JP5483464B2 - Power generation electrode body - Google Patents

Power generation electrode body Download PDF

Info

Publication number
JP5483464B2
JP5483464B2 JP2011058516A JP2011058516A JP5483464B2 JP 5483464 B2 JP5483464 B2 JP 5483464B2 JP 2011058516 A JP2011058516 A JP 2011058516A JP 2011058516 A JP2011058516 A JP 2011058516A JP 5483464 B2 JP5483464 B2 JP 5483464B2
Authority
JP
Japan
Prior art keywords
electrode
cloth
electrodes
resin
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011058516A
Other languages
Japanese (ja)
Other versions
JP2012182105A (en
Inventor
和弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011058516A priority Critical patent/JP5483464B2/en
Publication of JP2012182105A publication Critical patent/JP2012182105A/en
Application granted granted Critical
Publication of JP5483464B2 publication Critical patent/JP5483464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02E60/12

Description

本発明は、24時間昼間、夜間を通し発電、運転用燃料を必要とせず、多額の燃料費の問題がないことを特徴とする発電機、並びに燃料電池方法に関する。  The present invention relates to a generator and a fuel cell method characterized in that no fuel is required for power generation and operation throughout the day, 24 hours a day, and there is no problem of large fuel costs.

太陽光発電の太陽電池は、昼間のみ発電し、再生可能エネルギーの1種であり、太陽光のエネルギーを直接的に電力に変換する発電方式で、環境面のメリット、並びに経済的メリットがある。  Photovoltaic solar cells are a kind of renewable energy that generates electricity only in the daytime, and are a power generation method that directly converts solar energy into electric power, and have environmental and economic advantages.

風力発電は、温室効果ガスの排出が少なく、運転用燃料が不要で、持続的に利用でき、経済面で優れた効果がある。  Wind power generation has low greenhouse gas emissions, requires no operating fuel, can be used continuously, and has excellent economic effects.

電解質を用いずに水と電極だけで発光ダイオードを点灯する電力が得られ、自己充電する二次電池をつくるが公開されている。  It has been disclosed that a power source for lighting a light emitting diode can be obtained using only water and an electrode without using an electrolyte, and a self-charging secondary battery is made.

公開特許公報 特開2005−19367公報  Japanese Patent Laid-Open No. 2005-19367

しかしながら特許文献1の技術では、電極の正極として炭素繊維又はC、負極としてZnの合金又はFeを利用し、水に浸すだけで起電力を得るが、高い起電力を得るために鉱石受信機を必要としている。  However, in the technique of Patent Literature 1, carbon fiber or C is used as the positive electrode of the electrode, Zn alloy or Fe is used as the negative electrode, and an electromotive force is obtained simply by immersing in water, but an ore receiver is used to obtain a high electromotive force. In need of.

しかし太陽光発電は、昼間だけ発電が可能で、夜間は発電ができず、天候によって出力が変動し、又曇天時や雨天時は晴天時に比較して大幅に発電量が低下、さらに大規模に発電するために太陽電池パネルを多く設置するため、広大な場所を必要とし、さらに太陽電池パネルの製作するために大量のエネルギーを必要とし、大量の石油を消費する。  However, solar power generation is possible only during the day, not during the night, and the output varies depending on the weather. In order to generate electricity, a large number of solar cell panels are installed, so that a large area is required. Further, a large amount of energy is required for manufacturing the solar cell panel, and a large amount of oil is consumed.

又風力発電の風力原動機は、風状、風速の変動に伴い、出力の電圧や力率が需要と関係なく変動するため、供給電力が不安定で、さらに周囲に騒音被害を与える恐れがある。  In addition, wind power generators of wind power generation have output voltage and power factor that fluctuate regardless of demand as the wind condition and wind speed fluctuate. Therefore, the supplied power is unstable and there is a risk of causing noise damage to the surroundings.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、夜間に太陽光が照らなくても、又は風が吹かない風状でも、さらに運転用燃料等を必要とすることもなく、水蒸気の存在の空気中、水、湯、海水、太陽光の中で24時間、さらに昼間、夜間に関係なく24時間、発電を発揮できる電極体を提供することを目的とする。  The present invention has been made in view of the problems of the prior art, and even if the sunlight is not illuminated at night or the wind does not blow, there is no need for fuel for operation. An object of the present invention is to provide an electrode body capable of generating power for 24 hours in the presence of water vapor, in water, hot water, seawater, and sunlight, and for 24 hours regardless of daytime or nighttime.

本発明の発電する電極体は、電気化学ポテンシャル列の異なる起電力レベルを持つ少なくとも2種類の金属を離間し配置、水蒸気の存在のもとに(空気中)接触、水中(海水、水、湯、雪、氷が浮かぶ海水、凍結した氷の中)に浸漬することにより、電極電位差は電気化学反応を起こす原動力で、抗菌又は抗カビ効果を発揮続け、並びに水、又は水蒸気がある限り発電し続ける発電機機能と燃料電池機能を有することを特徴とする。  The electrode body for power generation according to the present invention has at least two kinds of metals having different electromotive force levels in the electrochemical potential row, arranged in contact with each other in the presence of water vapor (in the air), underwater (seawater, water, hot water). The electrode potential difference is a driving force for causing an electrochemical reaction when immersed in snow, ice, seawater with floating ice, or frozen ice), and continues to exert antibacterial or antifungal effects, as long as there is water or water vapor. It has the following generator function and fuel cell function.

これに対し、本発明の発電電極体は、電気化学ポテンシャル列の異なる起電力レベルを持つ少なくとも2種類以上の金属電極を離間して配置、水蒸気の存在のもとに(空気中)接触、太陽光、風、又は海水、水、湯、氷の浮かぶ海水、凍結した氷の中に浸漬することにより発電を発揮することを発見した。電気化学ポテンシャル列(electrochemical series)の異なる種類の金属で起電力(electromotive force)レベル持った金属は、陽極的材料(電気化学ポテンシャル列上より正の側)と陰極的材料(電気化学ポテンシャル列下より負の側)の電極電位差をつける組み合わせで、電極電位差は電気化学反応を起こす原動力として、マイナス(陰極)電極からプラス(陽極)電極に向けて絶えず電子の流れが生じ、電流が流れる静電気が発生し発電する。  On the other hand, in the power generation electrode body of the present invention, at least two kinds of metal electrodes having different electromotive force levels in the electrochemical potential sequence are arranged apart from each other, contacted in the presence of water vapor (in the air), solar It has been discovered that power generation can be achieved by immersion in light, wind, or seawater, water, hot water, seawater with floating ice, or frozen ice. Different types of metals in the electrochemical potential series (electrochemical forces) with an electromotive force level are classified into an anodic material (positive side from the electrochemical potential series) and a cathodic material (under the electrochemical potential series). The negative electrode potential difference is the combination of the negative electrode potential difference, and as a driving force for the electrochemical reaction, the flow of electrons constantly occurs from the negative (cathode) electrode to the positive (anode) electrode. Generate and generate electricity.

本発明願の電極体は絶えず電位が保たれ、静電気が流れ、電場形成、陰極は金属イオン、微生物を電極表面に吸引し、すき間腐食と放電現象の電気的殺菌、電気化学的殺菌で滅菌、並びに空気中、電解溶液に浮遊する微粒子金属、金属イオンを、化学部質等を運搬、又は集める。  In the electrode body of the present invention, the potential is constantly maintained, static electricity flows, electric field formation, the cathode sucks metal ions and microorganisms to the electrode surface, sterilization by crevice corrosion and electric discharge sterilization, electrochemical sterilization, In addition, fine metals and metal ions floating in the electrolyte solution in the air are transported or collected in chemical parts.

電気化学ポテンシャル列の異なる種類の金属としては表1に記載されたものがあるが異なる起電力(electromotive force)レベルを持つ金属を水蒸気の存在のもとで接触、又水中に浸漬すると、これらの一方向は陽極、他方は陰極となり(アノード、カソード)、両者間に電位差が生じ、かかる電気化学反応により発電効果を発揮するのである。起電力レベルの差が大きいほど、電場形成、静電気の発生、電圧、電流等は大きい値を生じる反応の電気化学反応を応用する。  Different types of metals with different electrochemical potential sequences are listed in Table 1, but when metals with different electromotive force levels are contacted or immersed in water in the presence of water vapor, these One direction is an anode and the other is a cathode (anode, cathode), and a potential difference is generated between the two, and this electrochemical reaction exerts a power generation effect. The larger the difference in electromotive force level, the more the electrochemical reaction of the reaction in which the electric field formation, the generation of static electricity, the voltage, the current, etc. produce larger values.

前記金属は、カリウム、ナトリウム、マグネシウム、マグネシウム合金、酸化チタン、硫黄、アルミニュウム、アルミニウム/マンガン合金、カドミウムめっき鋼、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼、トタン、亜鉛、亜鉛合金、クロム、鉄、軟鉄または鋼鉄、軟鉄または鋼、錫、真鍮、ジュラルミン、鉛、クロムめっき鋼、軟質半田、ニッケル下地クロムめっき鋼、錫めっき鋼、高クロムステンレス鋼、12%クロムステンレス鋼、銅、銅合金、銀半田、銅合金、ニッケルめっき鋼、銀、ロジウム下地めっき銅、銀/金合金、炭、活性炭、パラジウム、白金、金のうちの異なる種類の金属であることが好ましい。  The metal is potassium, sodium, magnesium, magnesium alloy, titanium oxide, sulfur, aluminum, aluminum / manganese alloy, cadmium plated steel, 80 tin / 20 tin plated steel, galvanized iron / steel, tin, zinc, zinc alloy, Chrome, iron, soft iron or steel, soft iron or steel, tin, brass, duralumin, lead, chrome plated steel, soft solder, nickel base chrome plated steel, tin plated steel, high chrome stainless steel, 12% chromium stainless steel, copper, It is preferable that they are different kinds of metals among copper alloy, silver solder, copper alloy, nickel-plated steel, silver, rhodium-undercoated copper, silver / gold alloy, charcoal, activated carbon, palladium, platinum, and gold.

3年間かけて前記金属を組み替えて次の実験を実施、異なる種類の金属を組み替え、布、樹脂又は炭クロスの表面に金属を少なくとも2種類以上の異なる金属を離間し平行に固着、又少なくとも2種類以上の異なる金属を離間し金属の間に布、樹脂又は炭クロスを挿入し金属を積層に重ねて、さらに大きい布、樹脂又は炭クロスに固着し、水中に浸漬することにより水電池になり、水がある限り放電、充電を繰り返す発電機能があり、又静電気を発生し電流を流し続け、電場形成、発電機、燃料電池であることを確認する。  The following experiment was carried out by rearranging the above metals for 3 years, rearranging different types of metals, fixing at least two different types of metals on the surface of cloth, resin or charcoal cloth, and fixing them in parallel. Separate a different kind of metal, insert a cloth, resin or charcoal cloth between the metals, stack the metal on the laminate, adhere to a larger cloth, resin or charcoal cloth, and immerse in water to make a water battery. As long as there is water, it has a power generation function that repeats discharging and charging, and generates static electricity and keeps current flowing, confirming that it is an electric field formation, generator, and fuel cell.

上記実験で発生する電圧、電流、抵抗値は常に変化し、前記金属が少なくとも2種類以上の異なる金属の電極電位差が少ない場合は発生する電圧、電流が小さく、又電極電位差が大きい場合は大きい電圧、電流値が生じ、同時に静電気が生じることを確認、微生物の発育阻止、滅菌、又発育、増殖の微生物制御に利用する。  The voltage, current, and resistance generated in the above experiment always change. When the metal has a small electrode potential difference between at least two different metals, the generated voltage and current are small, and when the electrode potential difference is large, the voltage is large. It is confirmed that the current value is generated and the static electricity is generated at the same time, and is used for microbial control of microbial growth inhibition, sterilization, and growth and proliferation.

電気化学ポテンシャル列の異なる起電力が低い前記金属の一方の面積は、前記金属の他方の面積より大きいと好ましい。  The area of one of the metals having a low electromotive force with a different electrochemical potential sequence is preferably larger than the other area of the metal.

前記金属の一方は、布、樹脂又は炭クロスの一方の面に配置され、前記金属の他方は、前記布、樹脂又は炭クロスの他方の面に配置されていると好ましい。  One of the metals is preferably disposed on one surface of a cloth, resin or charcoal cloth, and the other of the metals is preferably disposed on the other surface of the cloth, resin or charcoal cloth.

前記金属の少なくとも一方は、前記布、樹脂又は炭クロスの面に格子状、網状又は渦巻き状に形成されると好ましい。  It is preferable that at least one of the metals is formed in a lattice shape, a net shape, or a spiral shape on the surface of the cloth, resin, or charcoal cloth.

布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に取り囲まれるように配置されていると好ましい。  It is preferable that one side of the metal is arranged so as to be surrounded by the other side of the metal on one side of the cloth, resin or charcoal cloth.

布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に並べて配置されていると好ましい。  On one side of the cloth, resin or charcoal cloth, one of the metals is preferably arranged side by side on the other side of the metal.

前記金属を形成した布、樹脂又は炭クロスを積層、又は平行にしていると好ましい。  It is preferable that the cloth, resin or charcoal cloth on which the metal is formed are laminated or parallel.

前記金属を形成した布、樹脂又は炭クロスを筒状に形成していると好ましい。  The cloth, resin or charcoal cloth on which the metal is formed is preferably formed in a cylindrical shape.

尚、上記金属は塗料、シリコン樹脂、樹脂やセラミックなどに両面に形成されていても良い。  The metal may be formed on both surfaces of paint, silicon resin, resin or ceramic.

ここで、「布、樹脂」とは、布、紙、合成繊維、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂等からなる板状体を広く含む概念であり、乾燥状態で絶縁機能を有するものが好ましく、水蒸気の存在のもとに布、紙、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂が接触しているとき、又電解液(水、海水、湯)で布、樹脂、紙、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂の材料が湿った状態で布、樹脂の端と端の間で電気抵抗を有する材料を利用する。  Here, “cloth, resin” is a concept that widely includes a plate-like body made of cloth, paper, synthetic fiber, non-woven fabric, rubber, silicone resin, resin, synthetic resin, etc., and has an insulating function in a dry state. When cloth, paper, non-woven fabric, rubber, silicone resin, resin, synthetic resin are in contact with water vapor, or with electrolyte (water, seawater, hot water), cloth, resin, paper, non-woven fabric In addition, the material of rubber, silicon resin, resin, and synthetic resin is used in a wet state, and a material having electrical resistance between the ends of the resin is used.

「炭クロス」とは、炭の両面を布又は樹脂で挟んだものであり、わし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブを布で両面から挟み固着した炭クロスは水蒸気の存在のもと接触しているとき、又電解溶液(水、海水、湯)で湿ったときわし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブ材料が湿り、材料の端と端の間で電気抵抗が生じる材料を利用する。  "Charcoal cloth" is a charcoal cloth with both sides of charcoal sandwiched between cloth and resin. Charcoal with sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotubes sandwiched from both sides with cloth. When cloth is in contact in the presence of water vapor, or when wet with electrolytic solution (water, seawater, hot water), Japanese (washi) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotube material Wet materials are used that cause electrical resistance between the edges of the material.

炭の片面を布又は樹脂に固着した炭クロスは、わし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブを布の片面に固着した炭クロスは水蒸気の存在のもと接触しているとき、又電解溶液で湿ったときは、わし(和紙)炭、竹炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブ材料が湿り、材料の端と端の間で電気抵抗が有する材料を利用する。  Charcoal cloth with one side of charcoal fixed to cloth or resin is charcoal cloth with sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotubes fixed to one side of cloth. When in contact or when wet with electrolytic solution, sushi (Japanese paper) charcoal, bamboo charcoal, activated carbon, fine particle activated carbon, carbon black, carbon nanotube material gets wet, and there is an electric resistance between the ends of the material Is used.

炭、活性炭の利用として、電気化学ポテンシャル列の異なる金属(電極)で、起電力レベルを持つ電極で電極電位差をつけて組み合わせ、電極と電解液をつなげた系の電気化学反応(酸化還元反応、電気化学的腐食反応)で発生する電気エネルギー、電解質の正負両イオンが電圧を加える充電によって、電極表面に吸収され、電極内の正負電荷と対を作り、電気を貯蔵、そして電気二重層が消滅によって電気エネルギーを充電、放電する貯蔵する電気二重キャパシタにわし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブ炭を利用する。  For the use of charcoal and activated carbon, a metal (electrode) with a different electrochemical potential sequence is combined with an electrode having an electromotive force level, and the electrochemical reaction (oxidation reduction reaction, Electrochemical energy generated by the electrochemical corrosion reaction, both positive and negative ions of the electrolyte are absorbed by the electrode surface by charging, paired with positive and negative charges in the electrode, store electricity, and the electric double layer disappears The electric double capacitor that charges and discharges the electric energy is used to store sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, particulate activated carbon, carbon black, carbon nanotube charcoal.

本発明は、生物、又微生物(細菌、カビ、酵母、ウイルス)を滅菌する電気的殺菌、又電気化学的殺菌、並びに発電は電気化学ポテンシャル列の異なる種類の金属(電極)で、起電力レベルを持つ電極を離間し組み合わせ、電極電位差(起電力)をつけて布、又炭クロスに固着、電極と電解液をつなげた系において湿った電極、布、樹脂又炭クロスは接触し、電極内の電子と電解液の界面で電子がやりとりされる電気二重層の電気化学系反応の反応性は電極電位差により電気化学反応を起こす原動力とすることを特徴とする。  The present invention relates to electrosterilization for sterilizing organisms and microorganisms (bacteria, molds, yeasts, viruses), as well as electrochemical sterilization, and power generation using different types of metals (electrodes) in the electrochemical potential sequence, and the electromotive force level. Electrodes with electrode potential difference (electromotive force) are attached and fixed to the cloth or charcoal cloth. In the system where the electrode and electrolyte are connected, the wet electrode, cloth, resin or charcoal cloth is in contact with each other. The reactivity of the electrochemical reaction of the electric double layer in which electrons are exchanged at the interface between the electrons and the electrolyte is a driving force for causing an electrochemical reaction due to an electrode potential difference.

電極電位差をつけた電極は多数個を離間し組み込み、布、樹脂(布、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂)、又炭クロス(和紙炭、活性炭を布に固着)に固着、電極は水蒸気の存在のもとに接触し、又電解溶液の存在のもとに接触するとき電極と電極、電極と布、樹脂と電極、又電極と炭クロス間は電気抵抗が生じ、電極が接触しているとき起こる電食作用、電解腐食作用は一つの金属から他の金属へ電流が流れるために電極間は電気抵抗があり、さらに電極は電導性をおびる布、樹脂又炭クロスに固着することを特徴とする。  A large number of electrodes with an electrode potential difference are separated and assembled, and fixed to cloth, resin (cloth, non-woven fabric, rubber, silicon resin, resin, synthetic resin), or charcoal cloth (Japanese paper charcoal, activated carbon fixed to cloth), electrode Is in contact with the presence of water vapor, and when in contact with the presence of the electrolyte solution, an electrical resistance is generated between the electrode and electrode, electrode and cloth, resin and electrode, or electrode and charcoal cloth, and the electrode is in contact. The electric corrosion action and electrolytic corrosion action that occurs when the current flows from one metal to another metal, so there is an electrical resistance between the electrodes, and the electrodes are also fixed to a conductive cloth, resin or charcoal cloth. It is characterized by that.

金属イオンは微生物の細胞質膜、細胞壁の表面に付着、細胞質の電子伝達系とイオン伝導が影響をうけ腐食における局部電池機構と類似の機構、すき間腐食の反応が進行し滅菌するため、電極と電解液の界面で電気二重層の電気化学系反応で、放電による水の電気分解、電池反応、電気めっきを起こす反応エネルギーは電気エネルギーに変換され、金属イオンの生成を特徴とする。  Metal ions adhere to the surface of microbial cytoplasmic membranes and cell walls, and are affected by the cytoplasmic electron transport system and ion conduction. In the electrochemical reaction of the electric double layer at the interface of the liquid, the reaction energy that causes electrolysis of water by discharge, battery reaction, and electroplating is converted into electric energy, which is characterized by the generation of metal ions.

電気化学反応によるイオン生成は不対電子をもった物質がフリーラジカルになり、他の分子から電子を奪い微生物の膜の脂肪質層は細胞膜破壊を起こし細胞や組織の機能を低下させ死滅させるため、電極と電解液において、電解液は電気化学系反応における電子放出、電子のやりとりで電子を奪われ、酸化還元電位(ORP)がマイナスへ下がる降順(還元)、又上がる昇順(酸化)を繰り返し、酸化、還元、フリーラジカル作用を特徴とする。  Ion production by electrochemical reaction is because the substance with unpaired electrons becomes free radicals, steals electrons from other molecules, and the fat layer of the microbial membrane causes cell membrane destruction and kills cells and tissues by reducing their functions In the electrode and the electrolyte, the electrolyte repeats the descending order (reduction) in which the redox potential (ORP) decreases to negative, and the increasing order (oxidation) in which the redox potential (ORP) decreases to the minus by the electron emission and exchange of electrons in the electrochemical reaction. It is characterized by oxidation, reduction and free radical action.

微生物の細胞膜、細胞の壁は電場形成、静電気発生、放電の電流破壊、電圧破壊、コロナ放電で破壊され滅菌する反応性を起こすため、面積が有る導体性の電極は電極と電極が離間し布、樹脂又炭クロスを平行に挿入して固着、平行キャパシタとし、電解液で接触した導体性の電極と電解液をつなげた系の界面で電子がやりとりする、電気二重層キャパシタは布、樹脂又炭クロスの活性炭電極が、電気エネルギーを貯蔵する蓄電池機能を持ち、電極と溶解液の正負両イオンがそれぞれ負極と正極に物理的に吸着および脱着による充電、放電を繰り返す電池を特徴とする。  Microbial cell membranes and cell walls cause electric field formation, generation of static electricity, discharge current destruction, voltage destruction, corona discharge destruction and sterilization reactivity. A resin or charcoal cloth is inserted and fixed in parallel to form a parallel capacitor.Electrons are exchanged at the interface between the conductive electrode in contact with the electrolyte and the electrolyte. The charcoal cloth activated carbon electrode has a storage battery function of storing electrical energy, and the battery is characterized by a battery in which positive and negative ions of the electrode and the solution are repeatedly charged and discharged by physical adsorption and desorption on the negative electrode and the positive electrode, respectively.

少なくとも2種類の異なる導体性の有る電極板は面積が有り、電極板を離間して配置、離間を設けた電極板の間に布又は炭、活性炭の誘電体を挿入、電極板を平行に配置し大きい布、樹脂又炭クロスに固着、電極が平行板になり金属板の内部に電荷が集中し強い電場が作られ、電極電位差により電気化学反応が発生し電気エネルギーを充電、放電できる電気二重層キャパシタの蓄電機能を持った、平行キャパシタにする。  At least two types of electrode plates with different conductive properties have a large area. The electrode plates are spaced apart, and a cloth, charcoal, or activated carbon dielectric is inserted between the spaced electrode plates, and the electrode plates are placed in parallel. Electric double layer capacitor that can be fixed on cloth, resin or charcoal cloth, electrodes become parallel plates, electric charges are concentrated inside the metal plate and a strong electric field is created, and an electrochemical reaction occurs due to electrode potential difference to charge and discharge electric energy. A parallel capacitor with the power storage function.

電気化学系反応の反応性は陽極的材料の電極(電気化学ポテンシャル列上より正の側)の面積を小さくし、腐食により陽極へ電子供給量を多くする陰極的材料の電極(電気化学ポテンシャル列下より負の側)の面積を大きくし、陽極的材料と陰極的材料(アソード、カソード)を離間し布、樹脂又炭クロスを固着、又間隔を設け、さらに動作電極、基準電極、又補助電極を1から多数個を離間し組み合わせて電極電位差を大きくつけた電極は多数個を離間し組み込むことを特徴とする。  The reactivity of the electrochemical reaction reduces the area of the anode material electrode (on the positive side of the electrochemical potential sequence) and increases the amount of electrons supplied to the anode due to corrosion (electrochemical potential sequence) Increase the area of the negative side from the bottom), separate the anode material and cathode material (asode, cathode), fix the cloth, resin or charcoal cloth, and provide the space, and also the working electrode, reference electrode, and auxiliary An electrode having a large electrode potential difference by separating and combining a large number of electrodes from 1 is characterized in that a large number of electrodes are separated and incorporated.

電極形状は平形、丸形、球形、渦巻き形、線形、格子形、網形、六角形、山形、波形とし、又金属固体、活性炭を微粒子状に加工、さらにカーボンブラック、ナノチューブを利用、静電気の帯電を高め、静電気放電、イオン生成、コロナ放電、フリーラジカル作用の電気化学的反応で滅菌するため、静電気を多く帯電する電極は総表面積を大きくし、又金属固体は微粒子に加工し、さらに電極は積層、又は平行に並べることを特徴とする。  The electrode shape is flat, round, spherical, spiral, linear, lattice, mesh, hexagonal, chevron, corrugated, metal solid, activated carbon is processed into fine particles, carbon black, nanotubes are used, To increase the charge and sterilize by electrochemical reaction of electrostatic discharge, ion generation, corona discharge, and free radical action, the electrostatically charged electrode increases the total surface area, and the metal solid is processed into fine particles. Are characterized by being stacked or arranged in parallel.

発電電極体は酸化チタン、硫黄の細かい紛体、又微粒子を電気化学ポテンシャル列の異なる種類の金属で起電力レベルを持つ電極に付加し発電効果が高まる。  The power generation effect is enhanced by adding titanium oxide, fine powder of sulfur, or fine particles to electrodes having electromotive force levels of different types of metals having different electrochemical potential sequences.

電槽の平面図で電槽内に陽極板と陰極板は互いに並列式に並べるが、電極板は電極A6、電極B7、電極C8、電極D9、又電極E10等を離間し、組み合わせ、電極間に布、樹脂又は炭クロス5を挿入し固着、陽極板と陰極板の端面に導線3を接続した発電電極体、又は燃料電池電極体の平面図である。In the plan view of the battery case, the anode plate and the cathode plate are arranged in parallel in the battery case, but the electrode plate separates and combines the electrode A6, electrode B7, electrode C8, electrode D9, electrode E10, etc. FIG. 2 is a plan view of a power generation electrode body or a fuel cell electrode body in which a cloth, resin or charcoal cloth 5 is inserted and fixed, and a conductive wire 3 is connected to end faces of an anode plate and a cathode plate. 電槽の平面図で電槽内に多数の極板の内端を陽極板、他端を陰極板とし、電流は陽極より其の中間にある極板を順次に流れ陰極に向かう、極板は直列に連なり、中間板等はでは一面に陰極、他面は陽極となり一面の極板其の両面で異なる極(複極)とり電極板は電極A6、電極B7、電極C8、電極D9、又電極E10等を離間し組み合わせ、電極間に布、樹脂又は炭クロス5を挿入し固着、陽極板と陰極板の端面に導線3を接続した発電電極体、又は燃料電池電極体の平面図である。In the plan view of the battery case, the inner end of many electrode plates in the battery case is an anode plate, the other end is a cathode plate, the current flows sequentially through the electrode plate in the middle of the anode toward the cathode, Connected in series, the intermediate plate is a cathode on one side, the other side is an anode and the electrode plate on one side is different (double pole) on both sides. The electrode plates are electrodes A6, B7, C8, D9, and electrodes. FIG. 3 is a plan view of a power generation electrode body or a fuel cell electrode body in which E10 and the like are separated and combined, cloth, resin or charcoal cloth 5 is inserted and fixed between electrodes, and lead wires 3 are connected to end faces of an anode plate and a cathode plate. 起電力レベルの異なる金属電極を球体状とし、3積層にして、電極間に布、樹脂又は炭クロスを挿入し固着、電極板は電極A6、電極B7、電極C8、電極D9、又電極E10等を組み合わせ、電極間に布、樹脂又は炭クロス5を挿入し固着、外周には宇宙から降り注ぐマイナスの電子を吸着するアンテナ4を取付け、マイナス電子を電極体へ送り続けて発電する球体発電電極体a12、燃料電池電極体の断面図である。Metal electrodes with different electromotive force levels are formed in a spherical shape, and three layers are laminated, and cloth, resin, or charcoal cloth is inserted between the electrodes and fixed. The electrode plates are electrode A6, electrode B7, electrode C8, electrode D9, electrode E10, etc. , A cloth, resin or charcoal cloth 5 is inserted between the electrodes and fixed, and on the outer periphery, an antenna 4 for adsorbing negative electrons falling from space is attached, and a spherical power generation electrode body for generating power by continuously sending negative electrons to the electrode body a12 is a cross-sectional view of the fuel cell electrode body; 150倍に拡大した亜鉛電極の組織画像である。It is a structure | tissue image of the zinc electrode expanded 150 times. 150倍に拡大した亜鉛電極の組織画像である。It is a structure | tissue image of the zinc electrode expanded 150 times. 試験液のORPの経時変化を示すグラフである。It is a graph which shows the time-dependent change of ORP of a test liquid. 亜鉛(トタン板)、銅、銀の間に炭クロスを挿入し大きい炭クロスに固着した3積層電極の亜鉛電極の斜視画像である。It is a perspective image of the zinc electrode of the three laminated electrodes which inserted the charcoal cloth between zinc (tongue board), copper, and silver, and was fixed to the big charcoal cloth. 銀、亜鉛(トタン)、銅の間に炭クロスを挿入、大きい炭クロスに固着した3積層電極の銀電極を示す斜視画像である。It is a perspective image which shows the silver electrode of the 3 laminated electrode which inserted the charcoal cloth between silver, zinc (totone), and copper, and was fixed to the big charcoal cloth. 本発明者が行った実験結果の発電電極体の放電現象を撮影した斜視画像である。It is the perspective image which image | photographed the discharge phenomenon of the power generation electrode body of the experimental result which this inventor performed. 亜鉛(トタン板)、銅板、銀板(T10004)の3積層電極の形状の電極浄化体を示す斜視画像である。It is a perspective image which shows the electrode purification body of the shape of the three laminated electrodes of zinc (tongue board), a copper plate, and a silver plate (T10004). 亜鉛材、ステンレス、アルミニウム、銀板(T10005)の4積層電極の形状を示す斜視画像である。It is a perspective image which shows the shape of four laminated electrodes of a zinc material, stainless steel, aluminum, and a silver plate (T10005). 板状の布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の金属電極A6、金属電極B7、金属電極C8、金属電極D9又金属電極E10等を離間し固着、電極は格子状、網状で線材を利用、電気二重層キャパシタを形成、電極は格子状、又網状、線、ワィヤー状で異なった起電力レベルを持った金属を積層にして陽極における腐食作用による、電子を供給する陰極材料であるため、陰極面積を多くして配置、電極を電解溶液2に浸漬すると電極電位差で電気化学反応を起こし、生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、又発電機、燃料電池に利用する発電電極体b13を示す平面図である。A metal electrode A6, a metal electrode B7, a metal electrode C8, a metal electrode D9, a metal electrode E10, and the like of different kinds of electrochemical potential columns are spaced apart and fixed to the surface of a plate-like cloth, resin or charcoal cloth 5, and the electrodes are in a lattice shape. Use a wire in the form of a net, form an electric double layer capacitor, and supply electrodes by corrosive action at the anode by laminating metal with different electromotive force levels in a grid, net, wire or wire. Because it is a cathode material, the cathode area is increased, and when the electrode is immersed in the electrolytic solution 2, an electrochemical reaction occurs due to the electrode potential difference, and organisms and microorganisms are sterilized by electrical sterilization and electrochemical sterilization. It is a top view which shows the electric power generation electrode body b13 utilized for a fuel cell. 板状の布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の線状、ワィヤー状の電極A6、金属電極B7、金属電極C8、金属電極9、又金属電極10等を離間し横に並べて、平行に配置し固着、異なった起電力レベルを持った金属を積層にして電極は電解溶液2に浸漬すると電極電位差で電気化学反応を起こし生物、微生物を滅菌、又電気エネルギーを蓄電する燃料電池、又は発電する発電機として利用する発電電極体c14を示す平面図である。On the surface of a plate-like cloth, resin or charcoal cloth 5, linear or wire-like electrodes A6, metal electrodes B7, metal electrodes C8, metal electrodes 9, or metal electrodes 10 having different electrochemical potential columns are separated. Side by side, parallel arrangement, fixation, lamination of metals with different electromotive force levels and immersion of the electrode in the electrolytic solution 2 causes an electrochemical reaction due to the electrode potential difference, sterilizing organisms and microorganisms, and storing electrical energy It is a top view which shows the electric power generation electrode body c14 utilized as a fuel cell to perform or a generator to generate electric power. 板状の布、樹脂又炭クロス5表面に電気化学ポテンシャル列の異なる種類の板状の電極A6、電極B7、電極C8、電極9、又は電極10等を離間し横に並べて、平行に配置し固着、異なった起電力レベルを持った金属を積層にして電極は電解溶液2に浸漬すると電極電位差で電気化学反応を起こし生物、微生物を滅菌、又電気エネルギーを蓄電する燃料電池、又は発電する発電機として利用する発電電極体d15を示す平面図である。On the surface of the plate-like cloth, resin or charcoal cloth 5, plate-like electrode A6, electrode B7, electrode C8, electrode 9, or electrode 10 of different types having different electrochemical potential rows are arranged apart from each other and arranged in parallel. When the electrodes are fixed and laminated with different electromotive force levels and the electrode is immersed in the electrolytic solution 2, an electrochemical reaction is caused by the electrode potential difference to sterilize organisms and microorganisms, and a fuel cell that stores electrical energy, or power generation that generates electricity It is a top view which shows the electric power generation electrode body d15 utilized as a machine. 板状の布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の板状の電極A6、電極B7、電極C8、電極D9、電極E10等を離間し縦に並べて、配置し固着、異なった起電力レベルを持った金属を積層にして電極は電解溶液2に浸漬すると電極電位差で電気化学反応を起こし、生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、又燃料電池、発電機として利用する発電電極体e16を示す平面図である。Plate-like cloth, resin or charcoal cloth 5 on the surface of plate-like electrode A6, electrode B7, electrode C8, electrode D9, electrode E10, etc. of different types having different electrochemical potential rows are arranged apart and vertically fixed. When electrodes with different electromotive force levels are laminated and the electrode is immersed in the electrolytic solution 2, an electrochemical reaction occurs due to the electrode potential difference, and organisms and microorganisms are sterilized by electrical sterilization and electrochemical sterilization. It is a top view which shows the electric power generation electrode body e16 utilized as a machine. 布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の金属をピラミット形に電極A6、電極B7、電極C8、電極9、又電極10を離間し配置し固着、各電極は直列、又並列に固着し電気化学反応の反応性を制御、電極電位差で電気化学反応を起こし滅菌、又電気エネルギーを蓄電する燃料電池、発電機として利用する発電電極体f17を示す正面図である。On the surface of the cloth, resin or charcoal cloth 5, different kinds of metals having different electrochemical potential rows are arranged in a pyramid shape with the electrode A6, the electrode B7, the electrode C8, the electrode 9 and the electrode 10 being spaced apart and fixed. Also, it is a front view showing a power generation electrode body f17 used as a fuel cell and a generator that are fixed in parallel to control the reactivity of the electrochemical reaction, sterilize by causing an electrochemical reaction with an electrode potential difference, and store electric energy. 布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の電極C8、電極D9、電極E10の円の回りに右回りに電極A6、電極B7を離間し固着、発生する電気エネルギーを渦巻状にし、電極電位差で電気化学反応を起こし、生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、又発電機、燃料電池として利用する発電電極体g18を示す平面図である。The electrodes A6 and B7 are spaced and fixed clockwise around the circles of different types of electrodes C8, D9 and E10 of different electrochemical potential rows on the surface of the cloth, resin or charcoal cloth 5, and the generated electric energy is swirled. FIG. 5 is a plan view showing a power generation electrode body g18 that is shaped like an electrode and causes an electrochemical reaction with an electrode potential difference, and sterilizes organisms and microorganisms with electrical sterilization and sterilization with electrochemical sterilization. 布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の電極C8、電極D9、電極E10の円の回りに左回りに電極A6、電極B7を離間し固着、発生する電気エネルギーを渦巻状にし、電極電位差で電気化学反応を起こし、生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、又発電機、燃料電池として利用する発電機、燃料電池として利用する電電極体h19を示す平面図である。The electrodes A6 and B7 are spaced and fixed counterclockwise around the circles of the different types of electrodes C8, D9 and E10 having different electrochemical potential rows on the surface of the cloth, resin or charcoal cloth 5, and the generated electric energy is swirled. This shows an electrochemical reaction caused by an electrode potential difference, electrosterilization of organisms and microorganisms, sterilization by electrochemical sterilization, a generator used as a generator, a fuel cell, and an electrode body h19 used as a fuel cell. It is a top view. 布又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の電極A6、電極B7、電極C8、電極D8、電極E9を離間し平行に並べ、電極の間にスペーサーの布、樹脂又炭クロス5を挿入、離間し電極板を平行キャパシタとし電気エネルギーを蓄積するため電解溶液、太陽光、風、水、水蒸気、湯、海水を通して静電気を発生させ、又電極電位差で電気化学反応を起こし電気エネルギーを蓄電する燃料電池、発電機、又生物、微生物を滅菌するために利用する発電電極体i20を示す傾視図である。On the surface of the cloth or charcoal cloth 5, electrodes A6, B7, C8, D8, and E9 of different types having different electrochemical potential rows are arranged in parallel and spaced apart, and a spacer cloth, resin or charcoal cloth 5 is placed between the electrodes. In order to store electric energy by inserting and separating the electrode plate into a parallel capacitor, static electricity is generated through the electrolytic solution, sunlight, wind, water, water vapor, hot water, seawater, and an electrochemical reaction is caused by the electrode potential difference to generate electric energy. It is a perspective view which shows the power generation electrode body i20 utilized in order to sterilize the fuel cell, generator, and living organisms and microorganisms which store electricity. 布又炭クロス5の表面に網形の電気化学ポテンシャル列の異なる種類の電極A6、又電極B7と面積のある18孔開き電極C8、又電極D9、電極E10を離間し電極板を平行に並べ、電極間にスペーサーの布、樹脂又炭クロス5を挿入し大きい布、樹脂又炭クロス5に固着、電極を平行キャパシタとし、金属イオンの流れを良くし、電極電位差で電気化学反応を起こし、電気エネルギーを蓄電し電池として利用、又空気清浄機の滅菌、生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、燃料電池、発電機として利用する発電電極体j21を示す傾視図である。On the surface of cloth or charcoal cloth 5, electrodes A6 of different types having a net-like electrochemical potential sequence, electrode B7 and 18-hole electrode C8 having an area, electrode D9 and electrode E10 are separated and electrode plates are arranged in parallel. , Spacer cloth, resin or charcoal cloth 5 is inserted between the electrodes and fixed to a large cloth, resin or charcoal cloth 5, the electrode is a parallel capacitor, the flow of metal ions is improved, and an electrochemical reaction is caused by the electrode potential difference. It is a perspective view showing a power generation electrode body j21 that stores electric energy and uses it as a battery, sterilizes an air cleaner, sterilizes living organisms and microorganisms by electrical sterilization, sterilizes by electrochemical sterilization, a fuel cell, and a generator. . 活性炭の球体の内部に電気化学ポテンシャル列の異なる種類の金属の丸形電極A6、丸形電極B7、丸形電極C8、又丸形電極D9を離間し配置し、電解溶液、海水、水、湯、水蒸気、空気、圧縮空気を通過させ、又電極を回転し、電極電位差で電気化学反応の電気二重層の電気エネルギーを蓄電する燃料電池、発電装置、又空気、圧縮空気、海水、水、湯を滅菌するとして利用する発電電極体k22を示す断面図である。Inside the sphere of activated carbon, round electrodes A6, round electrodes B7, round electrodes C8, and round electrodes D9 of different kinds of metals having different electrochemical potential rows are arranged apart from each other, and electrolytic solution, seawater, water, hot water , Water vapor, air, compressed air passing through, rotating the electrode, and storing the electric energy of the electric double layer of the electrochemical reaction by the electrode potential difference, fuel cell, power generator, air, compressed air, seawater, water, hot water It is sectional drawing which shows the electric power generation electrode body k22 utilized as sterilizing. 円筒状を3層に重ね3層電極円筒とし円筒間にスペーサーの布、樹脂又炭クロス5を入れ離間し平行に並べ、外周に布、樹脂又炭クロス5を固着、電気化学ポテンシャル列の異なる種類の金属の電極A、電極B6、又電極C7、電極D8を離間し電極円筒を平行に並べ、電極を平行キャパシタとして湯、風、ガス、空気、圧縮空気、水、海水が通過させ静電気が発生、又電極電位差で電気化学反応を起こし、電気二重層の電気エネルギーを取り出す電池として利用、又管内を通過する湯、水、ガス、風、空気、圧縮空気で発生する静電気の放電、又電気的殺菌、電気化学的殺菌で滅菌、又発電機、燃料電池とする発電電極体L23を示す断面図である。Three cylinders are stacked to form a three-layer electrode cylinder, and a spacer cloth, resin or charcoal cloth 5 is placed between the cylinders and arranged in parallel, spaced apart, and the cloth, resin or charcoal cloth 5 is fixed to the outer periphery, and the electrochemical potential sequence is different. Electrodes A, B6, C7, and D8 are separated from each other and electrode cylinders are arranged in parallel, and hot water, wind, gas, air, compressed air, water, and seawater pass through the electrodes as parallel capacitors. It can be used as a battery that generates an electrochemical reaction due to generation or electrode potential difference and takes out electric energy of the electric double layer, discharge of static electricity generated by hot water, water, gas, wind, air, compressed air passing through the tube, or electricity It is sectional drawing which shows the electric power generation electrode body L23 which is sterilized by sterilization and electrochemical sterilization, and is used as a generator and a fuel cell. 四角状を3層に重ね、3層電極四角とし四角間にスペーサーの布、樹脂又炭クロス5を入れ離間し平行に並べ、外周に布、樹脂又炭クロス5を固着、電気化学ポテンシャル列の異なる種類の金属の電極A6、電極B7、電極C8、又電極D9を離間し電極円筒を平行に並べ、電極を平行キャパシタとして湯、風、ガス、空気、空気、圧縮空気、水、湯、海水が通過させ静電気が発生、又電極電位差で電気化学反応を起こし、電気二重層の電気エネルギーを取り出す燃料電池、発電機として利用、又管内を通過する湯、水、ガス、風、空気、圧縮空気で発生する静電気の放電、又電気的殺菌、電気化学的殺菌で滅菌する発電電極体m24を示す傾視面である。The square is stacked in three layers, and a three-layer electrode square is used. Spacer cloth, resin or charcoal cloth 5 is placed between the squares, spaced apart and arranged in parallel, and the cloth, resin or charcoal cloth 5 is fixed to the outer periphery. Different types of metal electrodes A6, B7, C8, and D9 are spaced apart and the electrode cylinders are arranged in parallel, and the electrodes are parallel capacitors. Hot water, wind, gas, air, air, compressed air, water, hot water, seawater Passes through and generates static electricity, causes an electrochemical reaction due to the electrode potential difference, takes out the electric energy of the electric double layer, is used as a fuel cell, generator, hot water, water, gas, wind, air, compressed air passing through the pipe 3 is a tilted surface showing a power generation electrode body m24 sterilized by discharge of static electricity generated by the electric field, electric sterilization, or electrochemical sterilization. 布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の金属の電極を山形状にして接する面積を多くし静電気を多く帯電するため電極A6、電極B7、又電極C8、電極D9を積層に離間し、平行に並べ、スペーサーの布、樹脂又炭クロス5を挿入、電極を平行キャパシタとし、風、太陽光、水、海水を通過により静電気が発生、又電極電位差で電気化学反応を起こし燃料電池、発電機として利用、又静電気の放電、又電気的殺菌、電気化学的殺菌で水を滅菌する発電電極体n25を示す傾視図である。The electrodes A6, B7, C8, and D9 are provided to increase the area of contact between the surfaces of the cloth, resin, or charcoal cloth 5 and the electrodes of different types of electrochemical potential columns in a mountain shape to increase the static electricity. Spaced in layers, arranged in parallel, spacer cloth, resin or charcoal cloth 5 inserted, electrodes as parallel capacitors, static electricity generated by passing through wind, sunlight, water, seawater, and electrochemical reaction with electrode potential difference It is a perspective view showing a power generation electrode body n25 that is used as a raising fuel cell and a generator, and sterilizes water by electrostatic discharge, electrical sterilization, and electrochemical sterilization. 面積を持った異なる金属の六角形の電気化学ポテンシャル列の異なる種類の金属の電極A6、電極B7、又電極C8、電極D9を積層に離間し電極板を平行に並べ、中央部に孔をあけ、電極を平行キャパシタとし、平行面、六角断面からの電極電位差で電気化学反応を起こし燃料電池、発電機として利用、又電極を通過する水、空気、電解溶液により発生する静電気の放電、又電気的殺菌、電気化学的殺菌で滅菌する発電電極体o26を示す平面図である。Hexagonal electrochemical potential trains of different metals with different areas Electrodes A6, B7, C8, D9 of different types of metal are separated from each other in a stack, electrode plates are arranged in parallel, and a hole is formed in the center. The electrode is a parallel capacitor, and an electrochemical reaction is caused by the electrode potential difference from the parallel plane and the hexagonal cross section, and it is used as a fuel cell and a generator. In addition, the discharge of static electricity generated by water, air and electrolytic solution passing through the electrode, It is a top view which shows the electric power generation electrode body o26 sterilized by static sterilization and electrochemical sterilization. 図25の3積層電極の右側面図である。FIG. 26 is a right side view of the three-layered electrode in FIG. 25. 面積を持った異なる金属の四角形の電気化学ポテンシャル列の異なる種類の電極A6、電極B7、電極C8、又電極D9を積層に離間し電極板を平行に並べ、中央部に孔をあけ、電極を平行キャパシタとし、平行面、四角断面からの電極電位差で電気化学反応を起こし燃料電池、発電機として利用、又電極を通過する電解溶液、水、空気により発生する静電気の放電、又電気的殺菌、電気化学的殺菌で滅菌する発電電極体p27を示す平面図である。Different types of electrodes A6, B7, C8, and D9 of different types of rectangular electrochemical potential arrays with different areas are separated from each other in a stack, electrode plates are arranged in parallel, a hole is formed in the center, Parallel capacitor, electrochemical reaction caused by electrode potential difference from parallel plane and square cross section, used as fuel cell, generator, electrostatic discharge generated by electrolytic solution, water, air passing through electrode, electric sterilization, It is a top view which shows the electric power generation electrode body p27 sterilized by electrochemical sterilization. 図27の3積層電極の右側面図である。It is a right view of the 3 laminated electrode of FIG. 布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A30、微粒子電極B31を固着、さらに微粒子電極の両面を塗料11で覆い、又は微粒子電極A30、微粒子電極B31、又微粒子電極C32、微粒子電極D33、微粒子電極E34等を、積層又は平行に並べて塗装、微粒子電極を平行キャパシタとし電気二重層キャパシタを形成、これにより金属イオンの流れを良くし、電気二重キャパシタを形成、電解溶液、海水、水、湯、空気に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し燃料電池、発電機として利用、又生物、微生物を電気的殺菌、電気化学的殺菌で滅菌に利用する微粒子電極体q28を示す断面図である。The fine particle electrode A30 and the fine particle electrode B31 having different electrochemical potential rows are fixed to the surface of the cloth, resin or charcoal cloth 5, and both surfaces of the fine particle electrode are covered with the paint 11, or the fine particle electrode A30, the fine particle electrode B31, or the fine particle Electrode C32, fine particle electrode D33, fine particle electrode E34, etc. are laminated or arranged in parallel and coated, and the fine particle electrode is used as a parallel capacitor to form an electric double layer capacitor, thereby improving the flow of metal ions and forming an electric double capacitor. When immersed in an electrolytic solution, seawater, water, hot water, or air, an electrochemical reaction occurs due to the electrode potential difference, and the electrical energy is stored and used as a fuel cell or generator. Biological organisms and microorganisms are sterilized by electrical sterilization and electrochemical sterilization. It is sectional drawing which shows the fine particle electrode body q28 utilized. 布、樹脂又炭クロス5の表面に電気化学ポテンシャル列の異なる種類の微粒子発電電極体30、微粒子電極B31を、積層又は平行に固着、両面を塗料11で覆い、更に微粒子電極C32、又微粒子電極D33、微粒子電極E34を固着し表面を塗装で覆い、微粒子電極A30、微粒子電極B31、微粒子電極C32を、又微粒子電極D33、微粒子電極E34を固着、積層又は平行に並べ、微粒子電極を平行キャパシタとし、電気二重層キャパシタを形成、金属イオンの流れを良くし、電解溶液、海水、水、湯、空気に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し燃料電池、発電機として利用、又生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、又電気エネルギーを蓄電にする電池に利用する微粒子発電電極体R29を示す断面図である。On the surface of the cloth, resin or charcoal cloth 5, fine-particle power generation electrode bodies 30 and fine-particle electrodes B31 having different electrochemical potential rows are laminated or fixed in parallel, and both surfaces are covered with the paint 11, and further the fine-particle electrode C32 or fine-particle electrode D33, the fine particle electrode E34 is fixed and the surface is covered with coating, the fine particle electrode A30, the fine particle electrode B31, and the fine particle electrode C32 are fixed, and the fine particle electrode D33 and the fine particle electrode E34 are fixed, stacked or arranged in parallel. , Forming an electric double layer capacitor, improving the flow of metal ions, soaking in an electrolytic solution, seawater, water, hot water, air causes an electrochemical reaction due to an electrode potential difference and stores electric energy to be used as a fuel cell, generator, Electrode sterilization of organisms and microorganisms, sterilization by electrochemical sterilization, and particulate power generation electrode used for batteries that store electrical energy R29 is a sectional view showing a. 大腸菌群の培養実験で浄化体が増殖阻止より死滅を示す図である。It is a figure which shows that a purification | cleaning body is killed rather than growth inhibition in the culture experiment of coliform bacteria. 大腸菌群の培養実験で発育、増殖を示す図である。It is a figure which shows growth and proliferation by the culture | cultivation experiment of coliform bacteria.

3年間かけて前記金属を組み替えて次の実験を実施、異なる種類の金属を組み替え布、樹脂又は炭クロスの表面に金属を少なくとも2種類以上の異なる金属を離間し平行に固着、又少なくとも2種類以上の異なる金属を離間し金属の間に布又は炭クロスを挿入し金属を積層に重ねて大きい布又は炭クロスに固着し、水中に浸漬すことにより水電池になり水がある限り放電、充電を繰り返し発電機能があり、又静電気を発生し続けている燃料電池であることを確認する。  The following experiment was carried out after recombination of the above metals for 3 years. At least two kinds of different metals were fixed on the surface of the cloth, resin or charcoal cloth, and at least two kinds of metals were fixed in parallel. Separate the above different metals, insert cloth or charcoal cloth between the metals, stack the metal on the laminate and fix it on a large cloth or charcoal cloth, soak in water to become a water battery, discharge and charge as long as there is water Confirm that the fuel cell has a power generation function and continues to generate static electricity.

本発明者は、実験で電圧、電流、抵抗を確認するため電気化学ポテンシャル列の異なる種類の金属、トタン材、銅材、銀材、(T−7101)の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と溶解液(風呂の残り湯50ml)をプラスチック容器入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えその後又減少する「充電、放電」を水が有る限り長期に渡り繰り返す水電池になり、測定値は表2に示す通りであり、電極形状は図7に示す通りである。  The present inventor inserted charcoal cloth between the electrodes of different kinds of metals, tin materials, copper materials, silver materials, and (T-7101) in the electrochemical potential sequence in order to confirm the voltage, current, and resistance through experiments. The laminate was fixed on a large charcoal cloth, and three laminated electrodes and a solution (50 ml of hot water remaining in the bath) were placed in a plastic container, and the voltage, current, and resistance were measured for three days. The voltage, current, and resistance values are generated between different electrodes, and the voltage and current gradually increase and then decrease again. As long as water is present, the battery becomes a water battery, and the measured values are shown in Table 2. The electrode shape is as shown in FIG.

