JP5473585B2 - Epoxy resin composition - Google Patents
Epoxy resin composition Download PDFInfo
- Publication number
- JP5473585B2 JP5473585B2 JP2009292181A JP2009292181A JP5473585B2 JP 5473585 B2 JP5473585 B2 JP 5473585B2 JP 2009292181 A JP2009292181 A JP 2009292181A JP 2009292181 A JP2009292181 A JP 2009292181A JP 5473585 B2 JP5473585 B2 JP 5473585B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- curing
- mass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Epoxy Resins (AREA)
Description
本発明は、エポキシ樹脂組成物に関する。本発明は、特に、エポキシ樹脂組成物を硬化させた硬化樹脂のガラス転移温度が該エポキシ樹脂組成物の硬化温度より著しく高いエポキシ樹脂組成物に関する。 The present invention relates to an epoxy resin composition. The present invention particularly relates to an epoxy resin composition in which the glass transition temperature of a cured resin obtained by curing the epoxy resin composition is significantly higher than the curing temperature of the epoxy resin composition.
エポキシ樹脂組成物は種々の硬化剤で硬化させることにより、一般的に機械物性、耐水性、耐薬品性、耐熱性、電気的特性などに優れた硬化樹脂となり、接着剤、塗料、積層板、成形材料、注型材料、電子材料などの幅広い分野に利用されている。工業的に使用されているエポキシ樹脂としてはビスフェノールAにエピクロルヒドリンを反応させて得られるビスフェノールA型エポキシ樹脂が知られている。半導体封止材などの用途においては耐熱性が要求されるため、クレゾールノボラック型エポキシ樹脂が広く利用されている。一方、ガラス基盤搬送などの産業用途に用いる複合材料のマトリックス樹脂としては、250℃程度の温度領域における耐熱性が要求されており、このような領域では、一般にBMI樹脂、BMI樹脂とエポキシ樹脂の混合物などが用いられているが、機械物性の面でエポキシ樹脂に劣る。また、コスト、成形性の面でもエポキシ樹脂が有利である。耐熱性の高い硬化樹脂を与えるエポキシ樹脂としては、例えば、特許文献1〜4に記載された多官能エポキシ樹脂とジアミノジフェニルスルホン硬化剤からなるエポキシ樹脂組成物などが知られている。しかしながら、これらの特許文献に記載されたエポキシ樹脂組成物は、高耐熱性を有するものの、前述したような高い温度領域における耐熱性は不充分であり、より一層の耐熱性を有するエポキシ樹脂組成物が要求されている。 Epoxy resin compositions are cured with various curing agents, resulting in a cured resin that is generally excellent in mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, It is used in a wide range of fields such as molding materials, casting materials and electronic materials. As an epoxy resin used industrially, a bisphenol A type epoxy resin obtained by reacting bisphenol A with epichlorohydrin is known. Since heat resistance is required in applications such as semiconductor encapsulants, cresol novolac epoxy resins are widely used. On the other hand, as a matrix resin of a composite material used for industrial applications such as glass substrate conveyance, heat resistance in a temperature range of about 250 ° C. is required, and in such a region, BMI resin, BMI resin and epoxy resin are generally used. Mixtures are used, but they are inferior to epoxy resins in terms of mechanical properties. Epoxy resins are also advantageous in terms of cost and moldability. As an epoxy resin that gives a cured resin having high heat resistance, for example, an epoxy resin composition composed of a polyfunctional epoxy resin and a diaminodiphenylsulfone curing agent described in Patent Documents 1 to 4 is known. However, although the epoxy resin composition described in these patent documents has high heat resistance, the heat resistance in the high temperature region as described above is insufficient, and the epoxy resin composition having further heat resistance. Is required.
本発明は、エポキシ樹脂組成物を硬化させた硬化樹脂のガラス転移温度が該エポキシ樹脂組成物の硬化温度より著しく高く、耐熱性に優れた硬化樹脂を与えるエポキシ樹脂組成物を提供することを目的とする。 It is an object of the present invention to provide an epoxy resin composition that provides a cured resin excellent in heat resistance because the glass transition temperature of the cured resin obtained by curing the epoxy resin composition is significantly higher than the curing temperature of the epoxy resin composition. And
本発明者は前記した課題を解決すべく、鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明は、下記式(1)で表されるエポキシ樹脂(A)95〜75質量部およびN,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)5〜25質量部の合計100質量部と、4,4’−ジアミノジフェニルスルホン(C)からなるエポキシ樹脂組成物を提供する。 As a result of intensive studies to solve the above-described problems, the present inventor has completed the present invention. That is, the present invention is a total of 95 to 75 parts by mass of the epoxy resin (A) represented by the following formula (1) and 5 to 25 parts by mass of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (B). An epoxy resin composition comprising 100 parts by mass and 4,4′-diaminodiphenylsulfone (C) is provided.
本発明のエポキシ樹脂組成物は、該エポキシ樹脂組成物を硬化させた硬化樹脂のガラス転移温度が該エポキシ樹脂組成物の硬化温度より著しく高いため、高い耐熱性を必要とする自動車および電子電気分野に有用である。 In the epoxy resin composition of the present invention, the glass transition temperature of the cured resin obtained by curing the epoxy resin composition is remarkably higher than the curing temperature of the epoxy resin composition. Useful for.
本発明のエポキシ樹脂組成物は、前記式(1)で表されるエポキシ樹脂(A)95〜75質量部およびN,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)5〜25部の合計100質量部と4,4’−ジアミノジフェニルスルホン(C)からなる。式(1)において、nの平均値は0〜3、特に0〜2であるのが好ましい。nの平均値が3を超える場合には粘度が上昇するため、調製が困難になることがある。 The epoxy resin composition of the present invention comprises 95 to 75 parts by mass of the epoxy resin (A) represented by the formula (1) and 5 to 25 parts of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (B). And 100 parts by mass of 4,4′-diaminodiphenylsulfone (C). In the formula (1), the average value of n is preferably 0 to 3, and particularly preferably 0 to 2. When the average value of n exceeds 3, the viscosity increases, so that preparation may be difficult.
本発明におけるエポキシ樹脂(A)は、トリフェニルメタン型エポキシ樹脂と称されることがあり、その例としては、Tactix742(ハンツマン・アドバンスト・マテリアルズ社製)、jER1032H60(ジャパンエポキシレジン社製)、EPPN―501、EPPN―502(日本化薬社製)などが挙げられる。好ましくはTactix742である。 The epoxy resin (A) in the present invention may be referred to as a triphenylmethane type epoxy resin. Examples thereof include Tactix 742 (manufactured by Huntsman Advanced Materials), jER1032H60 (manufactured by Japan Epoxy Resin), EPPN-501, EPPN-502 (made by Nippon Kayaku Co., Ltd.), etc. are mentioned. Tactix 742 is preferable.
本発明におけるN,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)としては、jER604(ジャパンエポキシレジン社製)などが挙げられる。 Examples of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (B) in the present invention include jER604 (manufactured by Japan Epoxy Resin Co., Ltd.).
本発明における4,4’−ジアミノジフェニルスルホン(C)としては、セイカキュアーS(和歌山精化社製)などが挙げられる。4,4’―ジアミノジフェニルスルホン(C)の配合量は、本発明のエポキシ樹脂組成物のエポキシ当量に対するアミン当量の比が0.7〜1.4当量となる量であることが好ましい。0.7当量未満では、該エポキシ樹脂組成物を硬化させた硬化樹脂の曲げ弾性率が上昇し、ガラス転移温度、G’保持率(実施例で後述する)が低下する。曲げ弾性率が過度に大きくなると、耐熱クラック性に悪影響を与えると考えられる。また、エポキシ当量に対するアミン当量の比が1.4当量を超えるとガラス転移温度、G’保持率が低下する。 Examples of 4,4'-diaminodiphenyl sulfone (C) in the present invention include Seika Cure S (manufactured by Wakayama Seika Co., Ltd.). The amount of 4,4'-diaminodiphenylsulfone (C) is preferably such that the ratio of amine equivalent to epoxy equivalent of the epoxy resin composition of the present invention is 0.7 to 1.4 equivalent. When the amount is less than 0.7 equivalent, the flexural modulus of the cured resin obtained by curing the epoxy resin composition is increased, and the glass transition temperature and G ′ retention (described later in Examples) are decreased. If the flexural modulus is excessively large, it is considered that the heat crack resistance is adversely affected. On the other hand, when the ratio of amine equivalent to epoxy equivalent exceeds 1.4 equivalent, the glass transition temperature and G ′ retention ratio are lowered.
本発明のエポキシ樹脂組成物は、その製造法に特に限定はなく、公知の技術、例えば、ミキシングロールやニーダーなどを使用する方法により製造することができる。 The production method of the epoxy resin composition of the present invention is not particularly limited, and can be produced by a known technique such as a method using a mixing roll or a kneader.
本発明のエポキシ樹脂組成物からは、該エポキシ樹脂組成物を硬化させた硬化樹脂のガラス転移温度が該エポキシ樹脂組成物の硬化温度より著しく高く、耐熱性に優れた硬化樹脂が得られる。通常、300℃以上のG’−Tgを得るためには、300℃に近い温度での硬化が必要であるが、本発明では200℃での硬化であっても300℃以上のG’−Tgを示す硬化樹脂を得ることができる。硬化温度を抑えることにより、副資材の制限が少なくなり、使用エネルギー抑制による製造コストの低減が可能であり、また他部材へ熱がかかることによる悪影響を少なくすることができる。 From the epoxy resin composition of the present invention, a cured resin obtained by curing the epoxy resin composition has a glass transition temperature significantly higher than the curing temperature of the epoxy resin composition, and a cured resin excellent in heat resistance can be obtained. Usually, in order to obtain G′-Tg of 300 ° C. or higher, curing at a temperature close to 300 ° C. is necessary. However, in the present invention, G′-Tg of 300 ° C. or higher is required even at 200 ° C. Can be obtained. By suppressing the curing temperature, the limitation on the auxiliary material is reduced, the manufacturing cost can be reduced by suppressing the use energy, and the adverse effect due to the heat applied to other members can be reduced.
以下、本発明のエポキシ樹脂組成物の具体的な構成を、実施例に基づいて、比較例と比較しながら説明する。 Hereinafter, the specific structure of the epoxy resin composition of the present invention will be described based on examples while comparing with comparative examples.
実施例1〜2、比較例1〜11
エポキシ樹脂組成物の調製
エポキシ樹脂組成物の調製を以下の方法で行った。なお、実施例および比較例のエポキシ樹脂組成物に使用した各成分は、下記の略字で示す通りである。
Examples 1-2 and Comparative Examples 1-11
Preparation of epoxy resin composition The epoxy resin composition was prepared by the following method. In addition, each component used for the epoxy resin composition of an Example and a comparative example is as showing with the following abbreviation.
エポキシ樹脂(A)
Tactix742:式(1)に相当するエポキシ樹脂 トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、エポキシ当量:160g/eq.、ハンツマン・アドバンスト・マテリアルズ(株)製
Epoxy resin (A)
Tactix 742: epoxy resin corresponding to formula (1) Tris (hydroxyphenyl) methane triglycidyl ether, epoxy equivalent: 160 g / eq. , Manufactured by Huntsman Advanced Materials Co., Ltd.
エポキシ樹脂(B)
jER604:N,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、エポキシ当量:120g/eq.、ジャパンエポキシレジン(株)製
Epoxy resin (B)
jER604: N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane type epoxy resin, epoxy equivalent: 120 g / eq. , Made by Japan Epoxy Resin Co., Ltd.
4,4’−ジアミノジフェニルスルホン(C)
4,4’−DDS:4,4’‐ジアミノジフェニルスルホン、和歌山精化工業(株)製セイカキュアーS(粉砕品)、アミン活性水素当量:62g/eq.
4,4'-diaminodiphenyl sulfone (C)
4,4′-DDS: 4,4′-diaminodiphenylsulfone, Seika Cure S (ground product) manufactured by Wakayama Seika Kogyo Co., Ltd., amine active hydrogen equivalent: 62 g / eq.
その他のエポキシ樹脂(D)
jER807:液状ビスフェノールF型エポキシ樹脂、エポキシ当量:168g/eq.、ジャパンエポキシレジン(株)製
Other epoxy resins (D)
jER807: Liquid bisphenol F type epoxy resin, epoxy equivalent: 168 g / eq. , Made by Japan Epoxy Resin Co., Ltd.
その他の硬化剤(E)
3,3’−DDS:3,3’−ジアミノジフェニルスルホン、日本合成加工(株)製DAS
2E4MZ−CN:(2−シアノエチル)−2−エチルー4−メチルイミダゾール、四国化成(株)製キュアゾール2E4MZ−CN
Other curing agents (E)
3,3′-DDS: 3,3′-diaminodiphenylsulfone, DAS manufactured by Nippon Synthetic Processing Co., Ltd.
2E4MZ-CN: (2-cyanoethyl) -2-ethyl-4-methylimidazole, Cure Sole 2E4MZ-CN manufactured by Shikoku Kasei Co., Ltd.
表1〜3に示した配合比にて、ガラスフラスコ内で各成分を配合し、60℃で均一に分散させて、エポキシ樹脂組成物を得た。 Each component was mix | blended in the glass flask by the compounding ratio shown to Tables 1-3, and it was made to disperse | distribute uniformly at 60 degreeC, and the epoxy resin composition was obtained.
硬化樹脂の曲げ物性の測定
上記で得られたエポキシ樹脂組成物を60℃に加熱して脱泡した後、離型処理を施してあるガラス板上に2mm厚にてキャスティングし、さらに同様の処理を施してあるガラス板で挟み、室温まで冷却した。室温から昇温速度1.7℃/分にて昇温し、120℃で一次硬化させ、ガラス板から取り出した後、別のガラス板の上で、室温から昇温速度1.7℃/分にて昇温し、200℃で二次硬化を行い、2mm厚の成形板を得た。得られた成形板を湿式ダイヤモンドカッターにてW8mm×L60mmの寸法にて切断して、試験片を作製した。得られた試験片を、Instron社製万能試験機Instron5565と解析ソフトBluehillを用い、圧子R=3.2mm、L/D=16mm、クロスヘッドスピード2mm/分、試験温度23℃の測定条件にて3点曲げ試験を行い、曲げ強度、曲げ弾性率、破断伸度を算出した。結果を表1、表2に示す。
Measurement of bending properties of cured resin The epoxy resin composition obtained above was heated to 60 ° C. to defoam, then cast on a glass plate that had been subjected to a release treatment at a thickness of 2 mm, and the same treatment. Was sandwiched between glass plates coated with, and cooled to room temperature. The temperature was raised from room temperature at a rate of temperature increase of 1.7 ° C./min, first cured at 120 ° C., taken out from the glass plate, and then on another glass plate at a rate of temperature increase of 1.7 ° C./min. The temperature was raised at 2 ° C. and secondary curing was carried out at 200 ° C. to obtain a 2 mm thick molded plate. The obtained molded plate was cut into a size of W8 mm × L60 mm with a wet diamond cutter to prepare a test piece. Using the universal tester Instron 5565 manufactured by Instron and analysis software Bluehill, the obtained test piece was measured under the measurement conditions of indenter R = 3.2 mm, L / D = 16 mm, crosshead speed 2 mm / min, and test temperature 23 ° C. A three-point bending test was performed, and bending strength, flexural modulus, and elongation at break were calculated. The results are shown in Tables 1 and 2.
硬化樹脂の高温曲げ物性の測定
試験温度を250℃としたほかは上記と同様にして3点曲げ試験を行い、曲げ強度、曲げ弾性率を算出した。結果を表3に示す。
Measurement of high-temperature bending property of cured resin A three-point bending test was performed in the same manner as described above except that the test temperature was 250 ° C., and the bending strength and the bending elastic modulus were calculated. The results are shown in Table 3.
硬化樹脂のガラス転移点温度(Tg)の測定
成形板を湿式ダイヤモンドカッターにてW12.7mm×L55mmの寸法にて切断したほかは上記と同様にして試験片を作製した。TA Instrument社製のDMA ARES−RDAを用い、昇温速度5℃/分、Freq.1Hz、歪0.05%の条件でTgを測定した。Tgは得られたG’―Tg(図1参照)およびtanδの最大値を示す温度とした。また、以下の式よりG’保持率を求めた。結果を表1、表2に示す。
G’保持率(%)=G’250℃/G’30℃×100
G’250℃:250℃でのG’
G’30℃:30℃でのG’
Measurement of Glass Transition Temperature (Tg) of Cured Resin A test piece was prepared in the same manner as above except that the molded plate was cut with a wet diamond cutter to a size of W12.7 mm × L55 mm. A DMA ARES-RDA manufactured by TA Instrument was used, the heating rate was 5 ° C./min, Freq. Tg was measured under the conditions of 1 Hz and a strain of 0.05%. Tg was obtained as G′-Tg (see FIG. 1) and a temperature indicating the maximum value of tan δ. Further, the G ′ retention rate was obtained from the following formula. The results are shown in Tables 1 and 2.
G ′ retention rate (%) = G ′ 250 ° C./G ′ 30 ° C. × 100
G ′ 250 ° C . : G ′ at 250 ° C.
G ′ 30 ° C . : G ′ at 30 ° C.
実施例1、2
表1の樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させることにより高機械強度と高耐熱性とを両立する硬化樹脂が得られた(表1)。DMAにおいては、高いガラス転移温度と高いG’保持率が観測された(表1)。また、硬化樹脂の250℃での曲げ物性の測定において、高い曲げ弾性率保持率を示した(表3)。
Examples 1 and 2
The resin composition of Table 1 was subjected to primary curing (120 ° C. × 8 hours) and then secondary curing (200 ° C. × 2 hours) to obtain a cured resin having both high mechanical strength and high heat resistance ( Table 1). In DMA, a high glass transition temperature and a high G ′ retention were observed (Table 1). Moreover, in the measurement of the bending physical property of the cured resin at 250 ° C., a high bending elastic modulus retention was shown (Table 3).
比較例1
実施例2の4,4’−DDSを3,3’−DDSに置き換えた樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、曲げ弾性率が大きく上昇し、ガラス転移温度、G’保持率が大きく低下した(表2)。曲げ弾性率の上昇は、内部応力の増加および熱クラック耐性の低下につながるため望ましくない。また、硬化樹脂の250℃での曲げ物性の測定において、曲げ弾性率保持率が大きく低下した(表3)。
Comparative Example 1
The resin composition obtained by replacing 4,4′-DDS in Example 2 with 3,3′-DDS was subjected to primary curing (120 ° C. × 8 hours) and then secondary curing (200 ° C. × 2 hours). The cured resin had a large increase in flexural modulus and a large decrease in glass transition temperature and G ′ retention (Table 2). An increase in the flexural modulus is undesirable because it leads to an increase in internal stress and a decrease in thermal crack resistance. Further, in the measurement of the bending physical properties of the cured resin at 250 ° C., the bending elastic modulus retention rate was greatly reduced (Table 3).
比較例2
4,4’−DDSを特許文献5で提示されている組成である2E4MZ−CNに置き換えた樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、曲げ物性が大きく低下するとともに、ガラス転移温度、G’保持率も大きく低下した(表2)。また、硬化樹脂の250℃での曲げ物性の測定において、曲げ弾性率保持率が低下した(表3)。
Comparative Example 2
The resin composition in which 4,4′-DDS is replaced with 2E4MZ-CN, which is the composition presented in Patent Document 5, is subjected to primary curing (120 ° C. × 8 hours), and then secondary curing (200 ° C. × 2 hours). The cured resin obtained by the above-mentioned treatment significantly decreased the bending properties and also greatly decreased the glass transition temperature and the G ′ retention rate (Table 2). Moreover, in the measurement of the bending physical property of the cured resin at 250 ° C., the bending elastic modulus retention rate decreased (Table 3).
比較例3
式(1)で示されるエポキシ樹脂(A)100質量部と4,4’−ジアミノジフェニルスルホン(C)からなる樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、該硬化条件では硬化度が低く、G’保持率が大きく低下した(表2)。
Comparative Example 3
A resin composition composed of 100 parts by mass of the epoxy resin (A) represented by the formula (1) and 4,4′-diaminodiphenylsulfone (C) is subjected to primary curing (120 ° C. × 8 hours), followed by secondary curing (200 The cured resin obtained by heating at 2 ° C. for 2 hours had a low degree of curing under the curing conditions, and the G ′ retention was greatly reduced (Table 2).
比較例4
式(1)で示されるエポキシ樹脂(A)70質量部およびN,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)30質量部の合計100質量部と4,4’−ジアミノジフェニルスルホン(C)からなる樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、ガラス転移温度が低下した(表2)。また、硬化樹脂の250℃での物性の測定において、250℃でのG’保持率は良好なものの、250℃での曲げ弾性率保持率が低下した(表3)。
Comparative Example 4
100 parts by mass in total of 70 parts by mass of the epoxy resin (A) represented by the formula (1) and 30 parts by mass of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (B) and 4,4′-diaminodiphenylsulfone The cured resin obtained by primary curing (120 ° C. × 8 hours) and then secondary curing (200 ° C. × 2 hours) of the resin composition comprising (C) has a reduced glass transition temperature (Table 2). . Further, in the measurement of physical properties of the cured resin at 250 ° C., the G ′ retention rate at 250 ° C. was good, but the bending elastic modulus retention rate at 250 ° C. decreased (Table 3).
比較例5〜比較例8
式(1)で示されるエポキシ樹脂(A)10〜60質量部およびN,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)90〜40質量部の合計100質量部と4,4’−ジアミノジフェニルスルホン(C)からなる樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、N,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)の比率が高くなるにしたがってガラス転移温度、G’保持率ともに低下した(表2)。
Comparative Example 5 to Comparative Example 8
10 to 60 parts by mass of the epoxy resin (A) represented by the formula (1) and 90 to 40 parts by mass of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (B) and 4,4 ′ A cured resin obtained by first curing (120 ° C. × 8 hours) and then second-curing (200 ° C. × 2 hours) a resin composition comprising diaminodiphenyl sulfone (C) is N, N, N ′ , N′-tetraglycidyldiaminodiphenylmethane (B), both the glass transition temperature and the G ′ retention decreased as the ratio increased (Table 2).
比較例9
N,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン(B)100質量部と4,4‘−ジアミノジフェニルスルホン(C)からなる樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、曲げ弾性率が上昇し、ガラス転移温度、G’保持率が低下した(表2)。曲げ弾性率の上昇は内部応力の増加および熱クラック耐性の低下につながるため望ましくない。また、硬化樹脂の250℃での物性の測定において、曲げ弾性率保持率が大きく低下した(表3)。
Comparative Example 9
A resin composition composed of 100 parts by mass of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (B) and 4,4′-diaminodiphenylsulfone (C) is subjected to primary curing (120 ° C. × 8 hours), The cured resin obtained by secondary curing (200 ° C. × 2 hours) had an increased flexural modulus and decreased glass transition temperature and G ′ retention (Table 2). An increase in flexural modulus is undesirable because it leads to increased internal stress and reduced thermal crack resistance. Moreover, in the measurement of the physical properties of the cured resin at 250 ° C., the flexural modulus retention was greatly reduced (Table 3).
比較例10
N,N,N’,N’‐テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂(B)を液状ビスフェノールF型エポキシ樹脂(jER807)に置き換えた樹脂組成物を一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、実施例2と比較してガラス転移温度、G’保持率ともに大きく低下した(表2)。また、硬化樹脂の250℃での物性の測定において、曲げ弾性率保持率が低下した(表3)。
Comparative Example 10
A resin composition in which N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane type epoxy resin (B) is replaced with liquid bisphenol F type epoxy resin (jER807) is subjected to primary curing (120 ° C. × 8 hours). The cured resin obtained by the subsequent curing (200 ° C. × 2 hours) significantly decreased both the glass transition temperature and the G ′ retention rate as compared with Example 2 (Table 2). Moreover, in the measurement of the physical properties of the cured resin at 250 ° C., the bending elastic modulus retention rate was reduced (Table 3).
比較例11
特許文献1に記載の実施例1と同様の樹脂組成としたものを一次硬化(120℃×8時間)させ、次いで二次硬化(200℃×2時間)させて得られた硬化樹脂は、ガラス転移温度、G’保持率ともに大きく低下した(表2)。また、硬化樹脂の250℃での物性の測定において、曲げ弾性率保持率が大きく低下した(表3)。
Comparative Example 11
A cured resin obtained by subjecting a resin composition similar to that of Example 1 described in Patent Document 1 to primary curing (120 ° C. × 8 hours) and then secondary curing (200 ° C. × 2 hours) is glass Both the transition temperature and G ′ retention were greatly reduced (Table 2). Moreover, in the measurement of the physical properties of the cured resin at 250 ° C., the flexural modulus retention was greatly reduced (Table 3).
本発明は、高い耐熱性を有する硬化樹脂を与えるエポキシ樹脂組成物を提供することができるので、産業上有用である。 INDUSTRIAL APPLICATION Since this invention can provide the epoxy resin composition which gives the cured resin which has high heat resistance, it is industrially useful.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009292181A JP5473585B2 (en) | 2009-12-24 | 2009-12-24 | Epoxy resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009292181A JP5473585B2 (en) | 2009-12-24 | 2009-12-24 | Epoxy resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011132332A JP2011132332A (en) | 2011-07-07 |
JP5473585B2 true JP5473585B2 (en) | 2014-04-16 |
Family
ID=44345435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009292181A Active JP5473585B2 (en) | 2009-12-24 | 2009-12-24 | Epoxy resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5473585B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2818492T3 (en) * | 2013-06-28 | 2018-07-31 | 3M Innovative Properties Company | use of epoxy-based adhesive compositions for filling gaps |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017288B2 (en) * | 1977-12-01 | 1985-05-02 | 東レ株式会社 | Heat-resistant epoxy resin composition |
JPS581718A (en) * | 1981-06-25 | 1983-01-07 | Toho Rayon Co Ltd | Noisture-and heat-resistant epoxy resin composition |
JPH03227316A (en) * | 1990-02-01 | 1991-10-08 | Nippon Oil Co Ltd | Heat-resistant epoxy resin composition |
CA2332341C (en) * | 1998-05-20 | 2005-11-29 | Cytec Technology Corp. | Manufacture of void-free laminates and use thereof |
JP2006131920A (en) * | 2000-04-21 | 2006-05-25 | Mitsubishi Rayon Co Ltd | Epoxy resin composition and prepreg made with the epoxy resin composition |
JP4049611B2 (en) * | 2001-04-20 | 2008-02-20 | 三菱レイヨン株式会社 | Epoxy resin composition and fiber reinforced resin composite material |
JP5138506B2 (en) * | 2007-08-21 | 2013-02-06 | 三菱レイヨン株式会社 | Epoxy resin composition and prepreg |
-
2009
- 2009-12-24 JP JP2009292181A patent/JP5473585B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011132332A (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4793565B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
EP1297048B1 (en) | Low moisture absorption epoxy resin systems | |
RU2574054C2 (en) | Epoxy resin-based curable compositions and composite materials obtained therefrom | |
EP3127933B1 (en) | Heat-curable epoxy resin composition | |
CN1833001A (en) | Curable flame retardant epoxy resin compositions | |
JP6771883B2 (en) | Epoxy resin compositions, prepregs and fiber reinforced composites | |
KR102389775B1 (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
JPWO2019098028A1 (en) | Thermosetting resin composition, prepreg, fiber reinforced composite material and method for producing the same | |
JP2016204626A (en) | Composition, epoxy resin curing agent, epoxy resin composition, heat curable composition, cured article, semiconductor device and interlayer insulation material | |
JP6832938B2 (en) | Method for Producing Curable Resin Mixture and Curable Resin Composition | |
JP5983590B2 (en) | Curable resin composition, sealing material, and electronic device product using the same | |
JP5473585B2 (en) | Epoxy resin composition | |
US20210277174A1 (en) | Epoxy resin system for making fiber reinforced composites | |
KR101373035B1 (en) | Ultrahigh heat resistant epoxy resin composition | |
JP2017095293A (en) | Boron nitride nano tube and thermosetting material | |
EP2271706B1 (en) | Epoxy resin based composition and method for the curing thereof | |
KR102476761B1 (en) | Epoxy resin composition, prepreg, fiber-reinforced composite material and manufacturing method thereof | |
JP2010053164A (en) | Resin composition for encapsulation and resin-encapsulated semiconductor device | |
JP2003206332A (en) | Epoxy resin composition for composite material and composite material using the same | |
JP2007077179A (en) | Sealing epoxy resin composition | |
JP4344662B2 (en) | Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition | |
JP2007031476A (en) | Epoxy resin composition for molding material, molded and cured product thereof, and method for producing the molded and cured product | |
JP2012046720A (en) | Polymer alloy and method of manufacturing the same | |
JP3474726B2 (en) | Epoxy resin composition and mold vacuum valve using the same | |
JPH03103424A (en) | Maleimide resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140204 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5473585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |