JP5474316B2 - Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate - Google Patents

Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate Download PDF

Info

Publication number
JP5474316B2
JP5474316B2 JP2008143599A JP2008143599A JP5474316B2 JP 5474316 B2 JP5474316 B2 JP 5474316B2 JP 2008143599 A JP2008143599 A JP 2008143599A JP 2008143599 A JP2008143599 A JP 2008143599A JP 5474316 B2 JP5474316 B2 JP 5474316B2
Authority
JP
Japan
Prior art keywords
copper
layer
clad laminate
insulating resin
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008143599A
Other languages
Japanese (ja)
Other versions
JP2009286071A (en
Inventor
真一 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008143599A priority Critical patent/JP5474316B2/en
Priority to TW098116835A priority patent/TWI420991B/en
Priority to CN2009101420305A priority patent/CN101594736B/en
Priority to KR1020090047492A priority patent/KR101194320B1/en
Publication of JP2009286071A publication Critical patent/JP2009286071A/en
Application granted granted Critical
Publication of JP5474316B2 publication Critical patent/JP5474316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • ing And Chemical Polishing (AREA)
  • Laminated Bodies (AREA)

Description

本件発明は、銅張積層板、その銅張積層板の製造に用いる表面処理銅箔及びその銅張積層板を用いて得られるプリント配線板に関する。特には、硫酸と過酸化水素とを含むエッチング液で配線回路を調製する工程を含むプリント配線板製造に用いる銅張積層板に関する。   The present invention relates to a copper-clad laminate, a surface-treated copper foil used for producing the copper-clad laminate, and a printed wiring board obtained using the copper-clad laminate. In particular, the present invention relates to a copper-clad laminate used for manufacturing a printed wiring board including a step of preparing a wiring circuit with an etching solution containing sulfuric acid and hydrogen peroxide.

近年、産業用電子及び電気機器に限らず、民生用電子及び電子機器にも情報処理機能が付加されることが多く、このような製品にはCPU、LSI等のIC部品の搭載が当然になっている。この情報処理機能を備える機器の代表としては、携帯電話、携帯音楽プレーヤー等があり、小型且つ高機能であることが求められる。その結果、LSI等を搭載するパッケージ基板等のこれらの機器に組み込まれるプリント配線板には、軽薄短小化の要求が強くなっている。従って、プリント配線板の製造にあたっては、多種多様な加工工法を採用したものが提案され、それぞれの工法に適した銅張積層板が開発され、特に軽薄短小化への対応に適したプリント配線板としては、その屈曲性の良さから、限られた狭い筐体内への収納が容易であるとして、フレキシブルプリント配線板(Flexible Printed Circuit:以下、「FPC」と称する。)が多くの機器に採用されている。   In recent years, information processing functions are often added not only to industrial electronics and electrical equipment but also to consumer electronics and electronic equipment. Such products are naturally equipped with IC components such as CPUs and LSIs. ing. Representative examples of the device having the information processing function include a mobile phone and a portable music player, and are required to be small and have high functionality. As a result, there is a strong demand for lighter, thinner, and smaller printed wiring boards incorporated in these devices such as package substrates on which LSIs are mounted. Therefore, in the production of printed wiring boards, products employing a wide variety of processing methods have been proposed, and copper-clad laminates suitable for each method have been developed. For example, a flexible printed circuit board (hereinafter referred to as “FPC”) is adopted in many devices because it can be easily housed in a limited narrow housing because of its good flexibility. ing.

ところが、更なる軽薄短小化を目的として、プリント配線板を小型化、多層化すると、配線回路ピッチの狭小化により、無電解めっき(無電解銅めっき、無電解金めっき等)が配線回路間に析出する、所謂「銅落ち」や「金落ち」と称する「めっき落ち現象」が発生しやすくなる。そして、プリント配線板の配線回路ピッチが狭くなるほど、このめっき落ち現象が発生しやすくなり、配線回路間の金属成分を取り除くリペア作業は困難となる。特に、TCP等のプリント配線板の製造には、FPCの中でも接着剤層を設けない2層フレキシブル銅張積層板(Flexible Copper Clad Laminate:以下、「FCCL」と称する。)を用いるが、薄い絶縁層を用いるため、リペア作業は殆ど不可能である。このようにリペア作業の行えない製品は、不良品として廃棄対象となる確率も高く、資源の無駄遣いとなるため好ましくない。この「めっき落ち現象」の発生を防止する対策として、配線回路形成後の配線間に、金属成分やイオン性の無機成分を残留させないようにすることが有効と言われてきた。   However, if the printed wiring board is made smaller and multi-layered for the purpose of further miniaturization and thinning, electroless plating (electroless copper plating, electroless gold plating, etc.) is caused between the wiring circuits due to the narrowing of the wiring circuit pitch. The so-called “copper drop” or “gold drop”, which is deposited, tends to occur. And as the wiring circuit pitch of the printed wiring board becomes narrower, this plating-out phenomenon is more likely to occur, and the repair work for removing the metal component between the wiring circuits becomes difficult. In particular, for the production of a printed wiring board such as TCP, a two-layer flexible copper clad laminate (hereinafter referred to as “FCCL”) without an adhesive layer is used in an FPC. Repair work is almost impossible because of the use of layers. A product that cannot be repaired in this way is not preferable because it has a high probability of being discarded as a defective product and wastes resources. As a countermeasure for preventing the occurrence of the “plating-off phenomenon”, it has been said that it is effective to prevent a metal component or an ionic inorganic component from remaining between the wirings after the wiring circuit is formed.

また、前記2層FCCLを用いて、複数の配線回路層を備える多層FPCを製造することもある。この多層FPCの製造工程では、ポリイミド等の絶縁樹脂基材を用いたFCCLに配線回路を形成し、ボンディングシートを介してビルドアップすることで多層化し、ビアホール等の層間導通手段を形成して複数の配線回路層間を電気的に接続する。ところが、FPCの絶縁樹脂層を構成するポリイミド樹脂、アラミド樹脂等は、一般的には耐熱性には優れているが、耐薬品性、特にアルカリ性の薬品に対する耐薬品性に欠ける場合があり、プリント配線板の加工工程が制約を受ける場合がある。そのため、多層化積層するための前処理、ビアホール形成前のソフトエッチングには、硫酸と過酸化水素を含み、塩素などの強酸イオンを含まない水溶液を用いることが多い。   In addition, a multilayer FPC having a plurality of wiring circuit layers may be manufactured using the two-layer FCCL. In this multi-layer FPC manufacturing process, a wiring circuit is formed on FCCL using an insulating resin base material such as polyimide, and is built up through a bonding sheet to form a multi-layer, thereby forming interlayer conduction means such as via holes. The wiring circuit layers are electrically connected. However, polyimide resin, aramid resin, etc. that constitute the insulating resin layer of FPC are generally excellent in heat resistance, but they may lack chemical resistance, especially chemical resistance to alkaline chemicals. There are cases where the processing steps of the wiring board are restricted. For this reason, an aqueous solution containing sulfuric acid and hydrogen peroxide and not containing strong acid ions such as chlorine is often used for pretreatment for multi-layer lamination and soft etching before forming via holes.

そこで、上記FPCの問題点を解決するためには、構成材料である銅箔、絶縁樹脂層構成材料の双方向から、問題点を解決するためのアプローチが必要であった。銅箔の分野からみれば、金属成分等が残留しないように、エッチング特性の改善を図り、絶縁樹脂層との張り合わせ面のロープロファイル化、粗化処理粒子の微細化、防錆成分等に関する検討が行われてきた。   Therefore, in order to solve the problems of the FPC, an approach to solve the problems from both directions of the copper foil as the constituent material and the insulating resin layer constituent material is necessary. From the field of copper foil, the etching characteristics are improved so that metal components do not remain, etc., low profile of the bonding surface with the insulating resin layer, refinement of the roughened particles, examination of rust prevention components, etc. Has been done.

例えば、特許文献1には、上述のFPCの製造を視野に入れた、銅箔に関する技術が開示されている。即ち、銅箔の被接着面に樹脂基材を積層し、銅張積層板としたとき、銅箔と樹脂基材間の引き剥し強さを高く保持すると共に、耐熱性、耐化学薬品性、耐湿性に優れ、かつ、無電解めっき時に、エッチングにより銅箔が除去された樹脂基材面へのめっき金属の析出が起こらない無電解めっき処理性に優れた銅箔を提供することを目的として、銅箔の被接着面に、シランカップリング剤、ケイ酸塩及びチオジグリコール酸からなる混合物被覆層を有するプリント配線板用銅箔の製造方法が開示されている。そして、特許文献1に開示した銅箔の製造方法によれば、被接着面に粗化処理層及び防錆層を設けるにあたり、防錆層としてニッケル−モリブデン−コバルト合金層若しくはインジウム−亜鉛合金層とクロメート層からなる層を形成することが開示されている。   For example, Patent Document 1 discloses a technique related to copper foil with the view of manufacturing the FPC described above. In other words, when a resin base material is laminated on the adherend surface of the copper foil to form a copper-clad laminate, the peel strength between the copper foil and the resin base material is kept high, and heat resistance, chemical resistance, For the purpose of providing a copper foil excellent in electroless plating processability, which has excellent moisture resistance and does not cause deposition of plating metal on the resin base material surface from which the copper foil has been removed by etching during electroless plating. A method for producing a copper foil for a printed wiring board having a mixture coating layer composed of a silane coupling agent, a silicate, and thiodiglycolic acid on the adherend surface of the copper foil is disclosed. Then, according to the method for producing a copper foil disclosed in Patent Document 1, a nickel-molybdenum-cobalt alloy layer or an indium-zinc alloy layer is used as a rust prevention layer in providing a roughening treatment layer and a rust prevention layer on the adherend surface. And forming a layer consisting of a chromate layer.

特開平10−138394号公報JP 10-138394 A

しかしながら、この特許文献1に開示の技術で製造した「防錆層にモリブデン等を含む複合金属層を介して粗化処理粒子を形成した銅箔」を張り合わせたFCCLを用いても、図2に示すような、異常なアンダーカット現象(符号2の矢印で示した箇所がアンダーカット部)が発生する傾向がある。このような現象が発生すると、見かけ上、良好な回路幅の配線回路であったとしても、当該配線回路と絶縁樹脂層との密着性は大きく劣化しており、容易に回路剥離を起こしたり、繰り返しの屈曲応力によって容易に回路が脱落することになる危険性が増加する。   However, even if FCCL manufactured by the technique disclosed in Patent Document 1 and bonded with “copper foil in which roughened particles are formed through a composite metal layer containing molybdenum or the like in a rust prevention layer” is used, FIG. As shown, there is a tendency that an abnormal undercut phenomenon (the portion indicated by the arrow of reference numeral 2 is an undercut portion) occurs. When such a phenomenon occurs, even if it is a wiring circuit with an apparently good circuit width, the adhesion between the wiring circuit and the insulating resin layer is greatly deteriorated, and circuit peeling easily occurs. The risk of the circuit being easily dropped due to repeated bending stress increases.

以上のことから、FPC業界では、硫酸と過酸化水素を含むエッチング液で処理しても、配線回路の底部にアンダーカット現象の発生しないFCCL、当該現象の発生を防止可能な銅箔に対する要求があった。   From the above, in the FPC industry, there is a demand for FCCL that does not cause an undercut phenomenon at the bottom of a wiring circuit even when treated with an etching solution containing sulfuric acid and hydrogen peroxide, and a copper foil that can prevent the occurrence of the phenomenon. there were.

そこで、本件発明者は、鋭意研究の結果、以下に述べる特性を備える銅張り積層板を用いてプリント配線板を作成すれば、微細配線の形成が可能であり、硫酸と過酸化水素とを含むエッチング液で処理しても、配線回路の底部にアンダーカット現象が発生しないことに想到した。   Therefore, as a result of diligent research, the inventors of the present invention can form fine wiring by using a copper-clad laminate having the following characteristics, and include sulfuric acid and hydrogen peroxide. It was conceived that the undercut phenomenon did not occur at the bottom of the wiring circuit even when the etching solution was used.

本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、銅層と絶縁樹脂層とが張り合わせられたものであり、配線回路が形成された後に、硫酸と過酸化水素とを含むエッチング液で配線回路を調製する工程を含むプリント配線板製造に用いる銅張積層板であって、当該銅層における当該絶縁樹脂層との張り合わせ面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含み、3種類を超えるイオン価数を取り得る遷移金属成分を含まない表面処理層を備え、且つ、当該銅層における当該絶縁樹脂層との張り合わせ面の表面粗さ(Rzjis)が2.5μm以下であることを特徴とするものである。 Copper-clad laminate according to the present invention: copper-clad laminate according to the present invention, all SANYO where the copper layer and the insulating resin layer is laminated, after wiring circuit is formed, sulfuric acid and hydrogen peroxide A copper-clad laminate for use in printed wiring board production including a step of preparing a wiring circuit with an etching solution containing a zinc component and three or less types of ionic valence on a bonding surface of the copper layer with the insulating resin layer look containing a transition metal component other than zinc can take several, with a surface treatment layer containing no transition metal component capable of forming a ionic valence greater than three, and, bonded between the insulating resin layer in the copper layer The surface roughness (Rzjis) of the surface is 2.5 μm or less.

本件発明に係る銅張積層板は、前記表面処理層が、亜鉛と前記遷移金属成分との合計の質量厚さが40mg/m以上の厚さであることが好ましい。 In the copper-clad laminate according to the present invention, it is preferable that the surface treatment layer has a total mass thickness of 40 mg / m 2 or more of zinc and the transition metal component.

本件発明に係る銅張積層板は、前記銅層における前記絶縁樹脂層との張り合わせ面には粗化処理層を備えることが好ましい。また、当該銅張積層板の断面広がり抵抗を測定したとき、前記粗化処理層の粗化処理抵抗値(R B1 )と、銅層のバルク銅層のバルク層抵抗値(R B2 )とが異なり、R B1 <R B2 の関係を備えることが好ましい。
It is preferable that the copper clad laminated board which concerns on this invention is equipped with a roughening process layer in the bonding surface with the said insulating resin layer in the said copper layer . Further, when the cross-sectional spreading resistance of the copper-clad laminate is measured, the roughening resistance value (R B1 ) of the roughening treatment layer and the bulk layer resistance value (R B2 ) of the bulk copper layer of the copper layer are Unlikely, it is preferable to have a relationship of R B1 <R B2 .

本件発明に係る銅張積層板は、前記絶縁樹脂基材に可撓性を備える樹脂フィルムを用いてフレキシブル銅張積層板とすることが好ましい。   The copper clad laminate according to the present invention is preferably a flexible copper clad laminate using a resin film having flexibility on the insulating resin base material.

本件発明に係る表面処理銅箔: 本件発明に係る表面処理銅箔は、上述の銅張積層板の製造に用いる表面処理銅箔であって、絶縁樹脂基材との張り合わせ面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含む表面処理層を備え、且つ、当該絶縁樹脂基材との張り合わせ面の表面粗さ(Rzjis)が2.5μm以下であることを特徴とするものである。 Surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention is a surface-treated copper foil used for the production of the above-described copper-clad laminate, and a zinc component and a bonded surface with an insulating resin substrate A surface treatment layer containing a transition metal component other than zinc that can take three or less ionic valences is provided, and the surface roughness (Rzjis) of the bonding surface with the insulating resin substrate is 2.5 μm or less. It is characterized by this.

前記表面処理銅箔の前記絶縁樹脂基材との張り合わせ面には、粗化処理が施されていることが好ましい。 The bonding surface between said insulating resin base material of the surface treated copper foil, it is preferable that roughening treatment is applied.

本件発明に係るプリント配線板: 本件発明に係るプリント配線板は、上述の銅張積層板を用いて、エッチング加工等して得られることを特徴とするものである。 Printed wiring board according to the present invention: The printed wiring board according to the present invention is obtained by etching using the above-described copper-clad laminate.

また、本件発明に係るプリント配線板は、前記配線回路を、硫酸濃度10%〜30%、過酸化水素濃度10%〜20%の液温30℃の水溶液に30秒間浸漬した後に、当該配線と前記絶縁樹脂基材との界面に形成されるアンダーカットの深さが、当該配線の端面から3.0μm以下という特性を備える。   In the printed wiring board according to the present invention, the wiring circuit is immersed in an aqueous solution having a sulfuric acid concentration of 10% to 30% and a hydrogen peroxide concentration of 10% to 20% at a liquid temperature of 30 ° C. for 30 seconds. The depth of the undercut formed at the interface with the insulating resin base material has a characteristic of 3.0 μm or less from the end face of the wiring.

本件発明に係る銅張積層板は、硫酸と過酸化水素とを含むエッチング液で配線回路を調製する工程を含むプリント配線板製造で用いるものである。この銅張積層板は、当該銅層と当該絶縁樹脂層との界面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含む表面処理層を備え、且つ、当該銅層と当該絶縁樹脂層との界面の表面粗さ(Rzjis)が2.5μm以下であることを特徴とする。この結果、硫酸と過酸化水素を含むエッチング液で処理してもアンダーカット現象の発生しないようになるため、プリント配線板の製造工程で得られた配線回路と絶縁樹脂層との間で良好な密着性を発揮する。しかも、当該銅層と当該絶縁樹脂層との界面の表面粗さ(Rzjis)のプロファイルが低いため、FPCに求められるファインピッチ回路の形成が容易となる。よって、プリント配線板製造に好適な銅張積層板及びその銅張積層板を加工して得られるプリント配線板が得られる、また、本件発明に係る銅張積層板の備える層構成は、本件発明に係る表面処理銅箔を用いることで容易に製造可能である。   The copper clad laminate according to the present invention is used in printed wiring board manufacture including a step of preparing a wiring circuit with an etching solution containing sulfuric acid and hydrogen peroxide. The copper-clad laminate includes a surface treatment layer containing a zinc component and a transition metal component other than zinc capable of taking an ion valence of three or less at the interface between the copper layer and the insulating resin layer, and The surface roughness (Rzjis) of the interface between the copper layer and the insulating resin layer is 2.5 μm or less. As a result, the undercut phenomenon does not occur even when treated with an etching solution containing sulfuric acid and hydrogen peroxide, so that the circuit between the wiring circuit obtained in the printed wiring board manufacturing process and the insulating resin layer is good. Demonstrate adhesion. Moreover, since the profile of the surface roughness (Rzjis) at the interface between the copper layer and the insulating resin layer is low, the fine pitch circuit required for FPC can be easily formed. Therefore, a copper-clad laminate suitable for printed wiring board production and a printed wiring board obtained by processing the copper-clad laminate are obtained, and the layer configuration of the copper-clad laminate according to the present invention is the present invention. It can manufacture easily by using the surface treatment copper foil which concerns on this.

本件発明に係る銅張積層板の形態: 本件発明に係る銅張積層板は、硫酸と過酸化水素とを含むエッチング液で配線回路を調製する工程を含むプリント配線板製造に用いる銅張積層板である。本件発明に係る銅張積層板は、銅層と絶縁樹脂層とが張り合わせられた層構成を基本的に有し、当該銅層と当該絶縁樹脂層との界面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含む表面処理層を備えることを第1の特徴とする。また、本件発明に係る銅張積層板は、当該銅層と当該絶縁樹脂層との界面の表面粗さ(Rzjis)が2.5μm以下であることを第2の特徴とするものである。 Form of copper-clad laminate according to the present invention: A copper-clad laminate according to the present invention is a copper-clad laminate used for manufacturing a printed wiring board including a step of preparing a wiring circuit with an etching solution containing sulfuric acid and hydrogen peroxide. It is. The copper clad laminate according to the present invention basically has a layer structure in which a copper layer and an insulating resin layer are bonded together, and at the interface between the copper layer and the insulating resin layer, a zinc component and three or less types A first feature is that a surface treatment layer including a transition metal component other than zinc capable of taking an ionic valence is provided. The copper clad laminate according to the present invention has a second feature that the surface roughness (Rzjis) of the interface between the copper layer and the insulating resin layer is 2.5 μm or less.

最初に、第1の特徴に関して説明する。第1の特徴は、当該銅層と当該絶縁樹脂層との界面に、「亜鉛成分」と「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」とを含む表面処理層を備えることである。ここでは、表面処理層に「亜鉛成分」を必須成分としている。これは、例え、亜鉛以外の他の金属成分である「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」が、銅との合金化が困難な金属成分であったとしても、亜鉛と銅とが合金化しやすい性質を備えるため、「亜鉛成分」と「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」とを含む表面処理層と銅層との良好な密着性を得ることができるからである。しかも、亜鉛成分は、プリント配線板としての耐熱特性を向上させるために必要な成分だからである。   First, the first feature will be described. A first feature is that a surface treatment layer including a “zinc component” and “a transition metal component other than zinc capable of taking three or less ionic valences” is provided at an interface between the copper layer and the insulating resin layer. That is. Here, the “zinc component” is an essential component in the surface treatment layer. Even if this is a metal component other than zinc, for example, "a transition metal component other than zinc that can take three or less ionic valences" is a metal component that is difficult to alloy with copper, Since the zinc and copper are easily alloyed, good adhesion between the surface treatment layer containing the “zinc component” and the “transition metal component other than zinc capable of taking three or less ionic valences” and the copper layer This is because sex can be obtained. Moreover, the zinc component is a component necessary for improving the heat resistance characteristics as a printed wiring board.

そして、亜鉛以外の成分は、「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」である。一般的に、水溶液中における金属と金属イオンとの間の挙動であれば、イオン化傾向から一定の推測は可能である。ところが、銅張積層板をプリント配線板に加工する際に接触する各種溶液は、金属成分を溶解させる酸化力を備えるものが多い。銅張積層板が、このような溶液(希硫酸、希塩酸等)と接触した際には、金属銅は酸化されつつ、銅イオンとなり溶解する。   Components other than zinc are “transition metal components other than zinc that can take three or less ionic valences”. In general, if the behavior is between a metal and a metal ion in an aqueous solution, a certain guess can be made from the ionization tendency. However, various solutions that come into contact when processing a copper-clad laminate into a printed wiring board often have an oxidizing power that dissolves metal components. When the copper-clad laminate comes into contact with such a solution (dilute sulfuric acid, dilute hydrochloric acid, etc.), the copper metal is oxidized and dissolved as copper ions.

このような溶解反応モデルにおいては、表面処理層が、「3種類を超えるイオン価数を採り得る亜鉛以外の遷移金属成分(以下、単に「多価数金属」と称する。)」を含んでおり、これに対して硫酸と過酸化水素とを含むエッチング液を用いると、酸素供給源となる過酸化水素水が存在するため、多価数金属自身とその複数の酸化物間との間で、イオン価数の変化を伴う不可逆反応が起こりやすい。その結果、配線回路の処理に用いるエッチング液の酸化還元電位の変化に応じて、表面処理層内の多価数金属成分の酸化還元状態が変化することになり、亜鉛や銅の溶出前の酸化状態も影響を受けることになる。その結果、表面処理層と銅層との間の電位差変動が大きくなり、銅層が優先的に溶解する現象が生じて、アンダーカット現象が現れると考えられる。   In such a dissolution reaction model, the surface treatment layer contains “a transition metal component other than zinc capable of taking an ion valence exceeding three types (hereinafter simply referred to as“ multivalent metal ”)”. On the other hand, when an etching solution containing sulfuric acid and hydrogen peroxide is used, since there is hydrogen peroxide water as an oxygen supply source, between the multivalent metal itself and its oxides, Irreversible reactions with changes in ionic valence are likely to occur. As a result, the redox state of the polyvalent metal component in the surface treatment layer changes according to the change in the redox potential of the etching solution used for the processing of the wiring circuit, and the oxidation before elution of zinc and copper is performed. The state will also be affected. As a result, the potential difference fluctuation between the surface treatment layer and the copper layer is increased, and a phenomenon in which the copper layer is preferentially dissolved occurs, and an undercut phenomenon appears.

これに対し、表面処理層に含まれる金属の採り得るイオン価数が、3種類以内(例えば、溶出する金属イオンが1価、2価、3価のいずれかの場合)であれば、硫酸と過酸化水素とを含むエッチング液を用いたとしても、当該金属成分とその酸化物との間でのイオン価数の変化を伴う不可逆反応が起こりにくく、上述のような現象は示さず、塩化第二鉄銅エッチング液や塩化第二銅エッチング液等を用いた一般的な銅エッチングの際と同様の挙動を示すため、安定した配線回路形状が得られると同時に、アンダーカット現象が起こりにくくなる。ここで言う「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」とは、ニッケル、クロム、鉄、白金、マンガン、銅等である。これらの中でも、より好ましくは、「2種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」を用いることが好ましい。この2種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分を具体的に言えば、1価イオン又は2価イオンを形成する銅、2価イオン又は3価イオンを形成する鉄、2価イオンのみを形成するニッケルである。なお、以上に述べた「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」が、エッチング液中に溶出して共存しても、配線回路を形成する際の銅エッチングには、悪影響はない。   On the other hand, if the ionic valence that can be taken by the metal contained in the surface treatment layer is within 3 types (for example, when the eluted metal ion is monovalent, divalent, or trivalent), sulfuric acid and Even when an etching solution containing hydrogen peroxide is used, an irreversible reaction accompanied by a change in ionic valence between the metal component and its oxide hardly occurs, and the above phenomenon is not exhibited. Since a behavior similar to that of general copper etching using a ferric copper etchant, a cupric chloride etchant, or the like is exhibited, a stable wiring circuit shape can be obtained and an undercut phenomenon is hardly caused. The “transition metal component other than zinc capable of taking three or less types of ionic valence” as used herein is nickel, chromium, iron, platinum, manganese, copper, or the like. Among these, it is more preferable to use “a transition metal component other than zinc capable of taking two or less ionic valences”. Specifically speaking, transition metal components other than zinc that can take two or less kinds of ionic valences include copper that forms monovalent ions or divalent ions, iron that forms divalent ions or trivalent ions, and divalent ions. Nickel that forms only ions. In addition, even if the above-described “transition metal components other than zinc capable of taking three or less ionic valences” are eluted and coexist in the etching solution, the copper etching for forming the wiring circuit, There is no adverse effect.

ここで、図1には、以下に述べる本件発明に係る表面処理銅箔を用いて銅張積層板を製造し、これを用いたプリント配線板製造において、配線回路形成後に硫酸と過酸化水素とを含むエッチング液を用いてマイクロエッチングを行った結果、配線回路の底部にアンダーカット現象が発生していないときの銅層2、表面処理層3、絶縁樹脂基材5の断面から見た層構成を示している。これは、本件発明に係る表面処理銅箔を用いて銅張積層板を製造し、これを用いてプリント配線板製造を行った場合である。そして、図2には、硫酸と過酸化水素とを含むエッチング液を用いてマイクロエッチングを行った結果、配線回路(銅層2)の底部にアンダーカット現象が発生したときの断面からアンダーカット部6の様子を示している。これは、モリブデンを含有する表面処理層を備える表面処理銅箔を用いて銅張積層板を製造し、これを用いてプリント配線板製造を行った場合であり、モリブデンは、3種類を超えるイオン価数を採り得る遷移金属成分である。この図1と図2とを対比することから、表面処理層に含まれる金属の採り得るイオン価数が、3種類以内(例えば、溶出する金属イオンが1価、2価、3価のいずれかの場合)であれば、硫酸と過酸化水素とを含むエッチング液を用いたマイクロエッチングでアンダーカット現象が発生しないことが理解できる。   Here, in FIG. 1, a copper-clad laminate is manufactured using the surface-treated copper foil according to the present invention described below, and in the production of a printed wiring board using the same, sulfuric acid and hydrogen peroxide are formed after the wiring circuit is formed. As a result of microetching using an etchant containing copper, the layer structure seen from the cross section of the copper layer 2, the surface treatment layer 3, and the insulating resin substrate 5 when no undercut phenomenon occurs at the bottom of the wiring circuit Is shown. This is a case where a copper-clad laminate is manufactured using the surface-treated copper foil according to the present invention, and a printed wiring board is manufactured using this. FIG. 2 shows an undercut portion from a cross section when an undercut phenomenon occurs at the bottom of the wiring circuit (copper layer 2) as a result of microetching using an etching solution containing sulfuric acid and hydrogen peroxide. 6 is shown. This is a case where a copper-clad laminate is manufactured using a surface-treated copper foil having a surface treatment layer containing molybdenum, and a printed wiring board is manufactured using the copper-clad laminate. It is a transition metal component that can take a valence. Since FIG. 1 and FIG. 2 are compared, the ionic valence that can be taken by the metal contained in the surface treatment layer is within 3 types (for example, the eluted metal ion is either monovalent, bivalent, or trivalent). In this case, it can be understood that the undercut phenomenon does not occur in microetching using an etching solution containing sulfuric acid and hydrogen peroxide.

以上に述べた本件発明に係る銅張積層板の表面処理層は、「亜鉛成分」と「3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分」との合計の質量厚さが40mg/m以上の厚さであることが好ましい。この質量厚さが40mg/m未満の場合には、当該表面処理層による界面の被覆が不十分な部分が存在する傾向が強くなり、銅層と絶縁樹脂基材との間の密着性、耐熱性、耐薬品性に場所的なバラツキが生じるため好ましくない。ここで、質量厚さ40mg/mを下限値とした理由について説明する。この質量厚さは、完全にフラットな理想平面を、厚さ約40Åの当該表面処理層で被覆できる量である。そして、40Åの厚さで理想平面を覆う合金成分量は、理想平面の表面積を基準として、ほぼ平滑な表面上に形状バラツキが小さい微細な粗化処理粒子が存在する粗化処理面であっても、その表面積比が2前後であれば、粗化処理粒子が備えるオーバーハング部分を含め、ほぼもれなく覆うに足りる量だからである。 The surface treatment layer of the copper clad laminate according to the present invention described above has a total mass thickness of 40 mg of “zinc component” and “transition metal component other than zinc capable of taking three or less ionic valences”. / M 2 or more is preferable. When the mass thickness is less than 40 mg / m 2 , there is a strong tendency to have a portion where the interface is not sufficiently covered with the surface treatment layer, and the adhesion between the copper layer and the insulating resin substrate is increased. This is not preferable because there is a local variation in heat resistance and chemical resistance. Here, the reason why the mass thickness of 40 mg / m 2 is set as the lower limit will be described. The mass thickness is an amount that can cover a completely flat ideal plane with the surface treatment layer having a thickness of about 40 mm. The amount of the alloy component covering the ideal plane with a thickness of 40 mm is a roughened surface having fine roughened particles having small shape variations on a substantially smooth surface on the basis of the surface area of the ideal plane. However, if the surface area ratio is around 2, it is an amount sufficient to cover the entire surface including the overhang portion of the roughened particles.

また、ここで当該質量厚さに上限を設けていないが、表面処理層を構成する金属の種類によっては、その金属成分が多量に存在すれば、配線回路をエッチングで形成する際に溶解が困難な成分がある。このような構成においても、用いた合金成分がエッチング残等にならないようにするため、表面処理層の質量厚さは80mg/m以下とすることが好ましい。 In addition, although there is no upper limit on the mass thickness here, depending on the type of metal constituting the surface treatment layer, if a large amount of the metal component exists, it is difficult to dissolve when forming a wiring circuit by etching. There are various ingredients. Even in such a configuration, the mass thickness of the surface treatment layer is preferably 80 mg / m 2 or less so that the alloy component used does not become an etching residue.

次に、本件発明に係る銅張積層板の第2の特徴である「当該銅層と当該絶縁樹脂層との界面の表面粗さ(Rzjis)が2.5μm以下であること。」に関して述べる。この界面の表面粗さ(Rzjis)が2.5μmを超えると、多層FPCを製造したときの、層間の絶縁信頼性とファインピッチ配線回路の形成が困難になる。これに対し、この界面の表面粗さ(Rzjis)が2.5μm以下であれば、局部的に大きくなった粗化処理粒子が形成されている可能性は殆ど無くなり、絶縁樹脂層が薄い多層FPCの製造に用いても、層間の絶縁信頼性を維持できる。また、FPCのライン/スペースが25μm/25μmのファインピッチ配線の形成が容易になる。   Next, the second feature of the copper clad laminate according to the present invention, “the surface roughness (Rzjis) of the interface between the copper layer and the insulating resin layer is 2.5 μm or less” will be described. If the surface roughness (Rzjis) of the interface exceeds 2.5 μm, it becomes difficult to form insulation reliability between layers and fine pitch wiring circuit when a multilayer FPC is manufactured. On the other hand, if the surface roughness (Rzjis) of this interface is 2.5 μm or less, there is almost no possibility of forming locally roughened particles, and the multilayer FPC with a thin insulating resin layer is eliminated. Even if it is used for manufacturing, the insulation reliability between layers can be maintained. In addition, it becomes easy to form fine pitch wiring with 25 μm / 25 μm FPC line / space.

そして、本件発明に係る銅張積層板の銅層は、絶縁樹脂基材との張り合わせ面に粗化処理を設け、銅層と絶縁樹脂層との密着性を向上させることも好ましい。従って、本件発明に係る銅張積層板の銅層と絶縁樹脂層との間に設ける粗化処理層は、その銅張積層板の断面の拡がり抵抗を測定したとき、微細銅粒を付着させる等して形成した粗化処理層の粗化処理層抵抗値(RB1)と、銅層のバルク銅層のバルク層抵抗値(RB2)とが異なり、RB1<RB2 の関係を備えることが好ましい。この関係を備えることが、アンダーカット現象の防止のためには好ましい。 And it is also preferable that the copper layer of the copper clad laminated board which concerns on this invention provides a roughening process to the bonding surface with an insulating resin base material, and improves the adhesiveness of a copper layer and an insulating resin layer. Therefore, the roughening treatment layer provided between the copper layer and the insulating resin layer of the copper clad laminate according to the present invention adheres fine copper grains when the cross-sectional spreading resistance of the copper clad laminate is measured. The roughening treatment layer resistance value (R B1 ) of the roughening treatment layer formed in this way is different from the bulk layer resistance value (R B2 ) of the bulk copper layer of the copper layer, and has a relationship of R B1 <R B2 Is preferred. It is preferable to have this relationship for preventing the undercut phenomenon.

図3に、配線回路の底部にアンダーカット現象が発生しないときに使用した銅張積層板のの断面の拡がり抵抗測定結果を示す。図4に、配線回路の底部にアンダーカット現象が発生したときに使用した銅張積層板の断面の拡がり抵抗測定結果を示す。これらの図面において、暗く見えるほど、拡がり抵抗測定値が高くなっている部分であり、各図のa)は、断面の拡がり抵抗像であり、b)はバルク銅部の平均値(≒2kΩ)を基準にした拡がり抵抗像である。また、これらの図面の上部が、銅層と絶縁樹脂層構成材料との張り合わせ界面であり、表層は粗化処理した粗化処理層である。ここで、この図3と図4とを対比することから明らかなように、図3の場合には、銅層の絶縁樹脂層構成材料との張り合わせ面の近傍(粗化処理層)の色調が明るく、その他のバルク銅層の色調が暗くなっている。これに対し、図4の場合には、銅層と絶縁樹脂層構成材料との張り合わせ界面近傍の粗化処理層の色調と、その他のバルク銅層の色調との差異が明確に確認できない状態である。また、この図3と図4との銅張積層板の銅層と絶縁樹脂層構成材料との張り合わせ界面の最表層をみると、図3に比べて図4の高抵抗の領域が顕著に観察されている。ここで、GHzオーダーの高周波信号を扱う配線回路では、表皮効果により、銅箔と絶縁樹脂基材との接着面側を信号が流れることになるため、高周波の伝送特性を改善するためには、銅張積層板の銅層の絶縁樹脂層構成材料との張り合わせ面の抵抗が低いほど好ましい。よって、かかる観点から見ても、本件発明に係る銅張積層板が、粗化処理層抵抗値(RB1)<バルク層抵抗値(RB2)の関係を備えることが好ましい。 FIG. 3 shows the results of measuring the resistance of the cross section of the copper clad laminate used when the undercut phenomenon does not occur at the bottom of the wiring circuit. FIG. 4 shows the results of measuring the resistance of the cross section of the copper-clad laminate used when an undercut phenomenon occurs at the bottom of the wiring circuit. In these drawings, the darker the portion, the higher the spread resistance measurement value is, the a) in each figure is the cross-sectional spread resistance image, and b) is the average value of the bulk copper part (≈2 kΩ). It is a spread resistance image based on. Moreover, the upper part of these drawings is a bonding interface between the copper layer and the insulating resin layer constituent material, and the surface layer is a roughened layer subjected to a roughening process. Here, as apparent from the comparison between FIG. 3 and FIG. 4, in the case of FIG. 3, the color tone in the vicinity (roughening layer) of the bonding surface of the copper layer to the insulating resin layer constituent material is It is bright and the color of other bulk copper layers is dark. On the other hand, in the case of FIG. 4, the difference between the color tone of the roughened layer near the bonding interface between the copper layer and the insulating resin layer constituting material and the color tone of the other bulk copper layer cannot be clearly confirmed. is there. Further, when the outermost layer of the bonded interface between the copper layer and the insulating resin layer constituting material of the copper clad laminate of FIGS. 3 and 4 is observed, the high resistance region of FIG. 4 is significantly observed compared to FIG. Has been. Here, in a wiring circuit that handles high-frequency signals in the order of GHz, the signal flows on the bonding surface side of the copper foil and the insulating resin base material due to the skin effect, so in order to improve high-frequency transmission characteristics, The lower the resistance of the bonding surface between the copper-clad laminate and the insulating resin layer constituting material of the copper layer, the better. Therefore, also from this viewpoint, it is preferable that the copper-clad laminate according to the present invention has a relation of roughening treatment layer resistance value (R B1 ) <bulk layer resistance value (R B2 ).

本件発明に係る銅張積層板は、前記絶縁樹脂基材に可撓性を備える樹脂フィルムを用いてフレキシブル銅張積層板とすることが好ましい。ここで言う可撓性を備える樹脂フィルムとは、ポリイミド樹脂フィルム、アラミド樹脂フィルム、PET樹脂フィルム、液晶ポリマー樹脂フィルム等であり、フィルム材質、フィルム厚さ等に特段の限定はない。   The copper clad laminate according to the present invention is preferably a flexible copper clad laminate using a resin film having flexibility on the insulating resin base material. Here, the resin film having flexibility is a polyimide resin film, an aramid resin film, a PET resin film, a liquid crystal polymer resin film, or the like, and there is no particular limitation on the film material, the film thickness, and the like.

本件発明に係る表面処理銅箔: 本件発明に係る表面処理銅箔は、上述の銅張積層板の製造に用いる表面処理銅箔である。従って、絶縁樹脂基材との張り合わせ面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含む表面処理層を備え、且つ、当該絶縁樹脂基材との張り合わせ面の表面粗さ(Rzjis)が2.5μm以下である必要がある。この表面処理銅箔を、絶縁樹脂層構成材料に張り合わせることで、上述の本件発明に係る銅張積層板が得られる。従って、この表面処理銅箔の説明として求められる「表面処理層」及び「張り合わせ面の表面粗さ(Rzjis)が2.5μm以下」に関する説明は重複することになるため、ここでの説明は省略する。このときの本件発明に係る表面処理銅箔1は、銅箔(バルク銅層)2、表面処理層3で構成されており、この層構成を図5に模式断面図として示した。なお、本件発明に係る表面処理銅箔の場合、絶縁樹脂層構成材料との密着性を、より向上させる手段として、表面処理層の表面に、更にシランカップリング剤処理層を設ける等しても構わない。 Surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention is a surface-treated copper foil used for producing the above-described copper-clad laminate. Accordingly, a surface treatment layer containing a zinc component and a transition metal component other than zinc capable of taking three or less ionic valences is provided on the surface to be bonded to the insulating resin base material, and the surface is bonded to the insulating resin base material. The surface roughness (Rzjis) of the surface needs to be 2.5 μm or less. By bonding this surface-treated copper foil to the insulating resin layer constituent material, the above-described copper-clad laminate according to the present invention can be obtained. Therefore, the description regarding the “surface treatment layer” and “the surface roughness (Rzjis) of the bonded surface is 2.5 μm or less” required as the description of the surface-treated copper foil will be duplicated, and the description here is omitted. To do. The surface-treated copper foil 1 according to the present invention at this time is composed of a copper foil (bulk copper layer) 2 and a surface-treated layer 3, and this layer structure is shown as a schematic sectional view in FIG. In the case of the surface-treated copper foil according to the present invention, as a means for further improving the adhesion with the insulating resin layer constituting material, a silane coupling agent treatment layer may be further provided on the surface of the surface treatment layer. I do not care.

そして、本件発明に係る表面処理銅箔は、前記表面処理銅箔の絶縁樹脂基材との張り合わせ面に粗化処理を設けることが好ましい。本件発明に係る表面処理銅箔1の場合、銅箔2の張り合わせ面に、粗化処理を施して粗化処理面4を形成し、その粗化処理面4の上に表面処理層3を形成し、図6に示した層構成とするのが通常である。この粗化処理面4の形成に、粗化処理粒子を付着させる手法を用いる場合には、金属銅で構成した微細銅粒子を用いれば、配線回路を形成する際の銅エッチングで粗化処理粒子のエッチング除去が可能で、粗化処理粒子を除去するためのオーバーエッチング時間を大きく採る必要がないため、配線回路のエッチングファクターが良好になる。また、銅張積層板の製造工程で付加される熱履歴により、銅バルク(銅箔側)と微細銅粒子(粗化処理粒子)との付着界面において、銅の相互拡散が起こることで、銅バルクに対する粗化処理粒子の密着性が、より強固になるため好ましい。   And it is preferable that the surface treatment copper foil which concerns on this invention provides a roughening process in the bonding surface with the insulating resin base material of the said surface treatment copper foil. In the case of the surface-treated copper foil 1 according to the present invention, a roughened surface is formed on the bonded surface of the copper foil 2 to form a roughened surface 4, and the surface-treated layer 3 is formed on the roughened surface 4. In general, the layer structure shown in FIG. 6 is used. In the case of using the method of attaching the roughening treatment particles to the formation of the roughening treatment surface 4, if the fine copper particles made of metallic copper are used, the roughening treatment particles are formed by copper etching when forming the wiring circuit. The etching factor of the wiring circuit is improved because it is not necessary to take a long over-etching time for removing the roughening particles. In addition, due to the thermal history added in the manufacturing process of the copper clad laminate, the mutual diffusion of copper occurs at the adhesion interface between the copper bulk (copper foil side) and the fine copper particles (roughened particles). This is preferable because the adhesion of the roughened particles to the bulk becomes stronger.

本件発明に係るプリント配線板の形態: 本件発明に係るプリント配線板は、上述の銅張積層板を用いて、エッチング加工等して得られることを特徴とするものである。前述のように、多層プリント配線板の製造工程で配線回路が各種薬品に浸漬されても、配線端面にはアンダーカットが発生せず、電気特性や接続信頼性に優れたプリント配線板である。 Form of Printed Wiring Board According to Present Invention: The printed wiring board according to the present invention is obtained by etching or the like using the above-described copper-clad laminate. As described above, even if the wiring circuit is immersed in various chemicals in the manufacturing process of the multilayer printed wiring board, the printed wiring board is excellent in electrical characteristics and connection reliability without causing an undercut on the wiring end surface.

また、本件発明に係るプリント配線板は、前記配線回路を、硫酸濃度10%〜30%、過酸化水素濃度10%〜20%の液温30℃の水溶液に30秒間浸漬した後に、当該配線と前記絶縁樹脂基材との界面に形成されるアンダーカットの深さが、当該配線の端面から3.0μm以下という特性を備える。即ち、フラッシュエッチング、マイクロエッチング、銅回路エッチングに際して、硫酸と過酸化水素とを含むエッチング液を用いても、アンダーカット現象が発生しないようになる。よって、プリント配線板の中でも、ファインピッチ回路の形成が求められるフレキシブルプリント配線板用途に好適である。   In the printed wiring board according to the present invention, the wiring circuit is immersed in an aqueous solution having a sulfuric acid concentration of 10% to 30% and a hydrogen peroxide concentration of 10% to 20% at a liquid temperature of 30 ° C. for 30 seconds. The depth of the undercut formed at the interface with the insulating resin base material has a characteristic of 3.0 μm or less from the end face of the wiring. That is, under flash etching, micro etching, and copper circuit etching, even if an etching solution containing sulfuric acid and hydrogen peroxide is used, the undercut phenomenon does not occur. Therefore, among printed wiring boards, it is suitable for flexible printed wiring board applications that require the formation of fine pitch circuits.

本件発明に係る銅張積層板は、硫酸と過酸化水素とを含むエッチング液で配線回路を調製する工程を含むプリント配線板製造で用いるものである。この銅張積層板を用いることで、フラッシュエッチング、マイクロエッチング、銅回路エッチングに硫酸と過酸化水素とを含むエッチング液を用いても、アンダーカット現象が発生しないようになる。しかも、当該銅層と当該絶縁樹脂層との界面の表面粗さ(Rzjis)のプロファイルが低いため、FPCに求められるファインピッチ回路の形成が容易になる。特に、本件発明に係る銅張積層板は、フレキシブルプリント配線板に求められる要求特性を満足するものである。また、本件発明に係る銅張積層板は、本件発明に係る表面処理銅箔を用いることで、絶縁樹脂層を構成する樹脂シート、プリプレグ等と積層加工することで容易に製造可能である。   The copper clad laminate according to the present invention is used in printed wiring board manufacture including a step of preparing a wiring circuit with an etching solution containing sulfuric acid and hydrogen peroxide. By using this copper clad laminate, even if an etching solution containing sulfuric acid and hydrogen peroxide is used for flash etching, micro etching, and copper circuit etching, the undercut phenomenon does not occur. Moreover, since the profile of the surface roughness (Rzjis) at the interface between the copper layer and the insulating resin layer is low, the fine pitch circuit required for the FPC can be easily formed. In particular, the copper clad laminate according to the present invention satisfies the required characteristics required for a flexible printed wiring board. Moreover, the copper clad laminated board which concerns on this invention can be easily manufactured by carrying out a lamination process with the resin sheet, prepreg, etc. which comprise an insulating resin layer by using the surface treatment copper foil which concerns on this invention.

配線回路の底部にアンダーカット現象が発生していないときの断面から見た様子を示す光学顕微鏡観察像である。It is an optical microscope observation image which shows a mode seen from the cross section when the undercut phenomenon has not generate | occur | produced in the bottom part of a wiring circuit. 配線回路の底部にアンダーカット現象が発生いるときの断面から見た様子を示す光学顕微鏡観察像である。It is an optical microscope observation image which shows a mode seen from the cross section when the undercut phenomenon has generate | occur | produced in the bottom part of a wiring circuit. 配線回路の底部にアンダーカット現象が発生しないときに使用した表面処理銅箔のバルク銅層の断面の拡がり抵抗測定結果である。It is a spread resistance measurement result of the cross section of the bulk copper layer of the surface treatment copper foil used when the undercut phenomenon does not occur at the bottom of the wiring circuit. 配線回路の底部にアンダーカット現象が発生したときに使用した表面処理銅箔のバルク銅層の断面の拡がり抵抗測定結果である。It is a spread resistance measurement result of the cross section of the bulk copper layer of the surface treatment copper foil used when the undercut phenomenon generate | occur | produced in the bottom part of the wiring circuit. 本件発明に係る表面処理銅箔の層構成を説明するための模式断面図である。It is a schematic cross section for demonstrating the layer structure of the surface treatment copper foil which concerns on this invention. 本件発明に係る粗化処理層を含む表面処理銅箔の層構成を説明するための模式断面図である。It is a schematic cross section for demonstrating the layer structure of the surface treatment copper foil containing the roughening process layer which concerns on this invention.

符号の説明Explanation of symbols

1 表面処理銅箔
2 銅箔(バルク銅層)
3 表面処理層
4 粗化処理層(粗化処理粒子、微細銅粒子)
5 絶縁樹脂層
6 アンダーカット部
1 Surface treated copper foil 2 Copper foil (bulk copper layer)
3 Surface treatment layer 4 Roughening treatment layer (Roughening treatment particle, fine copper particle)
5 Insulating resin layer 6 Undercut part

Claims (9)

銅層と絶縁樹脂層とが張り合わせられたものであり、配線回路が形成された後に、硫酸と過酸化水素とを含むエッチング液で配線回路を調製する工程を含むプリント配線板製造に用いる銅張積層板であって、
当該銅層における当該絶縁樹脂層との張り合わせ面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含み、3種類を超えるイオン価数を取り得る遷移金属成分を含まない表面処理層を備え、
且つ、当該銅層における当該絶縁樹脂層との張り合わせ面の表面粗さ(Rzjis)が
2.5μm以下であることを特徴とする銅張積層板。
All SANYO where the copper layer and the insulating resin layer is laminated, after wiring circuit is formed, used in printed wiring board manufacture comprising a step of preparing a printed circuit with an etching solution containing sulfuric acid and hydrogen peroxide A copper clad laminate,
The bonding surface between the insulating resin layer in the copper layer, viewed contains a transition metal component other than zinc can take ionic valence of less zinc component and three, a transition metal capable of forming a ionic valence greater than three Provided with a surface treatment layer that does not contain ingredients ,
And the copper-clad laminated board characterized by surface roughness (Rzjis) of the bonding surface with the said insulating resin layer in the said copper layer being 2.5 micrometers or less.
前記表面処理層は、亜鉛と前記遷移金属成分との合計の質量厚さが40mg/m以上の厚さである請求項1に記載の銅張積層板。 2. The copper clad laminate according to claim 1, wherein the surface treatment layer has a total mass thickness of 40 mg / m 2 or more of zinc and the transition metal component. 前記銅層における前記絶縁樹脂層との張り合わせ面には、粗化処理層を備える請求項1又は請求項2に記載の銅張積層板。 The copper clad laminate according to claim 1, wherein a roughening layer is provided on a surface of the copper layer that is bonded to the insulating resin layer. 当該銅張積層板の断面広がり抵抗を測定したとき、前記粗化処理層の粗化処理抵抗値(R B1 )と、銅層のバルク銅層のバルク層抵抗値(R B2 )とが異なり、R B1 <R B2 の関係を備える請求項3に記載の銅張積層板 When the cross-sectional spreading resistance of the copper-clad laminate is measured, the roughening resistance value (R B1 ) of the roughening treatment layer is different from the bulk layer resistance value (R B2 ) of the bulk copper layer of the copper layer , The copper clad laminate according to claim 3, comprising a relationship of R B1 <R B2 . 前記絶縁樹脂層に可撓性を備える樹脂フィルムを用いて得られるフレキシブル銅張積層板である請求項1〜請求項4のいずれかに記載の銅張積層板。 The copper-clad laminate according to any one of claims 1 to 4 , which is a flexible copper-clad laminate obtained by using a resin film having flexibility for the insulating resin layer. 請求項1〜請求項5のいずれかに記載の銅張積層板の製造に用いる表面処理銅箔であって、
絶縁樹脂基材との張り合わせ面に、亜鉛成分と3種類以下のイオン価数を採り得る亜鉛以外の遷移金属成分とを含む表面処理層を備え、且つ、当該絶縁樹脂基材との張り合わせ面の表面粗さ(Rzjis)が2.5μm以下であることを特徴とする表面処理銅箔。
It is the surface treatment copper foil used for manufacture of the copper clad laminated board in any one of Claims 1-5 ,
Provided with a surface treatment layer containing a zinc component and a transition metal component other than zinc capable of taking three or less ionic valences on the bonding surface with the insulating resin base material, and the surface of the bonding surface with the insulating resin base material A surface-treated copper foil having a surface roughness (Rzjis) of 2.5 μm or less.
前記表面処理銅箔の前記絶縁樹脂基材との張り合わせ面には、粗化処理が施されている請求項6に記載の表面処理銅箔。   The surface-treated copper foil according to claim 6, wherein the surface of the surface-treated copper foil bonded to the insulating resin base material is subjected to a roughening treatment. 請求項5に記載の銅張積層板を用いて配線回路を形成したことを特徴とするプリント配線板。 A printed wiring board, wherein a wiring circuit is formed using the copper-clad laminate according to claim 5 . 前記配線回路を、硫酸濃度10%〜30%、過酸化水素濃度10%〜20%の液温30℃の水溶液に30秒間浸漬した後に、当該配線と前記絶縁樹脂基材との界面に形成されるアンダーカットの深さが、当該配線の端面から3.0μm以下である請求項8に記載のプリント配線板。 The wiring circuit is formed at the interface between the wiring and the insulating resin substrate after being immersed in an aqueous solution having a sulfuric acid concentration of 10% to 30% and a hydrogen peroxide concentration of 10% to 20% at a liquid temperature of 30 ° C. for 30 seconds. The printed wiring board according to claim 8 , wherein a depth of the undercut is 3.0 μm or less from an end face of the wiring.
JP2008143599A 2008-05-30 2008-05-30 Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate Active JP5474316B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008143599A JP5474316B2 (en) 2008-05-30 2008-05-30 Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate
TW098116835A TWI420991B (en) 2008-05-30 2009-05-21 A copper-clad laminate, a surface-treated copper foil for manufacturing the copper-clad laminate, and a printed circuit board manufactured using the copper-clad laminate
CN2009101420305A CN101594736B (en) 2008-05-30 2009-05-27 A copper-clad laminate, a surface treating copper foil and a printed circuit board
KR1020090047492A KR101194320B1 (en) 2008-05-30 2009-05-29 Copper clad laminate, surface treated copper foil used for manufacturing the same, and printed wiring board manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143599A JP5474316B2 (en) 2008-05-30 2008-05-30 Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2009286071A JP2009286071A (en) 2009-12-10
JP5474316B2 true JP5474316B2 (en) 2014-04-16

Family

ID=41409096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143599A Active JP5474316B2 (en) 2008-05-30 2008-05-30 Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate

Country Status (4)

Country Link
JP (1) JP5474316B2 (en)
KR (1) KR101194320B1 (en)
CN (1) CN101594736B (en)
TW (1) TWI420991B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002663B (en) * 2011-09-09 2015-07-15 深南电路有限公司 Printed circuit board processing method
JP5559288B2 (en) * 2012-11-13 2014-07-23 メック株式会社 Printed wiring board manufacturing method and surface treatment apparatus
JP2015134953A (en) * 2014-01-17 2015-07-27 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086894A (en) * 1983-10-19 1985-05-16 古河サーキットフォイル株式会社 Copper foil for printed circuit and method of producing same
KR930006103B1 (en) * 1991-03-11 1993-07-07 덕산금속 주식회사 Printed circuit for electrolysis copper foil & method
JP3292774B2 (en) * 1994-02-15 2002-06-17 三井金属鉱業株式会社 Copper foil for printed wiring board and method for producing the same
JP3769084B2 (en) * 1996-11-12 2006-04-19 日本電解株式会社 Copper foil for printed wiring board and method for producing the same
EP1168900A1 (en) * 1999-03-03 2002-01-02 Daiwa Co., Ltd. Method of manufacturing multilayer wiring board
JP2003051673A (en) * 2001-08-06 2003-02-21 Mitsui Mining & Smelting Co Ltd Printed wiring board copper foil and copper-plated laminated board using the same
JP2004189981A (en) * 2002-12-13 2004-07-08 Kanegafuchi Chem Ind Co Ltd Thermoplastic polyimide resin material and laminated body, and manufacturing method of printed wiring board
JP3949676B2 (en) * 2003-07-22 2007-07-25 三井金属鉱業株式会社 Copper foil with ultrathin adhesive layer and method for producing the copper foil with ultrathin adhesive layer
JP4172704B2 (en) * 2003-07-31 2008-10-29 日鉱金属株式会社 Surface-treated copper foil and substrate using the same
JP4570070B2 (en) * 2004-03-16 2010-10-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil provided with resin layer for forming insulating layer, copper-clad laminate, printed wiring board, method for producing multilayer copper-clad laminate, and method for producing printed wiring board
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP2007081214A (en) * 2005-09-15 2007-03-29 Mitsui Mining & Smelting Co Ltd Method of manufacturing printed circuit board
JP4912909B2 (en) * 2006-03-30 2012-04-11 新日鐵化学株式会社 Manufacturing method of flexible printed wiring board

Also Published As

Publication number Publication date
KR101194320B1 (en) 2012-10-24
TWI420991B (en) 2013-12-21
KR20090125000A (en) 2009-12-03
CN101594736A (en) 2009-12-02
TW201010539A (en) 2010-03-01
JP2009286071A (en) 2009-12-10
CN101594736B (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4081052B2 (en) Manufacturing method of printed circuit board
JP3736806B2 (en) Printed wiring board, manufacturing method thereof, and circuit device
JP2008047655A (en) Wiring substrate and its manufacturing method
JP2011014801A (en) Flexible copper-clad laminate, flexible printed wiring board for cof, and method of manufacturing them
JP4958045B2 (en) Surface-treated copper foil for producing flexible copper-clad laminate and flexible copper-clad laminate obtained using the surface-treated copper foil
JP2007314855A (en) Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2008078276A (en) Copper-coated polyimide substrate with high heatproof adhesion strength
JP2012112009A (en) Copper foil, and method for producing copper foil
JP5256747B2 (en) Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
JPWO2009034764A1 (en) Printed wiring board manufacturing method and printed wiring board obtained by the manufacturing method
JP5474316B2 (en) Copper-clad laminate, surface-treated copper foil used for manufacturing the copper-clad laminate, and printed wiring board obtained using the copper-clad laminate
JP2009176770A (en) Method of manufacturing copper wiring insulation film, and copper wiring insulation film manufactured from the same
JP4986081B2 (en) Method for manufacturing printed wiring board
JP2009099831A (en) Method of manufacturing wiring board
JP2010045155A (en) Multilayer laminated circuit board
JP4606329B2 (en) Printed wiring board
WO2019077804A1 (en) Printed circuit board and printed circuit board production method
JP2006066889A (en) Printed circuit board, manufacturing method thereof, and semiconductor device
JP2006269706A (en) Laminate substrate and its manufacturing method
JP3953252B2 (en) Method for removing chromate rust preventive film and method for manufacturing wiring board
JP4709813B2 (en) Printed wiring board, circuit device, and printed wiring board manufacturing method
WO2010021278A1 (en) Multilayer laminated circuit board wherein resin films having different thermal expansion coefficients are laminated
JP6543887B2 (en) Bumped wiring board and method of manufacturing the same
JP2005093502A (en) Semiconductor device tape carrier
JP2008091596A (en) Copper-coated polyimide substrate with smooth surface, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250