更に、トタン板、銅板、銀板の電極間に布を挿入し3積層電極とし(T−7102)3日間を測定すると水電池になり放電、充電を繰り返し続けて測定値は表3に示す取りである。  Furthermore, a cloth is inserted between the electrodes of the tin plate, copper plate, and silver plate to form a three-layer electrode (T-7102). When measured for 3 days, it becomes a water battery and discharge and charge are repeated, and the measured values are shown in Table 3. It is.

以上の実験結果の詳細を表4に示す。表4は、新潟県工業技術総合研究所発行の試験成績書(第21−0353号、(1)電流、電圧、抵抗の測定)である。
The details of the above experimental results are shown in Table 4. Table 4 is a test report (No. 21-0353, (1) Measurement of current, voltage and resistance) issued by Niigata Prefectural Industrial Technology Research Institute.

供試した電解液を分析するとC、O、Si、Ca、Fe、Cu、Znが検出された。トタン板の亜鉛は糸状に溶出、酸化で黒く変色、水の電気分解の電気化学反応が起きる(表5参照)。  Analysis of the electrolyte solution tested revealed C, O, Si, Ca, Fe, Cu, and Zn. Zinc on the tin plate elutes in the form of threads, turns black when oxidized, and undergoes an electrochemical reaction of water electrolysis (see Table 5).

以上の実験結果の詳細を表6−1〜2に示す。表6−1〜2は、新潟県工業技術総合研究所発行の試験成績書(第21−0367号、(1)X線マイクロアナライザ分析(定性分析))である。
The details of the above experimental results are shown in Table 6 1-2. Tables 6-1 and 2-2 are test results issued by Niigata Prefectural Industrial Technology Research Institute (No. 21-0367, (1) X-ray microanalyzer analysis (qualitative analysis)).

以上の亜鉛電極(トタン板)の表面は電気化学反応(酸化還元反応)で亜鉛が糸状に、100μm×11mm溶出している。(図4、5参照)、  On the surface of the above zinc electrode (tin plate), zinc is eluted in a thread form in an amount of 100 μm × 11 mm by an electrochemical reaction (redox reaction). (See FIGS. 4 and 5),

上述の金属イオン測定実験で、電極T−7102である、六角亜鉛板(トタン板)、銅板、銀板を離間し布を挿入し3積層電極を大きい布に固着し、電極と電解液50ml(風呂の残り湯)をプラスチック容器に入れ10日経過のイオンを測定した。亜鉛イオンは3.99ppm、銅イオンは0.11ppmに大幅に増え、銀イオンは微量に増を確認し、電気化学反応が起こった(表7参照)。  In the above-mentioned metal ion measurement experiment, the hexagonal zinc plate (tin plate), the copper plate, and the silver plate, which are the electrodes T-7102, were separated, the cloth was inserted, and the three laminated electrodes were fixed to the large cloth, and the electrode and the electrolyte 50 ml ( The remaining hot water of the bath was placed in a plastic container, and the ions after 10 days were measured. Zinc ions were significantly increased to 3.99 ppm, copper ions were significantly increased to 0.11 ppm, and silver ions were confirmed to increase slightly, and an electrochemical reaction occurred (see Table 7).

更に、炭クロスの表側に銀線、裏側に銅線を固着し(以下、浄化体という)、浴槽に浸漬して風呂を沸かし、その後浄化体を撤去して風呂を利用、6ケ月経過後の残り湯の金属イオンを測定し、測定値を比較した結果を表7に示す。  Furthermore, a silver wire is fixed to the front side of the charcoal cloth, and a copper wire is fixed to the back side (hereinafter referred to as “purified body”). The bath is immersed in a bathtub to boil, and then the purified body is removed and the bath is used. Table 7 shows the result of measuring the metal ions of the remaining hot water and comparing the measured values.

以上の実験結果の詳細を表8に示す。表8は、新潟県工業技術総合研究所発行の試験成績書(第21−0367号の2、(1)定量分析)である。
The details of the above experimental results are shown in Table 8. Table 8 is a test report issued by Niigata Prefectural Industrial Technology Research Institute (No. 21-0367-2, (1) Quantitative Analysis).

上記電極、亜鉛材(トタン板)、銅材、銀材の3積層電極と電解液(風呂の残り湯)をプラスチック容器に50ml入れ静電気容量を測ると電位は−1kv、乾燥状態で電極単体では−0.5kvの高静電気を帯電する(1時間経過測定)。測定器はスタティックロケーター、型式:Z−201、ホーザン株式会社製で測定する。  50ml of the above electrode, zinc material (tin plate), copper material, silver material and 50ml of electrolyte (residual hot water in a bath) are placed in a plastic container and the electrostatic capacity is measured. Charge high static electricity of -0.5 kv (measurement over 1 hour). The measuring device is a static locator, model: Z-201, manufactured by Hozan Co., Ltd.

電極の亜鉛材(トタン板)1枚を炭クロスに固着した1層電極と銀、亜鉛(トタン板)、銅を離間し炭クロスを挿入した3積層電極を大きい炭クロスに固着、各電極を電解液に入れ、金属イオンの発生量を比較すると金属イオンは3積層電極の方は1層電極より多く溶出、電食作用、腐食作用は異なる起電力レベルの電極電位差が大きい3積層電極は金属イオンが強く電気化学反応の反応性を加速する。  A single-layer electrode in which one zinc material (tin plate) is fixed to a charcoal cloth and a three-layer electrode in which silver, zinc (copper plate) and copper are separated and a charcoal cloth is inserted are fixed to a large charcoal cloth, and each electrode is Compared with the amount of metal ions generated in the electrolyte solution, metal ions are eluted more in the three-layer electrode than in the one-layer electrode, and the electrode potential difference at different electromotive force levels is different for the three-layer electrode. Ions are strong and accelerate the reactivity of electrochemical reactions.

金属電極の固体を細かい粉体、微粒子に分割加工すると総表面積は飛躍的に大きくなり、静電気は表面に多く帯電、又金属イオンを多く発生する。  When the metal electrode solid is divided and processed into fine powders and fine particles, the total surface area increases dramatically, and a large amount of static electricity is charged on the surface and many metal ions are generated.

更に、実験でアルミニウム線1.0mmと銀線0.3mmを炭クロスの上に離間し配置、培養液(100ml)を入れて浄化体を製作し、一般細菌(大腸菌)を入れ観察すると電気化学反応により細菌は銀側に引寄せられ、さらに単1形電池、1.5Vを接続、電流が流れ電気化学反応(酸化還元作用)で大腸菌は通電12時間後に滅菌し微生物の滅菌時間が短縮、滅菌効果が向上する。  Furthermore, in the experiment, an aluminum wire 1.0 mm and a silver wire 0.3 mm are placed apart from each other on a charcoal cloth, a culture solution (100 ml) is put in to produce a purified body, and general bacteria (E. coli) are put in and observed. Bacteria are attracted to the silver side by the reaction, and a single battery, 1.5V is connected, current flows and an electrochemical reaction (redox action) sterilizes E. coli 12 hours after energization, shortening the sterilization time of microorganisms, The sterilization effect is improved.

溶解液は布、又炭クロスにすぐに浸透しない、しかし布、炭クロスに電極A(銀材)と電極D(アルミニウム材)を固着、起電力の差が大きいと静電気の電流が流れる静電気作用、イオン作用で溶解液は短時間で布、又炭クロスに浸透する。  The solution does not penetrate the cloth or charcoal cloth immediately, but the electrode A (silver material) and the electrode D (aluminum material) are fixed to the cloth or charcoal cloth. Due to the ionic action, the solution permeates the cloth or charcoal cloth in a short time.

更に実験で銀材、亜鉛材、銅材(T−8001)と銀材、アルミニウム、銅材(T−8003)の電極は抗菌効果が優れることを確認し、電極形状は図8に示す通りである。  Furthermore, it was confirmed by experiments that the silver, zinc, copper (T-8001) and silver, aluminum, copper (T-8003) electrodes have excellent antibacterial effects, and the electrode shape is as shown in FIG. is there.

大腸菌の滅菌実験は電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属、銀材、亜鉛材(トタン板)、銅材(T−8001)を離間し炭クロスを挿入した3積層電極は大きい炭クロスに固着、培養液100ml入れ、大腸菌を培養、35℃に保温、24時間で大腸菌の検体を1,000個/mlに倍希釈、生物汚染測定を3M社製ペトリフィルム、チッソ株式会社製サニ太くんで確認した。細菌の死滅を確認でき、大腸菌群のコロニーが青色〜うす緑色に変色せず、菌は検出せず完全に抗菌効果を検証できた。供試後の大腸菌群の死滅を図31に示す。  The sterilization experiment of E. coli is made of three kinds of metals with different electrochemical potential sequences. Three layers of metal, silver material, zinc material (tin plate), copper material (T-8001) with electromotive force level and charcoal cloth inserted. The electrode is fixed to a large charcoal cloth, 100 ml of culture solution is added, E. coli is cultured, incubated at 35 ° C., the E. coli specimen is doubled to 1,000 cells / ml in 24 hours, and biological contamination is measured by 3M Petri film, Chisso It was confirmed by Sani-ta-kun made by Co., Ltd. Bacterial death could be confirmed, colonies of coliform bacteria did not change from blue to light green, no bacteria were detected, and the antibacterial effect could be completely verified. The killing of the coliform group after the test is shown in FIG.

コントロールとして浄化体を除去したイオン水100ml培養液に大腸菌を入れ培養、35℃に保温、24時間培養、大腸菌は検体を1,000個/mlに倍希釈、微生物汚染測定をチッソ株式会社製サニ太くんで確認した。細菌は死滅せず、大腸菌群のコロニーが青色〜緑色に発色し菌の検出を確認した。供試後の大腸菌群の発育、増殖を図32に示す。  As a control, Escherichia coli is placed in a 100 ml culture solution of ionized water from which the purified body has been removed, incubated at 35 ° C. and cultured for 24 hours, and the Escherichia coli is diluted to 1,000 specimens / ml. I confirmed it thick. The bacteria did not die, and colonies of the coliform group developed from blue to green, confirming the detection of the bacteria. FIG. 32 shows the growth and proliferation of the coliform group after the test.

大腸菌の滅菌実験として電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属電極は銀材、亜鉛材(トタン板)、銅材(T−8001)と銀材、アルミニウム材、銅材(T−8003)の離間に炭クロスを挿入、3積層電極を大きい炭クロスに配置、培養液100ml入れた試験液とコントロール(イオン水390mV)の酸化還元電位は3、6、24、72時間経過を測定、72時間後、試験液T−8001は275mV、T−8003は283mVで酸化還元電位がマイナスに下り降順の還元、上がる昇順の酸化を繰り返すことがわかった(図6参照)。電極と試験液の間に不対電子が発生しフリーラジカルになると考えられる。表9に実験結果を示す。  As a sterilization experiment of Escherichia coli, the metal electrodes with different electromotive potential sequences have electromotive force levels of silver, zinc (tongue), copper (T-8001) and silver, aluminum, copper Insert the charcoal cloth into the space of (T-8003), place the three laminated electrodes on the large charcoal cloth, and the redox potential of the test solution containing 100 ml of the culture solution and the control (ion water 390 mV) is 3, 6, 24, 72 hours After 72 hours from the measurement, the test solution T-8001 was 275 mV, the T-8003 was 283 mV, and it was found that the redox potential was negative and the reduction in descending order and the ascending order of oxidation were repeated (see FIG. 6). It is thought that unpaired electrons are generated between the electrode and the test solution and become free radicals. Table 9 shows the experimental results.

実験を開始して72時間後の試験液の金属イオンの発生を調べるためパックテストを行った。株式会社共立理化学研究所製で測定、T−8001で亜鉛イオンが5mg/L(ppm)、銅イオン0.5mg/L(ppm)、T−8003で銅イオン1.0mg/L(ppm),アルミニウムイオン0.5mgAl/L(ppm)、銀イオン≒0近い微量の発生を確認した。電気化学反応(酸化還元反応)が起り、表7と同じ傾向の金属イオンが生成する。  A pack test was conducted to examine the generation of metal ions in the test solution 72 hours after the start of the experiment. Measured by Kyoritsu Riken Co., Ltd., zinc ion 5 mg / L (ppm) at T-8001, copper ion 0.5 mg / L (ppm), copper ion 1.0 mg / L (ppm) at T-8003, It was confirmed that trace amounts of aluminum ions 0.5 mg Al / L (ppm) and silver ions ≈ 0 were generated. An electrochemical reaction (redox reaction) occurs, and metal ions having the same tendency as in Table 7 are generated.

電極に銀材、アルミニウム材、銅材の離間に炭クロスを挿入、3積層電極を炭クロスに固着、電解液(イオン水)に入れると24〜72時間経過後、アルミニウムイオンが0.5mgAl/L(ppm)溶出る。(表10参照)  Inserting a charcoal cloth between the silver material, aluminum material and copper material on the electrode, fixing the three-layered electrode to the charcoal cloth, and putting it in the electrolyte (ionic water), after 24 to 72 hours, the aluminum ion is 0.5 mg Al / L (ppm) elutes. (See Table 10)

以上の実験結果の詳細を表11−1〜6に示す。
The details of the above experimental results are shown in Tables 11-1 to 11-6 .

