JP5476824B2 - Illuminance stabilization mechanism for surface defect inspection equipment - Google Patents

Illuminance stabilization mechanism for surface defect inspection equipment Download PDF

Info

Publication number
JP5476824B2
JP5476824B2 JP2009162748A JP2009162748A JP5476824B2 JP 5476824 B2 JP5476824 B2 JP 5476824B2 JP 2009162748 A JP2009162748 A JP 2009162748A JP 2009162748 A JP2009162748 A JP 2009162748A JP 5476824 B2 JP5476824 B2 JP 5476824B2
Authority
JP
Japan
Prior art keywords
light
stabilization mechanism
projectors
illuminance
brighter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009162748A
Other languages
Japanese (ja)
Other versions
JP2011017633A (en
Inventor
廣幸 横田
啓司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009162748A priority Critical patent/JP5476824B2/en
Publication of JP2011017633A publication Critical patent/JP2011017633A/en
Application granted granted Critical
Publication of JP5476824B2 publication Critical patent/JP5476824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、例えば薄鋼板や厚鋼板などの金属板の製造、あるいは紙やロール等の製造に際し、これら金属板、紙、ロール等の検査対象の表面を画像処理によって検査するための光学式の表面欠陥検査装置に好適に用いることのできる表面欠陥検査装置の照度安定機構に関する。   The present invention is an optical type for inspecting the surface of an inspection object such as a metal plate, paper, roll or the like by image processing in the manufacture of a metal plate such as a thin steel plate or a thick steel plate, or in the manufacture of paper or a roll. The present invention relates to an illuminance stabilization mechanism of a surface defect inspection apparatus that can be suitably used for a surface defect inspection apparatus.

検査対象の表面の傷を、光学式の表面欠陥検査装置を用いて画像処理によって検査する場合に、その照明は均一な照明が好ましい。均一な照明を得るための照度安定機構としては、例えば光ファイバ方式によるものがある。
図5に例示するように、この照度安定機構101は、必要な台数の光源部102を有し、各光源部102内には、反射板104およびランプ103が設けられている。そして、このランプ103からの光をレンズ105で集光し、その集光された光を複数の光ファイバ106の束の一端面に均等に入光するようになっている。複数の光ファイバ106は、その他端が配光部107に接続されており、この配光部107では、各々の光ファイバ106が照射面近傍で均一に分散するように照明の必要な部分に配置されている。
When the surface of the inspection target is inspected by image processing using an optical surface defect inspection apparatus, the illumination is preferably uniform. As an illuminance stabilization mechanism for obtaining uniform illumination, there is an optical fiber system, for example.
As illustrated in FIG. 5, the illuminance stabilization mechanism 101 includes a necessary number of light source units 102, and a reflector 104 and a lamp 103 are provided in each light source unit 102. Then, the light from the lamp 103 is collected by the lens 105, and the collected light is uniformly incident on one end face of the bundle of optical fibers 106. The other ends of the plurality of optical fibers 106 are connected to the light distribution unit 107. In this light distribution unit 107, the optical fibers 106 are arranged in portions where illumination is necessary so that the optical fibers 106 are uniformly distributed in the vicinity of the irradiation surface. Has been.

なお、この照度安定機構101では、光ファイバ106のバラツキや入光時のバラツキを少なくするために、光ファイバ106を細くして多数の光ファイバで均一化を図るとともに、光ファイバ106の出口でのバラツキを均一化するために、配光部107に棒状レンズ108を設けることで更に均一化しており、光ファイバ106の光路での減光がほぼ同じならば均一な照明が得られるようになっている。   In this illuminance stabilization mechanism 101, in order to reduce the variation of the optical fiber 106 and the variation at the time of incident light, the optical fiber 106 is made thin and uniform with a large number of optical fibers, and at the exit of the optical fiber 106. In order to make the variation uniform, the rod-shaped lens 108 is further provided in the light distribution unit 107, and uniform illumination can be obtained if the light attenuation in the optical path of the optical fiber 106 is substantially the same. ing.

ここで、従来、金属板等の、帯状の検査対象表面の傷を画像処理によって検査する場合、図6に示すように、光学式の表面欠陥検査装置は、受光器として一次元のCCDカメラ10を用いている。そして、図7に図6でのX矢視を示すように、帯状の金属板のように検査対象Kが長尺である場合、CCDカメラ10を複数台(符号A,B)配置するとともに、これらCCDカメラ10のスキャン方向に対して、上記照度安定機構101の配光部107を配置することで均一な照明を得ている。そして、検査対象Kの表面を均一に照明しつつ、複数台のCCDカメラ10のスキャン方向に対して90度の角度で検査対象Kを移動させ、連続して検査対象Kの表面の傷等の検査を行っている。   Here, conventionally, when inspecting a flaw on a strip-shaped inspection target surface such as a metal plate by image processing, as shown in FIG. 6, the optical surface defect inspection apparatus is a one-dimensional CCD camera 10 as a light receiver. Is used. Then, as shown in FIG. 7 as viewed in the direction of the arrow X in FIG. 6, when the inspection target K is long like a strip-shaped metal plate, a plurality of CCD cameras 10 (reference characters A and B) are arranged, Uniform illumination is obtained by arranging the light distribution unit 107 of the illuminance stabilization mechanism 101 with respect to the scanning direction of the CCD camera 10. Then, while uniformly illuminating the surface of the inspection target K, the inspection target K is moved at an angle of 90 degrees with respect to the scanning direction of the plurality of CCD cameras 10, and the surface of the inspection target K is continuously scratched. We are inspecting.

