【0001】
【発明の属する技術分野】
本発明は、充電により電気エネルギーを蓄え、電源として用いる蓄電部品に関し、特に二次電池、電気二重層キャパシタの長所を兼備した、ハイブリッド型蓄電部品に関するものである。
【0002】
【従来の技術】
近年、携帯電話に代表される電子機器あるいは、電気自動車の蓄電装置として、ニッケル水素、リチウムイオンに代表される、二次電池が用いられてきた。これらの二次電池は、エネルギー密度が高く、多くの携帯機器や、電力で駆動するモータと内燃機関を併用した、いわゆるハイブリッド自動車で実用化されている。
【0003】
一方、電気二重層キャパシタは、電荷を有する固体と、それに接触する電解液の界面に形成される、厚さ数nm程度の電気二重層を、誘電体として利用したものである。電気二重層の容量は、1cm2あたり数十μFであるが、表面積が数千m2にも及ぶ活性炭を電極として用いることにより、数百〜数千Fの極めて大きな容量を得ることが可能である。
【0004】
このために、電気二重層キャパシタは、下記のような特徴を有し、実用に供されるとともに、さらなる性能向上のための検討がなされている。
(1)充放電サイクルに伴う容量の劣化が少ない。
(2)一般的な電池に比較して、起動後に瞬時に大きな出力を取り出せる。
【0005】
そして、電子機器の発達は、CPUの高性能化、無線LANを代表とするコードレス化を伴い、負荷電流の増加に繋がっており、パワー密度の低い二次電池だけでは、所要のエネルギーを得ることが困難になりつつある。この対策として、内部抵抗の小さい電気二重層キャパシタと二次電池を組み合わせた蓄電部品が提案されている。
【0006】
このような例の一つとして、特許文献1には、リチウム二次電池と電気二重層キャパシタを、並列接続した蓄電装置に関する技術が開示されている。しかし、特許文献1に開示されている蓄電装置においては、電気二重層キャパシタとリチウム二次電池に用いられる電解液が異なるため、別個に作製して、外部回路により接続する必要がある。
【0007】
これによって、蓄電装置の容量が大きくなるほど、配線数が増加しエネルギー密度が低くなる傾向がある。さらに、前記のような構造のため、装置全体の大型化が避けられず、しかも配線数の増加は、製造コスト増加に繋がるという問題がある。
【0008】
また、特許文献2には、電気二重層キャパシタとリチウム二次電池の構成を、同一の容器内に積層して収納した蓄電用電子部品が開示されている。しかし、特許文献2に開示されている蓄電用電子部品においては、リチウム二次電池用の電解液を共用しているため、電気二重層キャパシタ側の出力特性が低下するという問題がある。
【0009】
【特許文献1】
特開2002−246071号公報
【特許文献2】
特開2002−118036号公報
【0010】
【発明が解決しようとする課題】
従って、本発明の課題は、電気二重層キャパシタと二次電池の構成を具備した、小型で、高エネルギー密度と優れた出力特性を同時に発現し得る、ハイブリッド型蓄電部品を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、前記課題を解決するため、二次電池用電極を構成する材料や、電解液の組成などを検討した結果なされたものである。
【0012】
即ち、本発明は、電気二重層キャパシタ用正極と電気二重層キャパシタ用負極が対向し、かつ、二次電池用正極と二次電池用負極が対向する構成を有する素子、または該素子を複数積層した積層体を有するハイブリッド型蓄電部品において、前記二次電池用正極と前記二次電池用負極の少なくとも一方は、電極活物質として、酸性電解液中で電気化学的に活性な高分子を含むことを特徴とする、ハイブリッド型蓄電部品である。
【0013】
また、本発明は、前記電気二重層キャパシタ用正極と、前記電気二重層キャパシタ用負極と、前記二次電池用正極と、前記二次電池用負極は、同一の容器に収納され、同一の電解液が含浸されてなることを特徴とする、前記のハイブリッド型蓄電部品である。
【0014】