本発明者が行った実験で、撮影場所は全暗にしてカメラを設置、亜鉛板、銅板、銀板の3積層電極間に炭クロスを挿入、3積層電極を少し大きい炭クロスに固着、3積層電極はガラス容器(7l)に水道水(3.5l)を入れ透明の○30×50mm台に設置、電極を浸漬させると電場形成、静電気、電圧、電流が発生し、電圧、電流を電気二重層キャパシタに電気エネルギーを貯蔵、許容電圧を超えると放電する発光現象を写真に撮影図9、電極の形状は図10に示す通りである。カメラはキャノンEOS1、レンズはキャノンマクロ100mm、F2.8、バルブ(長時間露出)機能付き、フィルムはFUJIFILM ナチュラル1600、現像時点の感度は3200。以上の写真撮影の結果を図9に示す。  In an experiment conducted by the present inventor, a camera was installed with the shooting place completely dark, a charcoal cloth was inserted between three laminated electrodes of a zinc plate, a copper plate, and a silver plate, and the three laminated electrodes were fixed to a slightly larger charcoal cloth. Laminated electrodes are placed in a glass container (7 l) with tap water (3.5 l) and placed on a transparent circle of 30 x 50 mm. When the electrodes are immersed, electric field formation, static electricity, voltage and current are generated, and the voltage and current are Photoelectric emission is stored in the double-layer capacitor, and the discharge occurs when the allowable voltage is exceeded. The shape of the electrode is as shown in FIG. The camera is Canon EOS1, the lens is Canon Macro 100mm, F2.8, with bulb (long exposure) function, the film is FUJIFILM Natural 1600, and the sensitivity at the time of development is 3200. The results of the above photography are shown in FIG.

この実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10001)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と電解液(純水50ml)をプラスチック容器に入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えてその後又減少する「充電、放電」を純水が有る限り長期に渡り繰り返す亜鉛電池になり、測定値は表12に示す通りであり、電極形状は図10に示す通りである。 In this experiment, a charcoal cloth is inserted between the electrodes of different types of metals, zinc materials, silver materials, copper materials, and (T-10011) electrodes having different electrochemical potential sequences, and is fixed to a large charcoal cloth in three layers. The laminated electrode and the electrolytic solution (pure water 50 ml) were placed in a plastic container, and the voltage, current, and resistance were measured for 3 days. Voltage between different electrode, current, voltage resistance is generated, the current gradually increases with decreasing thereafter also "charging, discharging" the will zinc battery repeated over a long period of time as long as the pure water is present, the measured value Table 12 The electrode shape is as shown in FIG.

更に、亜鉛板、銀板、銅板の電極間に布を挿入し3積層電極とし(T−10002)3日間を測定すると亜鉛電池になり放電、充電を繰り返し続けて測定値は表13に示す通りである。 Furthermore, a cloth is inserted between the electrodes of the zinc plate, silver plate, and copper plate to form a three-layer electrode (T-1202). When three days are measured, a zinc battery is formed and discharging and charging are repeated, and the measured values are as shown in Table 13. It is.

表14−1〜3は、新潟県工業技術総合研究所発行の試験成績書である(試験成績書第22−0016号、(1)電流、電圧、抵抗の測定、(2)遠赤外線放射量の測定)。更に実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10003)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、遠赤外線を測定、測定波長は1.3μm〜14.5μm、有効波長が3.0μm〜14.5μmであり遠赤外線を亜鉛板から放射を確認、測定値は表14−1〜3に示す通りであり、電極形状は図2に示す通りである。以上の実験結果の詳細を表14−1〜3に示す。 Tables 14-1 to 3-3 are test results issued by Niigata Prefectural Industrial Technology Research Institute (test results 22-0016, (1) measurement of current, voltage and resistance, (2) far-infrared radiation amount. Measurement). Furthermore, in the experiment, a charcoal cloth was inserted between the electrodes of different kinds of metals, zinc materials, silver materials, copper materials, and (T-10003) of electrochemical potential trains, and three layers were stacked and fixed to a large charcoal cloth. Infrared was measured, the measurement wavelength was 1.3 μm to 14.5 μm, the effective wavelength was 3.0 μm to 14.5 μm, and the far infrared rays were confirmed to be emitted from the zinc plate. The measured values are as shown in Tables 14 to 1-3 The electrode shape is as shown in FIG. The details of the above experimental results are shown in Tables 14-3 .

実験で亜鉛板、ステンレス、アルミニウム板、銀板を4積層にし、その間に布又炭クロスを挿入、少し大きい布又炭クロスに固着した4積層電極は水蒸気が存在する状態(空気中)で電場形成、静電気、電圧、電流を発生、外部からの電気化学的腐食反応促進として太陽光を電極表面に当てると温度上昇し、電気化学反応が促進、又電解溶液、高温条件の温水、海水、低温条件の氷の浮かぶ海水に浸漬、又凍結条件の氷の中に電極を閉じ込めると電気化学的反応(電気化学的腐食反応)が更に活発になり、電場形成し、静電気、電圧、電流値を大きく生じ、電極形状は図11に示す通りである。以上の実験結果の詳細を表15に示す。 In the experiment, zinc plates, stainless steel, aluminum plates, and silver plates were made into 4 layers, and a cloth or charcoal cloth was inserted between them, and the 4 layers electrode fixed to a slightly larger cloth or charcoal cloth had an electric field in the presence of water vapor (in the air). Formation, generation of static electricity, voltage, current, and the application of sunlight to the electrode surface as acceleration of electrochemical corrosion reaction from the outside, the temperature rises and the electrochemical reaction is accelerated, and the electrolytic solution, hot water under high temperature conditions , seawater, low temperature When immersed in seawater with floating ice conditions or confined in frozen ice conditions, the electrochemical reaction (electrochemical corrosion reaction) becomes more active, forming an electric field, and increasing the static electricity, voltage, and current values. The electrode shape is as shown in FIG. Details of the above experimental results are shown in Table 15 .

実験で、起電力の異なる金属電極を2組以上組み合わせた浄化体を電解溶液に浸漬すると電極電位差を原動力として電気化学反応(電気化学的腐食)が起こし、発生電圧、電流を布又炭クロスの電気二重層キャパシタに蓄積、水の電気分解を起こす電圧1.5V付近に達し放電で水の電気分解を起こし、陰極の金属表面に水素ガスの泡が発生、陽極の金属表面に酸素ガスが発生により酸化することを確認す。  In the experiment, when a purifier consisting of two or more sets of metal electrodes with different electromotive forces is immersed in an electrolytic solution, an electrochemical reaction (electrochemical corrosion) occurs using the electrode potential difference as the driving force, and the generated voltage and current are changed between the cloth and charcoal cloth. Accumulated in the electric double layer capacitor, the voltage causing electrolysis of water reaches around 1.5V, causing electrolysis of water by discharge, generating hydrogen gas bubbles on the metal surface of the cathode, and oxygen gas on the metal surface of the anode Confirm that it oxidizes.

実験で、起電力の異なる金属電極の銀線とアルミニウム線を離間し炭クロスに固着、電解溶液に浸漬すると電位差で電気化学反応が起こり、静電気が発生、電場形成、電解溶液中に分散の大腸菌群は陰極の銀線に集菌、更に単一電池(1.5V)で銀線とアルミニウム線に印加すると銀線電極の表面に集菌し12時間経過する大腸菌群が集積死滅し検査で殺菌が検出されない。  In the experiment, the silver wire and the aluminum wire of the metal electrodes with different electromotive forces were separated and fixed to the charcoal cloth, and when immersed in the electrolytic solution, an electrochemical reaction occurred due to a potential difference, static electricity was generated, electric field formation, and E. coli dispersed in the electrolytic solution The group collects bacteria on the silver wire of the cathode, and when applied to the silver wire and aluminum wire with a single battery (1.5V), the bacteria collect on the surface of the silver wire electrode and the E. coli group that has passed for 12 hours accumulates and dies and is sterilized by inspection. Is not detected.

電極上で培養したHeLa細胞について、−0.2V〜+1.2V定電位を印加したときの細胞の形態および増殖に及ぼす電気効果を示す。細胞膜表面はマイナスに帯電しているため−0.2Vから+0.4Vで細胞は電位に応じて、本来の紡錘形から球状へと形態変化が観察されるものの死に至ることはない。+0.7Vでは徐々に死滅し、+1.2Vではすべての細胞が1時間以内で死滅する。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、細胞制御技術、P339
The electrical effect which acts on the morphology and proliferation of a cell when applying a -0.2V- + 1.2V constant potential about the HeLa cell cultured on the electrode is shown. Since the surface of the cell membrane is negatively charged, cells are observed to change in shape from an original spindle shape to a spherical shape depending on the potential at −0.2 V to +0.4 V, but do not die. At + 0.7V, gradually die and at + 1.2V all cells die within 1 hour.
(Non-Patent Document) The Electrochemical Society of Japan, “Electrochemical Handbook” published by Maruzen Co., Ltd., published on June 30, 2000, Cell Control Technology, P339

「電解圧以下の電圧でつくられる水の電気分解」水の分子は電場が加わっていない時でもHO→ H + OH で表せる平衡状態にあり、水は電場がかかっていない時でも、各イオンの反対符号の電極面に向かって移動し、電極間に電流が流れる。この場合の電気分解は図31のDより左の部分に当たり(電解圧以下の電圧)、負極面での水素ガスの発生はあっても、正極面における酸素ガスの発生はない。水素イオンHと水酸イオンOHは各々水分子と水和結合して、H(ヒドロニウムイオン)とH (ヒドロキシルイオン)になる。これらのイオンの水の中での移動は隣の水分子にHまたはOHだけを受け渡し、結果としてイオンが移動する、いわゆる「ホッピング・モデル」による。Hイオンの移動速度に比べて2倍程度早いのと、Hイオンの放電電位が低く、電極面で容易に放電してHになりガスとなって水から失われ、一方のOHイオンのほうは電極面での放電電位が大きいため電荷をもったイオンのまま水流の中に拡散される。
水の電気分解
O → ← H + OH
水 水素イオン 水酸イオン
+ HO → H[水素イオンの一部はHガス(水素ガス)になる]
水素イオン 水 ヒドロニウムイオン
OH + HO → H
水酸イオン 水 ヒドロキシルイオン
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P304
“Electrolysis of water produced at a voltage lower than the electrolysis pressure” Even when no electric field is applied, water molecules are in an equilibrium state represented by H 2 O → H + + OH , and even when no electric field is applied to water , Each ion moves toward the opposite electrode surface, and a current flows between the electrodes. The electrolysis in this case corresponds to the left portion of D in FIG. 31 (voltage below the electrolysis pressure), and even if hydrogen gas is generated on the negative electrode surface, oxygen gas is not generated on the positive electrode surface. Hydrogen ions H + and hydroxide ions OH are hydrated with water molecules, respectively, to become H 3 O + (hydronium ions) and H 3 O 2 (hydroxyl ions). The movement of these ions in water is due to the so-called “hopping model”, in which only H + or OH is passed to the adjacent water molecules, resulting in the movement of the ions. And the fast about twice as compared with the moving speed of the H + ions, low discharge potential of H + ions, become gases will readily discharge electrode surface in H 2 lost from the water, one of OH - Since ions have a higher discharge potential on the electrode surface, they are diffused into the water stream as charged ions.
Water electrolysis H 2 O → ← H + + OH
Water Hydrogen ion Hydroxide ion H + + H 2 O → H 3 O + [Part of the hydrogen ion becomes H 2 gas (hydrogen gas)]
Hydrogen ion Water Hydronium ion OH + H 2 O → H 3 O 2 +
Hydroxyl ion Water Hydroxyl ion (Non-patent literature) Kunihiko Watabuchi, supervised by Shoji Kubota, “New water science and utilization technology”, published by Scien Forum Co., Ltd., November 10, 1992, P304

電極A、微粒子電極Aは金、白金、バナジュウム、ロジュウム下地めっき銅、銀/金合金、銀材、炭、活性炭を利用する。  The electrode A and the fine particle electrode A use gold, platinum, vanadium, rhodium base copper, silver / gold alloy, silver material, charcoal, activated carbon.

電極B、微粒子電極Bはニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12%クロムステンレス鋼を利用する。  Electrode B and fine particle electrode B use nickel-plated steel, silver solder, copper alloy, copper, high chromium stainless steel, and 12% chromium stainless steel.

電極C、微粒子電極Cはニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラルミン、真鍮、錫を利用する。  Electrode C and fine particle electrode C use nickel base chromium-plated steel, chromium-plated steel, soft solder, lead, duralumin, brass and tin.

電極D、微粒子電極Dは鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マンガン合金、アルミニウムを利用する。  Electrode D and fine particle electrode D use iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin plated steel, galvanized iron / steel (totan), cadmium plated steel, aluminum / manganese alloy, aluminum .

電極E、微粒子電極Eは酸化チタン、硫黄、マグネシウム、マグネシウム合金、ナトリウム、カリウムを利用する。  The electrode E and the fine particle electrode E use titanium oxide, sulfur, magnesium, magnesium alloy, sodium, and potassium.

塗料11は塗料、シリコン樹脂を利用する。  The paint 11 uses paint and silicon resin.

布、樹脂又は炭クロス5は布(布、不織布、ゴム、樹脂、合成樹脂)、炭クロス(わし炭、竹炭、活性炭を布に固着)を利用する。  The cloth, resin, or charcoal cloth 5 uses cloth (cloth, non-woven fabric, rubber, resin, synthetic resin) or charcoal cloth (Wat charcoal, bamboo charcoal, activated carbon is fixed to the cloth).

微粒子活性炭は微粒子活性炭、カーボンブラック、カーボンナノチューブを利用する。  The fine particle activated carbon uses fine particle activated carbon, carbon black, and carbon nanotube.

以下、本発明の発電電極体、燃料電池の好適な態様を、図面を参照して説明する。
図1は、並列式の電槽の平面図で電槽内に陽極板と陰極板は互いに並列式に並べるが、電極板は電極A6、電極B7、電極C8、電極D9、又電極E10等を組み合わせて、離間し配置、電極間に布、樹脂又は炭クロス5を挿入し固着、陽極板と陰極板の端面に導線3を接続した、並列式の平面図である。
Hereinafter, preferred embodiments of the power generation electrode body and the fuel cell of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view of a parallel-type battery case. In the battery case, the anode plate and the cathode plate are arranged in parallel with each other. The electrode plates are electrodes A6, B7, C8, D9, and E10. FIG. 4 is a parallel plan view in which the conductors 3 are inserted and fixed by inserting cloth, resin or charcoal cloth 5 between electrodes, and the conductors 3 are connected to the end faces of the anode plate and the cathode plate.

図2は、直列式の電槽の平面図で電槽内に多数の極板の内端を陽極板、他端を陰極板とし、電流は陽極より其の中間にある極板を順次に流れ陰極に向かう、極板は直列に連なり、中間板等はでは一面に陰極、他面は陽極となり一面の極板其の両面で異なる極(複極)とり、電極板は電極A6、電極B7、電極C8、電極D9、又電極E10等を組み合わせ、離間し配置、電極間に布、樹脂又は炭クロス5を挿入し固着、陽極板と陰極板の端面に導線3を接続した直列式の平面図である。  Fig. 2 is a plan view of a series-type battery case. Inside the battery case, the inner end of many electrode plates is an anode plate, the other end is a cathode plate, and the current flows sequentially through the electrode plate in the middle of the anode. To the cathode, the electrode plates are connected in series, the intermediate plate or the like is a cathode on one side, the other side is an anode and the electrode plate on one side is different (double pole), and the electrode plates are electrodes A6, B7, A series plan view in which electrode C8, electrode D9, electrode E10, etc. are combined and spaced apart, and cloth, resin or charcoal cloth 5 is inserted between the electrodes and fixed, and lead wire 3 is connected to the end faces of the anode and cathode plates. It is.

図3は、宇宙から絶えず素粒子が降り注ぐ、電子(マイナスイオン)をアンテナ4で集めて、電極体のプラス電極に吸い付けられ、次々にマイナス電極に運ばれ、すると、マイナス電極側からマイナス電子が1個はじき出されるような形になって、プラス電極に電気力線に沿って飛んでいき、電場が形成され、静電気を発生し続け、電流が流れる電極を積層にする球体発電電極体a12を示す。  FIG. 3 shows that electrons (negative ions) are constantly falling from the universe, collected by the antenna 4, attracted to the positive electrode of the electrode body, and then carried to the negative electrode, and then negative electrons from the negative electrode side. Is formed in such a way that it is ejected, and the positive electrode flies along the lines of electric force, an electric field is formed, the static electricity is continuously generated, and the spherical power generation electrode body a12 is laminated. Show.

図12は、布、樹脂又炭クロス5の表面に固着される電極A6の発電電極体b13の変形例の断面を示し、ここでは格子状又網状に固着され、さらに電極B7、電極C8、電極D9、電極E10等を布、樹脂又炭クロス5の表面に固着し、異なった電極を積層にする。  FIG. 12 shows a cross section of a modified example of the power generation electrode body b13 of the electrode A6 fixed to the surface of the cloth, resin or charcoal cloth 5, here fixed to a grid or net, and further to the electrode B7, electrode C8, electrode D9, electrode E10, etc. are fixed to the surface of cloth, resin or charcoal cloth 5, and different electrodes are laminated.

図13は、布、樹脂又炭クロス5の表面に固着される電極A6の発電電極体c14の変形例の断面を示し、ここでは渦巻き状であって電極は左又右巻きに巻かれ固着、さらに電極B7、電極C8、電極D9、電極E10等を布、樹脂又炭クロス5の表面に固着し、異なった電極を積層にする。  FIG. 13 shows a cross section of a modified example of the power generating electrode body c14 of the electrode A6 fixed to the surface of the cloth, resin or charcoal cloth 5, where it is spiral, and the electrode is fixed by winding left or right. Further, the electrode B7, the electrode C8, the electrode D9, the electrode E10 and the like are fixed to the surface of the cloth, resin or charcoal cloth 5, and different electrodes are laminated.

図14は,布、樹脂又炭クロス5の表面に固着される電極A6、電極B7、電極D9、電極E10の発電電極体d15の変形例の断面を示し、ここでは帯状の電極を横に並べて固着、さらに電極A6、電極B7、電極C8、電極D9、電極E10等を布、樹脂又炭クロス5の表面に配置し固着、異なる電極を積層にする。  FIG. 14 shows a cross section of a modified example of the power generation electrode body d15 of the electrode A6, the electrode B7, the electrode D9, and the electrode E10 fixed to the surface of the cloth, resin, or charcoal cloth 5, and here, strip-shaped electrodes are arranged side by side. The electrodes A6, B7, C8, D9, and E10 are fixed on the surface of the cloth, resin or charcoal cloth 5, and different electrodes are laminated.

図15は、布、樹脂又炭クロス5の表面に固着される電極A6、電極B7、電極C8、電極D9、電極E10の発電電極体e16の変形例の断面を示し、ここでは帯状の電極を離間し縦に並べて固着、さらに電極A6、電極B7、電極C8、電極D9、電極E10等を布、樹脂又炭クロス5の表面に配置し固着し、異なる電極を積層にする。  FIG. 15 shows a cross section of a modified example of the power generation electrode body e16 of the electrode A6, the electrode B7, the electrode C8, the electrode D9, and the electrode E10 that is fixed to the surface of the cloth, resin, or charcoal cloth 5, and here, the belt-like electrode is shown. The electrodes A6, B7, C8, D9, E10, etc. are arranged and fixed on the surface of the cloth, resin or charcoal cloth 5, and different electrodes are laminated.

図16は、ピラミット形に布、樹脂又炭クロス5を構成し、その表面に電極A6、電極B7、電極C8、電極D9、電極E10を離間し固着された発電電極体f17の変形例を示し、矩形板状の各電極は、互いに離間し配置されている。  FIG. 16 shows a modification of the power generating electrode body f17 in which a cloth, resin or charcoal cloth 5 is formed in a pyramid shape, and the electrodes A6, B7, C8, D9, and E10 are separated and fixed on the surface thereof. The rectangular plate-like electrodes are spaced apart from each other.

図17は、布、樹脂又炭クロス5の表面に円状の電極C8、電極D9、又電極E10を配置し、その周囲に右回りの渦巻き状に電極A6、電極B7を固着している発電電極体g18の変形例を示す。  FIG. 17 shows power generation in which circular electrodes C8, D9, and E10 are arranged on the surface of cloth, resin, or charcoal cloth 5, and electrodes A6 and B7 are fixed in a clockwise spiral around the electrodes. The modification of the electrode body g18 is shown.

図18は、布、樹脂又炭クロス5の表面に円状の電極C8、電極D9、電極E10を配置し、その周囲に左回りの渦巻き状に電極A6、電極B7を固着している発電電極体h19の変形例を示す。  FIG. 18 shows a power generation electrode in which circular electrodes C8, D9 and E10 are arranged on the surface of cloth, resin or charcoal cloth 5, and electrodes A6 and B7 are fixed in a counterclockwise spiral around the electrodes. The modification of the body h19 is shown.

図19は、布、樹脂又炭クロス5の表面に立設するようにして矩形板状の電極A6、電極B7、電極C8、電極D9を離間し平行に並べた発電電極体i20の変形例を示す図である。各電極の間にスペーサーとして布、樹脂又炭クロス5を挿入、平行キャパシタを構成することもできる。  FIG. 19 shows a modified example of the power generation electrode body i20 in which rectangular plate-like electrodes A6, B7, C8, and D9 are spaced apart and arranged in parallel so as to stand on the surface of cloth, resin or charcoal cloth 5. FIG. A parallel capacitor can be configured by inserting cloth, resin or charcoal cloth 5 as a spacer between the electrodes.

図20は、電極A6、又電極B7の、いずれかの網状、格子状の電極と電極C8、電極D9、又電極E10のいずれかを有する面積を持った孔あき状電極を、布、樹脂又炭クロス5を介在させて離間し平行に並べた発電電極体j21の変形例を示し、網形電極と孔あき電極の間にスペーサーとして布、樹脂又炭クロス5を挿入、平行キャパシタを構成することができる。  FIG. 20 shows a perforated electrode having an area having any one of the mesh-like and grid-like electrodes of the electrode A6 and the electrode B7 and the electrode C8, the electrode D9, and the electrode E10. A modified example of the power generation electrode body j21 arranged in parallel and spaced apart with the carbon cloth 5 interposed is shown, and a cloth, resin or charcoal cloth 5 is inserted as a spacer between the mesh electrode and the perforated electrode to constitute a parallel capacitor. be able to.

図21は、円筒断面の活性炭5の内部に、丸形電極A6、丸形電極B7、丸形電極C8、又丸形電極D9を離間し配置した発電電極体k22の変形例を示し、いずれかの電極は外部モータ等により回転させることができる。  FIG. 21 shows a modified example of the power generation electrode body k22 in which the round electrode A6, the round electrode B7, the round electrode C8, and the round electrode D9 are arranged apart from each other inside the activated carbon 5 having a cylindrical cross section. These electrodes can be rotated by an external motor or the like.

図22は、円筒状の電極を同軸に重ねて配置した円筒型3層電極の発電電極体L23である変形例の断面を示し、複数の円筒間にスペーサーとして布、樹脂又炭クロス5を挿入、円筒状の電極A6、電極B7、電極C8、電極D9を離間し平行に並べ、平行キャパシタを構成することができる。  FIG. 22 shows a cross section of a modified example of the power generation electrode body L23 of a cylindrical three-layer electrode in which cylindrical electrodes are coaxially stacked, and cloth, resin or charcoal cloth 5 is inserted as a spacer between a plurality of cylinders. The cylindrical electrodes A6, B7, C8, and D9 are spaced apart and arranged in parallel to form a parallel capacitor.

図23は、四角状の電極を3層に重ねて配置した四角型3層電極の発電電極体m24である変形例の示し、複数の四角間にスペーサーとして布、樹脂又炭クロス5を挿入、四角状の電極A6、電極B7、又電極C8、又電極D9を離間し平行に並べ、平行キャパシタを構成することができる斜視図である。  FIG. 23 shows a modified example of the power generation electrode body m24 of a square three-layer electrode in which square electrodes are arranged in three layers, and cloth, resin or charcoal cloth 5 is inserted as a spacer between the plurality of squares. It is a perspective view which can arrange | position the square-shaped electrode A6, the electrode B7, the electrode C8, and the electrode D9 spaced apart in parallel, and can comprise a parallel capacitor.

図24は、山形状にした電極A6、電極C8、電極B7、又電極D9を離間しスペーサーとして布、樹脂又炭クロス5を挿入、平行に積層した発電電極体n25である変形例を示す斜視図である。  FIG. 24 is a perspective view showing a modified example of a power generation electrode body n25 in which a mountain-shaped electrode A6, electrode C8, electrode B7, and electrode D9 are separated and cloth, resin or charcoal cloth 5 is inserted as a spacer and laminated in parallel. FIG.

図25は、異なる面積の六角形の電極A6、電極B7、電極D8、又電極E9を離間しスペーサーとして布、樹脂又炭クロス5を挿入、平行に積層した発電電極体p26である変形例の上面を示し、図26は、同変形例の側面図である。3つの電極間にスペーサーとして布、樹脂又炭クロス5を挿入、平行キャパシタを構成することができる。尚、各電極の中央部に孔を開けている。  FIG. 25 shows a modification of the power generation electrode body p26 in which hexagonal electrodes A6, B7, D8, and E9 having different areas are separated and cloth, resin or charcoal cloth 5 is inserted as spacers and laminated in parallel. FIG. 26 is a side view of the same modification. A parallel capacitor can be formed by inserting cloth, resin or charcoal cloth 5 as a spacer between the three electrodes. A hole is formed in the center of each electrode.

図27は、異なる面積の正方形の電極A6、電極B7、電極D8、電極E9を離間しスペーサーとして布、樹脂又炭クロス5を入れ平行に積層した発電電極体q27である変形例の上面を示し、図28は、同変形例の側面図である。3つの電極間にスペーサーとして布、樹脂又炭クロス5を入れ離間し、平行キャパシタを構成することができる。尚、各電極の中央部に孔を開けている。  FIG. 27 shows an upper surface of a modified example of the power generation electrode body q27 in which square electrodes A6, B7, D8, and E9 having different areas are spaced apart and cloth, resin or charcoal cloth 5 is stacked in parallel as spacers. FIG. 28 is a side view of the modification. A parallel capacitor can be formed by inserting and separating cloth, resin, or charcoal cloth 5 as a spacer between the three electrodes. A hole is formed in the center of each electrode.

図29は、微粒子電極A30、微粒子電極B31を離間しスペーサーとして布、樹脂又炭クロス5を入れ平行に積層した発電電極体R28である、変形例の断面図を示し、さらに微粒子電極の両面を塗料11で覆い、又は微粒子電極C32、微粒子電極D33、微粒子電極E34等を、積層又は平行に並べて塗装、微粒子電極を平行キャパシタとし電気二重層キャパシタを構成することができる。  FIG. 29 shows a cross-sectional view of a modified example of the power generation electrode body R28 in which the fine particle electrode A30 and the fine particle electrode B31 are separated and cloth, resin, or charcoal cloth 5 is placed in parallel as spacers, and both surfaces of the fine particle electrode are shown. An electric double layer capacitor can be formed by covering with the coating material 11 or coating the fine particle electrode C32, the fine particle electrode D33, the fine particle electrode E34, etc. in a stacked or parallel arrangement, and using the fine particle electrode as a parallel capacitor.

図30は、微粒子発電電極体30、微粒子電極B31を、離間しスペーサーとして布、樹脂又炭クロス5を入れ平行に積層した発電電極体s29である、変形例の断面図を示し、上面を塗料11で覆い固着、さらに微粒子電極C32、微粒子電極D33、又微粒子電極E34等を積層又は平行に並べて塗装、微粒子電極を平行キャパシタとし電気二重層キャパシタを構成することができる。  FIG. 30 shows a cross-sectional view of a modified example of the power generation electrode body s29 in which the fine particle power generation electrode body 30 and the fine particle electrode B31 are spaced apart and cloth, resin or charcoal cloth 5 are stacked in parallel as spacers, and the upper surface is painted. 11, and further, the fine particle electrode C32, the fine particle electrode D33, the fine particle electrode E34, and the like are laminated or arranged in parallel and coated, and the fine particle electrode is used as a parallel capacitor to constitute an electric double layer capacitor.

1 電槽
2 電解質溶液、水、湯、海水、氷の浮かぶ海水、凍結の海水
3 導線
4 アンテナ
5 布、樹脂、炭クロス
6 電極A(金、白金、バナジュウム、ロジウム下地めっき銅、銀/金合金、銀、炭、 活性炭)
7 電極B(ニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12% クロムステンレス鋼)
8 電極C(ニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラル ミン、真鍮、錫)
9 電極D(鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めっき鋼、 亜鉛めっき鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マ ンガン合金、アルミニウム)
10 電極E(酸化チタン、硫黄、マグネシウム、マグネシウム合金、ナトリウム、カリ ウム)
11 塗料(塗料、シリコン樹脂)
12 球体発電電極体a
13 発電電極体b
14 発電電極体c
15 発電電極体d
16 発電電極体e
17 発電電極体f
18 発電電極体g
19 発電電極体h
20 発電電極体i
21 発電電極体j
22 発電電極体k
23 発電電極体L
24 発電電極体m
25 発電電極体n
26 発電電極体o
27 発電電極体p
28 微粒子発電電極体q
29 微粒子発電電極体R
30 微粒子電極A
(金、白金、バナジウム、ロジウム下地めっき銅、銀/金合金、銀、炭 、活性炭)
31 微粒子電極B
(ニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、1 2%クロムステンレス鋼)
32 微粒子電極C
(ニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュ ラルミン、真鍮、錫)
33 微粒子電極D
(鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めっき 鋼、亜鉛めっき鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム /マンガン合金、アルミニウム)
34 微粒子電極E
(酸化チタン、硫黄、マグネシウム、マグネシウム合金、ナトリウム、 カリウム)
DESCRIPTION OF SYMBOLS 1 Battery case 2 Electrolyte solution, water, hot water, seawater, floating seawater, frozen seawater 3 Conductor 4 Antenna 5 Cloth, Resin, Charcoal cloth 6 Electrode A (gold, platinum, vanadium, rhodium-plated copper, silver / gold Alloy, silver, charcoal, activated carbon)
7 Electrode B (Nickel plated steel, silver solder, copper alloy, copper, high chromium stainless steel, 12% chromium stainless steel)
8 Electrode C (nickel-undercoated chrome-plated steel, chrome-plated steel, soft solder, lead, duralumin, brass, tin)
9 Electrode D (Iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin-plated steel, galvanized iron / steel (titan), cadmium-plated steel, aluminum / mangan alloy, aluminum)
10 Electrode E (Titanium oxide, sulfur, magnesium, magnesium alloy, sodium, potassium)
11 Paint (paint, silicone resin)
12 Spherical power generation electrode body a
13 Power generation electrode body b
14 Power generation electrode body c
15 Power generation electrode body d
16 Power generation electrode body e
17 Power generation electrode body f
18 Power generation electrode body g
19 Power generation electrode body h
20 Power generation electrode body i
21 Power generation electrode body j
22 Power generation electrode body k
23 Power generation electrode body L
24 Power generation electrode body m
25 Power generation electrode body n
26 Power generation electrode body o
27 Power generation electrode body p
28 Fine Particle Power Generation Electrode Body q
29 Fine Particle Power Generation Electrode Body R
30 Particle electrode A
(Gold, platinum, vanadium, rhodium-plated copper, silver / gold alloy, silver, charcoal, activated carbon)
31 Fine particle electrode B
(Nickel plated steel, silver solder, copper alloy, copper, high chromium stainless steel, 12% chromium stainless steel)
32 Fine Particle Electrode C
(Nickel-underlying chrome-plated steel, chrome-plated steel, soft solder, lead, duralumin, brass, tin)
33 Fine particle electrode D
(Iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin-plated steel, galvanized iron / steel (totan), cadmium-plated steel, aluminum / manganese alloy, aluminum)
34 Fine Particle Electrode E
(Titanium oxide, sulfur, magnesium, magnesium alloy, sodium, potassium)

Claims (3)

電気化学ポテンシャルが異なり、異なる起電力レベルを持つ三種類以上の互いに面積が異なる金属を電極として、布、樹脂又は炭クロスを介在させつつ、積層方向に見て縁同士が接しないようにして面積順に積層しており、最も面積が大きい前記金属板の背面には、更に大きな面積の布、樹脂又は炭クロスが対向して設けられており、水中に浸漬することにより、前記金属板に接続した導線を介して電気を発生させるとともに、抗菌又は抗カビ効果を発揮することを特徴とする発電電極体。 Electrochemical potential Ri is Do different, as electrodes three or more types of areas mutually different metal plates having different electromotive force levels, cloth, while interposing the resin or charcoal cloth, so as not to contact with the edges to each other when viewed in the stacking direction In the back of the metal plate having the largest area, a cloth, resin, or charcoal cloth having a larger area is provided opposite to the back surface of the metal plate. A power generating electrode body characterized by generating electricity through a connected conductive wire and exhibiting antibacterial or antifungal effects. 前記金属はカリウム、ナトリウム、マグネシュウム、マグネシュウム合金、酸化チタン、硫黄、亜鉛、亜鉛合金、80錫/20亜鉛めっき鋼、亜鉛めっき鉄/鋼(トタン)、アルミニウム、カドミウムめっき鋼、アルミニウム/マンガン合金、軟鉄、ジュラルミン、錫、鉛、真鍮、クロムめっき鋼、軟質半田、ニッケル下地クロムめっき鋼、錫めっき鋼、12%クロムステンレス鋼、高クロムステンレス鋼、銅、銅合金、銀半田、オーステナィトステンレス鋼、ニッケルめっき銅、銀、ロジウム下地金めっき銅、銀/金合金、炭素、活性炭、バナジウム、白金、金のうちの異なる種類の金属であることを特徴とした請求項に記載の発電電極体。 The metal is potassium, sodium, magnesium, magnesium alloy, titanium oxide, sulfur, zinc, zinc alloy, 80 tin / 20 galvanized steel, galvanized iron / steel (totan), aluminum, cadmium plated steel, aluminum / manganese alloy, Soft iron, duralumin, tin, lead, brass, chrome-plated steel, soft solder, nickel-undercoated chrome-plated steel, tin-plated steel, 12% chrome stainless steel, high chrome stainless steel, copper, copper alloy, silver solder, austenitic stainless steel 2. The power generating electrode body according to claim 1 , which is a different kind of metal among nickel, plated copper, silver, rhodium-based gold-plated copper, silver / gold alloy, carbon, activated carbon, vanadium, platinum, and gold. . 前記電極間に電気二重層キャパシタを形成することを特徴とした請求項1又は2に記載の発電電極体。 Generating electrode member according to claim 1 or 2 characterized by forming an electric double layer capacitor between the electrodes.
JP2011058516A 2011-02-28 2011-02-28 Power generation electrode body Expired - Fee Related JP5483464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058516A JP5483464B2 (en) 2011-02-28 2011-02-28 Power generation electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058516A JP5483464B2 (en) 2011-02-28 2011-02-28 Power generation electrode body

Publications (2)

Publication Number Publication Date
JP2012182105A JP2012182105A (en) 2012-09-20
JP5483464B2 true JP5483464B2 (en) 2014-05-07

Family

ID=47013124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058516A Expired - Fee Related JP5483464B2 (en) 2011-02-28 2011-02-28 Power generation electrode body

Country Status (1)

Country Link
JP (1) JP5483464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622294B2 (en) * 2012-12-26 2014-11-12 和弘 林 Mass transfer process between electrodes in electrolyte is accelerated by voltage application
KR101465437B1 (en) * 2014-01-08 2014-11-27 성균관대학교산학협력단 Hybrid electric generating element
CN107010728B (en) * 2017-06-05 2022-08-23 济南大学 Gradual change type completely autotrophic nitrogen removal system and treatment method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684701A (en) * 1992-09-07 1994-03-25 Matsushita Electric Ind Co Ltd Electric double-layer capacitor and its manufacture
JPH0697003A (en) * 1992-09-14 1994-04-08 Matsushita Electric Ind Co Ltd Electrode body, its manufacture and electronic double layer capacitor
JPH1071198A (en) * 1996-08-29 1998-03-17 Tokyo Film Kako Kk Ion antimicrobial tape
JP2003181454A (en) * 2001-12-15 2003-07-02 Matsumoto Seisakusho:Kk Sterilization method of bath water and sterilization device thereof
JP2003242963A (en) * 2002-02-19 2003-08-29 Mitsubishi Chemicals Corp Battery
JP2004355823A (en) * 2003-05-27 2004-12-16 Nec Tokin Corp Hybrid type electricity storage component
JP2005019367A (en) * 2003-06-24 2005-01-20 Shin Nihonsha:Kk Water-power battery
KR100552431B1 (en) * 2005-03-31 2006-02-20 코칩 주식회사 High-voltage electric double layer capacitor
WO2010023712A1 (en) * 2008-08-29 2010-03-04 Hayakawa Youji Water sterilizing apparatus

Also Published As

Publication number Publication date
JP2012182105A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
Cao et al. Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science
Zhang et al. Control of electro-chemical processes using energy harvesting materials and devices
JP5522798B2 (en) Ballast water purification method
EP2382681A2 (en) Cathodes for microbial electrolysis cells and microbial fuel cells
JP5483464B2 (en) Power generation electrode body
WO2010041732A1 (en) Dye-sensitized solar cells
WO1992014272A1 (en) Galvanic seawater cell
WO2013031522A1 (en) Water electrolysis device
Zhang et al. Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte
CN108292770A (en) Microbiological fuel cell unit, its purposes and microbiological fuel cell arrangement
Zhang Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies
Lou et al. Biofouling protection for marine optical windows by electrolysis of seawater to generate chlorine using a novel Co-based catalyst electrode
AU2019302814B2 (en) Device for simultaneously producing water vapor and electricity
KR102481423B1 (en) metal-air fuel cell
JP2021012863A (en) Power generation system using oxygen extracted from water
RU205912U1 (en) PLANT-MICROBIAL FUEL CELL
US20220002171A1 (en) Electrode holder for purifying water and floating device that comprises same
JP5622294B2 (en) Mass transfer process between electrodes in electrolyte is accelerated by voltage application
CN2255666Y (en) Cell using dissolved-oxygen in water as depolarizing agent
CN101944624A (en) Microbial fuel cell taking blue algae as energy source
JP6384932B1 (en) Hydrogen / oxygen mixed gas production equipment
CN201877517U (en) Algae microorganism fuel cell
JPWO2016129678A1 (en) Laminate and water treatment system
Elmazouzi et al. Microbial Fuel Cells for Depollution of Stagnant Water and Production of Electrical Energy
Liu et al. A Cyanobacterial Artificial Leaf for Simultaneous Carbon Dioxide Reduction and Bioelectricity Generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130816

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130816

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5483464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees