JP2004035369A - Method of manufacturing optical fiber preform - Google Patents

Method of manufacturing optical fiber preform Download PDF

Info

Publication number
JP2004035369A
JP2004035369A JP2002198081A JP2002198081A JP2004035369A JP 2004035369 A JP2004035369 A JP 2004035369A JP 2002198081 A JP2002198081 A JP 2002198081A JP 2002198081 A JP2002198081 A JP 2002198081A JP 2004035369 A JP2004035369 A JP 2004035369A
Authority
JP
Japan
Prior art keywords
bar
rod
flame
base material
flame polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002198081A
Other languages
Japanese (ja)
Inventor
Hideaki Ito
伊藤 秀明
Masataka Kin
金 正▲高▼
Nobusada Nagae
長江 伸定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002198081A priority Critical patent/JP2004035369A/en
Publication of JP2004035369A publication Critical patent/JP2004035369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical fiber preform for cleaning the surface of a quartz rod material by flame polishing so as to suppress the occurrence of cracks in the quartz rod material. <P>SOLUTION: A rod material 2 is obtained by heating and drawing a primary preform 1 in a furnace 5. A gas burner 22 is provided above the furnace 5, and stains or defects on the surface of the rod material 2 are eliminated by blowing flame 21 onto the rod material immediately after drawing. Strain caused by blowing of the flame 21 does not occur in the rod material 2 since blowing of the flame 21 is performed before the rod material 2 is cooled down. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、石英棒材を石英管に挿入するロッドインチューブ法による光ファイバ母材の製造方法に関する。
【0002】
【従来の技術】
石英ガラスを材料とする光ファイバの母材の製造方法は、中心部のコアとなる部分とその外側のクラッドとなる部分とを有する一次母材を製造する工程と、一次母材の外側にクラッドとなる石英ガラスを設ける工程とからなる。後者の工程は、一次母材だけでクラッド部分を必要な厚みにするには非常に時間がかかり、生産性が甚だしく低下するため、生産性向上のために設けられている。一次母材を製造する工程に用いられる方法には、一般的にはVAD法、OVD法、MCVD法の3つがある。一方、一次母材の外側にクラッドを形成する方法には、OVD法のような外付け方法とロッドインチューブ法が知られている。
【0003】
ロッドインチューブ法は、一次母材の外側にクラッドとなる別の石英ガラスを形成する方法の一つで、一次母材を別の石英ガラス管に挿入し融着一体化および延伸して光ファイバ母材とする方法である。
【0004】
このロッドインチューブ法において、近年コストダウンの目的で、一次母材を大径のものとして、加熱延伸して棒材とすることにより長尺化させることが行われている。
【0005】
また、品質を保証することも重要であるので、一次母材を延伸した棒材そのままの、あるいは棒材の上下端を切断して、一次母材の加熱延伸後の屈折率プロファイル検査をしている。その後、ガラス旋盤にて該棒材の片端か両端にハンドリングのための作業棒を接続して、それから棒材の表面の汚れや傷を除去するために、HFエッチングを行ったり棒材表面に火炎を吹き付ける火炎研磨を行う。棒材の表面に汚れや傷がついていると、石英ガラス管に挿入し一体化したときに母材に気泡が入り、製品の光ファイバとしたときに光学特性が劣る不良品となるからである。このようにして表面清浄となった棒材を石英管の中に挿入して融着一体化させる。
【0006】
【発明が解決しようとする課題】
しかしながら、HFエッチングを行うと、その後の水洗・乾燥によって棒材表面にシミが残って、その部分が母材において気泡の原因となっていた。
【0007】
火炎研磨により棒材表面を清浄にするときには、火炎による高温が問題となる。即ち、一次母材を加熱延伸して棒材とした後に、この棒材はガラス旋盤まで運ばれ固定されてから火炎研磨されるため、通常は、棒材が加熱による高温から冷えてから再度火炎を吹き付けて高温とすることになる。このようにすると、母材中に歪みが残留してしまう。さらに、火炎研磨後に、ガラス旋盤から棒材を取り外して挿入工程に運び、石英管に挿入して加熱することにより融着一体化するのであるが、このときも火炎研磨により高温になった棒材が、一旦冷えてさらに融着一体化の工程で高温となるため、上記歪みがクラックの原因となって、棒材にクラックが多発していた。
【0008】
本発明はこのような事情に鑑みてなされたものであり、その目的とするところは、石英棒材にクラックが生じないように表面を火炎研磨で清浄にする光ファイバ母材の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、棒材が冷えてから再度高温する工程を多くても一つとすることとした。
【0010】
具体的には、請求項1にかかる発明は、ロッドインチューブ法による光ファイバ母材の製造方法を対象とする。
【0011】
そして、一次母材を加熱延伸して棒材とする一次母材延伸工程と、上記棒材の表面に火炎を吹き付けて汚れ及び傷除去を行う火炎研磨工程と、汚れ及び傷除去された上記棒材を石英管に挿入する挿入工程と、挿入された上記棒材を上記石英管と融着一体化させる一体化工程と、を備えており、上記火炎研磨工程は、上記一次母材延伸工程の直後であって上記棒材が所定の火炎研磨時温度よりも高い状態で行うものとする。
【0012】
請求項1の製造方法であれば、棒材が一次母材延伸工程から冷える前の所定の火炎研磨時温度よりも高い状態で火炎研磨を行うので、棒材がその後の融着一体化工程で高温に加熱されてもクラックはほとんど発生せず、光学特性が良好な光ファイバを得ることができる。即ち一次母材延伸工程終了後に、棒材が冷却されないうちに次工程の火炎研磨を行うため、温度の下がりやすい表面と温度の下がりにくい中心部との温度差が小さい条件で火炎研磨して再度表面温度を上げることになり、従って火炎研磨工程後に棒材内部に残留する歪みを小さく抑えられて、クラックが発生しない。ここで、所定の火炎研磨時温度とは、棒材に火炎研磨をして、冷却後の再加熱でクラックが生じるほどの歪みが発生し始める火炎研磨開始時の棒材温度である。この火炎研磨時温度は、棒材の径や長さ、火炎研磨の処理速度、火炎研磨の温度等によって異なるが、棒材表面温度にして200℃が好ましく、300℃であればクラック防止がより確実になるのでより好ましい。なお、このときの棒材中心部の温度は表面温度よりも数百℃高いと推定される。
【0013】
次に、請求項2にかかる発明は、ロッドインチューブ法による光ファイバ母材の製造方法を対象とする。
【0014】
そして、一次母材を加熱延伸して棒材とする一次母材延伸工程と、上記棒材の表面に火炎を吹き付けて汚れ及び傷除去を行う火炎研磨工程と、汚れ及び傷除去された上記棒材を石英管に挿入する挿入工程と、挿入された上記棒材を上記石英管と融着一体化させる一体化工程と、を備えており、上記挿入工程は、上記火炎研磨工程の直後であって上記棒材が所定の挿入時温度よりも高い状態で行うとともに、該挿入と融着一体化とを時間的に連続して行うものとする。
【0015】
請求項2の製造方法であれば、棒材が火炎研磨工程が終了して冷却してしまう前であって、所定の挿入時温度よりも高い温度のときに石英管に挿入されそのまま連続して融着一体化されるので、棒材にクラックが生じることを防止できる。即ち棒材が冷却されてから再び高温になる過程を多くとも1回にしたので、クラックが発生しない。ここで、所定の挿入時温度とは、火炎研磨により高温になった棒材が冷えていく途中に、石英管に挿入されて融着一体化のために再度加熱されたときにクラックが発生し始める棒材の石英管への挿入開始時の温度である。この挿入時温度は、棒材の径や長さ、火炎研磨の処理速度や温度、挿入開始から執着一体化開始までの時間等により異なるが、表面温度として200℃が好ましい。また、挿入と融着一体化とを時間的に連続して行うとは、挿入から融着一体化の間での棒材の冷却によるクラック発生を防ぐように、棒材を挿入直後に融着一体化を開始することであり、例えば、挿入工程と一体化工程とを同じ場所で行って工程間で移動を行わないようにして2工程を連続して行うこと等が挙げられる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0017】
例として、VAD法により一次母材を形成し、ロッドインチューブ法によりクラッド部を形成する光ファイバ母材(プリフォーム)の製造工程を図1に示す。最初の煤付けとは、スートを棒状に積もらせる工程である。次に棒状のスートを焼結してスートの一次母材とする焼結工程を経て、一次母材延伸工程でその一次母材を加熱延伸して棒材とする。それから火炎研磨工程にて該棒材を火炎研磨(火炎研磨による汚れ及び傷除去)する。次は、石英棒材を石英管の中に挿入する挿入工程である。そして、一体化工程で挿入した棒材と石英管の隙間を真空ポンプで低圧状態にして加熱し、両者を融着一体化させて、同時に加熱延伸して所望の径のプリフォームとする。
【0018】
なお、上記の工程で棒材と石英管との融着一体化と延伸とは別の工程にしてもよく、融着一体化と延伸とを同時に行わなくてもよい。また、OVD法やMCVD法を用いて一次母材を作製してもよい。
【0019】
プリフォームは、図には示していないが、次工程である線引き工程で加熱延伸されて光ファイバとなる。
【0020】
本発明は、図1における一次母材延伸工程から火炎研磨工程、石英管への挿入の工程に特徴があるので、該工程を中心に以下詳しく説明する。
【0021】
−実施形態1−
一次母材を延伸し、延伸が終了して棒材となった部分から火炎研磨をしているところを横から見たのが図2である。即ち、ここでは一次母材延伸工程と火炎研磨工程とが行われている。一次母材1を大型にすると生産性が上がるが、石英ガラス管内に挿入するためには、延伸して径を小さくする必要がある。ここでは、100mm径で有効長750mmの一次母材1を炉5で加熱して延伸し、50mm径で長さ3000mmの棒材2としている。
【0022】
具体的には、一次母材1の下端の径の細い作業棒部分8を下側チャック6で把持して固定する。一次母材1上端には作業棒3が接続7されており、その作業棒3の上端を上側チャック4で把持する。下側チャック6を上方へ送り出すことにより、一次母材1を炉5で加熱して柔らかくして、上側チャック4を上方へ引っ張っていくことで延伸していく。棒材2の径は、下側チャック6の送り出し速度と上側チャック4の引っ張り速度とにより決まる。この時、棒材2が3mを越える長尺であるため、上方へ延伸することが取り扱いの点から好ましいが、設備の配置を上下逆にして下方へ延伸しても構わない。
【0023】
上記炉5の上方には、ガスのバーナー22が設置されていて、炉5から出たばかりの延伸された棒材2の表面に火炎21を吹き付けて、汚れや傷を焼却あるいは気化させて清浄にしている。火炎21を吹き付けている棒材2の中心部分は、炉5中での加熱延伸温度から数百℃下がっているが1000℃以上である。火炎21を吹き付けられているときに棒材2の表面は1500℃以上になるが、中心部分との温度差が数百℃であるため、この温度では火炎研磨がされても棒材2には歪み増加がほとんどない。すなわち、棒材2の上記温度は所定の火炎研磨時温度よりも高い温度である。棒材2の表面をむらなく火炎研磨するために、バーナー22を棒材2の周りに複数本設置して火炎研磨してもよい。また、同様の理由で、棒材2を中心軸周りに回転させながら、火炎研磨をしてもよい。
【0024】
なお、本工程中には、作業棒3と棒材2との接続状態をそのまま保持しておき、棒材2上部と作業棒3とのいかなる部分も切断して再接続、または別の作業棒に繋ぎ換えることはしないことが、棒材の撓みや偏心を防ぐ点から好ましい。
【0025】
火炎研磨が終了した後は、図3に示すように、棒材2を石英管11に挿入する。なお、前工程終了からこの挿入工程終了までの間も棒材2を鉛直状態のまま移動あるいは保持しておくが、挿入ステージでは、上側チャック4を挿入チャック14に替える。また、検査工程の終了から挿入工程が終了する間は、作業棒3と棒材2との接続状態をそのまま保持しておき、棒材2上部と作業棒3とのいかなる部分も切断して再接続、または別の作業棒に繋ぎ換えることはしないことが、棒材2の撓みや偏心を防ぐ点から好ましい。
【0026】
石英管11の上部(棒材2が挿入される開口がある側)には、石英管11の支持のために、石英管11よりも内径が若干大きい補助管12が石英管11と同軸で接続され、この補助管12上部は把持部材9により把持され、鉛直状態が保たれている。具体的には、石英管11は、外径182mm、内径54mm、長さ2000mmであり、補助管12は、外径182mm、内径62mm、長さ800mmである。
【0027】
棒材2の中心軸と石英管11の中心軸とを一致させてから、棒材2を下げていって補助管12の中へ、引き続いて石英管11の中へ挿入する。途中で2つの中心軸がずれないように高い精度でチャック14を下降させていき、棒材2を挿入する。
【0028】
ここで一次母材の延伸工程以降ずっと棒材2は鉛直な状態を保ったままであり、かつ、作業棒3と棒材2との接続状態をそのまま保持していると、棒材2の中心軸が偏心していないため、棒材2が石英管11の内壁に接触することは起こらない。
【0029】
次に、図4に示すように、棒材2と石英管11との全体の融着一体化と延伸とを同時に行う。
【0030】
融着一体化を行うために、補助管12上端に予め被せた減圧用キャップ17を真空ポンプに繋ぎ、石英管11と棒材2との隙間を低圧状態とする。その状態で、石英管11と棒材2の下端から炉16で加熱すると、両者の隙間が消失して融着一体化する。それと同時に下方に延伸して所望の径のプリフォーム15とする。なお、火炎研磨を一次母材延伸工程の直後に行っているため、この工程で棒材2にクラックが生じることはない。
【0031】
本実施形態では、一次母材延伸工程の直後であって棒材2が一次母材延伸工程の熱により所定の火炎研磨時温度よりも高い状態で火炎研磨を行っているので、火炎研磨による歪みが生じることがなく、一体化工程で棒材2にクラックが発生しないため、高品質のプリフォーム15が得られる。また、棒材2は一次母材延伸工程以降鉛直に保たれたまま加工されているので、棒材2が石英管11の内壁に接触することは起こらなく、石英管11内部に傷がつくことはない。
【0032】
−実施形態2−
実施形態2は、図5に示すように一次母材1延伸直後に棒材2への火炎研磨は行っていない。また、図6に示すように、石英管11への挿入直前に棒材2へ火炎研磨を行っている。これら2点が実施形態1と異なっているが、他の工程は実施形態1と同じであるので、同じ点は説明を省略する。
【0033】
一次母材延伸工程は、図5に示すように火炎研磨を行っていないだけで、他の点は実施形態1と同じである。
【0034】
挿入工程では、図6に示すように、実施形態1の状態に加えて、棒材2が補助管12に挿入される直前のところで火炎研磨が行われるように、バーナー22が設置されている。火炎研磨の条件は、実施形態1とほぼ同じである。棒材2の石英管11への挿入が完了すると、即時に図4に示す融着一体化とそれに続く延伸が行われる。なお、棒材2が石英管11に挿入された時点での棒材2の温度は、所定の挿入時温度よりも高く、棒材2が冷えてクラックの原因となる歪みが発生する前に融着一体化が行われるため、棒材2にクラックが発生することなしにプリフォーム15を製造することができる。
【0035】
実施形態2の作用効果は、実施形態1と同様である。
【0036】
−他の実施形態−
これまで説明した実施形態における製造方法は、例であって本発明はこの方法に限定されない。途中に検査工程等の別の工程が入ってもよいし、各工程の加工方法も別の方法で行っても構わない。また、一次母材1、棒材2及び石英管11のサイズも特に限定されない。
【0037】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に述べる効果を奏する。
【0038】
棒材への火炎研磨を、一次母材延伸の直後又は石英管挿入の直前に行っているので、棒材にクラックが発生することが防止され、高品質の光ファイバ母材を製造することができる。
【図面の簡単な説明】
【図1】光ファイバ母材の製造工程のフローを示す図である。
【図2】実施形態1の一次母材延伸及び火炎研磨の概略族面図である。
【図3】実施形態1の棒材の挿入をしているところの概略側面図である。
【図4】実施形態1の融着一体化及び延伸をしているところの概略側面図である。
【図5】実施形態2の一次母材を延伸しているところの概略側面図である。
【図6】実施形態2の棒材の火炎研磨及び挿入をしているところの概略側面図である。
【符号の説明】
1  一次母材
2  棒材
11 石英管
15 プリフォーム(光ファイバ母材)
21 火炎
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical fiber preform by a rod-in-tube method in which a quartz rod is inserted into a quartz tube.
[0002]
[Prior art]
A method of manufacturing a preform of an optical fiber made of quartz glass includes a step of manufacturing a primary preform having a core portion at a central portion and a clad portion outside the core portion, and a cladding outside the primary preform. And providing a quartz glass. The latter process is provided for improving the productivity because it takes a very long time to make the clad portion the required thickness only with the primary base material, and the productivity is significantly reduced. There are generally three methods used in the process of manufacturing the primary base material: VAD, OVD, and MCVD. On the other hand, as a method of forming a clad outside the primary base material, an external method such as an OVD method and a rod-in-tube method are known.
[0003]
The rod-in-tube method is a method of forming another quartz glass that becomes a cladding outside the primary preform.The primary preform is inserted into another quartz glass tube, fused, integrated and stretched to form an optical fiber. It is a method of using as a base material.
[0004]
In the rod-in-tube method, in recent years, for the purpose of cost reduction, it has been practiced to increase the length of a primary base material by using a large-diameter primary material and then drawing it by heating to form a rod material.
[0005]
In addition, since it is also important to guarantee the quality, it is necessary to inspect the refractive index profile of the primary base material after heating and stretching, as it is, or by cutting the upper and lower ends of the rod material as it is after stretching the primary base material. I have. Thereafter, a working rod for handling is connected to one or both ends of the bar using a glass lathe, and then HF etching is performed or a flame is applied to the bar surface to remove dirt and scratches on the surface of the bar. To perform flame polishing. If the surface of the bar is dirty or scratched, air bubbles will enter the base material when inserted into the quartz glass tube and integrated, resulting in a defective product with poor optical characteristics when used as an optical fiber for the product. . The bar material whose surface has been cleaned in this way is inserted into a quartz tube and fused and integrated.
[0006]
[Problems to be solved by the invention]
However, when HF etching is performed, spots remain on the surface of the bar due to subsequent washing and drying, and the portion causes bubbles in the base material.
[0007]
When cleaning the surface of a bar by flame polishing, high temperature due to flame becomes a problem. That is, after the primary base material is heated and drawn into a bar, the bar is conveyed to a glass lathe and fixed, and then subjected to flame polishing. To make the temperature high. In this case, distortion remains in the base material. Furthermore, after the flame polishing, the rod is removed from the glass lathe, carried to the insertion process, inserted into a quartz tube, and heated and integrated by fusion. However, once the temperature is cooled, the temperature becomes high in the fusion-integration step, so that the strain causes cracks, and cracks are frequently generated in the bar.
[0008]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing an optical fiber preform in which the surface is cleaned by flame polishing so that cracks do not occur in the quartz rod. Is to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the number of steps of cooling the bar and then raising the temperature again is at most one.
[0010]
Specifically, the invention according to claim 1 is directed to a method for manufacturing an optical fiber preform by a rod-in-tube method.
[0011]
Then, a primary base material stretching step of heating and stretching the primary base material to obtain a rod, a flame polishing step of spraying a flame onto the surface of the rod to remove dirt and scratches, and the dirt and scratch removed rod An insertion step of inserting the material into a quartz tube, and an integrating step of fusing and integrating the inserted bar with the quartz tube, wherein the flame polishing step is a step of stretching the primary base material. Immediately after that, the above-mentioned bar is performed in a state where the temperature is higher than a predetermined flame polishing temperature.
[0012]
According to the manufacturing method of the first aspect, flame polishing is performed in a state where the rod is higher than a predetermined flame polishing temperature before the rod is cooled from the primary base material stretching step. Even if heated to a high temperature, cracks hardly occur, and an optical fiber having good optical characteristics can be obtained. That is, after completion of the primary base material stretching step, flame polishing is performed in the next step before the bar is cooled, so that flame polishing is performed again under the condition that the temperature difference between the surface where the temperature tends to decrease and the central part where the temperature does not easily decrease is small. As a result, the surface temperature is increased, so that the distortion remaining inside the bar after the flame polishing step is suppressed to a small value, and no crack is generated. Here, the predetermined flame polishing temperature is the temperature of the bar at the start of flame polishing, in which the bar is subjected to flame polishing, and after the reheating after cooling, distortion such that cracks begin to occur. The temperature at the time of flame polishing varies depending on the diameter and length of the bar, the processing speed of flame polishing, the temperature of flame polishing, and the like. The surface temperature of the bar is preferably 200 ° C. It is more preferable because it becomes certain. At this time, the temperature at the center of the bar is estimated to be several hundred degrees higher than the surface temperature.
[0013]
Next, the invention according to claim 2 is directed to a method for manufacturing an optical fiber preform by a rod-in-tube method.
[0014]
Then, a primary base material stretching step of heating and stretching the primary base material to obtain a rod, a flame polishing step of spraying a flame onto the surface of the rod to remove dirt and scratches, and the dirt and scratch removed rod An inserting step of inserting the material into the quartz tube, and an integrating step of fusing and integrating the inserted bar with the quartz tube. The inserting step is performed immediately after the flame polishing step. In this case, the insertion is performed in a state in which the temperature of the bar is higher than a predetermined insertion temperature, and the insertion and the fusion-integration are continuously performed temporally.
[0015]
According to the manufacturing method of the second aspect, the rod is inserted into the quartz tube at a temperature higher than a predetermined insertion temperature and before the rod is cooled after the flame polishing step is completed and continuously. Since they are fused and integrated, it is possible to prevent cracks from occurring in the bar. That is, since the process of cooling the bar and then raising the temperature again is performed at most once, no crack is generated. Here, the predetermined insertion temperature means that while the bar material, which has been heated by the flame polishing, is being cooled, cracks are generated when the bar material is inserted into the quartz tube and heated again for fusion and integration. This is the temperature at the beginning of the insertion of the bar into the quartz tube. The temperature at the time of insertion varies depending on the diameter and length of the bar, the processing speed and temperature of flame polishing, the time from the start of insertion to the start of attachment and integration, and the like, and the surface temperature is preferably 200 ° C. In addition, the term “continuously performing the insertion and the fusion and integration” means that the rod is fused immediately after the insertion so as to prevent cracks due to cooling of the rod between the insertion and the fusion and integration. Initiating the integration, for example, performing the insertion step and the integration step at the same place so as not to move between the steps, and performing the two steps consecutively.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
As an example, FIG. 1 shows a manufacturing process of an optical fiber preform (preform) in which a primary preform is formed by a VAD method and a clad portion is formed by a rod-in-tube method. The first sooting is a process of stacking soot in a rod shape. Next, through a sintering step of sintering the rod-shaped soot to form a primary base material of the soot, the primary base material is heated and drawn into a rod material in a primary base material stretching step. Then, the bar is subjected to flame polishing (removal of dirt and scratches by flame polishing) in a flame polishing step. Next is an insertion step of inserting a quartz rod into a quartz tube. Then, the gap between the rod inserted in the integration step and the quartz tube is heated to a low pressure state with a vacuum pump, and the two are fused and integrated, and simultaneously heated and stretched to obtain a preform having a desired diameter.
[0018]
In the above-mentioned steps, the fusion integration of the rod and the quartz tube and the stretching may be performed in separate steps, and the fusion integration and the stretching need not be performed simultaneously. Further, the primary base material may be manufactured by using the OVD method or the MCVD method.
[0019]
Although not shown in the drawing, the preform is heated and drawn in the subsequent step of drawing to form an optical fiber.
[0020]
The present invention is characterized by a step of extending the primary base material in FIG. 1, a step of flame polishing, and a step of insertion into a quartz tube.
[0021]
-Embodiment 1-
FIG. 2 is a side view of a portion where the primary base material has been stretched and flame polishing has been performed from a portion where the stretching has been completed to form a bar. That is, here, the primary base material stretching step and the flame polishing step are performed. Although the productivity increases when the primary base material 1 is increased in size, in order to insert it into the quartz glass tube, it is necessary to stretch and reduce the diameter. Here, a primary base material 1 having a diameter of 100 mm and an effective length of 750 mm is heated and stretched in a furnace 5 to form a bar 2 having a diameter of 50 mm and a length of 3000 mm.
[0022]
Specifically, the work rod portion 8 having a small diameter at the lower end of the primary base material 1 is gripped and fixed by the lower chuck 6. A working rod 3 is connected 7 to the upper end of the primary base material 1, and the upper end of the working rod 3 is gripped by the upper chuck 4. By sending the lower chuck 6 upward, the primary base material 1 is heated and softened in the furnace 5, and is stretched by pulling the upper chuck 4 upward. The diameter of the bar 2 is determined by the feeding speed of the lower chuck 6 and the pulling speed of the upper chuck 4. At this time, since the bar 2 is longer than 3 m, it is preferable to extend it upward from the viewpoint of handling. However, the equipment may be arranged upside down and extended downward.
[0023]
Above the furnace 5, a gas burner 22 is installed, and a flame 21 is sprayed on the surface of the stretched rod 2 that has just come out of the furnace 5 to incinerate or vaporize dirt and scratches to clean them. ing. The central portion of the bar 2 to which the flame 21 is sprayed is several hundred degrees Celsius lower than the heating and stretching temperature in the furnace 5, but is 1000 ° C. or higher. When the flame 21 is sprayed, the surface of the bar 2 becomes 1500 ° C. or more. However, since the temperature difference from the center portion is several hundred ° C., even if the bar 2 is flame-polished at this temperature, the bar 2 There is almost no increase in distortion. That is, the temperature of the bar 2 is higher than the predetermined flame polishing temperature. A plurality of burners 22 may be provided around the bar 2 for flame polishing so that the surface of the bar 2 is evenly polished by flame. For the same reason, flame polishing may be performed while rotating the bar 2 around the central axis.
[0024]
During this process, the connection state between the work bar 3 and the bar 2 is kept as it is, and any part of the upper portion of the bar 2 and the work bar 3 is cut and reconnected, or another work bar is connected. It is preferable not to change the connection from the viewpoint of preventing bending and eccentricity of the bar.
[0025]
After the flame polishing is completed, the bar 2 is inserted into the quartz tube 11 as shown in FIG. The rod 2 is moved or held in a vertical state from the end of the previous step to the end of the insertion step. However, in the insertion stage, the upper chuck 4 is replaced with the insertion chuck 14. From the end of the inspection process to the end of the insertion process, the connection between the work bar 3 and the bar 2 is kept as it is, and any part of the upper portion of the bar 2 and the work bar 3 is cut and re-cut. It is preferable not to connect or reconnect to another working rod from the viewpoint of preventing bending and eccentricity of the rod 2.
[0026]
In order to support the quartz tube 11, an auxiliary tube 12 having a slightly larger inner diameter than the quartz tube 11 is coaxially connected to the upper portion of the quartz tube 11 (the side having the opening into which the bar 2 is inserted). The upper portion of the auxiliary pipe 12 is gripped by the gripping member 9 and is maintained in a vertical state. Specifically, the quartz tube 11 has an outer diameter of 182 mm, an inner diameter of 54 mm, and a length of 2,000 mm, and the auxiliary tube 12 has an outer diameter of 182 mm, an inner diameter of 62 mm, and a length of 800 mm.
[0027]
After the center axis of the bar 2 is aligned with the center axis of the quartz tube 11, the bar 2 is lowered and inserted into the auxiliary tube 12 and subsequently into the quartz tube 11. The chuck 14 is lowered with high precision so that the two central axes do not shift on the way, and the bar 2 is inserted.
[0028]
Here, if the bar 2 keeps the vertical state and the connection state between the work bar 3 and the bar 2 as it is after the stretching process of the primary base material, the central axis of the bar 2 Is not eccentric, so that the rod 2 does not contact the inner wall of the quartz tube 11.
[0029]
Next, as shown in FIG. 4, the whole of the bar 2 and the quartz tube 11 are fused and integrated and stretched simultaneously.
[0030]
In order to perform the fusion and integration, a pressure reducing cap 17 previously placed on the upper end of the auxiliary pipe 12 is connected to a vacuum pump, and the gap between the quartz pipe 11 and the rod 2 is set to a low pressure state. In this state, when heating is performed in the furnace 16 from the lower ends of the quartz tube 11 and the bar 2, the gap between the two disappears and the two are fused and integrated. At the same time, it is stretched downward to obtain a preform 15 having a desired diameter. Since the flame polishing is performed immediately after the primary base material stretching step, no crack is generated in the bar 2 in this step.
[0031]
In the present embodiment, since the bar 2 is subjected to flame polishing immediately after the primary base material stretching step and in a state where the temperature of the rod 2 is higher than a predetermined flame polishing temperature by the heat of the primary base material stretching step, distortion due to flame polishing is caused. Does not occur, and cracks do not occur in the bar 2 during the integration process, so that a high quality preform 15 can be obtained. Further, since the rod 2 is processed while being kept vertical after the primary base material stretching step, the rod 2 does not contact the inner wall of the quartz tube 11 and the inside of the quartz tube 11 is damaged. There is no.
[0032]
-Embodiment 2
In the second embodiment, as shown in FIG. 5, flame polishing is not performed on the bar 2 immediately after the primary base material 1 is stretched. Further, as shown in FIG. 6, the bar 2 is subjected to flame polishing immediately before insertion into the quartz tube 11. Although these two points are different from the first embodiment, the other steps are the same as those of the first embodiment, and the description of the same points will be omitted.
[0033]
The primary base material stretching step is the same as that of the first embodiment except that the flame polishing is not performed as shown in FIG.
[0034]
In the insertion step, as shown in FIG. 6, in addition to the state of the first embodiment, a burner 22 is installed so that flame polishing is performed immediately before the rod 2 is inserted into the auxiliary pipe 12. The conditions for flame polishing are almost the same as in the first embodiment. When the insertion of the rod 2 into the quartz tube 11 is completed, the fusion integration shown in FIG. 4 and the subsequent stretching are immediately performed. The temperature of the bar 2 at the time when the bar 2 is inserted into the quartz tube 11 is higher than a predetermined temperature at the time of insertion, and is melted before the bar 2 cools and distortion causing a crack occurs. Since the integration is performed, the preform 15 can be manufactured without cracks occurring in the bar 2.
[0035]
The operation and effect of the second embodiment are the same as those of the first embodiment.
[0036]
-Other embodiments-
The manufacturing method in the embodiment described so far is an example, and the present invention is not limited to this method. Another step such as an inspection step may be inserted in the middle, and the processing method of each step may be performed by another method. Further, the sizes of the primary base material 1, the bar material 2, and the quartz tube 11 are not particularly limited.
[0037]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0038]
Since the flame polishing of the bar is performed immediately after the primary preform is stretched or immediately before the quartz tube is inserted, cracks are prevented from being generated in the bar, and a high-quality optical fiber preform can be manufactured. it can.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of a manufacturing process of an optical fiber preform.
FIG. 2 is a schematic sectional view of primary base material stretching and flame polishing according to the first embodiment.
FIG. 3 is a schematic side view showing a state where a bar of the first embodiment is being inserted.
FIG. 4 is a schematic side view of the first embodiment in which fusion integration and stretching are performed.
FIG. 5 is a schematic side view showing a state where a primary base material of Embodiment 2 is being stretched.
FIG. 6 is a schematic side view of the bar of Embodiment 2 subjected to flame polishing and insertion.
[Explanation of symbols]
1 Primary preform 2 Bar 11 Quartz tube 15 Preform (optical fiber preform)
21 Flame

Claims (2)

ロッドインチューブ法による光ファイバ母材の製造方法であって、
一次母材を加熱延伸して棒材とする一次母材延伸工程と、
上記棒材の表面に火炎を吹き付けて汚れ及び傷除去を行う火炎研磨工程と、
汚れ及び傷除去された上記棒材を石英管に挿入する挿入工程と、
挿入された上記棒材を上記石英管と融着一体化させる一体化工程と、を備えており、
上記火炎研磨工程は、上記一次母材延伸工程の直後であって上記棒材が所定の火炎研磨時温度よりも高い状態で行うことを特徴とする光ファイバ母材の製造方法。
A method for manufacturing an optical fiber preform by a rod-in-tube method,
A primary base material stretching step in which the primary base material is heated and drawn into a bar,
A flame polishing step of spraying a flame on the surface of the bar to remove dirt and scratches,
An insertion step of inserting the bar having the dirt and scratches removed into a quartz tube,
An integration step of fusing and integrating the inserted bar material with the quartz tube,
The method for producing an optical fiber preform, wherein the flame polishing step is performed immediately after the primary preform stretching step and in a state where the rod is higher than a predetermined flame polishing temperature.
ロッドインチューブ法による光ファイバ母材の製造方法であって、
一次母材を加熱延伸して棒材とする一次母材延伸工程と、
上記棒材の表面に火炎を吹き付けて汚れ及び傷除去を行う火炎研磨工程と、
汚れ及び傷除去された上記棒材を石英管に挿入する挿入工程と、
挿入された上記棒材を上記石英管と融着一体化させる一体化工程と、を備えており、
上記挿入工程は、上記火炎研磨工程の直後であって上記棒材が所定の挿入時温度よりも高い状態で行うとともに、該挿入と融着一体化とを時間的に連続して行うことを特徴とする光ファイバ母材の製造方法。
A method for manufacturing an optical fiber preform by a rod-in-tube method,
A primary base material stretching step in which the primary base material is heated and drawn into a bar,
A flame polishing step of spraying a flame on the surface of the bar to remove dirt and scratches,
An insertion step of inserting the bar having the dirt and scratches removed into a quartz tube,
An integration step of fusing and integrating the inserted bar material with the quartz tube,
The insertion step is performed immediately after the flame polishing step and in a state in which the rod is higher than a predetermined insertion temperature, and the insertion and the fusion integration are temporally continuously performed. A method of manufacturing an optical fiber preform.
JP2002198081A 2002-07-08 2002-07-08 Method of manufacturing optical fiber preform Pending JP2004035369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198081A JP2004035369A (en) 2002-07-08 2002-07-08 Method of manufacturing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198081A JP2004035369A (en) 2002-07-08 2002-07-08 Method of manufacturing optical fiber preform

Publications (1)

Publication Number Publication Date
JP2004035369A true JP2004035369A (en) 2004-02-05

Family

ID=31705634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198081A Pending JP2004035369A (en) 2002-07-08 2002-07-08 Method of manufacturing optical fiber preform

Country Status (1)

Country Link
JP (1) JP2004035369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140266A (en) * 2014-01-27 2015-08-03 住友電気工業株式会社 Method of manufacturing glass material
JP2017077989A (en) * 2015-10-20 2017-04-27 株式会社フジクラ Production method of rare earth-added core fiber preform
CN114455826A (en) * 2022-01-07 2022-05-10 富通集团有限公司 Processing technology of prefabricated rod and optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140266A (en) * 2014-01-27 2015-08-03 住友電気工業株式会社 Method of manufacturing glass material
JP2017077989A (en) * 2015-10-20 2017-04-27 株式会社フジクラ Production method of rare earth-added core fiber preform
CN114455826A (en) * 2022-01-07 2022-05-10 富通集团有限公司 Processing technology of prefabricated rod and optical fiber
CN114455826B (en) * 2022-01-07 2023-05-26 富通集团有限公司 Processing technology of preform and optical fiber

Similar Documents

Publication Publication Date Title
US7854146B2 (en) Method for production of an optical component from quartz glass
US20080107385A1 (en) Optical Fiber And Manufacturing Method Thereof
JP2002179434A (en) Method for manufacturing optical fiber preform, optical fiber preform and optical fiber
JP2004035369A (en) Method of manufacturing optical fiber preform
JP3489345B2 (en) Optical fiber manufacturing method
JP2003327440A (en) Method for manufacturing preform for optical fiber
JP2008247740A (en) Optical fiber preform and its manufacturing method
JP6351175B2 (en) Optical fiber preform processing method
JP2003212581A (en) Method for producing polarization maintaining fiber
JP4485826B2 (en) Method for forming seamless quartz glass tube with different diameter parts
JP4179265B2 (en) Optical fiber preform and manufacturing method thereof
JP4704760B2 (en) Optical fiber preform manufacturing method and optical fiber preform
JP4297320B2 (en) Cleaning method for optical fiber preform
CN102898020B (en) Prefabricated rod sleeve process flow based on modified chemical vapor deposition (MCVD) equipment
JPH1171125A (en) Production of preform for optical fiber
JP2001247324A (en) Method for producing preform for optical fiber and the resultant preform
JP2010013352A (en) Method of processing glass preform
JP2003212550A (en) Method of manufacturing glass tube and target rod for the same
JP3838850B2 (en) Manufacturing method for optical fiber preform
JP2004143016A (en) Method for manufacturing optical fiber preform
JP2003054974A (en) Method for manufacturing optical fiber preform
JPH08310825A (en) Method for working optical fiber preform
US20060150685A1 (en) Method for elongating and collapsing a blank made of quartz glass
JP2012153562A (en) Optical fiber and method for producing preform for optical fiber
JP2002053336A (en) Method for processing glass preform