また、本発明は、一方の面に電気二重層キャパシタ用正極が形成され、他方の面に二次電池用正極が形成された、シート状の正極集電体、または、一方の面に電気二重層キャパシタ用負極が形成され、他方の面に二次電池用負極が形成された、シート状の負極集電体の少なくともいずれかを有することを特徴とする、前記のハイブリッド型蓄電部品である。
【0015】
本発明のハイブリッド型蓄電部品においては、二次電池用電極の電極活物質として、電解液中で電気化学的に活性である高分子を含む。このため、二次電池に相当する部分が、電気二重層キャパシタに一般的に用いられる電解液中でも、二次電池として十分な特性を発現できる。
【0016】
従って、本発明のハイブリッド型蓄電部品においては、二次電池用、電気二重層キャパシタ用の電解液を共用することが可能となり、両者の構成を別個の容器に収納する必要がないので、大型化を伴うことなく、優れた特性を発現することができる。
【0017】
また、本発明のハイブリッド型蓄電部品においては、シート状の集電体を用いた場合、二次電池の電極、電気二重層キャパシタの電極を、それぞれ集電体の一方の面に形成することも可能なので、小型化にも対応できる。
【0018】
本発明のハイブリッド型蓄電部品の、電極活物質に用いる高分子材料として、具体的には、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリ−p−フェニレン、ポリフェニレンビニレン、ポリペリナフタレン、ポリフラン、ポリフルラン、ポリチエニレン、ポリピリジンジイル、ポリイソチアナフテン、ポリキノキサリン、ポリピリジン、ポリピリミジン、ポリインドール、ポリアミノアントラキノンとこれら誘導体、含窒素複素環化合物及び芳香族化合物などの重合体が挙げられる。
【0019】
【発明の実施の形態】
次に、本発明の実施の形態を、図を参照しながら説明する。
【0020】
図1は、本発明の、ハイブリッド型蓄電部品の断面を模式的に示した図である。図1において、1aは正極側の集電体、1bは負極側の集電体、2aは集電体を覆う正極側の導電性ゴムシート、2bは集電体を覆う負極側の導電性ゴムシート、3aは正極側の電気二重層キャパシタ用電極、3bは負極側の電気二重層キャパシタ用電極、4aは正極側の二次電池用電極、4bは負極側の二次電池用電極、5はセパレータ、6は封止材、7はカバーである。
【0021】
図1における最上層の集電体1aには、導電性ゴムシート2aを介して、図1おける下側の面に、電気二重層キャパシタ用電極3aが形成されている。また、図1における中間層の集電体1bには、導電性ゴムシート2bを介して、図1における上側の面には、電気二重層キャパシタ用電極3bが形成され、図1における下側の面には、二次電池用電極4bが形成され、負極側の一体型電極を構成している。さらに図1における最下層の集電体1aには、導電性ゴムシート2aを介して、正極側の二次電池用電極4aが、図1における上側の面に形成されている。
【0022】
このような構成となるように、セパレータ5を介して、正極と負極の電極を対向配置させ、電解液を含浸し、封止材6とカバー7を取り付けることにより、電気二重層キャパシタと二次電池の特長を兼備した、高特性のハイブリッド型蓄電装置を得ることができる。
【0023】
【実施例】
次に、具体的な実施例を挙げ、本発明について、さらに詳しく説明する。
【0024】
(実施例1)
まず本発明の第1の実施例について、図1を参照しながら説明する。集電体1a、1bには、アルミニウム箔を用いた。また、導電性ゴムシート2a、2bには、カーボンブラックを混合、分散したニトリルゴムを用い、アルミニウム箔に、カーボンブラックとポリフッ化ビニリデンを、重量比で2:1で混合した導電性ペーストを用いて接着した。ここではカーボンブラックとニトリルゴムを用いたが、同等の特性を有する導電性粉末とゴムであれば、同様に使用可能である。
【0025】
正極側の二次電池用電極4aは、電極活物質としてポリインドールを、導電性補助剤として気相成長法によって得られるカーボン繊維を、重量比で4:1で混合した後、前記ポリインドールと前記カーボン繊維の合計量に対し、8重量%のポリフッ化ビニリデンを、結合材として加えて混練し、厚さ1mmのシート状に成形して調製した。
【0026】
