JP5483959B2 - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP5483959B2
JP5483959B2 JP2009198304A JP2009198304A JP5483959B2 JP 5483959 B2 JP5483959 B2 JP 5483959B2 JP 2009198304 A JP2009198304 A JP 2009198304A JP 2009198304 A JP2009198304 A JP 2009198304A JP 5483959 B2 JP5483959 B2 JP 5483959B2
Authority
JP
Japan
Prior art keywords
chamber
space
pressure
condensing
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198304A
Other languages
Japanese (ja)
Other versions
JP2011047618A (en
Inventor
祐 佐藤
昇 元永
靖史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2009198304A priority Critical patent/JP5483959B2/en
Priority to PCT/JP2010/004387 priority patent/WO2011024371A1/en
Priority to CN2010800037913A priority patent/CN102265101A/en
Publication of JP2011047618A publication Critical patent/JP2011047618A/en
Application granted granted Critical
Publication of JP5483959B2 publication Critical patent/JP5483959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、水等のように蒸発性を有する液体の蒸発、凝縮を利用して冷却を行う蒸発式冷却装置に関するものである。   The present invention relates to an evaporative cooling device that performs cooling by using evaporation and condensation of an evaporating liquid such as water.

かかる蒸発式冷却装置として、水蒸気圧縮冷凍機がある(例えば、特許文献1参照)。図6を参照して、同特許文献1の水蒸気圧縮冷凍機においては、蒸発器60と、該蒸発器60に連結配管61で相互連結された凝縮器62と、該蒸発器60と凝縮器62との相互間を接続する連結配管(ダクト)63に配設した圧縮機64とを備えている。 As such an evaporative cooling device, there is a steam compression refrigerator (see, for example, Patent Document 1). Referring to FIG. 6 , in the steam compression refrigerator of Patent Document 1, an evaporator 60, a condenser 62 interconnected to the evaporator 60 by a connection pipe 61, and the evaporator 60 and the condenser 62. And a compressor 64 disposed in a connecting pipe (duct) 63 that connects the two to each other.

この水蒸気圧縮冷凍機では、真空ポンプ65で内部を真空状態にし、圧縮機64を運転することで蒸発器60内の水蒸気が蒸発し、蒸発器60内の温度を低下させて冷水を製造し、冷水ポンプ66により放射パネル等の負荷67へ供給する。蒸発器60で蒸発した水蒸気は、圧縮機64によって圧縮された後、凝縮器62に導かれる。該凝縮器62では冷却塔68からの冷却水によって凝縮され再び水に戻る。高温水蒸気の凝縮によって昇温された冷却水は、冷却水ポンプ69によって冷却塔68に送られ、その熱を該冷却塔68により外部へ放熱する。   In this steam compression refrigerator, the inside of the evaporator 60 is evaporated by evacuating the interior with the vacuum pump 65, and the compressor 64 is operated to produce cold water by lowering the temperature in the evaporator 60, A cold water pump 66 supplies the load 67 such as a radiant panel. The water vapor evaporated by the evaporator 60 is compressed by the compressor 64 and then guided to the condenser 62. In the condenser 62, it is condensed by the cooling water from the cooling tower 68 and returned to the water again. The cooling water heated by the condensation of the high-temperature steam is sent to the cooling tower 68 by the cooling water pump 69, and the heat is radiated to the outside by the cooling tower 68.

特開2006−97989号公報Japanese Patent Application Laid-Open No. 2006-97989

かかる従来例では、蒸発器60および凝縮器62は、それぞれ個別の容器で構成されており、このように個別の容器を並設するために、大きな設置スペースを必要とするとともに、装置自体が大型化し、これと共に、材料面や製造面でコスト高になるという課題がある。  In such a conventional example, the evaporator 60 and the condenser 62 are each constituted by individual containers, and in order to arrange the individual containers in this way, a large installation space is required and the apparatus itself is large. Along with this, there is a problem that costs increase in terms of materials and manufacturing.

本発明は、上述の点に鑑みてなされたものであって、設置スペースも小さくて済むと共に、装置全体の小型化、ひいては材料面や製造面でのコスト低減を図ることを目的とする。  The present invention has been made in view of the above-described points. It is an object of the present invention to reduce the installation space and to reduce the size of the entire apparatus, and further to reduce the cost in terms of materials and manufacturing.

本発明では、上記目的を達成するために、次のように構成している。   In order to achieve the above object, the present invention is configured as follows.

本発明にかかる蒸発式冷却装置は、真空ポンプによって大気圧よりも低い減圧にされると共に、蒸発性液体を前記減圧で沸騰蒸発させる蒸発室と、この蒸発室において発生した蒸気を圧縮する蒸気圧縮機と、前記真空ポンプによって大気圧よりも低い減圧にされると共に、前記蒸気圧縮機で圧縮した蒸気を凝縮する凝縮室とを備える蒸発式冷却装置において、単一容器の内部に少なくとも二重の仕切りによって相互に仕切られた前記蒸発室と前記凝縮室とを有すると共に、前記二重の仕切り間に空間が介在しており、前記蒸発室および前記凝縮室のうちのいずれか一方の室と前記両仕切り間の前記空間とが、導圧管で連通して、前記いずれか一方の室内の圧力と前記空間の圧力とが同圧になっている、
ことを特徴とするものである。
Evaporative cooling apparatus according to the present invention, while being lower vacuum than the atmospheric pressure by a vacuum pump, and the evaporation chamber to boil evaporate evaporable liquid in the vacuum, vapor compression for compressing the vapor generated in this evaporation chamber and machine, with the lower vacuum than the atmospheric pressure by the vacuum pump, the evaporative cooling system and a condensing chamber for condensing the vapor compressed by the vapor compressor, at least double in the interior of a single container And having the evaporation chamber and the condensation chamber partitioned from each other by a partition, and a space is interposed between the double partitions, and one of the evaporation chamber and the condensation chamber, and the The space between the two partitions communicates with a pressure guiding tube, and the pressure in one of the chambers and the pressure in the space are the same pressure,
It is characterized by this.

前記単一の容器の形状は、密閉可能であれば特に限定されるものではなく、例えば、密閉可能な円筒状や角筒状やその他であってもよい。   The shape of the single container is not particularly limited as long as it can be sealed, and may be, for example, a cylindrical shape that can be sealed, a rectangular tube shape, or the like.

前記仕切りは、二重以上であればよい。   The partition may be double or more.

前記仕切りは、単一容器の内部を少なくとも蒸発室と凝縮室との二室に区画できればよく、その仕切り方には特に限定されない。   The partition is not particularly limited as long as the inside of a single container can be partitioned into at least two chambers, an evaporation chamber and a condensation chamber.

前記単一の容器内において、前記蒸発室と前記凝縮室は、その容積を前記仕切りにより均等に仕切られてもよいし、不均等に仕切られてもよい。   In the single container, the volumes of the evaporation chamber and the condensation chamber may be equally divided by the partition or may be unevenly partitioned.

前記仕切りは、容器とは別体の例えば板材で構成し、容器に対して溶接等で一体化してもよい。この場合、仕切りは仕切り板と称することができるし、あるいは、容器壁の一部を構成するものとし、仕切り壁と称することもできる。   The partition may be formed of, for example, a plate material that is separate from the container, and may be integrated with the container by welding or the like. In this case, the partition may be referred to as a partition plate, or may constitute a part of the container wall and may be referred to as a partition wall.

本発明の蒸発式冷却装置によると、蒸発室と凝縮室とを別々の容器ではなく、単一の容器内に形成するので、蒸発室と凝縮室とを別々の容器で構成し2つの容器を設置していた従来装置とは異なり、装置の全体サイズを小型にできると共に、設置スペースを削減でき、更に、材料コストひいては製造コストを削減することが可能となる。しかも、蒸発室と凝縮室との間に介在した二重仕切りの間に空間を介在させた構成を有するので、この空間を断熱用の空間として、凝縮室から蒸発室への伝熱を有効に遮断して熱効率の低下を効果的に抑制することができる。更に、二重の仕切りの間の空間の圧力は、蒸発室または凝縮室のいずれか一方の室内圧と同圧となるので、二重の仕切りの内、一方の仕切りは、差圧による応力を受けることがなくなり、これにより他方の仕切りに比べて薄く構成して材料コストを削減することができる。さらに、前記空間が、大気圧よりも低い真空となるので、凝縮室から蒸発室への伝熱を効果的に遮断することができる。 According to the evaporative cooling device of the present invention, the evaporation chamber and the condensing chamber are formed in a single container instead of separate containers. Therefore, the evaporation chamber and the condensing chamber are configured as separate containers, and two containers are formed. Unlike the conventional apparatus that has been installed, the overall size of the apparatus can be reduced, the installation space can be reduced, and further, the material cost and thus the manufacturing cost can be reduced. In addition, since the space is interposed between the double partitions interposed between the evaporation chamber and the condensation chamber, this space is used as a space for heat insulation to effectively transfer heat from the condensation chamber to the evaporation chamber. It can block | block and can suppress the fall of thermal efficiency effectively. Furthermore, since the pressure in the space between the double partitions is the same as the pressure in either the evaporation chamber or the condensation chamber, one of the double partitions is stressed by the differential pressure. Therefore, it is possible to reduce the material cost by forming a thinner structure than the other partition. Furthermore, since the space becomes a vacuum lower than the atmospheric pressure, heat transfer from the condensation chamber to the evaporation chamber can be effectively blocked.

なお、伝熱を遮断する観点から、上記仕切りを構成する材料を、容器とは異なる低い熱伝導率の材料としてもよい。 From the viewpoint of blocking the heat transfer, the material forming the partition, but it may also as a material of different low thermal conductivity container.

本発明の他の実施態様では、前記二重の仕切り間に介在している前記空間が、減圧状態にされている。   In another embodiment of the present invention, the space interposed between the double partitions is in a reduced pressure state.

前記空間は、製造段階で減圧状態にして密閉してもよいし、前記空間を真空ポンプ等に連結して減圧状態にしてもよい。   The space may be sealed in a reduced pressure state during manufacturing, or the space may be connected to a vacuum pump or the like to be in a reduced pressure state.

前記二重の仕切り間の前記空間が大気圧のままで密閉されると、当該蒸発式冷却装置の運転を開始した後に、二重の仕切りの両側、すなわち、前記空間の両側の減圧された蒸発室および減圧された凝縮室と、前記空間との間の差圧がそれぞれ大きなものとなる。したがって、この場合には、二重の仕切りは、その差圧に耐える必要があるために、仕切りを構成する部材、例えば、仕切り板を厚くする必要があるのに対して、この実施態様では、前記空間が減圧状態にされるので、前記差圧が小さくなり、仕切り板の厚みを薄くすることができる。   When the space between the double partitions is sealed at atmospheric pressure, after the operation of the evaporative cooling device is started, reduced evaporation on both sides of the double partition, that is, both sides of the space, is performed. The differential pressure between the chamber and the decompressed condensing chamber and the space is increased. Therefore, in this case, since the double partition needs to withstand the differential pressure, a member constituting the partition, for example, the partition plate needs to be thickened. Since the space is in a reduced pressure state, the differential pressure is reduced, and the thickness of the partition plate can be reduced.

本発明の別の好ましい実施態様では、前記二重の仕切りを、前記空間を挟んで対向する二枚の仕切り板によって構成しており、前記単一の容器は、円筒状の容器本体を含み、前記二枚の仕切り板によって、前記容器本体の円形断面を二分するように、前記蒸発室および前記凝縮室を、半円筒状にそれぞれ区画形成している。 In another preferred embodiment of the present invention, the double partition is constituted by two partition plates facing each other across the space, and the single container includes a cylindrical container body, The evaporating chamber and the condensing chamber are each formed in a semi-cylindrical shape so as to bisect the circular cross section of the container body by the two partition plates.

この実施態様によると、これら仕切り板は互いの間に前記空間を挟むので、仕切り板を介して前記蒸発室と前記凝縮室との間で熱移動することを阻止することができる。更に、円筒状の容器本体内を、二枚の仕切り板で半円筒状に仕切って蒸発室と凝縮室とを区画形成するので、簡単な構造で装置の小型化を図ることができる。 According to this embodiment, since the partition plates sandwich the space between them, heat transfer between the evaporation chamber and the condensation chamber can be prevented via the partition plates. Furthermore, since the inside of the cylindrical container body is divided into a semi-cylindrical shape by two partition plates and the evaporation chamber and the condensation chamber are partitioned, the apparatus can be reduced in size with a simple structure.

本発明のさらに別の好ましい実施態様では、前記凝縮室と前記両仕切り間の前記空間とが、前記導圧管で連通して、前記凝縮室内の圧力と前記空間の圧力とが同圧になっている。 In still another preferred embodiment of the present invention, the condensing chamber and the space between the two partitions communicate with each other through the pressure guiding tube, and the pressure in the condensing chamber and the pressure in the space become the same pressure. Yes.

本発明の他の実施態様では、前記凝縮室が前記真空ポンプに接続され、前記凝縮室と前記空間とを連通する前記導圧管の一部が、前記凝縮室と前記真空ポンプとを接続する配管で構成される。In another embodiment of the present invention, the condensing chamber is connected to the vacuum pump, and a part of the pressure guiding pipe that connects the condensing chamber and the space is connected to the condensing chamber and the vacuum pump. Consists of.

本発明装置によれば、蒸発室と凝縮室とを同一容器内に形成するので、蒸発室と凝縮室とを別々の容器で形成した従来装置に比べて、装置全体を小型化して装置の設置スペース、および材料や製造のコストを削減することが可能となる。しかも、蒸発室と凝縮室との間を、空間を介在させて少なくとも二重に仕切るので、凝縮室から蒸発室への伝熱を前記空間により有効に遮断して熱効率の低下を効果的に防止することができる。   According to the apparatus of the present invention, since the evaporation chamber and the condensation chamber are formed in the same container, the entire apparatus is reduced in size and installed as compared with the conventional apparatus in which the evaporation chamber and the condensation chamber are formed as separate containers. Space and material and manufacturing costs can be reduced. Moreover, since the space between the evaporation chamber and the condensing chamber is at least double partitioned, the heat transfer from the condensing chamber to the evaporation chamber is effectively blocked by the space, effectively preventing a decrease in thermal efficiency. can do.

図1は本発明の一実施形態に係る蒸発式冷却装置のシステム構成例を示す図である。FIG. 1 is a diagram showing a system configuration example of an evaporative cooling apparatus according to an embodiment of the present invention. 図2は図1の容器の斜視図である。FIG. 2 is a perspective view of the container of FIG. 図3は図2の容器の側面図である。FIG. 3 is a side view of the container of FIG. 図4は図3の矢視A−A断面図である。4 is a cross-sectional view taken along the line AA in FIG. 図5は本発明の他の実施形態の蒸発式冷却装置のシステム構成例を示す図である。FIG. 5 is a diagram showing a system configuration example of an evaporative cooling device according to another embodiment of the present invention. 図6は従来装置のシステム構成例を示す図である。 FIG. 6 is a diagram showing a system configuration example of a conventional apparatus.

以下、図面によって本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の実施形態に係る蒸発式冷却装置のシステム構成を示す。図1を参照して、この実施形態に係る蒸発式冷却装置においては、密閉型の単一の容器1の内部を、後述のように、二枚の仕切り板2a,2bによって2つの室に仕切ると共に、一方の室を蒸発室3、他方の室を凝縮室4とし、かつ、二枚の仕切り板2a,2bの間に空間5を介在させた構成としている。この空間5は、前記蒸発室3と凝縮室4とを断熱することができる。   FIG. 1 shows a system configuration of an evaporative cooling apparatus according to an embodiment of the present invention. Referring to FIG. 1, in the evaporative cooling apparatus according to this embodiment, the interior of a single sealed container 1 is partitioned into two chambers by two partition plates 2a and 2b as will be described later. In addition, one chamber is the evaporation chamber 3, the other chamber is the condensation chamber 4, and the space 5 is interposed between the two partition plates 2 a and 2 b. This space 5 can insulate the evaporation chamber 3 and the condensation chamber 4 from each other.

こうして密閉型の単一容器1の内部を前記二枚の仕切り板2a,2bによって仕切ることにより、蒸発室3と凝縮室4とを単一容器1内部にコンパクトに隣接配置させることが可能となって、装置全体の小型化ならびに製造コストや材料コストを低減することが可能となる。しかも、これら両室3,4の相互間での熱移動を効果的に抑制して熱効率の低下を防止するようにしている。   Thus, by separating the inside of the sealed single container 1 by the two partition plates 2a and 2b, the evaporation chamber 3 and the condensation chamber 4 can be arranged compactly adjacent to each other inside the single container 1. As a result, it is possible to reduce the size of the entire apparatus and to reduce manufacturing costs and material costs. In addition, the heat transfer between the two chambers 3 and 4 is effectively suppressed to prevent a decrease in thermal efficiency.

蒸発室3は、その内部に入れた蒸発性液体、例えば水を大気圧より低い減圧の状態で沸騰蒸発させるものであり、この蒸発室3内に溜まる水を、蒸発性液体出口6より管路8を介して循環ポンプ7にて汲み出し、冷房箇所等の負荷側における間接熱交換器9に対して冷却源として供給した後、管路10を介して蒸発性液体入口11に供給し、再び前記蒸発室3内に、その上部のノズル12から噴出するように戻るという循環を行うように構成されている。   The evaporating chamber 3 evaporates an evaporating liquid, for example, water contained in the evaporating chamber 3 at a reduced pressure lower than the atmospheric pressure, and the water accumulated in the evaporating chamber 3 is connected to the evaporating liquid outlet 6 through a pipe line. 8 is pumped out by the circulation pump 7 through the pipe 8 and supplied as a cooling source to the indirect heat exchanger 9 on the load side such as the cooling part, and then supplied to the evaporative liquid inlet 11 through the pipe line 10. The evaporating chamber 3 is configured to circulate so as to return from the nozzle 12 at the upper part thereof.

凝縮室4は、その内部に溜まる冷却用流体、例えば水を冷却用流体出口13より管路16を介して循環ポンプ14にて汲み出し、放熱側における間接熱交換器15に供給して、大気への放熱等よって冷却する。この間接熱交換器15によって冷却した水を、管路17を介して冷却用液体入口18に供給し、凝縮室4内に、その上部のノズル19から噴出するように戻るという循環を行うように構成されている。   The condensing chamber 4 draws a cooling fluid, for example, water, stored in the condensing chamber 4 from the cooling fluid outlet 13 through the pipe 16 by the circulation pump 14 and supplies it to the indirect heat exchanger 15 on the heat radiation side to the atmosphere. Cool by heat dissipation. The water cooled by the indirect heat exchanger 15 is supplied to the cooling liquid inlet 18 via the pipe line 17 and is circulated back into the condensing chamber 4 so as to be ejected from the nozzle 19 at the upper part thereof. It is configured.

更に、蒸発室3の蒸気出口20と凝縮室4の蒸気入口21とを、蒸気ダクト22で接続するとともに、この蒸気ダクト22の途中には、蒸発室3からの蒸気を圧縮して凝縮室4に送り込む蒸気圧縮機23としてルーツ型圧縮機を設けている。このルーツ型圧縮機では、例えば,蒸気を温度差で約10℃程度圧縮することができる。なお、蒸気圧縮機23としては、ルーツ型圧縮機に限らず、ブロワー圧縮機、ねじ型圧縮機やその他の圧縮機を使用することができる。   Further, the vapor outlet 20 of the evaporation chamber 3 and the vapor inlet 21 of the condensation chamber 4 are connected by a vapor duct 22, and the vapor from the evaporation chamber 3 is compressed in the middle of the vapor duct 22 to condense the chamber 4. A root type compressor is provided as the steam compressor 23 to be fed into the tank. In this roots type compressor, for example, steam can be compressed by about 10 ° C. due to a temperature difference. The steam compressor 23 is not limited to a Roots type compressor, and a blower compressor, a screw type compressor, and other compressors can be used.

蒸発室3の内部および凝縮室4の内部は、凝縮室4の真空用排気口24に接続した真空ポンプ25によって大気圧よりも低い減圧に保持することによって、蒸発室3内で蒸発性液体の沸騰蒸発を行わせるように構成されている。   The inside of the evaporating chamber 3 and the inside of the condensing chamber 4 are kept at a reduced pressure lower than the atmospheric pressure by a vacuum pump 25 connected to the vacuum exhaust port 24 of the condensing chamber 4. It is comprised so that boiling evaporation may be performed.

また、蒸発室3の底部の接続口30と凝縮器4の底部の接続口31とは、連通管26で接続され、凝縮室4内の水の一部を、連通管26を介して蒸発室3内に供給するようにしている。   The connection port 30 at the bottom of the evaporation chamber 3 and the connection port 31 at the bottom of the condenser 4 are connected by a communication pipe 26, and a part of the water in the condensation chamber 4 is passed through the communication pipe 26. 3 is supplied.

蒸発室3と凝縮室4とは、上述のように、容器1の中央部に設けた二枚の仕切り板2a,2bによって二重に仕切られている。両仕切り板2a,2bの間の断熱用の空間5は、該空間5に対応する接続口29と蒸発室3の接続口28とを接続する導圧管27によって蒸発室3と同圧とされる。これによって、両仕切り板2a,2bの内の蒸発室3側の仕切り板2bは、差圧による応力を受けず、凝縮室4側の仕切り板2aに比べて、薄い仕切り板を使用することができる。   As described above, the evaporation chamber 3 and the condensing chamber 4 are doubly partitioned by the two partition plates 2a and 2b provided in the central portion of the container 1. The space 5 for heat insulation between the partition plates 2a and 2b is made to have the same pressure as the evaporation chamber 3 by the pressure guiding pipe 27 that connects the connection port 29 corresponding to the space 5 and the connection port 28 of the evaporation chamber 3. . As a result, the partition plate 2b on the evaporation chamber 3 side of the partition plates 2a and 2b is not subjected to stress due to the differential pressure, and a thinner partition plate can be used than the partition plate 2a on the condensation chamber 4 side. it can.

図2は、図1の容器1の斜視図であり、図3は、その側面図であり、図4は、図3の矢視A−A断面図であり、これらの図において、図1に対応する部分には、同一の参照符号を付す。   2 is a perspective view of the container 1 of FIG. 1, FIG. 3 is a side view thereof, and FIG. 4 is a cross-sectional view taken along the line AA of FIG. Corresponding parts bear the same reference symbols.

この容器1は、例えば、ステンレス製であり、円筒状の容器本体1aと、前端の開口を閉塞する前面板1bと、後端の開口を閉塞する後面板1cとを備えている。前面板1bおよび後面板1cは、蒸発室3、凝縮室4および仕切り板2a,2b間の空間5をそれぞれ閉塞する。容器1を構成する材料は、ステンレスなどの金属に限らず、硬質の合成樹脂などであってもよい。   The container 1 is made of stainless steel, for example, and includes a cylindrical container body 1a, a front plate 1b that closes the opening at the front end, and a rear plate 1c that closes the opening at the rear end. The front plate 1b and the rear plate 1c close the space 5 between the evaporation chamber 3, the condensation chamber 4, and the partition plates 2a and 2b, respectively. The material constituting the container 1 is not limited to a metal such as stainless steel but may be a hard synthetic resin.

容器本体1aは、図3に示すように、その軸線50が水平になるように4本の取付脚51によって横向きに配置されている。   As shown in FIG. 3, the container main body 1 a is disposed sideways by four mounting legs 51 so that the axis 50 thereof is horizontal.

円筒状の容器本体1aには、該容器本体1aの軸線50方向に延びる平板状の二枚の仕切り板2a,2bが、容器本体1aの円形断面を二分するように直径方向に配置されることによって、蒸発室3および凝縮室4を、それぞれ半円筒状に区画形成している。   In the cylindrical container body 1a, two flat partition plates 2a and 2b extending in the direction of the axis 50 of the container body 1a are arranged in the diameter direction so as to bisect the circular cross section of the container body 1a. Thus, the evaporating chamber 3 and the condensing chamber 4 are partitioned and formed in a semicylindrical shape.

蒸発室3側の本体上部には、蒸気出口20が設けられる一方、凝縮室4側の本体上部には、蒸気入口21が設けられる。   A vapor outlet 20 is provided in the upper part of the main body on the evaporation chamber 3 side, while a vapor inlet 21 is provided in the upper part of the main body on the condensation chamber 4 side.

蒸発室3側の前面板1bには、導圧管27の一端が接続される接続口28が設けられる一方、二枚の仕切り板2a,2bで挟まれた断熱用の空間5に対応する本体上部には、導圧管27の他端が接続される接続口29が設けられる。   The front plate 1b on the evaporation chamber 3 side is provided with a connection port 28 to which one end of the pressure guiding tube 27 is connected, while the upper portion of the main body corresponding to the heat insulating space 5 sandwiched between the two partition plates 2a and 2b. Is provided with a connection port 29 to which the other end of the pressure guiding tube 27 is connected.

蒸発室3側の本体側部には、蒸発性液体入口11が三箇所に設けられる一方、凝縮室4側の本体側部には、冷却用流体入口18が三箇所に設けられる。   Evaporable liquid inlets 11 are provided at three locations on the main body side on the evaporation chamber 3 side, while cooling fluid inlets 18 are provided at three locations on the main body side on the condensation chamber 4 side.

また、蒸発室3側の本体下部の前面寄りには、蒸発性液体出口6が設けられる一方、凝縮室4側の本体下部の後面寄りには、冷却用液体出口13が設けられる。更に、蒸発室3側の本体下部の前面側には、連通管26の一端が接続される接続口30が設けられる一方、凝縮室4側の本体下部の前面側には、連通管26の他端が接続される接続口31が設けられる。二枚の仕切り板2a,2bで挟まれた断熱用の空間5の底部には、ドレン配管(図示せず)が設けられており、万一、空間5内に冷媒が混入したような場合には、冷媒を排出できるようになっている。   Further, an evaporative liquid outlet 6 is provided near the front surface of the lower part of the main body on the evaporation chamber 3 side, while a cooling liquid outlet 13 is provided near the rear surface of the lower part of the main body on the condensing chamber 4 side. Furthermore, a connection port 30 to which one end of the communication pipe 26 is connected is provided on the front side of the lower part of the main body on the evaporation chamber 3 side, while the connection pipe 26 is provided on the front side of the lower part of the main body on the condensing chamber 4 side. A connection port 31 to which the end is connected is provided. A drain pipe (not shown) is provided at the bottom of the heat insulating space 5 sandwiched between the two partition plates 2a and 2b, and in the unlikely event that refrigerant is mixed into the space 5. Can discharge the refrigerant.

前面板1bの蒸発室3側および凝縮室4側には、真空排気用の排気口32,24がそれぞれ設けられる。   Exhaust ports 32 and 24 for vacuum exhaust are respectively provided on the evaporation chamber 3 side and the condensation chamber 4 side of the front plate 1b.

なお、容器本体1aの上部には、蒸気圧縮器23およびそれを駆動するモータなどを取り付けるための図示しない取付座が設けられており、容器本体1aの上部のスペースを有効に利用し、装置全体の設置スペースを削減している。   Note that a mounting seat (not shown) for mounting the vapor compressor 23 and a motor for driving the vapor compressor 23 is provided on the upper portion of the container main body 1a. The installation space is reduced.

かかる構成を有する容器1を用いて、上述の図1のシステムが構成される。   The above-described system shown in FIG. 1 is configured using the container 1 having such a configuration.

再び図1を参照して、蒸発室3内における減圧状態での沸騰蒸発にて冷却されて温度が低くなった水は、管路8を介して循環ポンプ7にて負荷側に送られて間接熱交換器9で熱交換されて冷房等に供され、この負荷側において温度が上昇した水は、管路10を介して再び蒸発室3内に戻って、ここで再び沸騰蒸発することで冷却されて温度が低くなる。   Referring to FIG. 1 again, the water that has been cooled by boiling and evaporating in the evaporation chamber 3 under reduced pressure is sent to the load side by the circulation pump 7 via the pipe 8 and indirectly. The water which has been subjected to heat exchange in the heat exchanger 9 and used for cooling or the like and whose temperature has risen on the load side returns to the evaporation chamber 3 again via the pipe line 10, and is cooled by boiling and evaporating again here. The temperature is lowered.

一方、蒸発室3内における沸騰蒸発にて発生した蒸気は、蒸気圧縮機23にて吸引されて圧縮されて凝縮室4内に至り、凝縮室4での冷却にて凝縮され、この凝縮水の一部は、圧力差によって連通管26を介して蒸発室3に供給される。   On the other hand, the vapor generated by boiling evaporation in the evaporation chamber 3 is sucked and compressed by the vapor compressor 23 to reach the condensation chamber 4 and condensed by cooling in the condensation chamber 4. A part of the pressure is supplied to the evaporation chamber 3 through the communication pipe 26 due to a pressure difference.

また、凝縮室4内で熱を放出して凝縮液化した水は、管路16を介して循環ポンプ14にて放熱側に送られて間接熱交換器15で大気への放熱等よって冷却され、管路17を介して凝縮室4内に戻るという循環を繰り返す。   Further, the water condensed and liquefied by releasing heat in the condensing chamber 4 is sent to the heat radiation side by the circulation pump 14 via the pipe line 16 and cooled by heat radiation to the atmosphere by the indirect heat exchanger 15, The circulation of returning to the condensation chamber 4 through the pipe line 17 is repeated.

以上の構成の蒸発式冷却装置では、単一の容器1の内部を、二枚の仕切り板2a,2bで二重に仕切ることによって蒸発室3および凝縮室4を区画形成しているので、装置全体を小型化して設置スペースおよびコストを削減することができる。しかも、蒸発室3と凝縮室4との間を、断熱用の空間5を介在させて二重に仕切るので、凝縮室4から蒸発室3への伝熱を遮断して熱効率の低下を防止することができる。   In the evaporative cooling apparatus having the above configuration, the evaporation chamber 3 and the condensation chamber 4 are partitioned by dividing the inside of a single container 1 by two partition plates 2a and 2b. The overall size can be reduced to reduce the installation space and cost. In addition, since the space between the evaporation chamber 3 and the condensing chamber 4 is double partitioned with the space 5 for heat insulation interposed, heat transfer from the condensing chamber 4 to the evaporation chamber 3 is interrupted to prevent a decrease in thermal efficiency. be able to.

本発明の他の実施形態として、断熱用の空間5を、導圧管によって蒸発室3または凝縮室4と接続して蒸発室3または凝縮室4と同圧にするのではなく、断熱用の空間5を、単に減圧状態としてもよい。   As another embodiment of the present invention, the space 5 for heat insulation is not connected to the evaporation chamber 3 or the condensing chamber 4 by the pressure guiding tube to be the same pressure as the evaporation chamber 3 or the condensing chamber 4. 5 may simply be in a reduced pressure state.

断熱用の空間5が大気圧のまま密閉されていると、当該蒸発式冷却装置の運転を開始した後に、空間5と、その両側の減圧された蒸発室3および減圧された凝縮室4との間の差圧がそれぞれ大きなものとなるので、仕切り板2a,2bは、その差圧に耐えることができるように厚くする必要があるが、断熱用の空間5を減圧状態にすることによって、差圧を小さくすることができ、仕切り板2a,2bを薄くすることができる。   If the space 5 for heat insulation is sealed at atmospheric pressure, after the operation of the evaporative cooling device is started, the space 5 and the decompressed evaporation chamber 3 and the decompressed condensing chamber 4 on both sides thereof are separated. Since the differential pressure between them becomes large, the partition plates 2a and 2b need to be thick so that they can withstand the differential pressure. A pressure can be made small and the partition plates 2a and 2b can be made thin.

断熱用の空間5を減圧状態にするには、製造段階で空間5を減圧状態にして密閉してもよいし、あるいは、空間5を、例えば図5に示すように、配管55を介して直接真空ポンプ25に接続して減圧してもよい。また、真空ポンプ25とは別の真空ポンプに接続して減圧状態としてもよい。   In order to bring the space 5 for heat insulation into a reduced pressure state, the space 5 may be sealed in a reduced pressure state at the manufacturing stage, or the space 5 may be directly connected via a pipe 55 as shown in FIG. The pressure may be reduced by connecting to the vacuum pump 25. Further, the pressure may be reduced by connecting to a vacuum pump different from the vacuum pump 25.

上述の実施形態では、円筒状の容器1を横向きに配置したけれども、他の実施形態として、縦向きに配置する構成としてもよい。   In the above-described embodiment, the cylindrical container 1 is disposed in the horizontal direction. However, as another embodiment, the cylindrical container 1 may be disposed in the vertical direction.

また、上述の実施形態では、円筒状の容器本体1aの円形断面を二分するように仕切って、蒸発室3および凝縮室4をそれぞれ半円筒状に区画形成したけれども、他の実施形態として、図3に示す円筒状の容器本体1aの軸線50に直交するように仕切って、蒸発室および凝縮室をそれぞれ円筒状に区画形成してもよい。   Further, in the above-described embodiment, the circular cross section of the cylindrical container body 1a is divided into two, and the evaporation chamber 3 and the condensation chamber 4 are partitioned and formed in a semi-cylindrical shape. However, as another embodiment, FIG. The evaporation chamber and the condensation chamber may be partitioned and formed in a cylindrical shape by partitioning so as to be orthogonal to the axis 50 of the cylindrical container body 1a shown in FIG.

上述の実施形態では、蒸発性液体として水を使用したけれども、本発明は水に限らず、アルコールその他の蒸発性液体を使用してもよい。   In the above-described embodiment, water is used as the evaporating liquid. However, the present invention is not limited to water, and alcohol or other evaporating liquids may be used.

1 容器
1a 容器本体
2a,2b 仕切り板
3 蒸発室
4 凝縮室
5 空間
DESCRIPTION OF SYMBOLS 1 Container 1a Container main body 2a, 2b Partition plate 3 Evaporation chamber 4 Condensing chamber 5 Space

Claims (4)

真空ポンプによって大気圧よりも低い減圧にされると共に、蒸発性液体を前記減圧で沸騰蒸発させる蒸発室と、この蒸発室において発生した蒸気を圧縮する蒸気圧縮機と、前記真空ポンプによって大気圧よりも低い減圧にされると共に、前記蒸気圧縮機で圧縮した蒸気を凝縮する凝縮室とを備える蒸発式冷却装置において、
単一容器の内部に少なくとも二重の仕切りによって相互に仕切られた前記蒸発室と前記凝縮室とを有すると共に、前記二重の仕切り間に空間が介在しており、
前記蒸発室および前記凝縮室のうちのいずれか一方の室と前記両仕切り間の前記空間とが、導圧管で連通して、前記いずれか一方の室内の圧力と前記空間の圧力とが同圧になっている、ことを特徴とする蒸発式冷却装置。
With the lower vacuum than the atmospheric pressure by a vacuum pump, and the evaporation chamber to boil evaporate evaporable liquid at the reduced pressure, and the steam compressor for compressing the vapor generated in this evaporation chamber, than the atmospheric pressure by the vacuum pump And an evaporative cooling device comprising a condensing chamber for condensing the steam compressed by the steam compressor,
The evaporation chamber and the condensation chamber are mutually partitioned by at least a double partition inside a single container, and a space is interposed between the double partitions ,
One of the evaporation chamber and the condensing chamber communicates with the space between the partitions through a pressure guiding tube, and the pressure in the one chamber and the pressure in the space are the same pressure. evaporative cooling apparatus according to claim going on, things.
前記二重の仕切りを、前記空間を挟んで対向する二枚の仕切り板によって構成しており、
前記単一の容器は、円筒状の容器本体を含み、前記二枚の仕切り板によって、前記容器本体の円形断面を二分するように、前記蒸発室および前記凝縮室を、半円筒状にそれぞれ区画形成した、請求項1に記載の蒸発式冷却装置。
The double partition is constituted by two partition plates facing each other across the space,
The single container includes a cylindrical container main body, and the evaporation chamber and the condensing chamber are divided into semi-cylindrical shapes so as to bisect the circular cross section of the container main body by the two partition plates. The evaporative cooling device according to claim 1 formed .
前記凝縮室と前記両仕切り間の前記空間とが、前記導圧管で連通して、前記凝縮室内の圧力と前記空間の圧力とが同圧になっている、請求項1または2に記載の蒸発式冷却装置。 And the space between the condensing chamber and the both partition is communicated with the guiding tube, wherein the pressure in the condensation chamber of the pressure and the space is in the same pressure, the evaporation of claim 1 or 2 Cooling device. 前記凝縮室が前記真空ポンプに接続され、前記凝縮室と前記空間とを連通する前記導圧管の一部が、前記凝縮室と前記真空ポンプとを接続する配管で構成される、請求項に記載の蒸発式冷却装置。 The condensing chamber is connected to the vacuum pump, a portion of the connecting pipe for communicating the said condensing chamber space, and a pipe which connects the vacuum pump and the condenser chamber, in claim 3 The evaporative cooling device as described.
JP2009198304A 2009-08-28 2009-08-28 Evaporative cooling device Active JP5483959B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009198304A JP5483959B2 (en) 2009-08-28 2009-08-28 Evaporative cooling device
PCT/JP2010/004387 WO2011024371A1 (en) 2009-08-28 2010-07-05 Evaporative cooling device
CN2010800037913A CN102265101A (en) 2009-08-28 2010-07-05 Evaporative cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198304A JP5483959B2 (en) 2009-08-28 2009-08-28 Evaporative cooling device

Publications (2)

Publication Number Publication Date
JP2011047618A JP2011047618A (en) 2011-03-10
JP5483959B2 true JP5483959B2 (en) 2014-05-07

Family

ID=43627494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198304A Active JP5483959B2 (en) 2009-08-28 2009-08-28 Evaporative cooling device

Country Status (3)

Country Link
JP (1) JP5483959B2 (en)
CN (1) CN102265101A (en)
WO (1) WO2011024371A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765862B2 (en) * 2013-08-30 2015-08-19 株式会社アンレット Low pressure steam recycling equipment
FR3069624B1 (en) * 2017-07-28 2019-10-18 Alpinov X REFRIGERATING INSTALLATION
TWI757508B (en) * 2017-08-02 2022-03-11 日商笹倉機械工程股份有限公司 Fresh water generation device
JP7504655B2 (en) 2020-04-27 2024-06-24 パナソニックホールディングス株式会社 Refrigeration Cycle Equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974935A (en) * 1960-09-02 1964-11-11 American Radiator & Standard Refrigeration machine
JPS5241627Y2 (en) * 1973-05-09 1977-09-20
JP2003042597A (en) * 2001-07-27 2003-02-13 Denso Corp Integrated heat exchanger
JP4021170B2 (en) * 2001-10-05 2007-12-12 サッポロビール株式会社 Beverage cooling supply device
JP2003156267A (en) * 2001-11-16 2003-05-30 Daikin Ind Ltd Separate type air-conditioner and heat insulating double pipe to be used for the same
JPWO2004069370A1 (en) * 2003-02-10 2006-05-25 佐藤 直 Liquid sealing device, liquid sealing decompression device, evaporation device using this liquid sealing decompression device, condensing device, non-condensable gas removing device, evaporation condensing device, thermal energy source separation device, cold water production device, desalination device, And power generator
JP2004293872A (en) * 2003-03-26 2004-10-21 Tokyo Electric Power Co Inc:The Heat pump and device using heat
JP3918843B2 (en) * 2004-09-17 2007-05-23 松下電器産業株式会社 Heat pump water heater
JP4454456B2 (en) * 2004-09-30 2010-04-21 三建設備工業株式会社 Refrigeration system for steam compression refrigerator
JPWO2008096614A1 (en) * 2007-02-08 2010-05-20 株式会社ササクラ Evaporative liquid evaporative cooling system

Also Published As

Publication number Publication date
WO2011024371A1 (en) 2011-03-03
JP2011047618A (en) 2011-03-10
CN102265101A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP6851492B2 (en) Condenser with tube support structure
JP5483959B2 (en) Evaporative cooling device
AU2013219731B2 (en) Cooling apparatus and cooling system
KR101660042B1 (en) Refrigerator
JP2013257114A (en) Refrigerator
US20100018224A1 (en) Stirling cooler
JP2017116090A (en) Intermediate medium type carburetor
JP2004077039A (en) Evaporation type condenser
WO2023241382A1 (en) Condensing device and heat pump system comprising same
JP2010230267A (en) Steam compression refrigerator system
KR100666920B1 (en) Heat exchanging device
US20080104964A1 (en) Air-conditioning apparatus and method
CN107421168B (en) Condenser
US10371424B2 (en) Thermal transpiration flow heat pump
KR20100124174A (en) Air conditioning apparatus for vehicle having thermoelectric-module
EP1923641A2 (en) Air-conditioning apparatus and method
JP2009058165A (en) Evaporation type air conditioning device
CN210014485U (en) Air condensing units and have its air conditioner
JP2018048799A (en) refrigerator
CN207454272U (en) Compressor and refrigeration system
JPWO2008096614A1 (en) Evaporative liquid evaporative cooling system
CN114174737B (en) Cooling device, method for manufacturing the same and transportation device having the same
JP4623031B2 (en) Freezer refrigerator
JPH11223357A (en) Air conditioner
JP2008032298A (en) Internal heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5483959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250