一体化と同時に光ファイバへの線引きまで行ってしまうこともある。   In the RIT method, a core rod is inserted into a cylindrical body, and heating and integration are performed. However, when the integration is performed, the core rod may be stretched to a desired thickness, or only integration may be performed. . Of course, it is simpler in terms of equipment to simply perform integration. On the other hand, although it is complicated in terms of equipment, there is an advantage that a base material having a size suitable for the subsequent drawing furnace can be produced by performing the stretching process at the same time as the integration. In the latter case, the size of the original cylindrical body and the core rod can be increased without being limited by the size of the drawing furnace, so that the productivity can be increased compared to the former. In some cases, drawing to the optical fiber may be performed simultaneously with the integration.

合成石英製筒状体の製造にはOVD法などが用いられる。大型の筒状体を使用する場合、加熱・一体化は電気炉で行われることが多い。具体的には、例えば、筒状体の中にコアロッドを挿入した後、筒状体とコアロッドの間隙を清浄な気体でパージしつつ、その一端を電気炉内に挿入する。電気炉の温度を上げていくと、やがて筒状体とコアロッドの先端が軟化する。ここで、清浄な気体によるパージをポンプによる減圧処理に切り替えると、筒状体とコアロッドの軟化した部分の空隙が潰れ、一体化される。その後、徐々に加熱領域をずらしていくことで全体が融着・一体化される。筒状体とコアロッドは十分に軟化されているため、下方での引き取りと上方での送り込みの速度を調整することで、所望の外径に延伸することも可能である。   An OVD method or the like is used for manufacturing a synthetic quartz cylindrical body. When using a large cylindrical body, heating and integration are often performed in an electric furnace. Specifically, for example, after inserting the core rod into the cylindrical body, one end thereof is inserted into the electric furnace while purging the gap between the cylindrical body and the core rod with a clean gas. As the temperature of the electric furnace increases, the cylindrical body and the tip of the core rod soften over time. Here, when the purge with the clean gas is switched to the pressure reduction process with the pump, the gap between the softened portions of the cylindrical body and the core rod is crushed and integrated. Thereafter, the entire heating area is gradually shifted to be fused and integrated. Since the cylindrical body and the core rod are sufficiently softened, it is possible to extend to a desired outer diameter by adjusting the lower take-up and the upper feed speed.

RIT法により母材を製造した場合、まれに伝送損失異常が見られることがある。このような場合、図1に示すように、特に波長が長いほど伝送損失が通常よりも高くなる傾向がある。このような伝送損失の異常は、コアロッドと筒状体の界面が汚染されている場合に生じることが分かっており、原因は汚染物質による吸収損失か、あるいはマイクロベンディングロスだと考えられる。これは、元々コアロッドまたは筒状体が汚染されていたか、あるいは、パージ不良により炉内ガスがコアロッドと筒状体の空隙に入り込むことで汚染されたと考えられる。前者のケースは、コアロッド及び筒状体の表面をHF溶液でエッチングするなどして防止することができる。   When a base material is manufactured by the RIT method, a transmission loss abnormality may be rarely seen. In such a case, as shown in FIG. 1, the transmission loss tends to be higher than usual as the wavelength is particularly long. It is known that such a transmission loss abnormality occurs when the interface between the core rod and the cylindrical body is contaminated, and the cause is considered to be absorption loss due to contaminants or microbending loss. This is considered that the core rod or the cylindrical body was originally contaminated, or that the gas in the furnace was contaminated by entering the gap between the core rod and the cylindrical body due to poor purge. The former case can be prevented by etching the surface of the core rod and the cylindrical body with an HF solution.

自社で線引きを行い、光ファイバを製品とする場合には、光ファイバの伝送損失を測定し基準値と比較することで合格・不合格を決定することができるが、不合格が増えると線引きコストがかさみ不経済である。また、母材を製品として販売し顧客が線引きを行う場合には、母材の段階で合格・不合格を判定する必要がある。   When drawing in-house and using optical fiber as a product, pass / fail can be determined by measuring the optical fiber transmission loss and comparing it to the reference value. It is uneconomical. In addition, when a base material is sold as a product and a customer performs drawing, it is necessary to determine pass / fail at the base material stage.

伝送損失を母材の段階で測定することはできないので、伝送損失が高くなる恐れがある場合には、母材の一部を線引きして伝送損失を測定し、判定する必要がある。
大きいコアロッドと筒状体を用いてRIT法により一体化と同時に延伸も行う場合、出来上がった母材は適宜切断され、一回のバッチで複数本の母材が製造される。伝送損失が母材全体で安定していれば、そのうちの1箇所からサンプリングして線引きすれば、母材全体の合格・不合格を判定できるが、そうでない場合、伝送損失特性の良好な部分を有効に利用するためには複数個所の線引きが必要となり、サンプリングにより廃棄される母材が増え、またサンプルの線引きの手間とコストが増えるという問題がある。
Since the transmission loss cannot be measured at the base material stage, it is necessary to measure and determine the transmission loss by drawing a part of the base material when the transmission loss may be increased.
When a large core rod and a cylindrical body are used for integration and stretching at the same time as the RIT method, the completed base material is appropriately cut, and a plurality of base materials are manufactured in one batch. If the transmission loss is stable for the entire base material, you can determine whether the entire base material is acceptable or not by sampling and drawing from one location. In order to use it effectively, it is necessary to draw a plurality of points, and there is a problem that the base material discarded by sampling increases, and the labor and cost of drawing the sample increase.

このような状況に鑑みて、本発明は、RIT法により製造された光ファイバ用母材を経済的に評価する光ファイバ用母材の評価方法を提供することにある。   In view of such circumstances, it is an object of the present invention to provide an optical fiber preform evaluation method that economically evaluates an optical fiber preform manufactured by the RIT method.

本発明の光ファイバ用母材の評価方法は、棒状のガラスからなる第1の部材と筒状のガラスからなる第2の部材を準備する第1の工程と、前記第2の部材の中心孔内に前記第1の部材を挿入する第2の工程と、前記第2の部材と第1の部材の間の空隙を清浄な気体でパージする第3の工程と、前記第1の部材と第2の部材とを組み合わせてなる部材を片端より加熱し軟化させる第4の工程と、前記清浄な気体によるパージをポンプでの吸引による減圧処理に切り替える第5の工程と、前記減圧処理により軟化した第1の部材と第2の部材を融着せしめる第6の工程と、加熱領域を少しずつ移動させ、第1の部材と第2の部材の有効部分の概ね全体を順次加熱・融着しつつ所定の範囲の外径まで延伸し、所定の範囲の長さごとに切断して複数の光ファイバ用母材となす第7の工程とを経て製造された光ファイバ用母材を、加熱を開始した端に近い側から線引きし、所定長だけ線引きしたところで伝送損失の測定を行い異常の有無を判定することを特徴としている。   The optical fiber preform evaluation method of the present invention includes a first step of preparing a first member made of rod-shaped glass and a second member made of cylindrical glass, and a center hole of the second member. A second step of inserting the first member therein, a third step of purging a gap between the second member and the first member with a clean gas, the first member and the first The fourth step of heating and softening the member formed by combining the two members from one end, the fifth step of switching the purge with the clean gas to the decompression process by suction with a pump, and the softening by the decompression process A sixth step of fusing the first member and the second member, and moving the heating area little by little, while heating and fusing the entire effective portion of the first member and the second member in sequence. Stretch to an outer diameter of a predetermined range, and cut multiple lengths within a predetermined range. The optical fiber base material manufactured through the seventh step of the fiber base material is drawn from the side near the end where heating is started, and when there is a predetermined length, transmission loss is measured to determine whether there is an abnormality. It is characterized by determining.

前記複数の切断された光ファイバ用母材のうち、最も加熱開始端に近い母材を、加熱を開始した端に近い側から線引きして伝送損失の測定を行い、異常が認められなければ切断された全ての母材に異常がないと判定する。
前記伝送損失の測定で異常が認められた場合には、線引きした該母材は不合格とし、かつ該母材に光を当てて観察した際に見られる輝点数が所定の個数を超えている場合には、切断された残り全ての光ファイバ用母材を不合格とする。
Of the plurality of cut optical fiber preforms, the base material closest to the heating start end is drawn from the side closest to the end where heating is started, and the transmission loss is measured. It is determined that there is no abnormality in all the base materials that have been processed.
When abnormality is recognized in the measurement of the transmission loss, the drawn base material is rejected, and the number of bright spots observed when observing the base material with light exceeds a predetermined number. In this case, all the remaining optical fiber preforms that have been cut are rejected.

また、前記伝送損失の測定で異常が認められた場合には、線引きした該母材は不合格とするが、該母材に光を当てて観察した際に見られる輝点数が所定の個数を超えていない場合には、該母材の次に加熱開始端に近い側の母材(加熱開始端側から2番目の母材)から順次線引きし、伝送損失の測定結果による合否判定を繰り返し、複数の切断された光ファイバ用母材の合格範囲を決定する。   In addition, when abnormality is recognized in the measurement of the transmission loss, the drawn base material is rejected, but the number of bright spots seen when observing the base material with light is a predetermined number. If it does not exceed, draw the wire sequentially from the base material next to the heating start end next to the base material (second base material from the heating start end side), repeat the pass / fail judgment by the measurement result of transmission loss, An acceptable range of a plurality of cut optical fiber preforms is determined.

本発明の評価方法の手順に従って、母材の一部を線引きして評価することで、複数に切断された光ファイバ用母材の評価を経済的に行うことができる。   According to the procedure of the evaluation method of the present invention, a part of the base material is drawn and evaluated, so that the evaluation of the optical fiber base material cut into a plurality of parts can be performed economically.

正常な光ファイバと、伝送損失に異常のある光ファイバとの伝送損失の差分の波長分布を示す。The wavelength distribution of the difference in transmission loss between a normal optical fiber and an optical fiber having an abnormal transmission loss is shown.

伝送損失異常が認められた母材について、線引き本数を増やして母材内での伝送損失の分布を調査した。その結果、伝送損失は加熱・融着の際に加熱を開始した側で大きく、逆側の端に向かって徐々に小さくなる傾向があるものと、全体的に伝送損失が大きいものがあることが分かった。   For the base material with abnormal transmission loss, we increased the number of lines and investigated the distribution of transmission loss in the base material. As a result, the transmission loss may be large on the side where heating is started at the time of heating and fusing, and may tend to gradually decrease toward the opposite end, while the transmission loss may be large overall. I understood.

このうち、全体的に伝送損失が大きいものは、コアロッドと筒状体の界面にあたる層に通常よりも多くの輝点が確認された。これは、加熱・融着の最初に行われる工程で、コアロッドと筒状体の間隙を清浄な気体でパージしつつ炉内での加熱を行い、コアロッドと筒状体を軟化させるが、このときパージを行う気流に乱れが生じるなどして、炉内のガスがこの間隙に漂い込むことにより、炉内ガスに含まれる金属などの不純物質がコアロッドと筒状体の間隙に蓄積され、伝送損失と輝点の原因になったものと考えられる。   Among them, the one with a large transmission loss as a whole was confirmed to have more bright spots than usual in the layer corresponding to the interface between the core rod and the cylindrical body. This is the process performed at the beginning of heating and fusing, and the core rod and the cylindrical body are softened by heating in the furnace while purging the gap between the core rod and the cylindrical body with a clean gas. When the gas in the furnace drifts into this gap due to turbulence in the air flow for purging, etc., impurities such as metals contained in the furnace gas accumulate in the gap between the core rod and the cylindrical body, resulting in transmission loss. This is thought to have caused the bright spot.

また、このような経路による汚染がさほど顕著ではない場合には、輝点という外観上の異常となって現れず、伝送損失のみを高めることがあると考えられる。このような場合、伝送損失が高くなるリスクが最も高いのは、炉内にコアロッドと筒状体の間隙が露出している加熱開始側に近い端だと考えられた。
そこで、大きいコアロッドとシリンダを用いてRIT法により、一体化と同時に延伸及び所定長への切断を行い、一回のバッチで複数本の母材を製造する場合において、これらの母材の伝送損失特性の合格・不合格を判定するために、以下の規則を設けた。
Moreover, when the contamination by such a path | route is not so remarkable, it does not appear as an abnormality in the appearance called a bright spot, but it is thought that only a transmission loss may be raised. In such a case, it was considered that the risk of high transmission loss was highest at the end close to the heating start side where the gap between the core rod and the cylindrical body was exposed in the furnace.
Therefore, when a large number of base materials are manufactured in a single batch by drawing and cutting to a predetermined length simultaneously with integration by the RIT method using a large core rod and cylinder, the transmission loss of these base materials The following rules were established to determine pass / fail of characteristics.

第一に、最も加熱開始端に近い母材の加熱開始端側からサンプリングを行い、線引きして伝送損失の測定を行う。これが基準値以下であれば、全体を合格とする。なお、1550nmにおける伝送損失値0.195を基準値とした。
第二に、第一の規則に基づき合格とならず、コアロッドと筒状体との界面にあたる層に基準よりも多くの輝点が確認された場合には、切断された母材の残り全てを不合格とする。なお、輝点数は1mあたり35個を基準数とした。
第三に、第一の規則に基づき合格とならず、輝点が基準数以下で第二の規則に基づき不合格とならなかった場合には、最も加熱開始端に近い該母材を不合格とし、該母材の次に加熱開始端に近い母材の加熱開始端側からサンプリングを行い、第一の規則と同様に判定を行う。合格であれば、切断された残り全ての母材を合格とし、不合格であれば、線引きを行った該母材を不合格とし、次に加熱開始端に近い母材から同様にサンプリングを行う。これを繰り返して、合格範囲を決定する。
以上の規則により、サンプリング量を最小に抑えつつ、無駄に廃棄される特性の良好な母材を減らすことが可能となる。
First, sampling is performed from the heating start end side of the base material closest to the heating start end, and the transmission loss is measured by drawing. If this is below the reference value, the whole is accepted. A transmission loss value of 0.195 at 1550 nm was used as a reference value.
Secondly, if the number of bright spots exceeds the standard in the layer corresponding to the interface between the core rod and the cylindrical body, the rest of the cut base material is not passed if it does not pass based on the first rule. It will be rejected. The number of bright spots was 35 as a reference number per meter.
Third, if the bright spot is below the reference number and does not fail based on the second rule based on the first rule, the base material closest to the heating start end is rejected. Sampling is performed from the heating start end side of the base material close to the heating start end next to the base material, and the determination is performed in the same manner as the first rule. If it passes, all the remaining cut base materials are accepted, and if it is not accepted, the drawn base material is rejected, and then sampling is similarly performed from the base material close to the heating start end. . This is repeated to determine the pass range.
According to the above rules, it is possible to reduce the number of base materials with good characteristics that are discarded wastefully while keeping the sampling amount to a minimum.

VAD法により製造されたコアロッドを、酸水素火炎を用いたガラス旋盤で外径64mmに延伸し、別に外径195mm、内径68mmの機械研削・研磨で仕上げられた合成石英の筒状体を準備した。それぞれの有効長は1500mmである。それぞれに、把持するためのハンドルを接続し、約5wt%のHF溶液で5分間エッチングした後に純水で洗浄し、乾燥させた。   A core rod manufactured by the VAD method was drawn to a 64 mm outer diameter with a glass lathe using an oxyhydrogen flame, and a cylindrical body of synthetic quartz finished with mechanical grinding and polishing with an outer diameter of 195 mm and an inner diameter of 68 mm was prepared. . Each effective length is 1500mm. Each of them was connected with a handle for gripping, etched with about 5 wt% HF solution for 5 minutes, washed with pure water, and dried.

筒状体の中にコアロッドを挿入し、互いのハンドルを接続しつつシール可能な治具を取り付け、別途設けられたポートより乾燥窒素を流した。流された乾燥窒素はコアロッドと筒状体の間隙を通り、開放された下部より流出する。
上下動可能な装置と、電気炉と、引き取りローラーとを備えた延伸炉内に、上記コアロッドと筒状体を組み合わせたセットを取り付け、その先端が電気炉内に位置するように位置調整を行った。
A core rod was inserted into the cylindrical body, a jig capable of sealing was attached while connecting the handles, and dry nitrogen was allowed to flow from a separately provided port. The flowing dry nitrogen passes through the gap between the core rod and the cylindrical body and flows out from the opened lower part.
A set combining the core rod and cylindrical body is installed in a drawing furnace equipped with a vertically movable device, an electric furnace, and a take-up roller, and the position is adjusted so that the tip is located in the electric furnace. It was.

電気炉の温度を上げ、2000℃でしばらく加熱すると、コアロッドと筒状体の先端が軟化し、細い筒と棒の状態で下降し始める。十分に下降した時点で先端にシリコーン樹脂製の栓をし、窒素によるパージをポンプによる減圧処理に切り替える。これにより、軟化部の空隙が潰されコアロッドと筒状体の一体化が行われる。
ロッドと筒状体の送り込み速度を調整しつつ、ローラーによる引取りを開始し、それぞれの速度を調整して所定の長さで切断し、所望の外径を有する母材を得ることができた。1バッチで、外径80mmで長さ1400mmの母材を6本得た。同様にして、計100バッチを行い、600本の母材を得た。
When the temperature of the electric furnace is raised and heated at 2000 ° C. for a while, the core rod and the tip of the cylindrical body soften and begin to descend in the form of a thin cylinder and rod. When it is sufficiently lowered, a tip made of silicone resin is plugged at the tip, and the purge with nitrogen is switched to a pressure reduction treatment with a pump. Thereby, the space | gap of a softening part is crushed and a core rod and a cylindrical body are integrated.
While adjusting the feeding speed of the rod and the cylindrical body, the take-up by the roller was started, and each speed was adjusted and cut with a predetermined length, and a base material having a desired outer diameter could be obtained. . In one batch, six base materials having an outer diameter of 80 mm and a length of 1400 mm were obtained. Similarly, a total of 100 batches were performed to obtain 600 base materials.

これらの母材について、以下の規則でサンプリングを行い、それぞれの合格・不合格の判定を行った。
第一に、所定の長さに切断された複数の母材のうち、最も加熱開始端に近い母材の加熱開始端側からサンプリングを行い、線引き、伝送損失の測定を行う。伝送損失が基準値以下であれば、該バッチの全ての母材を合格とする。
第二に、第一の規則に基づき合格とならず、コアロッドと筒状体の界面にあたる層に基準数以上の輝点が確認された場合には、切断された全ての母材を不合格とする。これは、炉内ガスの吸い込みが輝点の原因になると共に伝送損失増の原因ともなることがあるという過去の経験に基づく。輝点の原因が他にある場合には、伝送損失増につながらないこともあるため、輝点の多少という外観検査の結果のみでは、伝送損失に異常があるかどうかの根拠にはならない。
About these base materials, it sampled according to the following rules and judged each pass / fail.
First, sampling is performed from the heating start end side of the base material closest to the heating start end among the plurality of base materials cut to a predetermined length, and the drawing and the transmission loss are measured. If the transmission loss is below the reference value, all the base materials of the batch are accepted.
Secondly, if the number of bright spots over the reference number is confirmed in the layer corresponding to the interface between the core rod and the cylindrical body, it is determined that all the cut base materials are rejected. To do. This is based on past experience that furnace gas inhalation can cause bright spots and increase transmission losses. If there are other causes of bright spots, it may not lead to an increase in transmission loss. Therefore, only the result of the appearance inspection of the number of bright spots does not provide a basis for whether there is an abnormality in the transmission loss.

第三に、第一の規則に基づき合格とならず、輝点が基準数以下で第二の規則に基づき不合格とならなかった場合には、線引きを行った最も加熱開始端に近い該母材を不合格とし、該母材の次に加熱開始端に近い母材の加熱開始端側からサンプリングを行い、第一の規則と同様に判定を行う。合格であれば、切断された残り全ての母材を合格とし、不合格であれば、線引きを行った母材を不合格とし、次に加熱開始端に近い母材から同様にサンプリングを行う。これを繰り返して、合格範囲を決定する。   Third, if the bright spot is not more than the reference number and the second rule is not rejected based on the first rule, the mother that is closest to the heating start end after drawing is drawn. The material is rejected, sampling is performed from the heating start end side of the base material close to the heating start end next to the base material, and the determination is performed in the same manner as the first rule. If it passes, all the remaining cut base materials are accepted, and if it is not accepted, the drawn base material is rejected, and then sampling is similarly performed from the base material close to the heating start end. This is repeated to determine the pass range.

サンプリングには、それぞれ長さ1400mmの母材から長さ150mm程度を切り出して使用した。この結果、100バッチ中5バッチで伝送損失の異常が認められた。これらのうち2バッチは輝点が各母材で50個を超えており、これ以上のサンプリングを行わずに不合格とした。残り3バッチは、サンプリングを行った各母材は不合格とし、加熱開始端側から2番目の母材の加熱開始端に近い側からサンプリング線引きを行い、評価した。その結果、3本とも伝送損失の異常は認められなかったため、それぞれ残りの母材を合格とした。   For sampling, a length of about 150 mm was cut out from a base material having a length of 1400 mm. As a result, abnormal transmission loss was observed in 5 out of 100 batches. Of these, 2 batches had more than 50 bright spots for each base material, and were rejected without further sampling. The remaining three batches were evaluated by performing sampling drawing from the side closer to the heating start end of the second base metal from the heating start end side, rejecting each base material that was sampled. As a result, no abnormality in transmission loss was found in all three, so the remaining base materials were accepted.

以上、100バッチ600本の母材から103本のサンプリング線引きを行い、15本の母材を不合格とし、伝送損失の高い母材が製品として出荷されるのを防止することができた。本発明によらず、サンプリング位置を設定しなかった場合、3本の母材が、伝送損失が高いにもかかわらず出荷されてしまう可能性が高かった。
As described above, 103 sampling lines were drawn from 600 base materials of 100 batches, 15 base materials were rejected, and a base material having a high transmission loss could be prevented from being shipped as a product. Regardless of the present invention, when the sampling position was not set, there was a high possibility that the three base materials would be shipped despite the high transmission loss.

Claims (4)

棒状のガラスからなる第1の部材と筒状のガラスからなる第2の部材を準備する第1の工程と、前記第2の部材の中心孔内に前記第1の部材を挿入する第2の工程と、前記第2の部材と第1の部材の間の空隙を清浄な気体でパージする第3の工程と、前記第1の部材と第2の部材とを組み合わせてなる部材を片端より加熱し軟化させる第4の工程と、前記清浄な気体によるパージをポンプでの吸引による減圧処理に切り替える第5の工程と、前記減圧処理により軟化した第1の部材と第2の部材を融着せしめる第6の工程と、加熱領域を少しずつ移動させ、第1の部材と第2の部材の有効部分の概ね全体を順次加熱・融着しつつ所定の範囲の外径まで延伸し、所定の範囲の長さごとに切断して複数の光ファイバ用母材となす第7の工程とを経て製造された光ファイバ用母材を、加熱を開始した端に近い側から線引きし、所定長だけ線引きしたところで伝送損失の測定を行い異常の有無を判定することを特徴とする光ファイバ用母材の評価方法。 A first step of preparing a first member made of rod-shaped glass and a second member made of cylindrical glass, and a second step of inserting the first member into a central hole of the second member A member formed by combining a step, a third step of purging a gap between the second member and the first member with a clean gas, and the first member and the second member is heated from one end. A fourth step of softening, a fifth step of switching the purge with the clean gas to a decompression process by suction with a pump, and the first member and the second member softened by the decompression process are fused. In the sixth step, the heating region is moved little by little, and the entire effective portion of the first member and the second member is stretched to an outer diameter within a predetermined range while sequentially heating and fusing the entire region. Through a seventh step of cutting each length of the optical fiber to form a plurality of optical fiber preforms. An optical fiber preform characterized in that a manufactured optical fiber preform is drawn from the side near the end where heating is started, and when a predetermined length is drawn, transmission loss is measured to determine whether there is an abnormality. Evaluation method. 前記複数の切断された光ファイバ用母材のうち、最も加熱開始端に近い母材を、加熱を開始した端に近い側から線引きして伝送損失の測定を行い、異常が認められなければ切断された全ての母材に異常がないと判定する請求項1に記載の光ファイバ用母材の評価方法。 Of the plurality of cut optical fiber preforms, the base material closest to the heating start end is drawn from the side closest to the end where heating is started, and the transmission loss is measured. The optical fiber preform evaluation method according to claim 1, wherein it is determined that all the preforms are not abnormal. 前記複数の切断された光ファイバ用母材のうち、最も加熱開始端に近い母材を、加熱を開始した端に近い側から線引きして伝送損失の測定を行い、異常が認められた場合には線引きした該母材は不合格とし、かつ該母材に光を当てて観察した際に見られる輝点数が所定の個数を超えている場合には、切断された残り全ての光ファイバ用母材を不合格とする請求項1に記載の光ファイバ用母材の評価方法。 Among the plurality of cut optical fiber preforms, the base material closest to the heating start end is drawn from the side closest to the end where heating is started, and the transmission loss is measured. If the drawn base material is rejected and the number of bright spots observed when the base material is irradiated with light exceeds a predetermined number, all the optical fiber bases that have been cut are left. The optical fiber preform evaluation method according to claim 1, wherein the material is rejected. 前記複数の切断された光ファイバ用母材のうち、最も加熱開始端に近い母材を、加熱を開始した端に近い側から線引きして伝送損失の測定を行い、異常が認められた場合には線引きした該母材は不合格とし、該母材に光を当てて観察した際に見られる輝点数が所定の個数を超えていない場合には、該母材の次に加熱開始端に近い側の母材から順次線引きし、伝送損失の測定結果による合否判定を繰り返し、複数の切断された光ファイバ用母材の合格範囲を決定する請求項1に記載の光ファイバ用母材の評価方法。 Among the plurality of cut optical fiber preforms, the base material closest to the heating start end is drawn from the side closest to the end where heating is started, and the transmission loss is measured. Indicates that the drawn base material is rejected, and when the number of bright spots observed when the base material is irradiated with light does not exceed a predetermined number, it is close to the heating start end next to the base material. The optical fiber preform evaluation method according to claim 1, wherein the optical fiber preform is successively drawn from the side preform, and the pass / fail judgment based on the measurement result of the transmission loss is repeated to determine a pass range of the plurality of cut optical fiber preforms. .
JP2011046509A 2011-03-03 2011-03-03 Evaluation method for optical fiber preform Active JP5484380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046509A JP5484380B2 (en) 2011-03-03 2011-03-03 Evaluation method for optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046509A JP5484380B2 (en) 2011-03-03 2011-03-03 Evaluation method for optical fiber preform

Publications (2)

Publication Number Publication Date
JP2012184123A JP2012184123A (en) 2012-09-27
JP5484380B2 true JP5484380B2 (en) 2014-05-07

Family

ID=47014546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046509A Active JP5484380B2 (en) 2011-03-03 2011-03-03 Evaluation method for optical fiber preform

Country Status (1)

Country Link
JP (1) JP5484380B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559276B1 (en) * 2003-07-09 2004-08-25 三菱電線工業株式会社 Method for producing optical fiber preform, optical fiber preform and optical fiber produced by the production method
JP4179265B2 (en) * 2003-10-30 2008-11-12 住友電気工業株式会社 Optical fiber preform and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012184123A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
US7486862B2 (en) Optical fiber and manufacturing method thereof
WO2006049186A1 (en) Method of producing optical fiber parent material, optical glass rod, and optical fiber
EP3180293B1 (en) Method for forming a quartz glass optical component and system
JP4712359B2 (en) Optical fiber manufacturing method
KR20080099772A (en) Increasing the cladding-to-core ratio(d/d) of low d/d ratio core rods in optical fiber preforms
JP5242006B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JP5242007B2 (en) Optical fiber manufacturing method
EP1487750B1 (en) Method for producing an optical fiber and optical fiber
JP5484380B2 (en) Evaluation method for optical fiber preform
US8567217B2 (en) Optical fiber preform and manufacturing method therefor
CN106371168A (en) Method for preparing double-cladding active fiber
JPH1081535A (en) Production of optical fiber
JP4704760B2 (en) Optical fiber preform manufacturing method and optical fiber preform
JP2014221691A (en) Dummy rod integrated optical fiber preform and preparation method thereof
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
US8925355B2 (en) Optical fiber and method of manufacturing optical fiber preform
JP2004035369A (en) Method of manufacturing optical fiber preform
CN113248131B (en) Optical fiber preform, and apparatus and method for manufacturing the same
JP2022161487A (en) Manufacturing method of glass preform, and manufacturing apparatus of glass preform
JP2004143016A (en) Method for manufacturing optical fiber preform
JP4252834B2 (en) Optical fiber preform manufacturing method
JPH1129336A (en) Preform for optical fiber, its drawing and its drawing apparatus
JPH11109142A (en) Drawing method of optical fiber perform, drawing device therefor, and optical fiber perform
JPH0818842B2 (en) Method for manufacturing base material for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5484380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150