負極側の二次電池用電極4bは、電極活物質としてポリフェニルキノキサリンを、導電性補助剤として気相成長法によって得られるカーボン繊維を、重量比で3:1で混合した後、前記ポリフェニルキノキサリンと前記カーボン繊維の合計量に対し、8重量%のポリフッ化ビニリデンを、結合材として加えて混練し、厚さ1mmのシート状に成形して調製した。
【0027】
正極側、負極側の電気二重層キャパシタ用電極3a、3bは、活性炭粉末と、導電性補助剤としての気相成長法によって得られるカーボン繊維を、重量比で3:1で混合した電極材料に、8重量%のポリフッ化ビニリデンを、結合材として加えて混練し、厚さ1mmのシート状に成形して調製した。
【0028】
次に、集電体1aの片面に導電性ゴムシート2aを介して、正極側の電気二重層キャパシタ用電極3aを、ロールを用いて圧着接合し、第1の正極側の電極を得た。また、集電体1bの片面に負極側の電気二重層キャパシタ用電極3bを、もう一方の面に負極側の二次電池用電極4bを、導電性ゴムシート2bを介して、それぞれ、ロールを用いて圧着接合し、一体化負極電極を調製した。
【0029】
さらに、正極側の集電体1aの片面に導電性ゴムシート2aを介して、正極側の二次電池用電極4aを、ロールを用いて圧着接合し、第2の正極側の電極を得た。これら3種の電極を、セパレータを介して、図1に示したように積層し、ポリエチレンテレフタレート、アルミニウム箔、アイオノマーの3層構造からなるラミネートフィルムを、被覆接着し、カバー7を構成した。
【0030】
その後、それぞれの電極に、30重量%の硫酸水溶液を電解液として含浸し、カバー7の開口部を、アイノマーフィルムからなる封止材6で封止した。なお、正極側の電極と負極側の電極の間に介在させたセパレータ5には、イオン交換膜を用いた。その後は、適宜、リード線または端子を取り付け、ケースに封入し、ハイブリッド型蓄電部品を得た。
【0031】
(実施例2)
電解液に20重量%の塩酸水溶液を用いた他は、第1の実施例と同様にして、ハイブリッド型蓄電部品を調製した。
【0032】
(実施例3)
図2は、本発明の第3の実施例のハイブリッド型蓄電部品の断面を、模式的に示したものである。この実施例では、図2における最上層に、片面に負極側の電気二重層キャパシタ用電極3bを形成した負極側の電極を配し、図2における中間層に、正極側の電気二重層キャパシタ用電極3aと、正極側の二次電池用電極4aを、それぞれ一方の面に形成した、一体化正極電極を配し、図2における最下層に、片面に負極側の二次電池用電極4bを形成した、負極側の電極を配している。それぞれの、電極の製法などは、第1の実施例と同様である。
【0033】
(実施例4)
図3は、本発明の第4の実施例のハイブリッド型蓄電部品の断面を、模式的に示したものである。ここでは、図3に示したように、正負の電気二重層キャパシタ用電極3a、3bと、正負の二次電池用電極4a、4bのそれぞれが、セパレータ5を介して対向するように、両端の電気二重層キャパシタ用電極と、複数の正負の一体化電極が積層されている。
【0034】
なお、前記実施例では電極活物質として、ポリインドールとポリフェニルキノキサリンを、酸性電解液として硫酸水溶液、塩酸水溶液を用いたが、これらに限定されるものではない。また、結合材としてポリフッ化ビニリデンを用いたが、酸性電解液に腐食されない限り、これに限定されるものではない。
【0035】
(比較例1)
次に、比較に供するために、第1の比較例として、第1の実施例における、正負の電気二重層キャパシタ用電極を用いた部分を、それぞれ正負の二次電池用電極で置き換えた、二次電池を調製した。図4は、第1の比較例の二次電池の断面を模式的に示したものである。
【0036】
図4に示したように、ここでは、正負の二次電池用電極4a、4bが対向するように配されている。また、これらの二次電池用電極は、第1の実施例と同様にして、調製した。
【0037】
(比較例2)
次に、第2の比較例として、第1の実施例における二次電池の部分に、リチウム二次電池を用いた例を示す。図5は、第2の比較例のハイブリッド型蓄電部品の断面を模式的に示したものである。ここでは、正負の電気二重層キャパシタ用電極3a、3bを、前記実施例と同様に調製した。
【0038】
また、正極側のリチウムイオン二次電池用電極8aは、コバルト酸リチウムと、導電性補助剤である気相成長法で得られるカーボン繊維を、重量比で8:1で混合し、さらに、前記コバルト酸リチウムと前記カーボン繊維の合計量に対して、10重量%のポリテトラフルオロエチレンを、結合材として加えて混練し、厚さが1mmのシートとして調製した。
【0039】
また、負極側のリチウム二次電池用電極8bは、コークス粉末と気相成長法で得られるカーボン繊維を、重量比で、1:1で混合し、前記コークス粉末と前記カーボン繊維の合計量に対して、10重量%のポリテトラフルオロエチレンを、結合材として加えて混練し、厚さが1mmのシートとして調製した。
【0040】
このようにして調製した、電気二重層キャパシタ用電極と、リチウム二次電池用電極を、図5に示したように、それぞれの正極側と負極側の電極が、セパレータ5を介して対向するように配置して、ハイブリッド型蓄電部品を調製した。なお、電解液には過塩素酸リチウムを、20重量%の濃度で溶解したプロピレンカーボネート溶液を用いた。
【0041】
これらの実施例及び比較例の、ハイブリッド型蓄電部品または二次電池について、出力特性を評価した。図6は、実施例と比較例の出力特性をまとめて示したものである。これら実施例及び比較例の最大出力は、第1の実施例が0.74W/cc、第2の実施例が0.92W/cc、第3の実施例が0.73W/cc、第1の比較例が0.65W/cc、第2の比較例が0.60W/ccであった。
【0042】
これらの結果から明らかなように、実施例は、いずれの比較例よりも優れた出力特性を発現している。前記実施例が第1の比較例よりも優れている理由は、大電流での放電においては、特性向上に電気二重層キャパシタの部分が寄与しているためと解される。また、第2の比較例は、イオン半径が比較的大きいリチウム塩を電解質として使用していることから、電気二重層キャパシタの部分の出力特性を低下させていると解される。
【0043】
【発明の効果】
以上に説明したように、本発明によれば、二次電池用の電極の電極活物質として、酸性電解液中で電気化学的に活性な高分子を用いることにより、電気二重層キャパシタに用いる電解液を、二次電池と共用することが可能となるので、正負の二次電池用電極と電気二重層キャパシタ用電極をセパレータを介して対向させ、同一の容器内に収納することができる。従って、本発明によるハイブリッド型蓄電部品は、電気二重層キャパシタと二次電池の両方の特長を有し、優れた特性を発現し得るものである。
【図面の簡単な説明】
【図1】本発明のハイブリッド型蓄電部品の断面図。
【図2】本発明の第3の実施例のハイブリッド型蓄電部品の断面図。
【図3】本発明の第4の実施例のハイブリッド型蓄電部品の断面図。
【図4】第1の比較例の二次電池の断面図。
【図5】第2の比較例のハイブリッド型蓄電部品の断面図。
【図6】実施例と比較例の出力特性を示す図。
【符号の説明】
1a 正極側の集電体
1b 負極側の集電体
2a 正極側の導電性ゴムシート
2b 負極側の導電性ゴムシート
3a 正極側の電気二重層キャパシタ用電極
3b 負極側の電気二重層キャパシタ用電極
4a 正極側の二次電池用電極
4b 負極側の二次電池用電極
5 セパレータ
6 封止材
7 カバー
8a 正極側のリチウムイオン二次電池用電極
8b 負極側のリチウムイオン二次電池用電極
11 第1の実施例の出力特性
12 第2の実施例の出力特性
13 第3の実施例の出力特性
21 第1の比較例の出力特性
22 第2の比較例の出力特性[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power storage component that stores electric energy by charging and is used as a power supply, and more particularly to a hybrid power storage component having advantages of a secondary battery and an electric double layer capacitor.
[0002]
[Prior art]
2. Description of the Related Art In recent years, secondary batteries such as nickel hydride and lithium ion have been used as electronic devices such as mobile phones or power storage devices for electric vehicles. These secondary batteries have a high energy density and have been put to practical use in many portable devices and so-called hybrid vehicles using both an electric motor and an internal combustion engine.
[0003]
On the other hand, an electric double layer capacitor uses an electric double layer having a thickness of about several nm, which is formed at an interface between a solid having a charge and an electrolytic solution in contact with the solid, as a dielectric. Although the capacity of the electric double layer is several tens of μF per cm 2 , it is possible to obtain an extremely large capacity of several hundred to several thousand F by using activated carbon having a surface area of several thousand m 2 as an electrode. is there.
[0004]
For this reason, the electric double layer capacitor has the following characteristics, is put to practical use, and is being studied for further improving the performance.
(1) Deterioration of capacity due to charge / discharge cycles is small.
(2) As compared with a general battery, a large output can be taken out instantly after startup.
[0005]
The development of electronic devices has been accompanied by higher performance of CPUs and cordless typified by wireless LAN, which has led to an increase in load current. A secondary battery with low power density alone can provide the required energy. Is becoming more difficult. As a countermeasure, a power storage component combining an electric double layer capacitor with a small internal resistance and a secondary battery has been proposed.
[0006]
As one of such examples, Patent Literature 1 discloses a technique relating to a power storage device in which a lithium secondary battery and an electric double layer capacitor are connected in parallel. However, in the power storage device disclosed in Patent Literature 1, since the electrolyte used for the electric double layer capacitor and the electrolyte used for the lithium secondary battery are different, it is necessary to manufacture them separately and connect them by an external circuit.
[0007]
Thus, as the capacity of the power storage device increases, the number of wirings increases and the energy density tends to decrease. Further, the structure as described above inevitably leads to an increase in the size of the entire device, and furthermore, an increase in the number of wirings leads to an increase in manufacturing cost.
[0008]
Patent Literature 2 discloses a power storage electronic component in which the configurations of an electric double layer capacitor and a lithium secondary battery are stacked and housed in the same container. However, in the electronic component for power storage disclosed in Patent Literature 2, since the electrolyte for the lithium secondary battery is shared, there is a problem that the output characteristics on the electric double layer capacitor side are deteriorated.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-246071 [Patent Document 2]
JP 2002-118036 A
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a hybrid power storage component having a configuration of an electric double layer capacitor and a secondary battery, which is compact and can simultaneously exhibit high energy density and excellent output characteristics.
[0011]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems.
[0012]
That is, the present invention provides an element having a configuration in which the positive electrode for an electric double layer capacitor and the negative electrode for an electric double layer capacitor face each other, and the positive electrode for a secondary battery and the negative electrode for a secondary battery face each other, or a plurality of such elements. In a hybrid power storage component having a laminated body, at least one of the secondary battery positive electrode and the secondary battery negative electrode contains, as an electrode active material, a polymer that is electrochemically active in an acidic electrolyte. A hybrid type power storage component characterized by the following.
[0013]
Further, the present invention provides the electric double layer capacitor positive electrode, the electric double layer capacitor negative electrode, the secondary battery positive electrode, and the secondary battery negative electrode which are housed in the same container and have the same electrolytic capacity. The hybrid type power storage component described above, wherein the hybrid type power storage component is impregnated with a liquid.
[0014]
Further, the present invention provides a sheet-like positive electrode current collector having a positive electrode for an electric double layer capacitor formed on one surface and a positive electrode for a secondary battery formed on the other surface, or an electric current collector on one surface. The hybrid power storage component according to the above, further comprising at least one of a sheet-shaped negative electrode current collector having a negative electrode for a multilayer capacitor and a negative electrode for a secondary battery formed on the other surface.
[0015]
In the hybrid-type power storage component of the present invention, a polymer that is electrochemically active in an electrolytic solution is contained as an electrode active material of a secondary battery electrode. For this reason, the portion corresponding to the secondary battery can exhibit sufficient characteristics as a secondary battery even in an electrolytic solution generally used for an electric double layer capacitor.
[0016]
Therefore, in the hybrid power storage component of the present invention, the electrolyte for the secondary battery and the electrolyte for the electric double layer capacitor can be shared, and it is not necessary to store both components in separate containers. Excellent characteristics can be exhibited without accompanying.
[0017]
In the hybrid power storage component of the present invention, when a sheet-shaped current collector is used, the electrode of the secondary battery and the electrode of the electric double layer capacitor may be formed on one surface of the current collector, respectively. Because it is possible, it can respond to miniaturization.
[0018]
Specific examples of the polymer material used for the electrode active material of the hybrid power storage component of the present invention include polyaniline, polythiophene, polypyrrole, polyacetylene, poly-p-phenylene, polyphenylenevinylene, polyperinaphthalene, polyfuran, polyflurane, and polythienylene. And polymers such as polypyridinediyl, polyisothianaphthene, polyquinoxaline, polypyridine, polypyrimidine, polyindole, polyaminoanthraquinone and derivatives thereof, nitrogen-containing heterocyclic compounds and aromatic compounds.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a diagram schematically showing a cross section of a hybrid power storage component of the present invention. In FIG. 1, 1a is a current collector on the positive electrode side, 1b is a current collector on the negative electrode side, 2a is a conductive rubber sheet on the positive electrode side covering the current collector, and 2b is a conductive rubber on the negative electrode side covering the current collector The sheet, 3a is the electrode for the electric double layer capacitor on the positive electrode side, 3b is the electrode for the electric double layer capacitor on the negative electrode side, 4a is the electrode for the secondary battery on the positive electrode side, 4b is the electrode for the secondary battery on the negative electrode side, 5 is A separator, 6 is a sealing material, and 7 is a cover.
[0021]
The uppermost current collector 1a in FIG. 1 has an electric double layer capacitor electrode 3a formed on the lower surface in FIG. 1 via a conductive rubber sheet 2a. In addition, an electric double layer capacitor electrode 3b is formed on the upper surface in FIG. 1 via a conductive rubber sheet 2b on the intermediate layer current collector 1b in FIG. An electrode 4b for a secondary battery is formed on the surface, forming an integral electrode on the negative electrode side. Further, on the lowermost current collector 1a in FIG. 1, a positive electrode side secondary battery electrode 4a is formed on the upper surface in FIG. 1 via a conductive rubber sheet 2a.
[0022]
In such a configuration, the positive electrode and the negative electrode are arranged to face each other with the separator 5 interposed therebetween, the electrolyte is impregnated, and the sealing material 6 and the cover 7 are attached. A high-performance hybrid power storage device having the characteristics of a battery can be obtained.
[0023]
【Example】
Next, the present invention will be described in more detail with reference to specific examples.
[0024]
(Example 1)
First, a first embodiment of the present invention will be described with reference to FIG. Aluminum foil was used for the current collectors 1a and 1b. Nitrile rubber mixed and dispersed with carbon black is used for the conductive rubber sheets 2a and 2b, and a conductive paste obtained by mixing carbon black and polyvinylidene fluoride at a weight ratio of 2: 1 is used for aluminum foil. And glued. Here, carbon black and nitrile rubber are used, but any conductive powder and rubber having equivalent characteristics can be used.
[0025]
The secondary battery electrode 4a on the positive electrode side is obtained by mixing polyindole as an electrode active material and carbon fiber obtained by a vapor deposition method as a conductive auxiliary agent at a weight ratio of 4: 1. 8% by weight of polyvinylidene fluoride with respect to the total amount of the carbon fibers was added as a binder, kneaded, and formed into a sheet having a thickness of 1 mm.
[0026]
The secondary battery electrode 4b on the negative electrode side is obtained by mixing polyphenylquinoxaline as an electrode active material and carbon fibers obtained by a vapor deposition method as a conductive auxiliary agent at a weight ratio of 3: 1. 8% by weight of polyvinylidene fluoride, based on the total amount of quinoxaline and the carbon fiber, was added as a binder, kneaded, and formed into a sheet having a thickness of 1 mm.
[0027]
The electrodes 3a and 3b for electric double layer capacitors on the positive electrode side and the negative electrode side are made of an electrode material in which activated carbon powder and carbon fiber obtained by a vapor deposition method as a conductive auxiliary are mixed at a weight ratio of 3: 1. , 8% by weight of polyvinylidene fluoride was added as a binder, kneaded, and formed into a sheet having a thickness of 1 mm.
[0028]
Next, the electrode 3a for the electric double layer capacitor on the positive electrode side was pressure-bonded to one surface of the current collector 1a via the conductive rubber sheet 2a using a roll to obtain a first electrode on the positive electrode side. In addition, the electrode 3b for the electric double layer capacitor on the negative electrode side on one surface of the current collector 1b, the electrode 4b for the secondary battery on the negative electrode side on the other surface, and a roll via a conductive rubber sheet 2b, respectively. To form an integrated negative electrode.
[0029]
Furthermore, the positive electrode side secondary battery electrode 4a was pressure-bonded to one side of the positive electrode side current collector 1a via a conductive rubber sheet 2a using a roll to obtain a second positive electrode side electrode. . These three types of electrodes were laminated via a separator as shown in FIG. 1, and a laminated film having a three-layer structure of polyethylene terephthalate, aluminum foil, and ionomer was coated and bonded to form a cover 7.
[0030]
Thereafter, each electrode was impregnated with a 30% by weight aqueous solution of sulfuric acid as an electrolytic solution, and the opening of the cover 7 was sealed with a sealing material 6 made of an ionomer film. An ion exchange membrane was used for the separator 5 interposed between the positive electrode and the negative electrode. Thereafter, lead wires or terminals were appropriately attached and sealed in a case to obtain a hybrid power storage component.
[0031]
(Example 2)
A hybrid power storage component was prepared in the same manner as in the first example, except that a 20% by weight aqueous hydrochloric acid solution was used as the electrolytic solution.
[0032]
(Example 3)
FIG. 2 schematically shows a cross section of a hybrid power storage component according to a third embodiment of the present invention. In this embodiment, a negative electrode having a negative electrode-side electric double layer capacitor electrode 3b formed on one surface is disposed on the uppermost layer in FIG. 2, and a positive electrode electric double layer capacitor for an intermediate layer in FIG. An electrode 3a and a positive electrode-side secondary battery electrode 4a are formed on one surface, respectively, and an integrated positive electrode is provided. The negative electrode-side secondary battery electrode 4b on one surface is provided on the lowermost layer in FIG. The formed negative electrode is disposed. The manufacturing method of each electrode is the same as that of the first embodiment.
[0033]
(Example 4)
FIG. 3 schematically shows a cross section of a hybrid power storage component according to a fourth embodiment of the present invention. Here, as shown in FIG. 3, both ends of the positive and negative electric double layer capacitor electrodes 3 a and 3 b and the positive and negative secondary battery electrodes 4 a and 4 b face each other with the separator 5 interposed therebetween. An electrode for an electric double layer capacitor and a plurality of positive and negative integrated electrodes are laminated.
[0034]
In the above embodiment, polyindole and polyphenylquinoxaline were used as the electrode active materials, and a sulfuric acid aqueous solution and a hydrochloric acid aqueous solution were used as the acidic electrolyte. However, the present invention is not limited to these. Further, polyvinylidene fluoride is used as the binder, but is not limited to this as long as it is not corroded by the acidic electrolyte.
[0035]
(Comparative Example 1)
Next, in order to provide a comparison, as a first comparative example, the portions using the positive and negative electric double layer capacitor electrodes in the first embodiment were replaced with positive and negative secondary battery electrodes, respectively. A secondary battery was prepared. FIG. 4 schematically shows a cross section of the secondary battery of the first comparative example.
[0036]
As shown in FIG. 4, here, positive and negative secondary battery electrodes 4a and 4b are arranged so as to face each other. Further, these secondary battery electrodes were prepared in the same manner as in the first example.
[0037]
(Comparative Example 2)
Next, as a second comparative example, an example in which a lithium secondary battery is used for the secondary battery in the first embodiment will be described. FIG. 5 schematically shows a cross section of a hybrid power storage component of a second comparative example. Here, the positive and negative electric double layer capacitor electrodes 3a and 3b were prepared in the same manner as in the above example.
[0038]
In addition, the lithium ion secondary battery electrode 8a on the positive electrode side was prepared by mixing lithium cobalt oxide and carbon fibers obtained by a vapor deposition method, which is a conductive auxiliary, at a weight ratio of 8: 1. 10% by weight of polytetrafluoroethylene, based on the total amount of lithium cobaltate and the carbon fibers, was added as a binder and kneaded to prepare a sheet having a thickness of 1 mm.
[0039]
Further, the electrode 8b for a lithium secondary battery on the negative electrode side is prepared by mixing coke powder and carbon fiber obtained by vapor deposition at a weight ratio of 1: 1 to obtain a total amount of the coke powder and the carbon fiber. On the other hand, 10% by weight of polytetrafluoroethylene was added as a binder and kneaded to prepare a sheet having a thickness of 1 mm.
[0040]
The electrode for an electric double layer capacitor and the electrode for a lithium secondary battery prepared as described above were arranged such that the respective electrodes on the positive electrode side and the negative electrode side face each other with the separator 5 interposed therebetween, as shown in FIG. To prepare a hybrid power storage component. Note that a propylene carbonate solution in which lithium perchlorate was dissolved at a concentration of 20% by weight was used as the electrolytic solution.
[0041]
The output characteristics of the hybrid power storage components or the secondary batteries of these examples and comparative examples were evaluated. FIG. 6 summarizes the output characteristics of the example and the comparative example. The maximum output of these examples and comparative examples was 0.74 W / cc in the first example, 0.92 W / cc in the second example, 0.73 W / cc in the third example, and The comparative example was 0.65 W / cc, and the second comparative example was 0.60 W / cc.
[0042]
As is evident from these results, the examples exhibit more excellent output characteristics than any of the comparative examples. It can be understood that the reason why the above embodiment is superior to the first comparative example is that the electric double layer capacitor part contributes to the improvement of the characteristics in the discharge at a large current. In the second comparative example, since the lithium salt having a relatively large ionic radius is used as the electrolyte, it is understood that the output characteristics of the electric double layer capacitor portion are deteriorated.
[0043]
【The invention's effect】
As described above, according to the present invention, by using an electrochemically active polymer in an acidic electrolytic solution as an electrode active material of an electrode for a secondary battery, an electrolytic solution used for an electric double layer capacitor is used. Since the liquid can be shared with the secondary battery, the positive and negative electrodes for the secondary battery and the electrodes for the electric double layer capacitor can be opposed to each other with the separator interposed therebetween, and can be stored in the same container. Therefore, the hybrid power storage component according to the present invention has characteristics of both an electric double layer capacitor and a secondary battery, and can exhibit excellent characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a hybrid power storage component of the present invention.
FIG. 2 is a sectional view of a hybrid power storage component according to a third embodiment of the present invention.
FIG. 3 is a sectional view of a hybrid power storage component according to a fourth embodiment of the present invention.
FIG. 4 is a cross-sectional view of a secondary battery of a first comparative example.
FIG. 5 is a sectional view of a hybrid power storage component according to a second comparative example.
FIG. 6 is a diagram showing output characteristics of an example and a comparative example.
[Explanation of symbols]
1a Positive current collector 1b Negative current collector 2a Positive conductive rubber sheet 2b Negative conductive rubber sheet 3a Positive electric double layer capacitor electrode 3b Negative electric double layer capacitor electrode 4a Positive electrode for secondary battery 4b Negative electrode for secondary battery 5 Separator 6 Sealing material 7 Cover 8a Positive electrode for lithium ion secondary battery 8b Negative electrode for lithium ion secondary battery 11 Output characteristics of the first embodiment 12 Output characteristics of the second embodiment 13 Output characteristics of the third embodiment 21 Output characteristics of the first comparative example 22 Output characteristics of the second comparative example