ここで、図8に、上記図5〜図7に示す照度安定機構101を用いた場合の、複数台の一次元CCDカメラ10の受光強度(ゲイン)を示す。
同図(a)に示すように、上述した光ファイバ方式の照明は、二台のカメラ10(符号A,B)のCCDのスキャン方向に照明が一様になるように配光される。しかし、通常、一次元CCDカメラのCCDは、自身中央の受光特性が自身周囲の受光特性よりも明るい。そのため、この一様な配光の反射を二台の一次元CCDカメラ10で受光した場合、同図(b)に示すように、CCDの中央部と周辺部とで異なる受光光量強度として受光されることになる。そのため、従来から、この種の表面欠陥検査装置に用いる照度安定機構はゲイン調整器(不図示)を備えており、このゲイン調整器によって、各一次元CCDカメラ10で受光した光を電気信号に変え、同図(c)に示すように、個々のポイントでゲインを正規化により調整して同じ出力になるように補正を行っている。なお、カメラ10のエッジ部分は異常値となるので消去する(検査を行わない)。
Here, FIG. 8 shows the received light intensity (gain) of a plurality of one-dimensional CCD cameras 10 when the illuminance stabilization mechanism 101 shown in FIGS. 5 to 7 is used.
As shown in FIG. 2A, the above-described optical fiber illumination is distributed so that the illumination is uniform in the CCD scanning direction of the two cameras 10 (reference numerals A and B). However, the CCD of a one-dimensional CCD camera usually has a light receiving characteristic at its center that is brighter than its surrounding light receiving characteristics. Therefore, when the reflection of this uniform light distribution is received by the two one-dimensional CCD cameras 10, the received light intensity is different at the central portion and the peripheral portion of the CCD as shown in FIG. Will be. For this reason, conventionally, the illuminance stabilization mechanism used in this type of surface defect inspection apparatus has been provided with a gain adjuster (not shown), and the light received by each one-dimensional CCD camera 10 is converted into an electrical signal by the gain adjuster. In other words, as shown in FIG. 5C, the gain is adjusted by normalization at each point so that the same output is obtained. Since the edge portion of the camera 10 has an abnormal value, it is deleted (not inspected).

そして、この種の光学式の表面欠陥検査装置では、例えば上記ゲイン調整器で正規化された状態の受光光量強度を基準となる受光光量強度としてこれを監視する。傷部分(不良部)が通過したときは、基準となる受光光量強度に対して、傷部分が反射異常を起こす。そのため、この傷部分では出力が一様とはならない。したがって、一様な出力に補正した上記基準となる受光光量強度の上下に閾値を設けておいて、これら閾値を越えるものを異常(傷あり)として検出することができる(例えば特許文献1ないし3参照)。   In this type of optical surface defect inspection apparatus, for example, the received light amount intensity in a state normalized by the gain adjuster is monitored as a reference received light amount intensity. When the scratched portion (defective portion) passes, the scratched portion causes an abnormal reflection with respect to the reference received light intensity. Therefore, the output is not uniform at this scratched part. Therefore, threshold values are provided above and below the reference received light intensity that has been corrected to a uniform output, and those exceeding these threshold values can be detected as abnormal (having scratches) (for example, Patent Documents 1 to 3). reference).

特開昭58−204356号公報JP 58-204356 A 特開昭58−204355号公報JP 58-204355 A 特開昭58−216938号公報JP 58-216938 A

ところで、この種の光学式の表面欠陥検査装置では、良質な画像を得る上で、あるいは高速で表面欠陥の検査を行う上では、相当な明るさが必要となる。そのため、上記光ファイバ方式の照度安定機構では、検査対象の背面や側面の光を、光ファイバやレンズ等の機器を利用して検査対象前面に集光させ、明るさを確保しつつ均一な照明が検査対象にあたるようにしていた。   By the way, in this type of optical surface defect inspection apparatus, considerable brightness is required to obtain a high-quality image or to inspect a surface defect at a high speed. Therefore, the above-mentioned optical fiber type illuminance stabilization mechanism concentrates the light on the back and side surfaces of the inspection object on the front surface of the inspection object using equipment such as optical fibers and lenses, and ensures uniform illumination while ensuring brightness. Was to be tested.

しかし、このような集光用の機器は、検査対象の近傍に設置する必要がある。また、均一な配光を行う目的で上述したような光ファイバやレンズ等の集光用の機器を用いていたのでは、必要な明るさを得つつ、投光器と検査対象の距離を離すことができない。例えば、上記例示した照度安定機構101では、図6に示すように、検査対象KとCCDカメラ10との距離bについては確保できても(例えば700〜2000mm)、検査対象Kと配光部107との距離aについては十分に離すことが難しかった(例えば100〜200mm)。そのため、上記例示した照度安定機構101では、集光用の機器が設置構成(設計)の障害となっていた。   However, such a condensing device needs to be installed in the vicinity of the inspection target. In addition, in the case of using a condensing device such as an optical fiber or a lens as described above for the purpose of uniform light distribution, the distance between the light projector and the inspection object can be increased while obtaining the necessary brightness. Can not. For example, in the illuminance stabilization mechanism 101 exemplified above, as shown in FIG. 6, even if the distance b between the inspection target K and the CCD camera 10 can be secured (for example, 700 to 2000 mm), the inspection target K and the light distribution unit 107. It was difficult to sufficiently separate the distance a (for example, 100 to 200 mm). Therefore, in the illuminance stabilization mechanism 101 exemplified above, the condensing device is an obstacle to the installation configuration (design).

これに対し、強力な光源を得るために、光ファイバ方式の照明でなく、ランプと簡単な反射鏡等とを備える複数の投光器を、CCDのスキャン方向に沿って並べ、これら複数の投光器と検査対象との距離を十分確保する構成も考えられる。しかし、このような複数の投光器であると、受光器側に対する複数の投光器からの配光が一様とはならない。そのため、投光器と検査対象の距離を離しつつ強力な光源を得ることはできるものの、光量にムラが生じてしまう。   On the other hand, in order to obtain a powerful light source, a plurality of projectors equipped with a lamp and a simple reflecting mirror are arranged along the CCD scanning direction instead of an optical fiber illumination, and the plurality of projectors are inspected. A configuration that secures a sufficient distance from the target may be considered. However, with such a plurality of projectors, the light distribution from the plurality of projectors on the light receiver side is not uniform. Therefore, although a powerful light source can be obtained while separating the distance between the projector and the inspection object, the light quantity becomes uneven.

ここで、この光量ムラは、例えば上記ゲイン調整器で補正し得るものの、補正の程度が光ファイバ方式の照明の例に比べて大きいため、ゲインを上げている部分において、上げたゲインに相当するS/N比の劣化も大きくなる。つまり、ゲインを大きくすると周囲の外来ノイズやCCDカメラ固有のノイズを大きくしてしまうことがあり、検査対象の傷のない部分においてもノイズによる閾値越え信号が発生して誤動作(誤検出)するおそれが増す。   Here, the unevenness in the amount of light can be corrected by, for example, the gain adjuster. However, since the degree of correction is larger than in the example of the optical fiber type illumination, the gain is increased in the portion where the gain is increased. The deterioration of the S / N ratio is also increased. In other words, when the gain is increased, ambient external noise and noise inherent to the CCD camera may be increased, and a signal exceeding the threshold value due to noise may be generated even in an uninspected part to be inspected, resulting in malfunction (false detection). Increase.

そこで、本発明は、このような問題点に着目してなされたものであって、強力な光源を得つつも、投光器に対する検査対象の距離を十分確保し且つ光量のムラを抑制し得る照度安定機構を提供することを目的としている。   Therefore, the present invention has been made paying attention to such problems, and it is possible to obtain a strong light source, while ensuring a sufficient distance of the inspection target with respect to the projector and suppressing unevenness in the amount of light. The purpose is to provide a mechanism.

上記課題を解決するために、本発明は、検査対象の表面を画像処理によって検査するための光学式の表面欠陥検査装置に用いられる照度安定機構において、ランプと該ランプの光を検査対象側に反射させる反射板とをそれぞれに有して自身中央の投光特性が自身周囲のそれよりも明るい複数の投光器と、該複数の投光器から投光されて前記検査対象の表面で反射した反射光を受光するように配置されるとともに、一次元CCDカメラであって自身中央の受光特性が自身周囲のそれよりも明るいCCDを有する複数の受光器と、該複数の受光器のゲインを正規化によって均一化するゲイン調整器とを備える照度安定機構であって、前記複数の投光器は、一の方向に沿って相互に離間して前記複数の受光器の台数よりも一台多く配設されるとともに、前記一の方向とは直交する方向から見て前記複数の受光器と互い違いに且つ隣り合う受光器同士の中間位置に投光器の中央位置を合わせて配置され、自身中央が自身周囲よりも明るい前記投光器の投光特性と、自身中央が自身周囲よりも明るい前記一次元CCDカメラの受光特性とが相補的にはたらくようにして、光量のムラを照度安定機構全体として抑制させることを特徴としている。 In order to solve the above problems, the present invention, the surface of the test object in the illumination stable mechanism used in an optical surface defect inspection apparatus for inspecting the image processing, the light of the lamp and the lamp in the test object side A plurality of projectors each having a reflecting plate to be reflected and having a light projecting characteristic in the center that is brighter than that of the surroundings, and reflected light that has been projected from the plurality of projectors and reflected from the surface of the inspection object It is arranged to receive light, and is a one-dimensional CCD camera with a plurality of light receivers having a light receiving characteristic in the center of itself that is brighter than that of its surroundings, and gains of the plurality of light receivers are normalized by normalization An illuminance stabilizing mechanism including a gain adjuster, wherein the plurality of light projectors are spaced apart from each other along one direction and more than the number of the plurality of light receivers. , Wherein the the one direction is arranged to fit a central position of the projector in the middle position of the light receiver adjacent alternately and a plurality of light receivers when seen from a direction perpendicular to its own central brighter than said own surroundings The light emitting characteristic of the light projector and the light receiving characteristic of the one-dimensional CCD camera whose center is brighter than its surroundings work in a complementary manner to suppress unevenness in the amount of light as a whole illuminance stabilization mechanism .

本発明に係る照度安定機構によれば、光ファイバやレンズ等の機器を用いるものでなく、複数の投光器を備える構成なので、投光器に対する検査対象の距離を十分確保しつつ強力な光源を得ることができる。
そして、これら複数の投光器は、自身中央の投光特性が自身周囲のそれよりも明るいものであり、これに対し、複数の受光器は、自身中央の受光特性が自身周囲のそれよりも明るいCCDを有するものであり、さらに、複数の投光器が、複数の受光器の台数よりも一台多く配設されるとともに、前記複数の受光器と互い違いに且つ隣り合う受光器同士の中間位置に投光器の中央位置を合わせて配置されているので、複数の投光器からの配光が一様ではない場合であっても、複数の受光器に対する複数の投光器の配置により、投光器の投光特性とCCDの受光特性との互い違いの配置の組み合わせによって光量のムラが補完される。そのため、光量のムラを抑制することができる。
According to the illuminance stabilization mechanism according to the present invention, since a configuration including a plurality of projectors is used instead of using devices such as optical fibers and lenses, it is possible to obtain a powerful light source while sufficiently securing a distance to be inspected with respect to the projectors. it can.
The plurality of projectors have a light projection characteristic in the center that is brighter than that in the surrounding area. On the other hand, the plurality of light receivers have a light reception characteristic in the center that is brighter than that in the surrounding area. Furthermore, the plurality of light projectors is disposed more than the number of the plurality of light receivers, and the light projectors are arranged in an intermediate position between the light receivers alternately and adjacent to the plurality of light receivers. Since the central positions are aligned, even if the light distribution from multiple projectors is not uniform, the projector's light projection characteristics and CCD light reception can be achieved by arranging multiple projectors for multiple receivers. The unevenness in the amount of light is complemented by the combination of the alternating arrangement with the characteristics. Therefore, unevenness in the amount of light can be suppressed.

そして、ゲイン調整器は、この光量のムラが抑制された複数の受光器のゲインを正規化によって均一化するから、補正の程度が少なくなり、周囲の外来ノイズやCCDカメラ固有のノイズの影響を受けにくくなる。したがって、本発明に係る照度安定機構を用いた表面欠陥検査装置によれば、良質な画像を得る上で、あるいは高速での検査を行う上で好適である。   Since the gain adjuster normalizes the gains of the plurality of light receivers in which the unevenness of the light amount is suppressed by normalization, the degree of correction is reduced and the influence of ambient external noise and noise specific to the CCD camera is reduced. It becomes difficult to receive. Therefore, the surface defect inspection apparatus using the illuminance stabilization mechanism according to the present invention is suitable for obtaining a high-quality image or performing high-speed inspection.

ここで、本発明に係る照度安定機構において、例えば、前記複数の投光器と前記複数の受光器との光路間に、前記投光器からの光を散乱させる散乱板を有し、前記投光器の中心に対向する位置に配置された遮光板を投光方向に対して傾斜させる構成とすれば、光量のムラを抑制する上でより好適である。 Here, the illuminance stabilization mechanism according to the present invention, for example, the optical path between said plurality of light receivers and the plurality of projectors, have a scattering plate for scattering light from the projector, facing the center of the projector If the light shielding plate arranged at the position to be inclined is inclined with respect to the light projecting direction, it is more preferable in suppressing unevenness in the amount of light.

上述のように、本発明に係る照度安定機構によれば、強力な光源を得つつも、投光器に対する検査対象の距離を十分確保し且つ光量のムラを抑制することができる。   As described above, according to the illuminance stabilization mechanism according to the present invention, it is possible to secure a sufficient distance of the inspection target with respect to the projector and suppress unevenness in the amount of light while obtaining a powerful light source.

本発明の照度安定機構を示す模式図である。It is a schematic diagram which shows the illumination intensity stabilization mechanism of this invention. 本発明の照度安定機構を示す模式図(図1でのX矢視)であり、同図では複数の投光器による配光量の強度のイメージを合わせて図示している。It is a schematic diagram (X arrow view in FIG. 1) which shows the illuminance stabilization mechanism of this invention, and the same figure has shown together the image of the intensity | strength of the light distribution by a several projector. 本発明の照度安定機構での受光強度(ゲイン)を説明する図であり、同図(a)は配光量強度の図、(b)は受光光量強度の図、(c)はゲイン調整のイメージを示す図である。It is a figure explaining the light reception intensity | strength (gain) in the illumination intensity stabilization mechanism of this invention, the figure (a) is a figure of light distribution intensity, (b) is a figure of received light quantity, and (c) is an image of gain adjustment. FIG. 本発明の照度安定機構の変形例を説明する図であり、同図(a)は変形例の照度安定機構を示す模式図、(b)は検査波形のゲイン調整のイメージを示す図である。It is a figure explaining the modification of the illumination intensity stabilization mechanism of this invention, The figure (a) is a schematic diagram which shows the illumination intensity stabilization mechanism of a modification, (b) is a figure which shows the image of the gain adjustment of a test | inspection waveform. 従来の光ファイバ式光源を模式的に示す斜視図である。It is a perspective view which shows the conventional optical fiber type light source typically. 従来の照度安定機構を示す模式図である。It is a schematic diagram which shows the conventional illumination intensity stabilization mechanism. 従来の照度安定機構を示す模式図(図6でのX矢視)である。It is a schematic diagram (X arrow view in FIG. 6) which shows the conventional illumination intensity stabilization mechanism. 従来の照度安定機構での受光強度(ゲイン)を説明する図であり、同図(a)は配光量強度の図、(b)は受光光量強度の図、(c)は検査波形のゲイン調整のイメージを示す図である。It is a figure explaining the light reception intensity | strength (gain) in the conventional illumination intensity stabilization mechanism, The figure (a) is a figure of a light distribution intensity, (b) is a figure of a received light quantity, and (c) is a gain adjustment of a test waveform. FIG.

以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
図1に、本発明に係る表面欠陥検査装置の照度安定機構の模式図を示す。
この照度安定機構1は、検査対象kの表面を画像処理によって検査するための光学式の表面欠陥検査装置に用いられた例であり、同図に示すように、投光器2と、一次元CCDカメラ10とを備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate.
In FIG. 1, the schematic diagram of the illumination intensity stabilization mechanism of the surface defect inspection apparatus which concerns on this invention is shown.
This illuminance stabilization mechanism 1 is an example used in an optical surface defect inspection apparatus for inspecting the surface of an inspection object k by image processing. As shown in the figure, a projector 2 and a one-dimensional CCD camera are used. 10.

投光器2は、図2に示すように、複数(この例では3台)配置されており、各投光器2は、ランプ3と、このランプ3の光を検査対象K側に反射させる反射板4とを有する。ここで、この投光器2は、自身中央の投光特性が自身周囲のそれよりも明るいものである。
一次元CCDカメラ10は、図1に示すように、上記複数の投光器2から投光されて検査対象Kの表面で反射した反射光を受光する受光器として配置されている。そして、図2に示すように、この一次元CCDカメラ10も複数(この例では2台)配置されている。この一次元CCDカメラ10は、自身中央の受光特性が自身周囲のそれよりも明るいCCDを有するものである。この一次元CCDカメラ10のCCDを通して取得された配光量の強度は、不図示のゲイン調整器に送られる。そして、ゲイン調整器では、複数配置されている一次元CCDカメラ10のゲインを正規化によって均一化するようになっている。
As shown in FIG. 2, a plurality of (three in this example) projectors 2 are arranged. Each projector 2 includes a lamp 3 and a reflector 4 that reflects light from the lamp 3 toward the inspection target K side. Have Here, the floodlight 2 has a light projection characteristic at its center that is brighter than that of its surroundings.
As shown in FIG. 1, the one-dimensional CCD camera 10 is arranged as a light receiver that receives reflected light projected from the plurality of light projectors 2 and reflected from the surface of the inspection object K. As shown in FIG. 2, a plurality of (two in this example) one-dimensional CCD cameras 10 are also arranged. This one-dimensional CCD camera 10 has a CCD whose light receiving characteristic at the center is brighter than that around itself. The intensity of light distribution acquired through the CCD of the one-dimensional CCD camera 10 is sent to a gain adjuster (not shown). In the gain adjuster, the gains of a plurality of one-dimensional CCD cameras 10 are made uniform by normalization.

ここで、図2に示すように、本実施形態の照度安定機構1では、複数の投光器2は、検査対象Kの幅方向を一の方向とし、この一の方向に沿って離間して(相互に距離L1を隔てて)2台の一次元CCDカメラ10の台数よりも一台多い3台の投光器2が配設されている。さらに、複数の投光器2は、図2に示すように(図1のX矢視方向で)、2台の一次元CCDカメラ10と互い違いに且つ隣り合うCCDカメラ10同士の中間位置(離間距離L2の1/2)に投光器2の中央位置を合わせて配置されている。   Here, as shown in FIG. 2, in the illuminance stabilization mechanism 1 of the present embodiment, the plurality of projectors 2 have the width direction of the inspection target K as one direction and are separated along this one direction (mutually Three projectors 2 are arranged, one more than the number of the two one-dimensional CCD cameras 10 (with a distance L1). Further, as shown in FIG. 2 (in the direction of the arrow X in FIG. 1), the plurality of projectors 2 are arranged in an intermediate position (separation distance L2) between the two one-dimensional CCD cameras 10 alternately and adjacent to each other. The central position of the projector 2 is aligned with ½).

次に、この照度安定機構の作用・効果について説明する。
この照度安定機構1は、2台の一次元CCDカメラ10と、2台のCCDカメラ10のゲインを正規化によって均一化するゲイン調整器と、3台の投光器2とを備えるので、3台の投光器2に対する検査対象Kの距離を十分確保しつつ強力な光源を得ることができる。具体的には、図1に示すように、検査対象KとCCDカメラ10との距離b(例えば700〜2000mm)を従来同様に確保し、さらに、検査対象Kと投光器2との距離aについても、例えば1000〜5000mm程度まで十分に離すことが可能となった。
Next, the operation and effect of this illuminance stabilization mechanism will be described.
The illuminance stabilization mechanism 1 includes two one-dimensional CCD cameras 10, a gain adjuster that equalizes the gains of the two CCD cameras 10 by normalization, and three projectors 2. A powerful light source can be obtained while ensuring a sufficient distance of the inspection object K from the projector 2. Specifically, as shown in FIG. 1, a distance b (for example, 700 to 2000 mm) between the inspection target K and the CCD camera 10 is ensured in the same manner as in the past, and further, a distance a between the inspection target K and the projector 2 is also secured. For example, it has become possible to sufficiently separate to about 1000 to 5000 mm.

そして、これら3台の投光器2は、2台の一次元CCDカメラ10の台数よりも一台多く配設されるとともに、2台の一次元CCDカメラ10と互い違いに且つ隣り合うカメラ10同士の中間位置に投光器2の中央位置を合わせて配置されているので、この配置により、光量のムラを照度安定機構1全体として抑制することもできる。
すなわち、図3(a)に示すように、上述した3台の投光器2の照明では、自身中央の投光特性が自身周囲のそれよりも明るいため、カメラ10のCCDのスキャン方向に照明が3つの「山」になるように配光される。一方、2台のカメラ10のCCDは、自身中央の受光特性が自身周囲の受光特性よりも明るい。そのため、この一様な配光の反射を、2台の一次元CCDカメラ10で受光した場合、同図(b)に示すように、中央部と周辺部とで異なる受光光量強度が、投光器2の照明に対して相補的にはたらくのである。
These three projectors 2 are arranged one more than the number of the two one-dimensional CCD cameras 10 and are alternately arranged between the two one-dimensional CCD cameras 10 and between the adjacent cameras 10. Since the central position of the projector 2 is aligned with the position, unevenness in the amount of light can be suppressed as a whole of the illuminance stabilization mechanism 1 by this arrangement.
That is, as shown in FIG. 3A, in the illumination of the three projectors 2 described above, the illumination characteristic at the center of itself is brighter than that of its surroundings, so that the illumination is 3 in the CCD scanning direction of the camera 10. The light is distributed so that it becomes one “mountain”. On the other hand, the CCDs of the two cameras 10 have a light reception characteristic at the center that is brighter than the light reception characteristics around the CCD. Therefore, when the reflection of this uniform light distribution is received by the two one-dimensional CCD cameras 10, the intensity of the received light amount is different between the center portion and the peripheral portion as shown in FIG. It works in a complementary manner to the lighting.

つまり、上記3つの「山」の高い部分(周囲よりも明るい部分)がCCD周囲の受光特性により緩和される一方、「山」と「山」との間の「谷」の部分(周囲よりも暗い部分)もCCD中央の受光特性により補われるため、その結果、2台の一次元CCDカメラ10全体として「ならされた」受光光量として受光されることになる。そのため、同図(c)に示すように、この「ならされた」光を、ゲイン調整器によって電気信号に変え、個々のポイントでゲインを正規化により調整して同じ出力になるように補正を行うことがわずかな調整により可能となる。なお、カメラ10のエッジ部分は異常値となるので消去する(検査を行わない)。   In other words, the high part of the above three “mountains” (the part brighter than the surroundings) is alleviated by the light receiving characteristics around the CCD, while the “valley” part between the “mountains” and the “mountains” (more than the surroundings). The dark portion) is also compensated by the light receiving characteristic at the center of the CCD, and as a result, the two one-dimensional CCD cameras 10 as a whole receive light as the “lighted” amount of received light. Therefore, as shown in the figure (c), this “normalized” light is converted into an electric signal by a gain adjuster, and the gain is adjusted by normalization at each point so that the same output is obtained. This can be done with minor adjustments. Since the edge portion of the camera 10 has an abnormal value, it is deleted (not inspected).

これにより、本実施形態の照度安定機構1によれば、ゲインの調整が微調整で済むため、周囲の外来ノイズやCCDカメラ固有のノイズの影響が緩和される。したがって、この照度安定機構1を備える表面欠陥検査装置によれば、良質な画像を得つつ高速での検査を行うことができる。そして、検査対象表面の傷のない部分において、ノイズによる閾値越え信号が発生して誤動作(誤検出)するような問題もない。   As a result, according to the illuminance stabilization mechanism 1 of the present embodiment, fine adjustment of the gain is sufficient, and the influence of ambient external noise and noise inherent to the CCD camera is mitigated. Therefore, according to the surface defect inspection apparatus provided with the illuminance stabilization mechanism 1, it is possible to perform inspection at a high speed while obtaining a good image. Further, there is no problem that a signal exceeding the threshold value due to noise is generated and a malfunction (false detection) occurs in a portion where the surface to be inspected is not damaged.

以上説明したように、この照度安定機構1によれば、強力な光源を得るとともに、光量のムラを抑制しつつも、投光器2に対する検査対象Kの距離を十分確保することができる。特に、光学式の表面欠陥検査装置の投光器を離した装置において、微小な傷を検査する場合に有利になる。
なお、本発明に係る表面欠陥検査装置の照度安定機構は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
As described above, according to the illuminance stabilization mechanism 1, it is possible to obtain a strong light source and to sufficiently secure the distance of the inspection target K with respect to the projector 2 while suppressing unevenness in the amount of light. In particular, it is advantageous when inspecting minute scratches in an apparatus in which the projector of the optical surface defect inspection apparatus is separated.
The illuminance stabilization mechanism of the surface defect inspection apparatus according to the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記複数の投光器2を互い違いにした配置によってもなお光量の差があり、検査対象Kの幅方向にゲインが凹凸するようなことがあれば、図4に示すような、複数の遮光板(ないし散乱板)6を用いる構成とすれば、光量のムラを抑制する上でより好適である。
同図の例では、複数の遮光板6のうち、中央の投光器2の中心に対向する位置に配置された一の遮光板6aを、投光方向に対して傾斜させており、これにより、3つの「山」のうち、中央の「山」の頂上部分(同図での符号Y部分)を低く(暗く)するようにしている。つまり、このような複数の遮光板6を、複数の投光器2と複数の一次元CCDカメラ10との間に適宜配置し、状況に応じて個別に調整すれば、ゲイン調整器でのゲインの均一化の前に、物理的(光学的)に光量を均一化することが可能となり、ゲインの凹凸を一層確実に防止することができる。この結果、ゲイン調整器でのゲインの均一化の前における、CCDのゲインのバラツキを可及的に少なくでき、ゲイン調整器でのゲイン補正によるノイズの低下を図ることができる。
For example, if there is still a difference in light amount even when the plurality of projectors 2 are arranged in a staggered manner and the gain is uneven in the width direction of the inspection target K, a plurality of light shielding plates as shown in FIG. A configuration using (or scattering plate) 6 is more suitable for suppressing unevenness in the amount of light.
In the example of the figure, among the plurality of light shielding plates 6, one light shielding plate 6a disposed at a position facing the center of the central projector 2 is inclined with respect to the light projecting direction. Among the two “mountains”, the summit portion (the Y portion in the figure) of the central “mountain” is made low (dark). That is, if such a plurality of light shielding plates 6 are appropriately disposed between the plurality of projectors 2 and the plurality of one-dimensional CCD cameras 10 and adjusted individually according to the situation, the gain of the gain adjuster is uniform. It is possible to make the amount of light physically (optically) uniform before the adjustment, and it is possible to more surely prevent gain unevenness. As a result, variation in CCD gain before gain equalization by the gain adjuster can be reduced as much as possible, and noise can be reduced by gain correction by the gain adjuster.

1 照度安定機構
2 投光器
3 ランプ
4 反射板
6 遮光板
10 CCDカメラ
11 レンズ
K 検査対象
DESCRIPTION OF SYMBOLS 1 Illuminance stabilization mechanism 2 Floodlight 3 Lamp 4 Reflecting plate 6 Light-shielding plate 10 CCD camera 11 Lens K Inspection object

Claims (2)

検査対象の表面を画像処理によって検査するための光学式の表面欠陥検査装置に用いられる照度安定機構において、
ランプと該ランプの光を検査対象側に反射させる反射板とをそれぞれに有して自身中央の投光特性が自身周囲のそれよりも明るい複数の投光器と、該複数の投光器から投光されて前記検査対象の表面で反射した反射光を受光するように配置されるとともに、一次元CCDカメラであって自身中央の受光特性が自身周囲のそれよりも明るいCCDを有する複数の受光器と、該複数の受光器のゲインを正規化によって均一化するゲイン調整器とを備える照度安定機構であって、
前記複数の投光器は、一の方向に沿って相互に離間して前記複数の受光器の台数よりも一台多く配設されるとともに、前記一の方向とは直交する方向から見て前記複数の受光器と互い違いに且つ隣り合う受光器同士の中間位置に投光器の中央位置を合わせて配置され、自身中央が自身周囲よりも明るい前記投光器の投光特性と、自身中央が自身周囲よりも明るい前記一次元CCDカメラの受光特性とが相補的にはたらくようにして、光量のムラを照度安定機構全体として抑制させることを特徴とする表面欠陥検査装置の照度安定機構。
In the illuminance stabilization mechanism used in the optical surface defect inspection apparatus for inspecting the surface of the inspection object by image processing,
A plurality of projectors each having a lamp and a reflector for reflecting the light of the lamp to the inspection object side, and having a light projecting characteristic at the center that is brighter than that of the surroundings, and light projected from the plurality of projectors A plurality of light receivers arranged so as to receive reflected light reflected by the surface of the inspection object, and having a CCD having a light receiving characteristic in the center of the one-dimensional CCD camera that is brighter than that of its surroundings; An illuminance stabilization mechanism including a gain adjuster that equalizes gains of a plurality of light receivers by normalization,
The plurality of light projectors are spaced apart from each other along one direction and disposed more than the number of the plurality of light receivers, and the plurality of light projectors are viewed from a direction orthogonal to the one direction . The light emitting device is arranged in the middle position between the light receiving devices alternately and adjacent to each other, and the light emitting characteristics of the light emitting device whose center is brighter than its surroundings, and whose center is brighter than its surroundings. An illuminance stabilization mechanism for a surface defect inspection apparatus, wherein the light reception characteristics of a one-dimensional CCD camera work in a complementary manner to suppress unevenness in the amount of light as the entire illuminance stabilization mechanism.
前記複数の投光器と前記複数の受光器との光路間に、前記投光器からの光を散乱させる散乱板を有し、前記投光器の中心に対向する位置に配置された遮光板を投光方向に対して傾斜させることを特徴とする請求項1に記載の表面欠陥検査装置の照度安定機構。 The optical path between said plurality of light receivers and the plurality of projectors, have a scattering plate for scattering light from the projector with respect to the light projection direction of the light-shielding plate disposed in a position facing the center of the projector The illuminance stabilization mechanism of the surface defect inspection apparatus according to claim 1, wherein the illuminance stabilization mechanism is inclined .
JP2009162748A 2009-07-09 2009-07-09 Illuminance stabilization mechanism for surface defect inspection equipment Expired - Fee Related JP5476824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162748A JP5476824B2 (en) 2009-07-09 2009-07-09 Illuminance stabilization mechanism for surface defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162748A JP5476824B2 (en) 2009-07-09 2009-07-09 Illuminance stabilization mechanism for surface defect inspection equipment

Publications (2)

Publication Number Publication Date
JP2011017633A JP2011017633A (en) 2011-01-27
JP5476824B2 true JP5476824B2 (en) 2014-04-23

Family

ID=43595532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162748A Expired - Fee Related JP5476824B2 (en) 2009-07-09 2009-07-09 Illuminance stabilization mechanism for surface defect inspection equipment

Country Status (1)

Country Link
JP (1) JP5476824B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782541B (en) * 2024-02-26 2024-04-26 临沂衍庆电器有限公司 Engineering machinery LED lamp production test system based on machine vision

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411415Y2 (en) * 1985-02-01 1992-03-23
JPS62280643A (en) * 1986-05-28 1987-12-05 Furukawa Electric Co Ltd:The Defect defecting method for planar body
JPH04362790A (en) * 1991-06-10 1992-12-15 Toshiba Corp Picture input device
JP4334099B2 (en) * 2000-01-11 2009-09-16 株式会社トーモク Corrugated board laminate inspection system
JP3362033B2 (en) * 2001-01-12 2003-01-07 株式会社日立製作所 Foreign matter inspection device
JP4023295B2 (en) * 2002-11-11 2007-12-19 住友金属工業株式会社 Surface inspection method and surface inspection apparatus
JP2004187220A (en) * 2002-12-06 2004-07-02 Keisoku Kensa Kk Camera angle-of-view adjustment method for crack inspection apparatus

Also Published As

Publication number Publication date
JP2011017633A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
US7957636B2 (en) Illumination apparatus and appearance inspection apparatus including the same
JP4511978B2 (en) Surface flaw inspection device
JP4913075B2 (en) Image reading device
WO2014061274A1 (en) Image sensor and image sensor device
WO2010137431A1 (en) Polycrystalline wafer inspection method
KR101376831B1 (en) Surface defect detecting apparatus and control method thereof
JP2009513984A (en) Apparatus and method for inspecting a composite structure for defects
KR102395039B1 (en) Bulk material inspection apparatus and method
JP5687748B2 (en) Inspection device
JP2009216628A (en) Defect detector and defect detection method
JP2011209112A (en) Appearance inspection method of to-be-inspected object and appearance inspection apparatus of the same
JP5476824B2 (en) Illuminance stabilization mechanism for surface defect inspection equipment
JP4717731B2 (en) Illumination apparatus and object surface inspection apparatus using the same
TW200946899A (en) Defect detecting method and defect detecting device
JP2013246059A (en) Defect inspection apparatus and defect inspection method
FI80959B (en) FOERFARANDE OCH ANORDNING FOER INSPEKTION AV SPEGELREFLEXIONSYTOR.
JP7392470B2 (en) Lighting for inspecting defects in sheet-like objects and defect inspection device for sheet-like objects
JP2005241586A (en) Inspection device and method for optical film
JP4892943B2 (en) Density unevenness inspection device
KR101403926B1 (en) Apparatus for inspecting curved surface
JP2012168133A (en) Egg inspection device
JP2003139524A (en) Inspection device
JP2006098198A (en) Defect inspection device of transparent member
JP2015102364A (en) Visual inspection device
JP7300152B2 (en) Optical inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5476824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees