JP5473970B2 - Glass ceramics as dielectrics in the high frequency range. - Google Patents

Glass ceramics as dielectrics in the high frequency range. Download PDF

Info

Publication number
JP5473970B2
JP5473970B2 JP2011060936A JP2011060936A JP5473970B2 JP 5473970 B2 JP5473970 B2 JP 5473970B2 JP 2011060936 A JP2011060936 A JP 2011060936A JP 2011060936 A JP2011060936 A JP 2011060936A JP 5473970 B2 JP5473970 B2 JP 5473970B2
Authority
JP
Japan
Prior art keywords
glass
glass ceramic
ceramic according
dielectric
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011060936A
Other languages
Japanese (ja)
Other versions
JP2011195440A (en
Inventor
レッツ マルティン
リュディンガー ベルント
ザイラー ダニエラ
ホッペ ベルント
クルーゲ ミヒャエル
ノエナー シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of JP2011195440A publication Critical patent/JP2011195440A/en
Application granted granted Critical
Publication of JP5473970B2 publication Critical patent/JP5473970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • H01G4/105Glass dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Aerials (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、高周波領域(周波数>200MHz)、特にギガヘルツ領域(周波数f>1GHz)において誘電体として使用できるガラスセラミックに関する。   The present invention relates to a glass ceramic that can be used as a dielectric in a high frequency region (frequency> 200 MHz), particularly in a gigahertz region (frequency f> 1 GHz).

高周波領域の多数のアプリケーション(用途)には、比誘電率εが非常に高くかつ誘電損(tanδ)が非常に低い特殊材料が必要である。ユーザの体による近接領域デチューニング(「ボディローディング」といわれる)を避けるためには、アンテナ、フィルタ、および他のデバイスの誘電体帯電が特に重要である。このためには、高周波領域でε≧15の高い比誘電率および10−2より高くない、好ましくはこれより低い低誘電損(tanδ)を有する誘電体が必要である。さらに、共振周波数τの温度依存性を非常に小さくするべきである。最後に、低コストで近似成形(ニアネットシェープ)を可能にするために、このような材料はごく単純で安価な方法で加工できるようにするべきである。 Many applications (uses) in the high-frequency region require special materials having a very high relative dielectric constant ε and a very low dielectric loss (tan δ). Dielectric charging of antennas, filters, and other devices is particularly important to avoid proximity region detuning (referred to as “body loading”) by the user's body. This requires a dielectric having a high dielectric constant ε ≧ 15 in the high frequency region and a low dielectric loss (tan δ) not higher than 10 −2 , preferably lower than this. Furthermore, the temperature dependence of the resonance frequency τ f should be very small. Finally, such materials should be able to be processed in a very simple and inexpensive way in order to allow approximate molding (near net shape) at low cost.

焼結プロセスで加工される多数のセラミック材料が、先行技術において周知である。このような材料には、ギガヘルツ領域用に誘電体帯電したアンテナの場合に使用するための、Mirsanehらの「円偏波誘電体装填アンテナ:現在の技術と今後の課題(Circularly Loaded Dielectric−Loaded Antennas:Current Technology and Future Challenges)」、 Adv. Funct. Materials 18、(2008年)、1〜8頁で開示されているBiNbO系が含まれる。この材料は、もっとも広く使用されている2つの形態のアンテナである円偏波DLAヘリカルアンテナ(D−LQHアンテナ)および方形パッチアンテナを製造するために使用される。このために、30モル%のBiと、30モル%のNbと、30モル%のBと、10モル%のSiOとの組成を有するガラスを、従来の方法で1250℃で2時間溶融する。 A number of ceramic materials that are processed in the sintering process are well known in the prior art. Such materials include Mirsaneh et al., “Circularly Polarized Dielectric-Loaded Antennas—Circularly Loaded Dielectric Antennas, for use in the case of antennas dielectrically charged for the gigahertz range. : Current Technology and Future Challenges), Adv. Funct. Materials 18, (2008), BiNbO 4 system disclosed in pages 1-8. This material is used to manufacture the two most widely used antennas, circularly polarized DLA helical antennas (D-LQH antennas) and rectangular patch antennas. For this purpose, a glass having a composition of 30 mol% Bi 2 O 3 , 30 mol% Nb 2 O 5 , 30 mol% B 2 O 3 and 10 mol% SiO 2 is converted into a conventional glass. And melt at 1250 ° C. for 2 hours.

このガラスは、円筒形の成形型に注入され、500℃ないし520℃で減圧され、室温までゆっくり冷却された。その後、600℃ないし1000℃の範囲のさまざまな温度で結晶化が行われた。アンテナ用途に最適な値は、960℃での熱処理の場合、比誘電率εが15、品質係数Q・fが15000GHzで、共振周波数τの温度係数が−80MK−1であるといわれている。ここで決定される結晶相は本質的に斜方晶系BiNbOであった。 The glass was poured into a cylindrical mold, depressurized at 500 ° C. to 520 ° C., and slowly cooled to room temperature. Thereafter, crystallization was performed at various temperatures ranging from 600 ° C to 1000 ° C. In the case of heat treatment at 960 ° C., the optimum values for antenna use are said to be a relative dielectric constant ε of 15, a quality factor Q · f 0 of 15000 GHz, and a temperature coefficient of resonance frequency τ f of −80 MK −1. Yes. The crystal phase determined here was essentially orthorhombic BiNbO 4 .

ビスマスおよびニオブを使用するこの系は、原材料の観点において、非常に高価である。
加えて、多種の焼結セラミック材料(米国特許第6,184,845号明細書、米国特許出願公開第2007/063902号明細書を参照)がある。これらの参考文献では、誘電体帯電したD−LQHアンテナのセラミックコアの誘電材料として、比誘電率が約36のチタン酸ジルコニウムまたはチタン酸ジルコニウムスズを主成分とする焼結セラミック材料が開示されている。この材料は、押出し成型またはプレス成型して、その後焼結することにより製造されるといわれている。
This system using bismuth and niobium is very expensive in terms of raw materials.
In addition, there are a variety of sintered ceramic materials (see US Pat. No. 6,184,845, US 2007/063902). In these references, as a dielectric material for a ceramic core of a dielectric-charged D-LQH antenna, a sintered ceramic material mainly composed of zirconium titanate or zirconium tin titanate having a relative dielectric constant of about 36 is disclosed. Yes. This material is said to be produced by extrusion or press molding, followed by sintering.

別の焼結材料が、M.T.Sebastianらの論文、「LTCCアプリケーション用低損失誘電体材料(Low loss dielectric materials for LTCC applications)」、International Materials Reviews、第53巻、2008年、57〜90頁に記載されている。これらの材料のいくつかは「ガラスセラミック」といわれている。これらは、ガラス粉末および結晶性粉末の混合物の焼結によって製造されるため焼結材料である。   Another sintered material is M.I. T.A. Sebastian et al., "Low loss dielectric materials for LTCC applications", International Materials Reviews, 53, 2008, pages 57-90. Some of these materials are said to be “glass ceramic”. These are sintered materials because they are produced by sintering a mixture of glass powder and crystalline powder.

米国特許第6,184,845号明細書US Pat. No. 6,184,845 米国特許出願公開第2007/063902号明細書US Patent Application Publication No. 2007/063902

Mirsaneh外、“Circularly Loaded Dielectric−Loaded Antennas:Current Technology and Future Challenges”, Adv. Funct. Materials 18,(2008)、p.1−8Mirsaneh et al., “Circularly Loaded Dielectric-Loaded Antennas: Current Technology and Future Challenges”, Adv. Funct. Materials 18, (2008), p. 1-8 M.T.Sebastian外、“Low loss dielectric materials for LTCC applications” ,International Materials Reviews,Vol.53,2008,p.57−90M.M. T.A. Sebastian et al., “Low loss selective materials for LTCC applications”, International Materials Reviews, Vol. 53, 2008, p. 57-90

焼結により製造する誘電体は多数の欠点を有する。すなわち、すべての焼結プロセスは必ず一定の収縮を伴い、これが不正確な寸法精度およびそれに応じた最終機械加工につながる。さらに、すべての焼結プロセスは、一定の残留多孔性をもたらし、これは表面を金属被覆するときに不都合である。金属が空隙に浸透して、誘電体の誘電損を増やす。
加えて、焼結材料の製造は、基本的に比較的複雑で高価である。
Dielectrics produced by sintering have a number of disadvantages. That is, every sintering process always involves a certain shrinkage, which leads to inaccurate dimensional accuracy and corresponding final machining. Furthermore, all sintering processes result in a certain residual porosity, which is disadvantageous when metallizing the surface. Metal penetrates into the voids and increases the dielectric loss of the dielectric.
In addition, the production of sintered materials is basically relatively complex and expensive.

上記事項に鑑みて、本発明の目的は、高周波アプリケーション用誘電体として使用でき、比誘電率が高く誘電損が低い、改良された材料を提供することである。さらに、材料は、ごく単純で安価な方法で製造および加工することが可能であるべきである。   In view of the above, it is an object of the present invention to provide an improved material that can be used as a dielectric for high frequency applications and has a high dielectric constant and low dielectric loss. Furthermore, the material should be able to be manufactured and processed in a very simple and inexpensive way.

この目的は、少なくとも以下の構成成分(単位は酸化物基準のモル%)を有するガラスセラミックによって達成される。
SiO 5〜50
Al 0〜20
0〜25
BaO 0〜25
TiO 10〜60
RE 5〜35
上記組成において、Baは一部、好ましくは10%を上限に、Sr、Ca、Mgで置換でき、REはランタン、別のランタニド、またはイットリウムであり、Tiは一部、好ましくは10%を上限に、Zr、Hf、Y、Nb、V、Taで置換できる。
This object is achieved by a glass ceramic having at least the following components (units are mol% on oxide basis):
SiO 2 5~50
Al 2 O 3 0-20
B 2 O 3 0~25
BaO 0-25
TiO 2 10~60
RE 2 O 3 5~35
In the above composition, Ba can be partially substituted, preferably 10% up to Sr, Ca, Mg, RE can be lanthanum, another lanthanide, or yttrium, Ti can be partly, preferably up to 10% Further, Zr, Hf, Y, Nb, V, and Ta can be substituted.

本発明の目的は、この方法で完全に解決される。
セラミック化処理によって比誘電率が高く、誘電損が低く、かつ共振周波数の温度依存性が低い均質なガラスセラミックに後に転化できる均質なガラスは、このようなガラス組成を使って溶融できることが発見されている。材料は、単純で安価な方法でガラスセラミックとして製造でき、溶融技術プロセス、特に鋳込みまたは任意でプレスにより近似成形を可能にする。
The object of the invention is completely solved in this way.
It has been discovered that a homogeneous glass that can be subsequently converted to a homogeneous glass-ceramic with a high dielectric constant, low dielectric loss, and low temperature dependence of the resonant frequency, can be melted using such a glass composition by ceramicization treatment. ing. The material can be produced as a glass ceramic in a simple and inexpensive way, allowing approximate forming by melt technology processes, in particular casting or optionally pressing.

本発明の出願の目的上、「ガラスセラミック」という用語は、溶融によって製造された均質なガラスから出発し、特定の熱処理によって、大量の微結晶が本質的に均質に残留ガラス相に分布する部分結晶体に転化された材料をいう。
本発明の有利な実施形態において、ガラスセラミックは以下の構成成分を有する(酸化物基準のモル%で)。
SiO 10〜40
Al 0〜10
5〜25
BaO 0〜20
TiO 15〜50
RE 10〜30
上記組成において、Baは一部、好ましくは10%を上限に、Sr、Ca、Mgで置換でき、REはランタニドまたはイットリウムであり、Tiは一部、好ましくは10%を上限に、Zr、Hf、Y、Nb、V、Taで置換できる。
For the purposes of the present application, the term “glass ceramic” refers to a portion where a large amount of crystallites is essentially homogeneously distributed in the residual glass phase starting from a homogeneous glass produced by melting and with a specific heat treatment. A material converted into a crystal.
In an advantageous embodiment of the invention, the glass-ceramic has the following components (in mol% on oxide basis):
SiO 2 10~40
Al 2 O 3 0-10
B 2 O 3 5~25
BaO 0-20
TiO 2 15-50
RE 2 O 3 10-30
In the above composition, Ba can be partially substituted with Sr, Ca, Mg, preferably up to 10%, RE is lanthanide or yttrium, Ti is partially, preferably up to 10%, Zr, Hf , Y, Nb, V, Ta can be substituted.

さらに、ガラスセラミックは清澄剤を通例の量、好ましくは0.01モル%〜3モル%の清澄剤を含有でき、清澄剤は好ましくはSbおよびAsからなる群から選択される。
本発明のガラスセラミックは、好ましくは、高周波アプリケーション(f>200MHz)で、誘電損(tanδ)が10−2以下、好ましくは10−3以下である。
Furthermore, the glass ceramic can contain a refining agent in a customary amount, preferably 0.01 mol% to 3 mol%, and the refining agent is preferably selected from the group consisting of Sb 2 O 3 and As 2 O 3. The
The glass ceramic of the present invention preferably has a dielectric loss (tan δ) of 10 −2 or less, preferably 10 −3 or less, in a high frequency application (f> 200 MHz).

さらに、ガラスセラミックは、好ましくは、比誘電率εが少なくとも15、好ましくは>18、好ましくは20ないし80の範囲である。
本発明のガラスセラミックは、好ましくは、共振周波数の温度依存性tが200ppm/K以下、好ましくは50ppm/K以下、特に好ましくは10ppm/K以下でもある。
Furthermore, the glass ceramic preferably has a relative dielectric constant ε of at least 15, preferably> 18, preferably 20 to 80.
The glass ceramic of the present invention preferably has a temperature dependency t f of the resonance frequency of 200 ppm / K or less, preferably 50 ppm / K or less, particularly preferably 10 ppm / K or less.

本発明の別の有利な実施形態において、本発明のガラスセラミックは、RE、Ti、Si、O、および任意でBaを主成分とする少なくとも1種の混晶相を有し、上記組成において、Baは少なくとも一部をSr、Ca、Mgで置換でき、REはランタニドまたはイットリウムであり、Tiは少なくとも一部をZr、Hf、Y、Nb、V、Taで置換できる。   In another advantageous embodiment of the invention, the glass-ceramic of the invention has at least one mixed crystal phase based on RE, Ti, Si, O and optionally Ba, Ba can be at least partially substituted with Sr, Ca, Mg, RE can be lanthanide or yttrium, and Ti can be substituted at least partially with Zr, Hf, Y, Nb, V, Ta.

特に、本発明のガラスセラミックは、Ba、RE、TiO、RETi、RETiSiO、およびRETi24からなる群から選択される少なくとも1種の混晶相を含有でき、上記組成においてREはランタン、別のランタニドまたはイットリウムであり、Baのうち10%までをSr、Ca、Mgで置換でき、Tiのうち10%までをZr、Hf、Y、Nb、V、Taで置換できる。 In particular, the glass ceramic of the present invention has at least one mixed crystal phase selected from the group consisting of Ba, RE, TiO, RE 2 Ti 2 O 7 , RE 2 Ti 2 SiO 9 , and RE 4 Ti 9 O 24. In the above composition, RE is lanthanum, another lanthanide or yttrium, up to 10% of Ba can be replaced with Sr, Ca, Mg, and up to 10% of Ti can be Zr, Hf, Y, Nb, V and Ta can be substituted.

本発明のガラスセラミックは、好ましくは、結晶材料の割合が少なくとも30体積%であり、好ましくは95体積%までにすることができる。
平均微結晶サイズは、好ましくは10nmないし50μmであり、好ましくは100nmないし1μmの範囲である。
本発明のガラスセラミックは、高周波領域(f>200MHz)における誘電体共振器、電子周波数フィルタ素子、またはアンテナ素子用の誘電体として特に適する。
The glass ceramic of the present invention can preferably have a proportion of crystalline material of at least 30% by volume, preferably up to 95% by volume.
The average crystallite size is preferably 10 nm to 50 μm, preferably 100 nm to 1 μm.
The glass ceramic of the present invention is particularly suitable as a dielectric for a dielectric resonator, an electronic frequency filter element, or an antenna element in a high frequency region (f> 200 MHz).

円筒アンテナ素子またはパッチアンテナ素子用の誘電体として使用することが特に有用である。
高周波領域で、誘電損が10−2以下の本発明による誘電体は、以下のステップによって製造できる。
‐以下の構成成分(酸化物基準のモル%で)を含有する出発ガラスを溶融および均質化するステップ。
SiO 5〜50
Al 0〜20
0〜25
BaO 0〜25
TiO 10〜60
RE 5〜35
上記組成において、Baは一部を、好ましくは10%を上限に、Sr、Ca、Mgで置換でき、REはランタニドまたはイットリウムであり、Tiは一部を、好ましくは10%を上限に、Zr、Hf、Y、Nb、V、Taで置換できる。
‐出発ガラスを所望の成形型に注入するステップ。
‐出発ガラスを室温に冷却するステップ。
‐出発ガラスを熱処理によってセラミック化するステップ。
It is particularly useful for use as a dielectric for cylindrical antenna elements or patch antenna elements.
The dielectric according to the present invention having a dielectric loss of 10 −2 or less in the high frequency region can be manufactured by the following steps.
-Melting and homogenizing the starting glass containing the following components (in mol% on oxide basis):
SiO 2 5~50
Al 2 O 3 0-20
B 2 O 3 0~25
BaO 0-25
TiO 2 10~60
RE 2 O 3 5~35
In the above composition, Ba may be partially substituted with Sr, Ca, Mg, preferably up to 10%, RE may be lanthanide or yttrium, Ti may be partially substituted, preferably up to 10%, Zr , Hf, Y, Nb, V, Ta can be substituted.
-Pouring the starting glass into the desired mold.
-Cooling the starting glass to room temperature;
-Ceramicizing the starting glass by heat treatment.

本発明の好適な実施形態では、出発ガラスは少なくとも以下の構成成分(酸化物基準のモル%で)を含む。
SiO 10〜40
Al 0〜10
5〜25
BaO 0〜20
TiO 15〜50
RE 10〜30
上記組成において、Baは一部を、好ましくは10%を上限に、Sr、Ca、Mgで置換でき、REはランタニドまたはイットリウムであり、Tiは一部を、好ましくは10%を上限に、Zr、Hf、Y、Nb、V、Taで置換できる。
In a preferred embodiment of the present invention, the starting glass comprises at least the following components (in mole percent based on oxide):
SiO 2 10~40
Al 2 O 3 0-10
B 2 O 3 5~25
BaO 0-20
TiO 2 15-50
RE 2 O 3 10-30
In the above composition, Ba may be partially substituted with Sr, Ca, Mg, preferably up to 10%, RE may be lanthanide or yttrium, Ti may be partially substituted, preferably up to 10%, Zr , Hf, Y, Nb, V, Ta can be substituted.

出発ガラスは、好ましくは、熱間成形プロセス、特に鋳込み、管引抜き、ロッド引抜き、または押出し成型によって近似成形する。
本発明の別の特徴および利点は、図面を参照して以下の好適な実施例の説明から明らかにすることができる。
The starting glass is preferably approximate shaped by a hot forming process, in particular by casting, tube drawing, rod drawing or extrusion.
Other features and advantages of the present invention will become apparent from the following description of preferred embodiments with reference to the drawings.

X線回折解析の結果を示す。The result of an X-ray diffraction analysis is shown.

表1は、Ba‐La‐Ti‐Si‐O系の出発ガラスのさまざまなガラス組成を示す。
実施例1ないし実施例9のさまざまなガラスサンプルを、まず、従来の出発材料を使用した通常の方法で溶融および均質化する。ここで、白金るつぼ、Pt/Irるつぼ、Pt/Rhるつぼ、溶解石英るつぼ、または酸化アルミニウムるつぼを使用できる。サンプルは、まず、1350℃で2時間溶融してから、1400℃で30分間精製(純化)し、白金スターラーで20分間攪拌して均質化し、10分間静置してから、例えばスチール、グラファイト、酸化アルミニウム、または溶解石英製の適切な成形型に注入し、近似成形する。
Table 1 shows the various glass compositions of the starting glass of the Ba-La-Ti-Si-O system.
The various glass samples of Examples 1 to 9 are first melted and homogenized in the usual manner using conventional starting materials. Here, platinum crucibles, Pt / Ir crucibles, Pt / Rh crucibles, fused quartz crucibles or aluminum oxide crucibles can be used. The sample is first melted at 1350 ° C. for 2 hours, then purified (purified) at 1400 ° C. for 30 minutes, stirred with a platinum stirrer for 20 minutes, homogenized and allowed to stand for 10 minutes, for example, steel, graphite, Pour into a suitable mold made of aluminum oxide or fused quartz and approximate mold.

ガラスに、室温に冷却した後、セラミック化ステップを施すが、これは、例えば、赤外線加熱プロセスまたは従来のプロセスによって行うことができる。
赤外線加熱炉による典型的なセラミック化サイクルは以下のとおりである。
‐300K/分で1050℃まで加熱する。
‐1050℃で7秒間保持する。
‐50K/分の加熱速度で1200℃まで加熱する。
‐1200℃で15分間保持する。
‐加熱炉の電源を切って、約50K/分の冷却速度で約500℃まで冷却する。
‐約500℃の温度に達したら、加熱炉から試料を取り出す。
After the glass is cooled to room temperature, it is subjected to a ceramization step, which can be done, for example, by an infrared heating process or a conventional process.
A typical ceramization cycle with an infrared heating furnace is as follows.
Heat to 1050 ° C. at 300 K / min.
-Hold at 1050 ° C for 7 seconds.
-Heat to 1200 ° C at a heating rate of 50K / min.
-Hold at 1200 ° C for 15 minutes.
-Turn off the furnace and cool to about 500 ° C at a cooling rate of about 50 K / min.
When the temperature reaches about 500 ° C., remove the sample from the furnace.

従来の加熱炉におけるセラミック化は、925℃で15時間の熱処理によって行う。
必要なら、鋳込み後に、成型物に精密研削もしくは研磨処理を施すことができ、または円筒形の成型物の製造の場合は、円筒形の表面の芯なし研削により機械加工できる。
図1に、セラミック化後のサンプル9のX線回折解析を示す。顕著な結晶相は、LaTiSiOである。加えて、小比率のルチルTiOが見つかった。
Ceramming in a conventional heating furnace is performed by heat treatment at 925 ° C. for 15 hours.
If necessary, after casting, the molding can be precision ground or polished, or in the case of the production of a cylindrical molding, it can be machined by coreless grinding of the cylindrical surface.
FIG. 1 shows an X-ray diffraction analysis of Sample 9 after ceramization. A prominent crystal phase is La 2 Ti 2 SiO 9 . In addition, a small proportion of rutile TiO 2 was found.

このサンプルの結晶相の体積比率は、およそ約50体積%ないし70体積%である。
サンプル1ないしサンプル9の比誘電率εを測定した。これらはすべて15より大きく、20ないし50の範囲内であった。
これらのサンプルは、低い誘電損と高い品質も示している。
品質Q値は、誘電損(tanδ)の逆数である。
Q=1/tan(δ)
品質は、ハッキ・コールマン共振法により測定する。ここでは、品質係数は、品質Q値と測定周波数fとの積として求める。
The volume fraction of the crystalline phase of this sample is about 50% to 70% by volume.
The relative dielectric constant ε of Sample 1 to Sample 9 was measured. These were all greater than 15 and in the range of 20-50.
These samples also show low dielectric loss and high quality.
The quality Q value is the reciprocal of dielectric loss (tan δ).
Q = 1 / tan (δ)
Quality is measured by the Hack-Coleman resonance method. Here, the quality factor is determined as the product of the quality Q value and the measured frequency f 0.

すべてのサンプル1ないし9の品質係数Q・fは、2000GHzないし3000GHzの範囲内であった。サンプル1の場合、10.09GHzで、比誘電率ε22.4、品質Q値205が、すなわち、品質係数2068が測定された。
共振周波数の温度係数tは、測定したすべてのサンプルで非常に低く、−40ppm/K<t<40ppm/Kの範囲である。
The quality factors Q · f 0 of all samples 1 to 9 were in the range of 2000 GHz to 3000 GHz. In the case of Sample 1, the relative dielectric constant ε22.4 and the quality Q value 205, that is, the quality factor 2068 were measured at 10.09 GHz.
The temperature coefficient t f of the resonant frequency is very low for all measured samples and is in the range of −40 ppm / K <t f <40 ppm / K.

アンテナ用の誘電体、特に、移動体電話の移動GPSアンテナに適したものとして使用する場合、周波数範囲は200MHz超、特に、約800MHzないし70GHzの範囲である。アンテナの誘電体帯電は、ユーザによるデチューニングに対するアンテナの感度を低下させる。   When used as a dielectric for antennas, particularly those suitable for mobile GPS antennas in mobile phones, the frequency range is over 200 MHz, especially in the range of about 800 MHz to 70 GHz. The dielectric charging of the antenna reduces the antenna's sensitivity to user detuning.

Figure 0005473970
Figure 0005473970

Claims (22)

酸化物基準のモル%で、少なくとも以下の構成成分を含み、
SiO 10〜40
Al 0〜10
5〜25
BaO 0〜20
TiO 15〜50
RE 10〜30
ここで、Baは部分的にSr、Ca、Mgで置換でき、REはランタン、別のランタニドまたはイットリウムであり、Tiは部分的にZr、Hf、Nb、V、Taで置換できることを特徴とする、ガラスセラミック。
Containing at least the following components in mole percent on an oxide basis;
SiO 2 10~40
Al 2 O 3 0-10
B 2 O 3 5~25
BaO 0-20
TiO 2 15-50
RE 2 O 3 10-30
Here, Ba can be partially substituted with Sr, Ca, Mg, RE is lanthanum, another lanthanide or yttrium, and Ti can be partially substituted with Zr, Hf , Nb , V, Ta , Glass ceramic.
Baは10%を上限にSrで置換でき、Tiは10%を上限にZr、Hf、Nb、V、Taで置換できることを特徴とする、請求項1に記載のガラスセラミック。 The glass ceramic according to claim 1, wherein Ba can be substituted with Sr up to 10% and Ti can be substituted with Zr, Hf , Nb , V, Ta up to 10%. 0.01モル%ないし3モル%の少なくとも1種の清澄剤を含有する、請求項1または2に記載のガラスセラミック。 Glass ceramic according to claim 1 or 2, comprising 0.01 mol% to 3 mol% of at least one fining agent. 前記清澄剤は、SbおよびAsからなる群から選択されることを特徴とする、請求項に記載のガラスセラミック。 The glass ceramic according to claim 3 , wherein the fining agent is selected from the group consisting of Sb 2 O 3 and As 2 O 3 . 周波数f>200MHzの高周波領域で、10−2以下の誘電損(tanδ)を有することを特徴とする、請求項1ないしのいずれか1項に記載のガラスセラミック。 In the high frequency region of the frequency f> 200MHz, 10 -2 and having less dielectric loss of the (tan [delta), glass-ceramic according to any one of claims 1 to 4. 周波数f>200MHzの高周波領域で、10−3以下の誘電損(tanδ)を有することを特徴とする、請求項1ないしのいずれか1項に記載のガラスセラミック。 In the high frequency region of the frequency f> 200MHz, 10 -3 and having less dielectric loss of the (tan [delta), glass-ceramic according to any one of claims 1 to 5. 少なくとも15の比誘電率εを有することを特徴とする、請求項1ないしのいずれか1項に記載のガラスセラミック。 Characterized in that it has at least 15 dielectric constant of epsilon, glass-ceramic according to any one of claims 1 to 6. 20ないし80の範囲内の比誘電率εを有することを特徴とする、請求項1ないしのいずれか1項に記載のガラスセラミック。 The glass ceramic according to any one of claims 1 to 7 , characterized by having a relative dielectric constant ε in the range of 20 to 80. 共振周波数の温度依存性の絶対値|τ|が、200ppm/K以下であることを特徴とする、請求項1ないしのいずれか1項に記載のガラスセラミック。 The glass ceramic according to any one of claims 1 to 8 , wherein the absolute value | τ f | of the temperature dependence of the resonance frequency is 200 ppm / K or less. 前記共振周波数の温度依存性の絶対値|τ|が、50ppm/K以下であることを特徴とする、請求項1ないしのいずれか1項に記載のガラスセラミック。 Absolute value of the temperature dependence of the resonant frequency | tau f |, characterized in that it is 50 ppm / K or less, the glass ceramic according to any one of claims 1 to 9. 前記共振周波数の温度依存性の絶対値|τ|が、10ppm/K以下であることを特徴とする、請求項1ないし10のいずれか1項に記載のガラスセラミック。 Absolute value of the temperature dependence of the resonant frequency | tau f |, characterized in that it is 10 ppm / K or less, the glass ceramic according to any one of claims 1 to 10. RE、Ti、Si、O、および任意でBaを主成分とする少なくとも1種の混晶相を含有し、ここで、Baは少なくとも部分的にSr、Ca、Mgで置換でき、REはランタニドまたはイットリウムであり、Tiは少なくとも部分的にZr、Hf、Nb、V、Taで置換できることを特徴とする、請求項1ないし11のいずれか1項に記載のガラスセラミック。 Contains at least one mixed crystal phase based on RE, Ti, Si, O, and optionally Ba, wherein Ba can be at least partially substituted with Sr, Ca, Mg, and RE can be lanthanide or yttrium, Ti is at least partially Zr, Hf, Nb, V, and wherein can be substituted with Ta, glass-ceramic according to any one of claims 1 to 11. BaRETiO、RETi、RETiSiO、およびRETi24からなる群から選択される少なくとも1種の混晶相を含み、ここで、REはランタン、別のランタニドまたはイットリウムであり、Baの10%までをSr、Ca、Mgで置換でき、Tiの10%までをZr、Hf、Nb、V、Taで置換できることを特徴とする、請求項1ないし12のいずれか1項に記載のガラスセラミック。 Including at least one mixed crystal phase selected from the group consisting of BaRETiO, RE 2 Ti 2 O 7 , RE 2 Ti 2 SiO 9 , and RE 4 Ti 9 O 24 , wherein RE is lanthanum, another lanthanide or yttrium, can replace up to 10% of Ba Sr, Ca, with Mg, any of up to 10% of Ti Zr, Hf, Nb, V, and wherein can be substituted with Ta, of claims 1 to 12 The glass ceramic according to claim 1. 前記ガラスセラミック全体に対する結晶材料の体積比率が少なくとも30体積%であることを特徴とする、請求項1ないし13のいずれか1項に記載のガラスセラミック。 Wherein the volume ratio of the crystal material with respect to the entire glass ceramic is at least 30% by volume, the glass ceramic according to any one of claims 1 to 13. 前記ガラスセラミック全体に対する結晶材料の体積比率が95体積%までであることを特徴とする、請求項1ないし14のいずれか1項に記載のガラスセラミック。 The volume ratio of crystalline material to the entire glass ceramic is characterized in that up to 95% by volume, the glass ceramic according to any one of claims 1 to 14. 前記結晶材料の体積比率は、X線回折解析によって求められることを特徴とする、請求項14または15に記載のガラスセラミック  The glass ceramic according to claim 14 or 15, wherein the volume ratio of the crystal material is obtained by X-ray diffraction analysis. 10nmないし50μmの平均微結晶サイズを有することを特徴とする、請求項1ないし16のいずれか1項に記載のガラスセラミック。   The glass ceramic according to any one of claims 1 to 16, wherein the glass ceramic has an average crystallite size of 10 nm to 50 µm. 100nmないし1μm平均微結晶サイズを有することを特徴とする、請求項1ないし17のいずれか1項に記載のガラスセラミック。   Glass ceramic according to any one of the preceding claims, characterized in that it has an average crystallite size of 100 nm to 1 µm. 請求項1ないし18のいずれか1項に記載のガラスセラミックの使用であって、高周波領域用の誘電体共振器、電子周波数フィルタ素子、またはアンテナ素子用の誘電体としての使用。   Use of the glass ceramic according to any one of claims 1 to 18, wherein the glass ceramic is used as a dielectric resonator for a high frequency region, an electronic frequency filter element, or a dielectric for an antenna element. 円筒アンテナ素子またはパッチアンテナ素子用の誘電体としての、請求項19に記載の使用。   20. Use according to claim 19, as a dielectric for cylindrical or patch antenna elements. 高周波領域で、誘電損が10−2以下の誘電体を製造する方法であって、当該方法は、
酸化物基準のモル%で、以下の構成成分を含む出発ガラスを溶融および均質化するステップと、
SiO 10〜40
Al 0〜10
5〜25
BaO 0〜20
TiO 15〜50
RE 10〜30
ここで、Baは部分的にSr、Ca、Mgで置換でき、REはランタン、別のランタニド、またはイットリウムであり、Tiは部分的にZr、Hf、Nb、V、Taで置換でき、
前記出発ガラスを所望の成形型に注入するステップと、
前記出発ガラスを室温に冷却するステップと、
前記出発ガラスを熱処理によってセラミック化するステップとを含むことを特徴とする、方法。
A method of manufacturing a dielectric having a dielectric loss of 10 −2 or less in a high-frequency region,
Melting and homogenizing a starting glass containing the following constituents in mole percent on an oxide basis:
SiO 2 10~40
Al 2 O 3 0-10
B 2 O 3 5~25
BaO 0-20
TiO 2 15-50
RE 2 O 3 10-30
Here, Ba can be partially substituted with Sr, Ca, Mg, RE can be lanthanum, another lanthanide, or yttrium, Ti can be partially substituted with Zr, Hf , Nb , V, Ta,
Injecting the starting glass into a desired mold;
Cooling the starting glass to room temperature;
Cerazing the starting glass by heat treatment.
前記出発ガラスを、溶融技術プロセスによって近似成形することを特徴とする、請求項21に記載の方法。 The method according to claim 21 , characterized in that the starting glass is approximately shaped by a melting technique process.
JP2011060936A 2010-03-19 2011-03-18 Glass ceramics as dielectrics in the high frequency range. Active JP5473970B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010012524 DE102010012524B4 (en) 2010-03-19 2010-03-19 Glass ceramic as a dielectric in the high frequency range, process for the preparation and use of such
DE102010012524.5 2010-03-19

Publications (2)

Publication Number Publication Date
JP2011195440A JP2011195440A (en) 2011-10-06
JP5473970B2 true JP5473970B2 (en) 2014-04-16

Family

ID=44874106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060936A Active JP5473970B2 (en) 2010-03-19 2011-03-18 Glass ceramics as dielectrics in the high frequency range.

Country Status (2)

Country Link
JP (1) JP5473970B2 (en)
DE (1) DE102010012524B4 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032982B4 (en) 2010-07-31 2016-07-07 Schott Ag Glass-ceramic, which has at least two crystal phases, process for producing a glass-ceramic and their use
US20130120193A1 (en) * 2011-11-16 2013-05-16 Schott Ag Glass ceramics for use as a dielectric for gigahertz applications
DE102011119798A1 (en) 2011-11-24 2013-05-29 Schott Ag Glass ceramic as a dielectric in the high frequency range
DE102011119804B4 (en) 2011-11-24 2019-02-07 Schott Ag Dielectric for the high frequency range and its use
US8772188B2 (en) 2012-03-12 2014-07-08 Schott Ag Glass-ceramic having at least two crystal phases, process for producing a glass-ceramic and its use
CN103771711B (en) * 2013-12-24 2016-05-18 中国科学院上海硅酸盐研究所 Devitrified glass of high quality factor and preparation method thereof
CN107010941B (en) * 2017-05-02 2020-09-01 桂林电子科技大学 Lead-free ferroelectric ceramic material with giant electroresistance change and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110082A (en) * 1984-06-26 1986-01-17 岩崎電気株式会社 Sealing composition
JPH04119941A (en) * 1990-09-06 1992-04-21 Mitsubishi Heavy Ind Ltd Production of crystallized glass
JP3624405B2 (en) * 1994-08-31 2005-03-02 日本電気硝子株式会社 Glass ceramic dielectric material
US6184845B1 (en) 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
DE10245234B4 (en) * 2002-09-27 2011-11-10 Schott Ag Crystallisable glass, its use for producing a highly rigid, break-resistant glass ceramic with a good polishable surface and use of the glass ceramic
GB2430556B (en) 2005-09-22 2009-04-08 Sarantel Ltd A mobile communication device and an antenna assembly for the device
DE102006027307B4 (en) * 2006-06-06 2014-08-07 Schott Ag Process for producing a sintered glass ceramic and its use

Also Published As

Publication number Publication date
JP2011195440A (en) 2011-10-06
DE102010012524B4 (en) 2012-03-15
DE102010012524A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
US20130120193A1 (en) Glass ceramics for use as a dielectric for gigahertz applications
JP5473970B2 (en) Glass ceramics as dielectrics in the high frequency range.
JP6722743B2 (en) Glass-ceramic as a dielectric in the high frequency range
JP2017071550A (en) Glass ceramic as dielectric in high-frequency range
JP6310732B2 (en) Optical glass, optical element, and method of manufacturing optical glass
US8863552B2 (en) Sintering of fused silica to produce shaped bodies comprising crystalline SiO2
Zhang et al. Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics doped with Li2O–B2O3–SiO2 glass
CN103880288B (en) A kind of strontium barium niobate glass ceramic material of high-k high breakdown field strength and preparation method thereof
US8772188B2 (en) Glass-ceramic having at least two crystal phases, process for producing a glass-ceramic and its use
Ding et al. Low-temperature-sintering characteristic and microwave dielectric properties of (Zn0. 7Mg0. 3) TiO3 ceramics with LBSCA glass
Weng et al. Low temperature sintering and microwave dielectric properties of Zn1. 8SiO3. 8 ceramics with BaCu (B2O5) additive for LTCC applications
DE102010032982B4 (en) Glass-ceramic, which has at least two crystal phases, process for producing a glass-ceramic and their use
JP2012051738A (en) Ceramic dielectric and method for producing the same
Jeon et al. Effects of crystallization behaviour on microwave dielectric properties of (Ca1− xMg x) SiO3 glass-ceramics
JP4830223B2 (en) Method for producing high frequency dielectric ceramic composition
Chen et al. Sintering characteristic and microwave dielectric properties of 0.45 Ca 0.6 Nd 0.267 TiO 3–0.55 Li 0.5 Nd 0.5 TiO 3 ceramics with La 2 O 3–B 2 O 3–ZnO additive
CN116157367A (en) Crystallized glass, substrate for high frequency, antenna for liquid crystal, and method for producing crystallized glass
JP2002068837A (en) Method for manufacturing dielectric ceramic composition
Mirsaneh et al. Bismuth niobate-based glass-ceramics for dielectrically loaded microwave antennas
JP2020532483A (en) Yoshiokaite glass ceramic obtained from glass frit
CN106565095A (en) A manganese dioxide-doped barium-strontium niobate based glass ceramic energy-storing material and a preparing method thereof
JP2024035396A (en) Crystallized glass, dielectric material and high-frequency dielectric device
JP2016040222A (en) Crystallized glass ceramic dielectric for high frequency and manufacturing method therefor
JP2003026470A (en) Low-thermal conductivity and high rigid ceramics
JP4470392B2 (en) High frequency dielectric ceramic materials and high frequency dielectric ceramic materials

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250