JP5472783B2 - 表示パネル、表示装置及び端末装置 - Google Patents

表示パネル、表示装置及び端末装置 Download PDF

Info

Publication number
JP5472783B2
JP5472783B2 JP2008522612A JP2008522612A JP5472783B2 JP 5472783 B2 JP5472783 B2 JP 5472783B2 JP 2008522612 A JP2008522612 A JP 2008522612A JP 2008522612 A JP2008522612 A JP 2008522612A JP 5472783 B2 JP5472783 B2 JP 5472783B2
Authority
JP
Japan
Prior art keywords
pixel
pixels
image
hole
display panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008522612A
Other languages
English (en)
Other versions
JPWO2008001825A1 (ja
Inventor
伸一 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
NLT Technologeies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NLT Technologeies Ltd filed Critical NLT Technologeies Ltd
Priority to JP2008522612A priority Critical patent/JP5472783B2/ja
Publication of JPWO2008001825A1 publication Critical patent/JPWO2008001825A1/ja
Application granted granted Critical
Publication of JP5472783B2 publication Critical patent/JP5472783B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Description

本発明は、複数の視点に向けて夫々画像を表示することができる半透過型の表示パネル、表示装置及び端末装置に関し、特に視野角及び/又は外光条件により色味が異常変化する現象を抑制できる表示パネル、表示装置及び端末装置を提供する。
従来より、立体画像を表示することができる表示装置が検討されている。立体視については、紀元前280年にギリシャの数学者ユークリッドが、「立体視とは、同一物体を異なる方向から眺めた別々の映像を左右両眼が同時に見ることによって得られる感覚である」と考察している。即ち、立体画像表示装置の機能としては、左右両眼に相互に視差がある画像を夫々提供することが必要となる。
この機能を具体的に実現する方法として、従来より多くの立体画像表示方式が検討されている。これらの方式は、眼鏡を使用する方式と眼鏡を使用しない方式とに大別することができる。このうち、眼鏡を使用する方式には、色の違いを利用したアナグリフ方式、及び偏光を利用した偏光眼鏡方式等があるが、本質的に眼鏡をかける煩わしさを避けることができないため、近年では眼鏡を使用しない眼鏡なし方式が盛んに検討されている。
眼鏡なし方式には、レンチキュラレンズ方式及びパララックスバリア方式等がある。レンチキュラレンズ方式はIves等により1910年頃に発明されたとされている。パララックスバリア方式は、1896年にBerthierが着想し、1903年にIvesによって実証されたとされている。
パララックスバリアは、相互に平行な方向に延びる細い縦縞状の多数の開口、即ち、スリットが形成された遮光板(バリア)である。そして、このパララックスバリアの背面側には表示パネルが配置されており、この表示パネルにおいては、スリットの長手方向と直交する方向に左眼用及び右眼用の画素が繰返し配列されている。これにより、各画素からの光はパララックスバリアを通過する際に一部が遮蔽される。具体的には、左眼用の画素からの光は観察者の左眼には到達するが、右眼に向かう光は遮光され、右眼用の画素からの光は右眼には到達するが左眼には到達しないように、画素が配置されている。これにより、左右の眼に夫々の画素からの光が到達することになるため、観察者は立体画像を認識することができる。
図59は、従来のパララックスバリアを使用した2眼式の立体画像表示装置を示す斜視図であり、図60は、この立体画像表示装置の光学モデルを示す図である。図59及び図60に示すように、この従来の立体画像表示装置においては、透過型液晶表示パネル1021が設けられており、この透過型液晶表示パネル1021にはマトリクス状に表示画素が設けられている。各表示画素には、左眼用画素1043及び右眼用画素1044が設けられている。また、左眼用画素1043及び右眼用画素1044は遮光部1006により区画されている。遮光部1006は、画像の混色を防止したり、画素に表示信号を伝送したりする目的で配置されている。
更に、液晶表示パネル1021の前面側、即ち、観察者側には、パララックスバリア1007が設けられており、パララックスバリア1007には、一方向に延びるスリット1007aが形成されている。そして、このスリット1007aは、1対の左眼用画素1043及び右眼用画素1044に対応するように配置されている。更にまた、液晶表示パネル1021の背面側には、光源1010が設けられている。
図60に示すように、光源1010から出射した光は透過型液晶表示パネル1021の左眼用画素1043及び右眼用画素1044を夫々通過した後に、パララックスバリア1007のスリット1007aを通過する際に一部が遮蔽され、夫々領域EL又はERに向けて出射する。このため、観察者が左眼1052を領域ELに位置させ、右眼1051を領域ERに位置させることにより、左眼1052に左眼用の画像が入力されると共に、右眼1051に右眼用の画像が入力され、観察者は立体画像を認識することができる。
パララックスバリア方式が考案された当初は、パララックスバリアが表示パネルと眼との間に配置されていたこともあり、目障りで視認性が低い点が問題であった。しかし、近時の液晶表示装置の実現に伴って、パララックスバリアを表示パネルの裏側に配置することが可能となって視認性が改善されたこともあり、現在盛んに検討が行われ、最近では実際に製品化されている(例えば、非特許文献1参照。)。非特許文献1に記載されている製品は、透過型液晶パネルを使用したパララックスバリア方式の立体画像表示装置である。
一方、レンチキュラレンズ方式は、立体表示を実現するための光学素子としてレンチキュラレンズを使用した立体画像表示方式である。レンチキュラレンズは、一方の面が平面となっており、他方の面には、一方向に延びるかまぼこ状の凸部(シリンドリカルレンズ)が複数個形成されているレンズである。そして、このレンズの焦点面に右眼用の画像を表示する画素と左眼用の画像を表示する画素とが交互に配列され、各1の右眼用画素及び左眼用画素からなる表示単位が一方向に配列された1の列に、1の凸部が対応するようになっている。このため、各画素からの光はレンチキュラレンズにより左右の眼に向かう方向に振り分けられる。これにより、左右の眼に相互に異なる画像を認識させることが可能となり、観察者に立体画像を認識させることが可能になる。
図61は、従来のレンチキュラレンズを使用した2眼式の立体画像表示装置を示す斜視図であり、図62は、この立体画像表示装置の光学モデルを示す図である。図61及び図62に示すように、この従来の立体画像表示装置においては、透過型液晶表示パネル2021が設けられており、この透過型液晶表示パネル2021にはマトリクス状に表示画素が設けられている。各表示画素には、左眼用画素2043及び右眼用画素2044が設けられている。また、液晶表示パネル2021の前面側、即ち、観察者側には、レンチキュラレンズ2003が設けられている。レンチキュラレンズ2003には、一方向に延びるかまぼこ状の凸部であるシリンドリカルレンズ2003aが相互に平行に形成されている。そして、このシリンドリカルレンズ2003aは、透過型液晶表示パネル2021の2画素、即ち、1対の左眼用画素2043及び右眼用画素2044に対応するように配置されている。更に、液晶表示パネル2021の背面側には、光源2010が設けられている。
図62に示すように、光源2010から出射した光は、透過型液晶表示パネル2021の左眼用画素2043及び右眼用画素2044を夫々通過した後に、シリンドリカルレンズ2003aにより屈折し、夫々領域EL及びERに向けて出射する。このため、観察者が左眼2052を領域ELに位置させ、右眼2051を領域ERに位置させることにより、左眼2052に左眼用の画像が入力されると共に、右2051に右眼用の画像が入力される。これにより、観察者は立体画像を認識することができる。
パララックスバリア方式が不要な光線をバリアにより「隠す」方式であるのに対し、レンチキュラレンズ方式は光の進む向きを変える方式であるため、立体表示を行っても、平面表示と比較して原理的に表示画面の明るさが低下しない。このため、特に高輝度表示及び低消費電力性能が重視される携帯機器等の端末装置への適用が検討されつつある。
また、レンチキュラレンズを使用した画像表示装置として、立体画像表示装置の他にも、複数の画像を同時に表示する複数画像同時表示装置が開発されている(例えば、特許文献1参照)。図63(特許文献1の図10)は、特許文献1に記載されている従来の複数画像同時表示装置を示す模式図であり、図64は、この複数画像同時表示装置の作用を説明するための図である。図63に示すように、従来の複数画像同時表示装置3001は、CRT3002の前面にレンチキュラレンズ3003が配置されている。
このように構成された特許文献1に記載の従来の複数画像同時表示装置では、図64に示すように、レンチキュラレンズによる画像の振分機能を利用して、観察する方向毎に異なる画像を同時に同一条件で表示することが可能となる。これにより、1台の複数画像同時表示装置が、この表示装置に対して相互に異なる方向に位置する複数の観察者に対して、相互に異なる画像を同時に提供することができる。特許文献1には、この複数画像同時表示装置を使用することにより、通常の1画像表示装置を同時に表示したい画像の数だけ用意する場合と比較して、設置スペース及び電気代を削減できると記載されている。
一方で、携帯機器等の端末装置では、可搬性の容易さや使用時間の長さが重要な要素となるため、蓄積できる電力量が小さな小型・軽量バッテリでも長時間の駆動ができるように、消費電力の低減が求められている。更に、屋外の極めて明るい場所で使用する状況が頻繁に発生するが、明るい場所で十分な視認性を確保するためには、画面の輝度を十分に高くすることが要求される。このような要求を満たす表示装置として、半透過型の液晶表示装置が好適に使用されている。
液晶を使用した表示装置では、液晶分子自体が発光することはないため、表示を視認するためには何らかの光を使用する必要がある。一般的に液晶表示装置は、この使用する光源の種類に応じて、透過型、反射型、透過光と反射光とを併用する半透過型に大別できる。反射型は、表示に外光を利用できるため低消費電力化が可能であるが、透過型と比較するとコントラスト等の表示性能が劣るため、現在では透過型及び半透過型が液晶表示装置の主流となっている。透過型及び半透過型の液晶表示装置では、液晶パネルの背面に光源装置を設置し、その光源装置が発する光を利用して表示を実現している。特に、中小型の液晶表示装置では、使用者が携帯して様々な状況下で使用するため、明るい場所では反射表示を視認し、暗い場所では透過表示を視認することにより、どのような状況でも高い視認性を有する半透過型の液晶表示装置が使用されている。
図65は、非特許文献2に記載されている従来の第1の半透過型液晶表示装置を示す平面図である。図65に示すように、この従来の第1の液晶表示装置においては、半透過型液晶表示パネル4022の各画素4040がR(赤色)、G(緑色)、B(青色)3色の領域に分かれており、更に、各色の領域が透過領域及び反射領域に分かれている。即ち、画素4040は、透過領域(赤)4041R、反射領域(赤)4042R、透過領域(緑)4041G、反射領域(緑)4042G、透過領域(青)4041B、反射領域(青)4042Bの6つの領域に分割されている。なお、この非特許文献2に記載されている従来の半透過型液晶表示装置は、反射表示及び透過表示の双方が実現可能な表示装置であり、立体画像表示装置、又は複数画像同時表示装置ではないため、レンチキュラレンズ又はパララックスバリア等は備えられていない。
このように構成された従来の第1の半透過型液晶表示装置においては、各反射領域には半透過型液晶表示パネル4022の2枚のガラス基板のうち、背面側のガラス基板の液晶に接する側の表面に金属膜(図示せず)が形成されており、この金属膜が外光を反射するようになっている。これにより、透過領域においては、光源(図示せず)からの光が液晶パネルの液晶層(図示せず)を透過して像を形成する。また、反射領域においては、自然光及び室内照明光等の外光が液晶層を透過し、この光が金属膜により反射され再度液晶層を透過して像を形成する。このため、外光が多く明るい場所では、光源の一部として外光を利用することができる。この結果、半透過型液晶表示装置は、透過型液晶表示装置と比較して、表示画面の輝度を確保しつつ光源を点灯するための消費電力を抑えることができる。
また、この半透過型液晶表示装置においては、透過部に対応するカラーフィルタ層ではバックライトからの光が透過するのが1回であるのに対し、反射部に対応するカラーフィルタ層では外光が入射する際と出射する際との2回透過する。従って、透過部と反射部とでカラーフィルタ層を同様に配置すると、反射部の透過率が低下して表示の色味が濃くなる問題が発生する。そこで、反射部に対応する領域を、カラーフィルタ層を形成した領域とカラーフィルタ層を形成しない領域とから構成する技術が提案されている。
図66は、特許文献2に記載されている従来の第2の半透過型液晶表示装置を示す平面図である。図66に示すように、この従来の第2の半透過型液晶表示装置は、下側基板5001上に反射電極5003と透明電極5008とが所定の形状に形成されており、下側基板5001と対向配置されたカラーフィルタ基板上には、カラーフィルタ層5011が形成されている。なお、反射電極5003及び透明電極5008の周囲には、これらの電極を駆動するための信号電極5021、走査電極5022、及びこの2種類の電極の交差部近傍に配置された薄膜トランジスタ(TFT)5023が形成されている。また、カラーフィルタ層5011は、赤色カラーフィルタ層5011a、緑色カラーフィルタ層5011b、青色カラーフィルタ層5011cの3種類から構成されており、各色夫々のカラーフィルタ層は反射電極5003の全部分にはオーバーラップしないように、また透過電極5008の全部分には必ずオーバーラップするように形成されている。即ち、透過電極5008の全部分は必ずカラーフィルタ層5011に覆われているのに対して、反射電極5003にはカラーフィルタ層5011に覆われない領域が生じている。
このように構成された従来の第2の半透過型液晶表示装置においては、反射部にカラーフィルタ層が形成されていない領域が設けられているために、このカラーフィルタ層が形成されていない領域で白を表示させ、カラーフィルタ層を透過した光と混色することにより、反射表示の色味が透過表示よりも濃くなる問題を抑制し、明るい反射表示が実現できる。
日経エレクトロニクスNo.838、2003年1月6日、p.26−27(表1) 日経マイクロデバイス別冊「フラットパネルディスプレイ」、日経BP社、p.108−113(図4) 特開平06−332354号公報(図9、図10) 特開2000−111902号公報(図1)
しかしながら、上述の従来の立体画像表示装置と半透過型液晶表示装置を組み合わせた場合には、以下に示すような問題点が発生する。即ち、観察位置又は外光条件によって反射表示の色濃度が変化してしまい、色むらが視認されてしまう問題である。
本発明はかかる問題点に鑑みてなされたものであって、複数の視点に向けて夫々画像を表示することができる半透過型の表示パネルにおいて、特に視野角及び/又は外光条件により色味が異常変化する現象を抑制できる表示パネル、表示装置及び端末装置を提供することを目的とする。
本願第1発明に係る表示パネルは、マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが配列された第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の少なくとも表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記第1の方向における前記スルーホールの幅が前記表示領域の幅以上であることを特徴とする。
本発明においては、振分方向となる第1方向において、どの位置でもスルーホールが存在するように構成することができる。これにより、ある特定の部分にのみスルーホールが偏在するのを防止でき、視野角及び/又は光源状態により色味が異常変化する現象を抑制することができる。
本願第2発明に係る表示パネルは、マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記スルーホールは前記第1の方向に対して分断した形状をなし、前記光学部材は前記画素と結像関係にないことを特徴とする。
本発明においては、前記光学部材が前記画素と結像関係にないため、スルーホールの像をぼかして表示することができる。これにより、スルーホールの影響を低減することができ、色味の異常変化を抑制することができる。また、スルーホールの配置の自由度を向上することができるため、表示品質の向上が可能となる。
本願第3発明に係る表示パネルは、マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが配列された第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の少なくとも表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、同一視点用の画像を表示する複数画素において、前記スルーホールの位置が異なる画素が存在することを特徴とする。
本発明によれば、各画素におけるスルーホールの相対位置が全画素で同一となることを防止でき、異なるスルーホール位置の画素を用いてスルーホールの影響を低減することができる。これにより、視野角及び/又は光源状態により色味が以上変化する現象を低減することができ、高画質化が可能となる。
本願第3発明は、薄膜トランジスタを使用した表示パネルに対して好適に適用することができる。特に、薄膜トランジスタ、及びこの薄膜トランジスタと組み合わせて使用する蓄積容量等によりスルーホールの位置が限定されてしまう場合、行単位で薄膜トランジスタ等の位置を変えることで好適に適用可能である。例えば、画素中での薄膜トランジスタ等の位置が、行単位でY軸対称となるように配置することにより、本発明のスルーホール配置と好適に組み合わせることが可能となる。
本発明によれば、透過領域と反射領域とを有し、反射領域におけるカラーフィルタの色層にスルーホールを形成した半透過型の液晶表示素子において、レンチキュラレンズ若しくはフライアイレンズ、又はパララックスバリア等の画像振分用光学素子の画像振り分け効果を低減するようにスルーホールを配置することにより均一な反射表示が実現でき、視野角及び/又は外光条件により色味が異常変化する現象を抑制することができる。
本発明の第1の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態に係る端末装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分で画素の透過領域を切断した断面における光学モデルを示す図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含まない反射領域を切断した断面における光学モデルを示す図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本発明の第1比較例に係る表示パネルを示す平面図である。 本第1比較例に係る表示装置を示す斜視図である。 本第1比較例に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本発明の第2の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第3の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本実施形態の半透過型液晶表示パネルにおいて、レンズ−画素間距離よりも小さな焦点距離のレンズを使用した場合の光学モデルを示す図である。 本実施形態において、レンチキュラレンズを構成するシリンドリカルレンズの焦点距離を算出するための断面図である。 フライアイレンズを示す斜視図である。 本発明の第4の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本発明の第5の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本実施形態の半透過型液晶表示パネルにおいて、レンズ−画素間距離よりも大きな焦点距離のレンズを使用した場合の光学モデルを示す図である。 本実施形態において、レンチキュラレンズを構成するシリンドリカルレンズの焦点距離を算出するための断面図である。 本発明の第6の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本発明の第7の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第8の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本実施形態の半透過型液晶表示パネルにおいて、パララックスバリアを使用した場合の光学モデルを示す図である。 本発明の第9の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本実施形態の半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。 本発明の第10の実施形態に係る端末装置を示す斜視図である。 本実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第11の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第12の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第13の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第14の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第15の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第16の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第17の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第18の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 本発明の第19の実施形態に係る表示パネルを示す平面図である。 本実施形態に係る表示装置を示す斜視図である。 従来のパララックスバリアを使用した2眼式の立体画像表示装置を示す斜視図である。 この立体画像表示装置の光学モデルを示す図である。 従来のレンチキュラレンズを使用した2眼式の立体画像表示装置を示す斜視図である。 この立体画像表示装置の光学モデルを示す図である。 特許文献1に記載されている従来の複数画像同時表示装置を示す模式図である。 この複数画像同時表示装置の作用を説明するための図である。 非特許文献2に記載されている従来の第1の半透過型液晶表示装置を示す平面図である。 特許文献2に記載されている従来の第2の半透過型液晶表示装置を示す平面図である。
符号の説明
1、11、12、13、14、15、16、17、18、19、10、111、112、113、114、115、116、117、118、119;立体画像表示装置
2、21、22、23、24、25、26、27、28、29、20、221、222、223、224、225、226、227、228、229;半透過型液晶表示パネル
3、31、32、33;レンチキュラレンズ
3a、31a、32a、33a;シリンドリカルレンズ
4L、41L、42L、43L、44L、45L、46L、47L、401L、402L、403L、404L、405L、406L、407L;左眼用画素
4R、41R、42R、43R、44R、45R、46R、47R、401R、402R、403R、404R、405R、406R、407R;右眼用画素
4F;第1視点用画素
4S;第2視点用画素
4La、41La、42La、43La、44La、45La、46La、47La、401La、402La、403La、404La、405La、406La、407La、4Ra、41Ra、42Ra、43Ra、44Ra、45Ra、46Ra、47Ra、401Ra、402Ra、403Ra、404Ra、405Ra、406Ra、407Ra、4Fa、4Sa;透過領域
4Lb、41Lb、42Lb、43Lb、44Lb、45Lb、46Lb、47Lb、401Lb、402Lb、403Lb、404Lb、405Lb、406Lb、407Lb、4Rb、41Rb、42Rb、43Rb、44Rb、45Rb、46Rb、47Rb、401Rb、402Rb、403Rb、404Rb、405Rb、406Rb、407Rb、4Fb、4Sb;反射領域
4Lc、41Lc、42Lc、43Lc、44Lc、45Lc、46Lc、47Lc、401Lc、402Lc、403Lc、404Lc、405Lc、406Lc、407Lc、4Rc、41Rc、42Rc、43Rc、44Rc、45Rc、46Rc、47Rc、401Rc、402Rc、403Rc、404Rc、405Rc、406Rc、407Rc、
4Fc、4Sc;色層
4Ld、41Ld、42Ld、43Ld、44Ld、45Ld、46Ld、47Ld、401Ld、402Ld、403Ld、404Ld、405Ld、406Ld、407Ld、4Rd、41Rd、42Rd、43Rd、44Rd、45Rd、46Rd、47Rd、401Rd、402Rd、403Rd、404Rd、405Rd、406Rd、407Rd、
4Fd、4Sd;スルーホール
4Le、41Le、42Le、43Le、44Le、45Le、46Le、47Le、401Le、402Le、403Le、404Le、405Le、406Le、407Le、4Re、41Re、42Re、43Re、44Re、45Re、46Re、47Re、401Re、402Re、403Re、404Re、405Re、406Re、407Re、4Fe、4Se;遮光領域
51;右眼
52;左眼
6;フライアイレンズ
7;パララックスバリア
7a;スリット
8;面状光源
9、91;携帯電話
1021;透過型液晶表示パネル
1043;左眼用画素
1044;右眼用画素
1006;遮光部
1007;パララックスバリア
1007a;スリット
1010;光源
1051、2051;右眼
1052、2052;左眼
2021;透過型液晶表示パネル
2043;左眼用画素
2044;右眼用画素
2003;レンチキュラレンズ
2003a;シリンドリカルレンズ
2010;光源
3001;複数画像同時表示装置
3002;CRT
3003;レンチキュラレンズ
4022;半透過型液晶表示パネル
4040;画素4040
4041R;透過領域(赤)
4042R;反射領域(赤)
4041G;透過領域(緑)
4042G;反射領域(緑)
4041B;透過領域(青)
4042B;反射領域(青)
5001;下側基板
5003;反射電極
5008;透明電極
5011;カラーフィルタ層
5011a;赤色カラーフィルタ層
5011b;緑色カラーフィルタ層
5011c;青色カラーフィルタ層
5021;信号電極
5022;走査電極
5023;薄膜トランジスタ(TFT)
以下、本発明の実施形態に係る表示パネル、表示装置及び端末装置について添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施形態に係る表示パネル、表示装置及び端末装置について説明する。図1は本実施形態に係る表示パネルを示す平面図であり、図2は本実施形態に係る表示装置を示す斜視図であり、図3は本実施形態に係る端末装置を示す斜視図である。
図1に示すように、本第1実施形態に係る表示パネルは、レンチキュラレンズ3が具備された半透過型液晶表示パネル2である。半透過型液晶表示パネル2においては、各1個の左眼用画素4L及び右眼用画素4Rからなる表示単位としての画素対がマトリクス状に設けられている。レンチキュラレンズ3は、多数のシリンドリカルレンズ3aが一次元配列したレンズアレイである。そして、シリンドリカルレンズ3aの配列方向は左眼用画素4L及び右眼用画素4Rが繰り返し配列される方向に配置されている。シリンドリカルレンズ3aの延伸する方向、即ち長手方向は、表示面内においてシリンドリカルレンズ3aの配列方向と直交する方向となる。なお、図2に示すように、シリンドリカルレンズ3aはかまぼこ状の凸部を有している。なお、図1においては、その形状が強調して描かれており、実際には画素が形成された面に平行な面においては、凸状の形状は現れず矩形に描かれるものである。このことは、他の実施形態におけるシリンドリカルレンズを示す平面図においても同様である。
なお、本明細書においては、便宜上、以下のようにXYZ直交座標系を設定する。左眼用画素4L及び右眼用画素4Rが繰り返し配列される方向において、左眼用画素4Lから右眼用画素4Rに向かう方向を+X方向とし、その反対方向を−X方向とする。+X方向及び−X方向を総称してX軸方向という。また、シリンドリカルレンズ3aの長手方向をY軸方向とする。更に、X軸方向及びY軸方向の双方に直交する方向をZ軸方向とし、このZ軸方向のうち、左眼用画素4L又は右眼用画素4Rからレンチキュラレンズ3に向かう方向を+Z方向とし、その反対方向を−Z方向とする。+Z方向は前方、即ち、使用者に向かう方向であり、使用者は半透過型液晶表示パネル2の+Z側の面を視認することになる。そして、+Y方向は、右手座標系が成立する方向とする。即ち、人の右手の親指を+X方向、人差指を+Y方向に向けたとき、中指は+Z方向を向くようにする。
上述の如くXYZ直交座標系を設定すると、シリンドリカルレンズ3aの配列方向はX軸方向となり、左眼用画素4L及び右眼用画素4Rが夫々Y軸方向に一列に配列されている。また、X軸方向における画素対の配列周期はシリンドリカルレンズの配列周期と略等しくなっており、このX軸方向において、1対の画素対がY軸方向に配列してなる列が、一つのシリンドリカルレンズ3aに対応している。
左眼用画素4Lには、透過表示のための透過領域4La及び反射表示のための反射領域4Lbが設けられている。これらの透過領域4La及び反射領域4Lbは、左眼用画素4LをY軸方向において二分するように形成されており、−Y方向側の領域が透過領域4Laとなっており、+Y方向側の領域が反射領域4Lbとなっている。
反射領域4Lbは、半透過型液晶表示パネル2の−Z方向に位置するガラス基板(図示せず)における液晶層(図示せず)に接する面に、例えばアルミニウム等からなる金属膜(図示せず)が形成されている。そして、前方から入射し、半透過型液晶表示パネル2の液晶層を透過した光が、この金属膜により反射されて再び液晶層を透過し、前方に出射されるようになっている。
また、左眼用画素4Lの透過領域4La及び反射領域4Lbにはカラー表示を実現するための色層4Lcが設けられている。色層4Lcは、半透過型液晶表示パネル2の+Z方向に位置するガラス基板(図示せず)における液晶層(図示せず)に接する面に、例えば顔料を含有する有機膜(図示せず)を用いて形成されたものである。前方から入射し半透過型液晶表示パネル2の色層4Lcに入射した光は、液晶層を透過した後に金属膜で反射されて再び液晶層を透過し、再度色層4Lcを透過して、前方に出射されるようになっている。一方で、後方から半透過型液晶表示パネル2に入射した光は、液晶層を透過した後に色層4Lcを透過して、前方に出射されるようになっている。
反射領域4Lbの色層4Lcの一部には、スリット状のスルーホール4Ldが設けられている。なお、このスリット状のスルーホール4Ldは、反射領域4Lbにおける+Y方向側の端に配置されている。そのスリットのX軸方向における幅は、左眼用画素4Lの表示領域のX軸方向における幅以上であり、そのスリットのY軸方向における幅は、X軸方向の座標によらず一定となっている。即ち、スリット状のスルーホール4Ldを形成する+Y方向側の辺と−Y方向側の辺は、平行となるように配置されている。スルーホール4LdのY軸方向の幅は、一例では反射領域4LbのY軸方向の幅の二分の一となるように設定されている。
更に、左眼用画素4Lの透過領域4La及び反射領域4Lbの外周には遮光領域4Leが設けられている。遮光領域4Leは、表示時に隣接する画素の影響が視認されるのを防止するため、また配線等を遮光するために設けられた領域である。遮光領域4Leは、色層4Lcと同様に、半透過型液晶表示パネル2の+Z方向に位置するガラス基板(図示せず)における液晶層(図示せず)に接する面に、例えば黒色顔料を含有する有機膜(図示せず)を用いて形成されたものである。
右眼用画素4Rは、対応するシリンドリカルレンズ3aとの位置関係が左眼用画素4Lと異なるものの、構造は左眼用画素4Lと全く同じである。即ち、透過領域4Ra、反射領域4Rb、色層4Rc、スリット状のスルーホール4Rd、遮光領域4Reが夫々左眼用画素4Lの構成要素と同様に、右眼用画素4Rの構成要素として、配置されている。
なお、図1は、表示パネルの1対の左眼用画素と右眼用画素、及びこの1対の画素に対応する1つのシリンドリカルレンズを示している。また、画素はシリンドリカルレンズの焦点面に配置されている。即ち、シリンドリカルレンズの主点(最も+Z方向に突出した頂きの部分)と画素との距離は、シリンドリカルレンズの焦点距離に設定されている。
図2に示すように、本第1実施形態に係る表示装置は、表示パネルの背面、即ち−Z側に面状光源8が設けられた立体画像表示装置1である。面状光源8は、半透過型液晶表示パネル2の透過表示におけるバックライトとして動作するものであり、この面状光源8が発する光を利用して透過表示が視認される。
図3に示すように、この表示装置2は、例えば、携帯電話9の表示部に搭載される。即ち、本実施形態に係る端末装置としての携帯電話9は、上述の表示装置2を備えている。そして、図1に示すシリンドリカルレンズ3aの長手方向であるY軸方向が、立体画像表示装置1の画面の縦方向、即ち垂直方向となり、シリンドリカルレンズ3aの配列方向であるX軸方向が、立体画像表示装置1の画面の横方向、即ち水平方向となる。この携帯電話9においては、立体画像表示装置1を、携帯電話9に内蔵したバッテリー(図示せず)により駆動する。
次に、上述如く構成された本実施形態に係る立体画像表示装置の動作について説明する。図4は図2に示す半透過型液晶表示パネル2において、X軸方向に平行な線分で画素の透過領域を切断した断面における光学モデルを示す図であり、図5は図2に示す半透過型液晶表示パネル2において、X軸方向に平行な線分でスルーホールを含まない反射領域を切断した断面における光学モデルを示す図であり、図6は図2に示す半透過型液晶表示パネル2において、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。
図4に示すように、外部の制御装置(図示せず)から半透過型液晶表示パネル2に信号が入力され、左眼用画素4L及び右眼用画素4Rが夫々左眼用画像及び右眼用画像を表示する。この状態で、面状光源8が発光し、この光が半透過型液晶表示パネル2に入射する。この半透過型液晶表示パネル2に入射した光のうち、反射領域4Lb及び4Rbに入射した光は、反射板として作用する金属膜により反射され、半透過型液晶表示パネル2を透過せず、面状光源8に再入射する。一方、透過領域4La及び4Raに入射した光は、半透過型液晶表示パネル2の透過領域4La及び4Raに位置する液晶層、色層4Lc及び4Rcを順に透過し、レンチキュラレンズ3に入射する。このように、面状光源8の発する光が、透過領域4La及び4Raを透過して、レンチキュラレンズ3に入射し、透過表示を実現する。このとき、この光が、色層4Lc及び4Rcを透過するのは一度だけである。
図5に示すように、自然光及び照明光等の外光が、前方からレンチキュラレンズ3を透過して半透過型液晶表示パネル2に入射する。この液晶表示パネル2に入射した光のうち、色層4Lc及び4Rcの存在する反射領域4Lb及び4Rbに入射した光は、半透過型液晶表示パネル2の色層4Lc及び4Rcを透過し、次に液晶層を透過し、金属膜により反射されて再び液晶層を透過し、再度色層4Lc及び4Rcを透過して、レンチキュラレンズ3に入射する。即ち、色層4Lc及び4Rcの存在する反射領域4Lb及び4Rbに入射した外光は、色層4Lc及び4Rcを二度透過することになる。一方、透過領域4La及び4Raに入射した光は、半透過型液晶表示パネル2の後方、即ち、面状光源8側に透過し、直接表示に寄与しない。このように、自然光及び照明光等の外光が、反射領域4Lb及び4Rbを透過して、レンチキュラレンズ3に入射し、反射表示を実現する。
また、図6に示すように、前方からレンチキュラレンズ3を透過して半透過型液晶表示パネル2に入射した外光のうち、色層4Lc及び4Rcの存在しない反射領域4Lb及び4Rbであるスルーホール4Ld及び4Rdに入射した光は、半透過型液晶表示パネル2の液晶層を透過し、金属膜により反射されて再び液晶層を透過し、レンチキュラレンズ3に入射する。即ち、スルーホール4Ld及び4Rdに入射した外光は、基本的に、色層4Lc及び4Rcを透過することがない。なお、図6においては、X軸方向において、スルーホール4Ldの幅は左眼用画素4Lの表示領域の幅以上であり、また、スルーホール4Rdの幅は右眼用画素4Rの表示領域の幅以上であり、従って、X軸方向に沿って、スルーホールは連続した形状となっており、分断されていない。
レンチキュラレンズ3に入射した面状光源8からの光、又は自然光及び照明光等の外光は、各シリンドリカルレンズ3aにより屈折して、シリンドリカルレンズ3aの長手方向であるY軸方向に直交し、且つ相互に異なる方向に振り分けられる。これらの光が進む方向は、シリンドリカルレンズ3aの光軸面に対して、X軸方向に沿って傾斜している。この結果、左眼用画素4Lの透過領域4La及び反射領域4Lbから出射した光は領域ELに向かい、右眼用画素4Rの透過領域4Ra及び反射領域4Rbから出射した光は領域ERに向かう。そして、観察者が左眼52を領域ELに位置させ、右眼51を領域ERに位置させると、立体画像を観察することができる。
レンチキュラレンズ3は前述のように一次元的なシリンドリカルレンズの集合体であるため、その長手方向となるY軸方向に関してはレンズ効果を持たず、Y軸方向については、光の振り分けを行わない。前述のように、左眼用画素4Lにおいては、透過領域4La、色層4Lcの存在する反射領域4Lb、スルーホール4Ldを有する反射領域4Lbは、Y軸方向に配列する。同様に、右眼用画素4Rにおいても、透過領域4Ra、色層4Rcの存在する反射領域4Rb、スルーホール4Rdを有する反射領域4Rbは、Y軸方向に配列する。従って、左眼用画素4L及び右眼用画素4Rから出射した光はシリンドリカルレンズの配列方向であるX軸方向には振り分けられるが、左眼用画素4Lの透過領域4La及び反射領域4Lbから出射した光は振り分けられずに混合して同じ領域ELに向かい、右眼用画素4Rの透過領域4Ra及び反射領域4Rbから出射した光は振り分けられずに混合して同じ領域ERに向かう。同様に、反射領域4Lb及び4Rbから出射した光においても、色層4Lc及び4Rcの存在する領域から出射した光と、スルーホール4Ld及び4Rdを有する領域から出射した光は、レンチキュラレンズ3により振り分けられることなく、混合して夫々の画素の領域に向かう。これにより、Y軸方向だけでなく、X軸方向においてもスルーホールの影響のない均一な反射表示が実現でき、視野角や外光条件により色味が異常変化する現象を抑制することができる。
次に、本実施形態の効果について説明する。本実施形態に係る表示パネルによれば、反射領域における色層のスルーホールを、レンチキュラレンズの配列方向に延びるスリット状に形成することにより、スルーホールの影響のない均一な反射表示が実現でき、視野角及び/又は外光条件により色味が異常変化する現象を抑制することができる。また、反射部に色層が形成されていないスルーホール領域が設けられているために、この色層が形成されていない領域で白を表示させ、色層を透過した光と混色することにより、反射表示の色味が透過表示よりも濃くなる問題を抑制し、明るい反射表示が実現できる。
本実施形態における半透過型液晶表示パネルは、各画素にスルーホールが形成された反射領域と透過領域とが設けられている構成であれば本発明を適用可能であり、本質的に反射領域と透過領域との比率、スルーホールの比率には左右されない。また、透過領域の比率が大きい微反射型液晶表示パネル、及び反射領域の比率が大きい微透過型液晶表示パネルにおいても、本実施形態と同様に適用可能である。更に、反射領域におけるスルーホールの割合、即ちスリットのY軸方向における幅は、色層の種類によって異なっていても良い。
更には、本実施形態におけるスルーホールは、そのY軸方向における幅が、X軸方向の座標によらず一定であるものとして説明した。しかし、スルーホールの各辺は必ずしもX軸と平行である必要はない。例えば、X軸方向から傾斜した辺をスルーホールは有していてもよい。即ち、スルーホールのY軸方向における幅が常に一定であればよい。
なお、隣接画素の境界領域においては、色層が連続していてもよいし、分離していてもよい。ただし、隣接する画素が同色の色層を有する場合には、連続していることが好ましい。これにより、色層の密着性を向上することができ、製造時の良品率を向上できる。また、隣接する画素が異色の色層を有する場合には、これらの色層は分離していることが好ましい。異色の色層が積層すると、表面の凹凸が大きくなってしまう。そうすると、液晶分子の配向異常が発生し、表示品質が低下するからである。
更には、本実施形態においては、反射領域にスルーホールが形成されるものとして説明したが、本発明はこれに限定されず、透過領域にスルーホールが形成された場合においても、同様に適用することができる。また、半透過型表示素子のみならず、反射型表示素子又は透過型表示素子にも同様に適用し、スルーホールの影響のない均一な表示を実現することができる。
また、本実施形態においては、色層は半透過型液晶表示パネルの+Z方向に位置するガラス基板における液晶層に接する面に形成されたものであるとして説明したが、本発明はこれに限定されず、その他の場所に形成されていても良い。一例では、半透過型液晶表示パネルの−Z方向に位置するガラス基板における液晶層に接する面、即ち反射領域では反射板として作用する金属膜と液晶層との間に形成されていても良い。このように、反射板を形成した基板に色層を形成した場合には、色層と反射板との高精度の位置合わせが可能となるため、表示パネルの表示に寄与する領域を拡大することができ、反射率又は透過率を向上することが可能となる。
また、液晶表示パネルの駆動方法は、TFT(Thin Film Transistor:薄膜トランジスタ)方式及びTFD(Thin Film Diode:薄膜ダイオード)方式等のアクティブマトリクス方式でもよいし、STN(Super Twisted Nematic liquid crystal)方式等のパッシブマトリクス方式であってもよい。なお、表示パネルは各画素に透過領域及び反射領域が設けられているものであればよく、液晶表示パネルに限定されるものではない。
更に、本実施形態においては、左眼用画素及び右眼用画素のみが設けられた2眼式立体表示装置の場合について説明したが、本発明はN眼式(Nは2より大きい整数)の場合においても適用可能である。
更にまた、本実施形態においては、カラーフィルタを用いたカラー表示に加え、複数色の光源を時分割で点灯する方式を併用して、カラー画像を表示することもできる。これにより、混色を低減して、広色度域の表示が可能になる。
本実施形態においては、画像振分用の光学部材としてレンチキュラレンズを使用するものとして説明したが、本発明はこれに限定されるものではなく、多数のスリットがX軸方向に配列したパララックスバリアも使用することができる。レンチキュラレンズが高さ方向の構造を有する三次元形状であるのに対して、パララックスバリアは平面的な二次元形状を有し、フォトリソグラフィ技術を用いて容易に作製可能であるため、低コスト化が可能となる。
更にまた、本実施形態においては、端末装置として携帯電話を示したが、本発明はこれに限定されず、本実施形態に係る表示装置は、携帯電話のみならず、PDA(Personal Digital Assistant:個人用情報端末)、ゲーム機、デジタルカメラ及びデジタルビデオカメラ等の各種の携帯端末装置に好適に適用することができる。また、本実施形態に係る表示装置は、携帯端末装置のみならず、ノート型パーソナルコンピュータ、キャッシュディスペンサ、自動販売機等の各種の端末装置に適用することができる。
以上、本発明の第1実施形態についてまとめる。本実施形態に係る表示パネルは、マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが配列された第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の少なくとも表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記第1の方向における前記スルーホールの幅が前記表示領域の幅以上であることを特徴とする。本発明においては、スルーホールの影響を低減でき、視野角及び/又は光源状態により色味が異常変化する現象を低減することができる。
また、前記スルーホールは、前記表示パネルの表示面における前記第1の方向と直交する第2の方向における幅が、前記第1の方向によらずに一定であることが好ましい。これにより、スルーホールの影響を完全に排除でき、視野角及び/又は光源状態により色味が異常変化する現象を防止することができる。
また、前記表示パネルは、表示領域に透過領域と反射領域とを有する半透過型の表示パネルであって、前記スルーホールが反射領域に設けられていてもよい。これにより、スルーホールの影響のない均一な反射表示が実現でき、視野角や外光条件により色味が異常変化する現象を抑制することができる。
更にまた、前記光学部材は、長手方向が前記第2の方向でありこの第2の方向に延びる前記表示単位の列毎に設けられた複数本のシリンドリカルレンズが前記第1の方向に配列されたレンチキュラレンズであってもよい。これにより、光の損失のない、明るい表示が可能になる。
また、本発明の表示パネルを備えた表示装置は、前記第1の方向が画面の水平方向であってもよく、更には前記第1視点用の画像が左眼用画像であり、前記第2視点用の画像が前記左眼用画像に対して視差をもつ右眼用画像であり、立体画像を表示するものであってもよい。これにより、立体表示を好適に実現することができる。
次に、本発明の半透過型液晶表示パネルに対する第1の比較例について説明する。図7は本第1比較例に係る表示パネルを示す平面図であり、図8は本第1比較例に係る表示装置を示す斜視図であり、図9は図8に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。本第1比較例は、上述の本発明の第1実施形態と異なり、反射領域の中央部に反射領域の形状と相似形で且つ反射領域よりも小さなスルーホールを設けた場合を示すものである。
図7及び図8に示すように、本第1比較例に示す立体画像表示装置11の半透過型液晶表示パネル21においては、本第1実施形態の半透過型液晶表示パネル2と比較して、左眼用画素41L及び右眼用画素41Rが使用されている点が異なる。即ち、左眼用画素41Lにおいては、透過領域41La、反射領域41Lb及び遮光領域41Leは、本第1実施形態と同様に設置されているものの、色層41Lcに設けられたスルーホール41Ldの形状が異なる。本第1比較例においては、スルーホール41Ldの形状は、反射領域41Lbの中央部に反射領域41Lbの形状と相似形で、且つ反射領域よりも小さくなるように形成されている。このスルーホール41LdのX軸方向の幅は、反射領域41LbのX軸方向の幅の半分となるように形成され、またY軸方向の幅は、反射領域41LbのY軸方向の幅の半分となるように形成されている。
また、右眼用画素41Rにおいても、左眼用画素41Lと同様の形状のスルーホール41Rdが形成されている。本比較例における上記以外の構成は、前述の第1の実施形態と同様である。
次に、上述の如く構成された本第1比較例に係る表示装置の動作について説明する。図9に示すように、本第1比較例における反射領域41Lb及び41Rbにおいては、前方からレンチキュラレンズ3を透過して半透過型液晶表示パネル21に入射した外光は、色層41Lc及び41Rcの存在する反射領域41Lb及び41Rbに入射すると、半透過型液晶表示パネル21の色層41Lc及び41Rcを透過し、次に液晶層を透過し、金属膜により反射されて再び液晶層を透過し、再度色層41Lc及び41Rcを透過して、レンチキュラレンズ3に入射する。即ち、色層41Lc及び41Rcの存在する反射領域41Lb及び41Rbに入射した外光は、色層41Lc及び41Rcを二度透過することになる。
一方、色層41Lc及び41Rcの存在しない反射領域41Lb及び41Rbであるスルーホール領域41Ld及び41Rdに入射した外光は、半透過型液晶表示パネル21の液晶層を透過し、金属膜により反射されて再び液晶層を透過し、レンチキュラレンズに入射する。即ち、スルーホール41Ld及び41Rdに入射した外光は、基本的に、色層41Lc及び41Rcを透過することがない。
本第1比較例においては、レンチキュラレンズ3がレンズ効果を有するX軸方向において、スルーホール41Ld及び41Rdが形成された領域と、形成されない領域とが繰り返し配置されている。このため、スルーホール41Ld及び41Rdを透過した外光と、色層41Lc及び41Rcを透過した外光は、シリンドリカルレンズの配列方向であるX軸方向に分離されることになる。即ち、スルーホール41Ldを透過した光は領域EL1に向かい、スルーホール41Rdを透過した光は領域ER1に向かうことになる。
前述のように、スルーホールを透過した光は白色となっているため、領域EL1又は領域ER1においては、それ以外の領域EL又はERと比較して、白色に近い色味となる。また、領域EL1又は領域ER1においては、領域EL又はERと比較して、色層41Lc又は41Rcによる外光の吸収が少ないため、反射率が大きな表示となる。この結果、観察者が左眼52を領域EL1に位置させ、右眼51を領域ER1に位置させた場合には、観察者は明るいが色純度の低い表示を視認することになる。一方で、観察者が左眼52を領域ELに位置させ、右眼51を領域ERに位置させた場合には、観察者は色の濃い暗い表示を視認することになる。本現象は外光の特性によっても変化し、特に太陽光のような平行光が入射した場合に顕著となる。
このように、レンズ配列方向に不均一なスルーホールが形成された場合には、スルーホールの影響により反射表示の品質が大きく損なわれ、視認する角度、即ち視野角及び/又は外光条件により色味の異常変化が発生することになる。
次に、本発明の第2の実施形態について説明する。図10は本実施形態に係る表示パネルを示す平面図であり、図11は本実施形態に係る表示装置を示す斜視図である。図10及び図11に示すように、本第2実施形態に係る半透過型液晶表示パネル22及び立体画像表示装置12は、上述の本第1実施形態に記載の半透過型液晶表示パネル2及び立体画像表示装置1と比較して、左眼用画素42L及び右眼用画素42Rが使用されている点が異なる。
即ち、左眼用画素42Lにおいては、透過領域42La、反射領域42Lb及び遮光領域42Leは、本第1実施形態と同様に設置されているものの、色層42Lcに設けられたスルーホール42Ldの形状が異なる。前述の第1実施形態においては、スルーホール42Ldの形状はスリット状であり、そのY軸方向における開口の幅がX軸方向の座標によらず一定となっていた。これに対し、本第2実施形態におけるスルーホール42Ldの形状は、同様にスリット状ではあるものの、そのY軸方向における開口の幅がX軸方向の座標により異なっており、一例では左眼用画素42LのX軸方向における中心部で開口幅が最大になっており、左眼用画素42Lの端部に向かって次第に開口幅が小さくなるように設定されている。
また、右眼用画素42Rにおいても、左眼用画素42Lと同様の形状のスルーホール42Rdが形成されている。本比較例における上記以外の構成は、前述の第1の実施形態と同様である。
本実施形態においては、スルーホールはスリット状に形成され、かつ左眼用画素及び右眼用画素夫々のX軸方向中心部におけるスルーホールのY軸方向の幅が最大となり、画素端部に向かって次第に開口幅が小さくなるように設定されている。このため、X軸方向の位置によっては色味の変化が発生するものの、スルーホール幅が徐々に変化するため、色味の変化は緩やかなものとなり、使用者の違和感が低減できる。これは、レンチキュラレンズが画素を拡大する効果を有するからである。即ち、画素はレンチキュラレンズにより拡大されるため、スルーホールの開口高さ、即ちY軸方向の幅の違いに起因する色むらは、X軸方向の視野角に依存することになる。換言すれば、表示面内では色むらは発生せず、表示を視認する角度を変えた場合に色味が変化することになる。そして、本実施形態においては、Y軸方向のスルーホール幅がX軸方向の位置に依存して徐々に変化するため、視野角に依存した色味変化もなだらかなものとなる。これにより、視野角に依存した色味変化が使用者に認識されにくくなる。以上のように、レンズの振分方向であるX軸方向と直交するY軸方向におけるスルーホールの幅が、X軸方向の位置に応じて徐々に変化することにより、スルーホールの影響を低減することができる。更に、画素中央部の反射率を最も高めることができるため、明るい反射表示が可能となる。
更にまた、本実施形態においては、各画素のスルーホールがY軸対称となるように形成されている。例えば、左眼用画素42Lにおいては、X軸方向の中央部においてスルーホールのY軸方向の幅が最大となっている。そして、このX軸方向の中央部にY軸と平行な対称軸を配置した場合、スルーホールの形状はこの対称軸に対して線対称である。右眼用画素42Rにおいても同様である。通常立体視をする際には、レンズの分離作用により、左眼用画素のX軸方向における中央部を左眼は視認する。同様に、右眼用画素のX軸方向における中央部を右眼は視認する。本実施形態の構成により、立体視のベストポジションにおいて、左眼が視認する画像の色味と右眼が視認する画像の色味を同程度にすることができる。これにより、違和感の低減と高画質化が可能となる。更には、左右画素のスルーホール形状が同じであるため、このベストポジションからずれた場合でも、左右両眼が視認する画像の色味は同様に変化する。これにより、立体視のベストポジション以外においても、左眼が視認する画像の色味と右眼が視認する画像の色味を同程度にすることができ、違和感の低減と高画質化が可能となる。
更にまた、左眼用画素と右眼用画素の隣接領域に着目すると、スルーホールのY軸方向の幅は、ほぼ同程度に形成されている。即ち、スルーホールのY軸方向の幅は、極大値及び極小値を有するものの、なだらかに変化している。これにより、表示を視認する角度を変えた場合でも、急激な色味の変化を抑制することができるため、違和感を低減することができる。本第2実施形態における上記以外の動作及び効果は、前述の第1実施形態と同様である。
次に、本発明の第3の実施形態について説明する。図12は本実施形態に係る表示パネルを示す平面図であり、図13は本実施形態に係る表示装置を示す斜視図であり、図14は図13に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図であり、図15はレンズ−画素間距離よりも小さな焦点距離のレンズを使用した場合の光学モデルを示す図である。図12及び図13に示すように、本第3実施形態に係る半透過型液晶表示パネル23及び立体画像表示装置13は、上述の本第1実施形態に記載の半透過型液晶表示パネル2及び立体画像表示装置1と比較して、左眼用画素43L及び右眼用画素43Rが使用され、レンチキュラレンズ31が使用されている点が異なる。
左眼用画素43Lにおいては、透過領域43La、反射領域43Lb及び遮光領域43Leは、本第1実施形態と同様に設置されているものの、色層43Lcに設けられたスルーホール43Ldの形状が異なる。即ち、本実施形態におけるスルーホール43Ldは、反射領域43Lbの中央部に反射領域の形状と相似形でかつ反射領域よりも小さく、特にX軸方向のスルーホール43Ldの幅が画素の反射領域43Lbの幅よりも小さく、更に、X軸方向のスルーホール43Ldの幅が画素ピッチの半分以上、一例では80%に設定されている。本実施形態では特に、X軸方向のスルーホール43Ldの幅が画素ピッチの50%以上の場合について説明する。また、右眼用画素43Rにおいても、左眼用画素43Lと同様の形状のスルーホール43Rdが形成されている。また、図14に示すように、スルーホール43Ldとスルーホール43Rdとは、X軸方向に対して、色相43Lc及び色相44Rcにより、分断されている。
更に、レンチキュラレンズ31においては、前述の本発明の第1実施形態におけるレンチキュラレンズ3と比較して、曲率半径が小さい、即ち焦点距離が短いシリンドリカルレンズ31aが使用されている点が異なる。本実施形態における上記以外の構成は、前述の第1の実施形態と同様である。
次に、上述の如く構成された本第3実施形態に係る表示装置の動作について説明する。図14に示すように、本第3実施形態における反射領域43Lb及び43Rbにおいては、前方からレンチキュラレンズ31を透過して半透過型液晶表示パネル23に入射した外光は、色層43Lc及び43Rcの存在する反射領域43Lb及び43Rbに入射すると、半透過型液晶表示パネル23の色層43Lc及び43Rcを透過し、次に液晶層を透過し、金属膜により反射されて再び液晶層を透過し、再度色層43Lc及び43Rcを透過して、レンチキュラレンズ31に入射する。即ち、色層43Lc及び43Rcの存在する反射領域43Lb及び43Rbに入射した外光は、色層43Lc及び43Rcを二度透過することになる。
一方、色層43Lc及び43Rcの存在しない反射領域43Lb及び43Rbであるスルーホール領域43Ld及び43Rdに入射した外光は、半透過型液晶表示パネル23の液晶層を透過し、金属膜により反射されて再び液晶層を透過し、レンチキュラレンズ31に入射する。即ち、スルーホール43Ld及び43Rdに入射した外光は、基本的に、色層43Lc及び43Rcを透過することがない。
本第3実施形態においては、レンチキュラレンズ31がレンズ効果を有するX軸方向において、スルーホール43Ld及び43Rdが形成された領域と、形成されない領域が繰り返し配置されている。このため、スルーホール43Ld及び43Rdを透過した外光と、色層43Lc及び43Rcを透過した外光は、シリンドリカルレンズの配列方向であるX軸方向に分離されることになる。
しかしながら、本発明の第1実施形態と比較して、レンチキュラレンズ31の曲率半径が小さく設定されているため、観察面での結像効果を弱めて画素の像をぼかす効果が発生する。これにより、X軸方向における色の分離は弱められ、色味の視野角依存性を低減することができる。
以下、本実施形態におけるレンチキュラレンズ31の曲率半径について、図14及び図15を用いて定量的に説明する。レンチキュラレンズ31の主点、即ち頂点と画素との間の距離をHとし、レンチキュラレンズ31の屈折率をnとし、レンズピッチをLとする。また、左眼用画素43L又は右眼用画素43Rの各1個のピッチをPとする。このとき、各1個の左眼用画素43L及び右眼用画素43Rからなる表示画素の配列ピッチは2Pとなる。
また、レンチキュラレンズ31と観察者との間の距離を最適観察距離ODとし、この距離ODにおける画素の拡大投影像の周期、即ち、レンズから距離ODだけ離れレンズと平行な仮想平面上における左眼用画素43L及び右眼用画素43Rの投影像の幅の周期を夫々eとする。更に、レンチキュラレンズ31の中央に位置するシリンドリカルレンズ31aの中心から、X軸方向におけるレンチキュラレンズ31の端に位置するシリンドリカルレンズ31aの中心までの距離をWLとし、半透過型液晶表示パネル23の中心に位置する左眼用画素43Lと右眼用画素43Rからなる表示画素の中心と、X軸方向における半透過型液晶表示パネル23の端に位置する表示画素の中心との間の距離をWPとする。更にまた、レンチキュラレンズ31の中央に位置するシリンドリカルレンズ31aにおける光の入射角及び出射角を夫々α及びβとし、X軸方向におけるレンチキュラレンズ31の端に位置するシリンドリカルレンズ31aにおける光の入射角及び出射角を夫々γ及びδとする。更にまた、距離WLと距離WPとの差をCとし、距離WPの領域に含まれる画素数を2m個とする。なお、図15では、レンズのぼかし量が少なく左眼用画素43L及び右眼用画素43Rの投影像の幅がeとみなせる場合について描いてあるが、ぼかし量が大きくなるに従って各画素の投影像の幅が大きくなるものの、両側の投影像との重なりが大きくなるだけなので、周期はeのままである。本実施形態以降の第4実施形態乃至第9実施形態においても、同様に図では投影像の幅が周期と同等とみなせるように図示してあり、図では投影像の幅がeと読み取れるが、あくまでも投影像の幅の周期がeである。シリンドリカルレンズ31aの配列ピッチLと画素の配列ピッチPとは相互に関係しているため、一方に合わせて他方を決めることになるが、通常、表示パネルに合わせてレンチキュラレンズを設計することが多いため、画素の配列ピッチPを定数として扱う。また、レンチキュラレンズ31aの材料を選択することにより、屈折率nが決定される。これに対して、レンズと観察者との間の観察距離OD、及び観察距離ODにおける画素拡大投影像の周期eは所望の値を設定する。これらの値を使用して、レンズの頂点と画素との間の距離H及びレンズピッチLを決定する。スネルの法則と幾何学的関係より、下記数式1乃至6が成立する。また、下記数式7乃至9が成立する。
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
本発明の第1実施形態においては、前述の如く、レンチキュラレンズの頂点と画素との間の距離Hを、レンチキュラレンズの焦点距離fと等しく設定しているため、下記数式10が成立し、レンズの曲率半径をrとすると、曲率半径rは下記数式11により求まる。
Figure 0005472783
Figure 0005472783
なお、レンチキュラレンズの横倍率は、画素拡大投影像の周期を画素の周期、即ち画素ピッチで除した値と考えることができるので、e/Pとなる。
更に、スルーホール43Ld及び43RdのX軸方向における開口の幅を画素ピッチのt倍と定義すると、本実施形態においては、下記数式12が成立する。
Figure 0005472783
上述のように定義すると、スルーホールの観察面における拡大像の幅はt×eとなり、観察面においてスルーホールの影響を低減するには、画素の拡大投影像の周期からこのスルーホール拡大像の幅を減じて、更に半分に割った値、即ち(1−t)×e/2だけ、画素の像をぼかせば良いことになる。
図15に示すように、レンチキュラレンズの曲率半径を数式17の値より小さく設定した場合には、レンチキュラレンズの像点をレンズよりも+Z側に設定したことになる。レンチキュラレンズの主点からこの像点までの距離をI1とすると、相似の関係より下記の数式13が成立する。
Figure 0005472783
更に、Abbeの不変量を用いて、下記の数式14が成立する。
Figure 0005472783
但し、r1は画素の像をぼかす場合のレンチキュラレンズの曲率半径である。数式14に数式13を代入し、r1について求めると、下記の数式15が得られる。
Figure 0005472783
この曲率半径r1は最小のぼかしを実現するための値であり、曲率半径の最大値に相当するため、下記の数式16の成立する範囲に設定することが好ましい。
Figure 0005472783
本実施形態においては、スルーホールは矩形開口状に形成されているが、レンチキュラレンズの焦点距離がレンズ−画素間距離よりも小さくなるように曲率半径を設定することにより、スルーホールの影響を低減して色味の変化を抑制することができる。
なお、上記の数式16は、曲率半径の上限を定めているに過ぎない。曲率半径を小さくするに従い、レンズの分離作用も低下していく。即ち、曲率半径の下限は、レンズの分離作用が存在する値である。換言すれば、レンチキュラレンズが、第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが配列された方向に沿って、前記各画素から出射した光を相互に異なる方向に振り分けるためには、曲率半径の最小値を定める必要がある。
先ず、レンズの分離作用が存在するための、焦点距離範囲の最小値を算出する。図16に示すように、分離作用が存在するためには、レンズピッチLを底辺とし焦点距離fを高さとする三角形と、画素ピッチPを底辺としH−fを高さとする三角形とにおいて、相似の関係が成立すればよい。これより、焦点距離の最小値はH×L/(L+P)と求めることができる。
次に焦点距離から曲率半径を算出する。数式11を使用して、曲率半径の最小値は、H×L×(nー1)/(L+P)/nと求めることができる。即ち、曲率半径は上記の数式16を満たした上で、この値以上にすることが好ましい。
本実施形態においては、左眼用画素と右眼用画素とを有する2視点の立体画像表示装置について説明したが、本発明はこれに限定されるものではない。例えば、N視点(Nは自然数)方式の表示装置に対して同様に適用することができる。この場合には、前述の距離WPの定義において、距離WPの領域に含まれる画素数を、2m個からN×m個に変更すればよい。
なお、本実施形態においてはレンチキュラレンズを使用するものとして説明したが、図17に示すように、レンズ要素が二次元状に配列したフライアイレンズ6も好適に使用することができる。このような光学部材は、前記表示パネルの表示面内において第1の方向と直交する第2の方向においても、前記各画素から出射した光を振り分ける効果を有している。これにより、第1の方向のみならず、第2の方向においても異なる視点の画像を視認することが可能となる。
また、本実施形態においては、スルーホールは矩形開口状に形成されるものとして説明した。しかし、本発明はこれに限定されない。例えば、スルーホールは円形状や楕円形状、多角形状であってもよい。このような形状は、矩形状と比較して、鋭角が少ないため、製造が容易である。このように、レンズなどの光学素子の振分方向であるX軸方向において、スルーホールが連続しない形状であれば、本発明を同様に適用することができる。
以上、本発明の第3実施形態についてまとめる。本実施形態に係る表示パネルは、マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記スルーホールは前記第1の方向に対して分断した形状をなし、前記光学部材は前記画素と結像関係にないことを特徴とする。本発明においては、スルーホールの像をぼかして表示することにより、スルーホールの影響を低減でき、色味の変化を抑制することができる。また、前述の第1実施形態と比較して、スルーホールの配置の自由度を向上することができるため、表示品質の向上が可能となる。本第3実施形態における上記以外の動作及び効果は、前述の第1実施形態と同様である。
次に、本発明の第4の実施形態について説明する。図18は本実施形態に係る表示パネルを示す平面図であり、図19は本実施形態に係る表示装置を示す斜視図であり、図20は図19に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。図18及び図19に示すように、本第4実施形態に係る半透過型液晶表示パネル24及び立体画像表示装置14は、上述の第3実施形態に記載の半透過型液晶表示パネル23及び立体画像表示装置13と比較して、左眼用画素44L及び右眼用画素44Rが使用されている点が異なる。
左眼用画素44Lにおいては、色層44Lcに設けられたスルーホール44Ldの形状が本第3実施形態と異なり、反射領域44Lbの中央部に反射領域の形状と相似形でかつ反射領域よりも小さく、特にX軸方向のスルーホール43Ldの幅が画素の反射領域43Lbの幅よりも小さく、また、X軸方向のスルーホール44Ldの幅が画素ピッチの半分以下、一例では30%に設定されている。本実施形態では特に、X軸方向のスルーホール44Ldの幅が画素ピッチの50%以下の場合について説明する。また、図20に示すように、スルーホール44Ldとスルーホール44Rdとは、X軸方向に対して、色相44Lc及び色相44Rcにより、分断されている。
また、右眼用画素44Rにおいても、左眼用画素44Lと同様の形状のスルーホール44Rdが形成されている。本実施形態における上記以外の構成は、前述の第3の実施形態と同様である。
本実施形態においては、レンチキュラレンズ31の曲率半径が小さく設定され、観察面での結像効果を弱めて画素の像をぼかす効果を利用する点では、本発明の第3実施形態と同様であるが、スルーホール44Ld及び44RdのX軸方向における開口の幅が画素ピッチの半分以下に設定されているため、画素の像をぼかす量が異なる。即ち、本実施形態では、前述の数式12の代わりに、下記数式17が適用される。
Figure 0005472783
上述のように定義すると、図20に示すように、スルーホールの観察面における拡大像の幅はt×eとなり、観察面においてスルーホールの影響を低減するには、このスルーホール拡大像の幅を半分に割った値、即ちt×e/2だけ、画素の像をぼかせば良いことになる。後は前述の第3実施形態と同様にして、レンズの曲率半径r2は下記数式18が成立する範囲に設定することが好ましいことが算出される。
Figure 0005472783
本実施形態においては、スルーホールが矩形開口状に形成され、かつX軸方向の開口幅が小さい場合に好適に適用することができ、ぼかし量を低減して広い立体視域を実現することができる。本第4実施形態における上記以外の動作及び効果は、前述の第3実施形態と同様である。
次に、本発明の第5の実施形態について説明する。図21は、本実施形態に係る表示パネルを示す平面図であり、図22は本実施形態に係る表示装置を示す斜視図であり、図23は図22に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図であり、図24はレンズ−画素間距離よりも大きな焦点距離のレンズを使用した場合の光学モデルを示す図である。
図21及び図22に示すように、本第5実施形態に係る半透過型液晶表示パネル25及び立体画像表示装置15は、上述の第3実施形態に記載の半透過型液晶表示パネル23及び立体画像表示装置13と比較して、曲率半径が大きい、即ち焦点距離が長いシリンドリカルレンズ32aを使用したレンチキュラレンズ32が使用されている点が異なる。本実施形態における上記以外の構成は、前述の第3の実施形態と同様である。
本実施形態においては、レンチキュラレンズ32の曲率半径が大きく設定され、観察面での結像効果を弱めて画素の像をぼかす効果を利用している点を特徴とする。本実施形態では、画素は第3実施形態と同じものを使用しているため、前述の数式18が成立する。
図24に示すように、レンチキュラレンズの曲率半径を数式17の値より大きく設定した場合には、レンチキュラレンズの像点をレンズよりも−Z側に設定したことになる。レンチキュラレンズの主点からこの像点までの距離をI2とすると、相似の関係より下記の数式19が成立する。
Figure 0005472783
更に、Abbeの不変量を用いて、下記の数式20が成立する。
Figure 0005472783
但し、r3は画素の像をぼかす場合のレンチキュラレンズの曲率半径である。数式20に数式19を代入し、r3について求めると、下記の数式21が得られる。
Figure 0005472783
この曲率半径r1は最小のぼかしを実現するための値であり、曲率半径の最小値に相当するため、下記の数式22の成立する範囲に設定することが好ましい。
Figure 0005472783
なお、上記の数式22は、曲率半径の下限を定めているに過ぎない。曲率半径を大きくするに従い、レンズの分離作用も低下していく。即ち、曲率半径の上限は、レンズの分離作用が存在する値である。換言すれば、レンチキュラレンズが、第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが配列された方向に沿って、前記各画素から出射した光を相互に異なる方向に振り分けるためには、曲率半径の最大値を定める必要がある。
先ず、レンズの分離作用が存在するための、焦点距離範囲の最大値を算出する。図25に示すように、分離作用が存在するためには、レンズピッチLを底辺とし焦点距離fを高さとする三角形と、画素ピッチPを底辺としf−Hを高さとする三角形とにおいて、相似の関係が成立すればよい。これより、焦点距離の最大値はH×L/(L−P)と求めることができる。
次に焦点距離から曲率半径を算出する。数式11を使用して、曲率半径の最大値は、H×L×(n−1)/(L−P)/nと求めることができる。即ち、曲率半径は上記の数式22を満たした上で、この値以下にすることが好ましい。
ここで、レンズが、各視点用画素の配列方向に沿って、これらの各画素から出射した光を相互に異なる方向に振り分けるための条件についてまとめる。前述の第3実施形態に記載のように、本条件を満たすための曲率半径の最小値は、H×L×(nー1)/(L+P)/nである。また、上述のように、本条件を満たすための曲率半径の最大値は、H×L×(nー1)/(L−P)/nである。即ち、レンズが振分効果を発揮するためには、曲率半径rは、H×L×(nー1)/(L+P)/n以上、H×L×(nー1)/(L−P)/n以下の範囲である必要がある。ちなみに、本発明の第3乃至第6実施形態は、この範囲に更に制限を加えることにより、スルーホールの影響を低減する効果を発揮させたものである。
本実施形態においては、左眼用画素と右眼用画素とを有する2視点の立体画像表示装置について説明したが、本発明はこれに限定されるものではない。例えば、N視点(Nは自然数)方式の表示装置に対して同様に適用することができる。この場合には、前述の距離WPの定義において、距離WPの領域に含まれる画素数を、2m個からN×m個に変更すればよい。
本実施形態においては、スルーホールは矩形開口状に形成されているが、レンチキュラレンズの焦点距離がレンズ−画素間距離よりも大きくなるように曲率半径を設定することにより、スルーホールの影響を低減して色味の変化を抑制することができる。また、本実施形態においては、曲率半径の大きなレンズを使用することができるため、レンズ表面の凹凸量を低減でき、この凹凸に起因する画質の劣化を低減することができる。本第5実施形態における上記以外の動作及び効果は、前述の第3実施形態と同様である。
次に、本発明の第6の実施形態について説明する。図26は、本実施形態に係る表示パネルを示す平面図であり、図27は本実施形態に係る表示装置を示す斜視図であり、図28は図27に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。図26及び図27に示すように、本第6実施形態に係る半透過型液晶表示パネル26及び立体画像表示装置16は、上述の第5実施形態に記載の半透過型液晶表示パネル25及び立体画像表示装置15と比較して、前述の第4実施形態の画素を適用している点が異なる。即ち、本実施形態においては、前述の第4実施形態の画素に、前述の第5実施形態のレンズを適用した場合である。本実施形態における上記以外の構成は、前述の第5の実施形態と同様である。
本実施形態においては、レンチキュラレンズ32の曲率半径が大きく設定され、観察面での結像効果を弱めて画素の像をぼかす効果を利用する点では、本発明の第5実施形態と同様であるが、スルーホール44Ld及び44RdのX軸方向における開口の幅が画素ピッチの半分以下に設定されているため、画素の像をぼかす量が異なる。即ち、本実施形態では、前述の数式18の代わりに、前述の数式23が適用される。
上述のように定義すると、スルーホールの観察面における拡大像の幅はt×eとなり、観察面においてスルーホールの影響を低減するには、このスルーホール拡大像の幅を半分に割った値、即ちt×e/2だけ、画素の像をぼかせば良いことになる。後は前述の第5実施形態と同様にして、レンズの曲率半径r4は下記数式23が成立する範囲に設定することが好ましい。
Figure 0005472783
本実施形態においては、スルーホールが矩形開口状に形成され、かつX軸方向の開口幅が小さい場合に好適に適用することができ、ぼかし量を低減して広い立体視域を実現することができる。本第6実施形態における上記以外の動作及び効果は、前述の第5実施形態と同様である。
次に、本発明の第7の実施形態について説明する。図29は、本実施形態に係る表示パネルを示す平面図であり、図30は本実施形態に係る表示装置を示す斜視図である。図29及び図30に示すように、本第7実施形態に係る半透過型液晶表示パネル27及び表示装置17は、上述の第3実施形態に記載の半透過型液晶表示パネル23及び表示装置13と比較して、左眼用画素45L及び右眼用画素45Rが使用され、前述の第1実施形態に記載のレンチキュラレンズ3よりも曲率半径が小さく、かつ前述の第3実施形態に記載のレンチキュラレンズ31よりも曲率半径の大きなレンチキュラレンズ33を使用している点が異なる。
左眼用画素45Lにおいては、色層45Lcに設けられたスルーホール45Ldの形状が第3実施形態と異なり、X軸方向に多数の矩形状のスルーホールが細分化されて形成されている。即ち、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面においては、スルーホール45Ldは分断されており、図示例では、3つの領域に分断されている。また、右眼用画素45Rにおいても、同様である。本実施形態における上記以外の構成は、前述の第3の実施形態と同様である。
本実施形態においては、スルーホール45Ldの形状が、X軸方向に多数の矩形状のスルーホールを細分化されて形成されたものであるため、レンチキュラレンズ33の曲率半径を本発明の第1実施形態から大きく変える必要がない。本発明の第1実施形態では、前述のようにレンチキュラレンズ3の焦点が画素面となるように設定されているが、この状態からレンズの曲率半径を変更すると、画素の像をぼかす効果が発生する。前述の第3乃至第6実施形態においては、このぼかしの効果を利用したものであるが、ぼかし量が大きくなると左眼用画素と右眼用画素の振分効果も低減するため、立体に見える範囲が狭まるという弊害が大きくなる。本実施形態においては、スルーホールを細分化してレンズ配列方向に多数配置することにより、ぼかし量を低減した上でスルーホールの影響を低減して色味の変化を抑制することができる。これにより、立体視域が狭まる現象を抑制して、広い立体視域が実現できる。本第7実施形態における上記以外の動作及び効果は、前述の第3実施形態と同様である。
次に、本発明の第8の実施形態について説明する。図31は、本実施形態に係る表示パネルを示す平面図であり、図32は本実施形態に係る表示装置を示す斜視図であり、図33は図32に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図であり、図34はパララックスバリアを使用した場合の光学モデルを示す図である。図31及び図32に示すように、本第8実施形態に係る半透過型液晶表示パネル28及び立体画像表示装置18は、上述の本第3実施形態に記載の半透過型液晶表示パネル23及び立体画像表示装置13と比較して、レンチキュラレンズ31の代わりにスリット7aがX軸方向に多数配列したパララックスバリア7が使用されている点が異なる。本実施形態における上記以外の構成は、前述の第3の実施形態と同様である。
次に、上述の如く構成された本第8実施形態に係る表示装置の動作について説明する。まず、図33及び図34を用いて、パララックスバリア方式について説明する。図33に示すように、パララックスバリア7は、細い縦縞状の多数の開口、即ち、スリット7aが形成されたバリア(遮光板)である。換言すれば、パララックスバリアは、振分方向となる第1の方向と直交する第2の方向に延びるスリットが、前記第1の方向に沿って複数本配列するように形成された光学部材である。左眼用画素43Lからパララックスバリア7に向けて出射した光は、スリット7aを透過するすると、領域ELに向けて進行する光束となる。同様に、右眼用画素43Rからパララックスバリア7に向けて出射した光は、スリット7aを透過すると、領域ERに向けて進行する光束となる。このとき、観察者が左眼52を領域ELに位置させ、右眼51を領域ERに位置させた場合に、観察者は立体画像を認識することができる。
次に、表示パネルの前面にスリット状の開口部が形成されたパララックスバリアが配置された立体画像表示装置について、その各部のサイズを詳細に説明する。図34に示すように、パララックスバリア7のスリット7aの配列ピッチをLとし、パララックスバリア7と画素との距離をHとする。また、パララックスバリア7と観察者との間の距離を最適観察距離ODとする。更に、パララックスバリア7の中央に位置するスリット7aの中心から、X軸方向におけるパララックスバリア7の端に位置するスリット7aの中心までの距離をWLとする。パララックスバリア7自体は遮光板であるためスリット7a以外に入射した光は透過しないが、バリア層を支持する基板を設けることとし、この基板の屈折率をnと定義する。このように定義すると、スリット7aから出射する光は、バリア層を支持する基板から出射する際に、スネルの法則に従って屈折する。そこで、パララックスバリア7の中央に位置するスリット7aにおける光の入射角及び出射角を夫々α及びβとし、X軸方向におけるパララックスバリア7の端に位置するスリット7aにおける光の入射角及び出射角を夫々γ及びδとする。更に、スリット7aの開口幅をS1とする。スリット7aの配列ピッチLと画素の配列ピッチPとは相互に関係しているため、一方に合わせて他方を決めることになるが、通常、表示パネルに合わせてパララックスバリアを設計することが多いため、画素の配列ピッチPを定数として扱う。また、バリア層の支持基板の材料を選択することにより、屈折率nが決定される。これに対して、パララックスバリアと観察者との間の観察距離OD、及び観察距離ODにおける画素拡大投影像の周期eは所望の値を設定する。これらの値を使用して、バリアと画素との間の距離H及びバリアピッチLを決定する。スネルの法則と幾何学的関係より、下記数式24乃至29が成立する。また、下記数式30乃至32が成立する。
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
なお、パララックスバリアが前述の第3実施形態におけるレンチキュラレンズと同様に画素を拡大するものと解釈すれば、パララックスバリアの横倍率は、画素拡大投影像の周期を画素の周期、即ち画素ピッチで除した値と考えることができるので、e/Pとなる。
また、スルーホール43Ld及び43RdのX軸方向における開口の幅を画素ピッチのt倍と定義すると、スルーホールの観察面における拡大像の幅はt×eとなり、観察面においてスルーホールの影響を低減するには、画素の拡大投影像の周期からこのスルーホール拡大像の幅を減じて、更に半分に割った値、即ち(1−t)×e/2だけ、画素の像をぼかせば良いことになる。パララックスバリアにおいては、スリットの開口幅が小さい場合には、ピンホールカメラと同様の原理で良好に結像するが、開口幅を大きくするに従ってぼかしの作用が大きくなる。
図33に示すように、パララックスバリア7の中央部に位置するスリット7aの開口端部における光の挙動について着目すると、左眼用画素43L及び右眼用画素43Rの境界から出射し、スリット7aの開口端部に入射光の入射する光の入射角及び出射角を夫々ε及びφと定義する。この出射した光がODだけ進行した際に、(1−t)×e/2だけ広がれば良いことになるので、スネルの法則と幾何学的関係より、下記数式33乃至35が成立する。また、下記数式36が導かれる。
Figure 0005472783
Figure 0005472783
Figure 0005472783
Figure 0005472783
このスリット幅S1は最小のぼかしを実現するための値であり、スリット幅の最小値に相当するため、下記数式37の成立する範囲に設定することが好ましい。
Figure 0005472783
なお、スリット幅S1が大きくなるに従い、パララックスバリアとしての作用が低下する。例えば、スリット幅S1がスリットの配列ピッチLと同じ場合には、もはや遮光する領域は存在せず、パララックスバリアとして機能しない。これに対し本発明においては、パララックスバリア等の光学部材が、複数の画素から出射した光を相互に異なる方向に振り分けることが前提である。この前提条件を実現するためには、スリット幅S1の上限値は、スリットの配列ピッチLの半分以下にすることが望ましい。この条件が、観察面において、左右画素の像が重ならない領域が存在するための、最大値となるからである。即ち、スリット幅S1は上記の数式37を満たし、かつスリット配列ピッチの半分以下にするのが好ましいことになる。
本実施形態においては、スルーホールは矩形開口状に形成されているが、パララックスバリアにおけるスリットの開口幅を適切に設定することにより、スリットのぼかしの作用を利用してスルーホールの影響を低減し、色味の変化を抑制することができる。パララックスバリア方式はレンチキュラレンズ方式と比較して、スリット以外の遮光部による吸収損失が発生するため、透過率及び反射率が低下するものの、前述のようにフォトリソグラフィを使用して容易に製造可能であるため、低コスト化が可能となる。
なお、本実施形態においては、スリットがX軸方向に一次元配列したパララックスバリアを使用するものとして説明したが、本発明はこれに限定されるものではなく、開口が二次元配列したバリアも好適に使用することができる。例えば、複数個のピンホール状の開口部がマトリクス状に形成されたパララックスバリアを使用することができる。このような光学部材は、前記表示パネルの表示面内において第1の方向と直交する第2の方向においても、前記各画素から出射した光を振り分ける効果を有している。これにより、第1の方向のみならず、第2の方向においても異なる視点の画像を視認することが可能となる。本第8実施形態における上記以外の動作及び効果は、前述の第3実施形態と同様である。
次に、本発明の第9の実施形態について説明する。図35は、本実施形態に係る表示パネルを示す平面図であり、図36は本実施形態に係る表示装置を示す斜視図であり、図37は図36に示す半透過型液晶表示パネルにおいて、X軸方向に平行な線分でスルーホールを含む反射領域を切断した断面における光学モデルを示す図である。図35及び図36に示すように、本第9実施形態に係る半透過型液晶表示パネル29及び立体画像表示装置19は、上述の第8実施形態に記載の半透過型液晶表示パネル28及び立体画像表示装置18と比較して、前述の第4実施形態に記載の左眼用画素44L及び右眼用画素44Rを適用した場合である。即ち、スルーホール44Ld又は44RdのX軸方向における幅が、画素ピッチの50%以下である場合について説明する。本実施形態における上記以外の構成は、前述の第8の実施形態と同様である。
本実施形態では、スルーホール44Ld及び44RdのX軸方向における開口の幅が画素ピッチの半分以下に設定されているため、画素の像をぼかす量が異なる。即ち、本実施形態では、前述の数式18の代わりに、前述の数式23が適用される。
このとき、図37に示すように、スルーホールの観察面における拡大像の幅はt×eとなり、観察面においてスルーホールの影響を低減するには、このスルーホール拡大像の幅を半分に割った値、即ちt×e/2だけ、画素の像をぼかせば良いことになる。後は前述の第8実施形態と同様にして、スリット開口幅S2は下記数式38が成立する範囲に設定することが好ましいことが算出される。
Figure 0005472783
なお、スリット幅S2の上限値は、前述の第8の実施形態と同様に、スリット配列ピッチの半分と考えることができる。したがって、スリット幅S2は上記の数式38を満たし、かつスリット配列ピッチの半分以下にすることが好ましい。
本実施形態においては、スルーホールが矩形開口状に形成され、かつX軸方向の開口幅が小さい場合に好適に適用することができ、ぼかし量を低減して広い立体視域を実現することができる。本第9実施形態における上記以外の動作及び効果は、前述の第4実施形態と同様である。
次に、本発明の第10の実施形態について説明する。図38は本実施形態に係る端末装置を示す斜視図であり、図39は本実施形態に係る表示パネルを示す平面図であり、図40は本実施形態に係る表示装置を示す斜視図である。図38乃至図40に示すように、本実施形態における半透過方液晶表示パネル20及び表示装置10は、端末装置としての携帯電話91に組み込まれている。そして、本実施形態は、前述の第1の実施形態と比較して、レンチキュラレンズ3を構成するシリンドリカルレンズ3aの長手方向、即ちY軸方向が画像表示装置の横方向、即ち、画像の水平方向であり、シリンドリカルレンズ3aの配列方向、即ちX軸方向が縦方向、即ち、画像の垂直方向である点が異なっている。
また、図39に示すように、表示パネル20には、各1つの第1視点用画素4F及び第2視点用画素4Sからなる画素対が複数個、マトリクス状に配列されている。そして、1つの画素対における第1視点用画素4F及び第2視点用画素4Sの配列方向は、シリンドリカルレンズ3aの配列方向となるX軸方向であり、画面の縦方向(垂直方向)である。また、各画素4F及び4Sの構造は、前述の第1実施形態と同様である。例えば、第1視点用画素4Fにおいては、透過領域4Fa、反射領域4Fb、色層4Fc、スリット状のスルーホール4Fd、遮光領域4Feが前述の第1実施形態と同様に設けられている。本実施形態における上記以外の構成は、前述の第1の実施形態と同様である。
次に、本実施形態に係る画像表示装置の動作について説明するが、基本的な動作は前述の第1実施形態と同様であり、表示する画像が異なる。表示パネル20の第1視点用画素4Fが第1視点用の画像を表示し、第2視点用画素4Sが第2視点用の画像を表示する。第1視点用の画像及び第2視点用の画像は、相互に視差がある立体画像ではなく、平面画像である。また、両画像は相互に独立した画像であってもよいが、相互に関連する情報を示す画像であってもよい。
本実施形態においては、スルーホールの影響のない均一な反射表示が実現でき、視野角や外光条件により色味が異常変化する現象を抑制できるだけでなく、観察者が携帯電話91の角度を変えるだけで、第1視点用の画像又は第2視点用の画像を選択して観察できるという利点がある。特に、第1視点用の画像と第2視点用の画像との間に関連性がある場合には、観察角度を変えるという簡単な手法で夫々の画像を切り換えて交互に観察できるため、利便性が大幅に向上する。なお、第1視点用の画像と第2視点用の画像とを横方向に配列した場合には、観察位置によっては、右眼と左眼とで異なる画像を観察する場合がある。この場合、観察者は混乱し、各視点の画像を認識できなくなる。これに対して、本実施形態に示すように、複数視点用の画像を縦方向に配列した場合には、観察者は各視点用の画像を必ず両眼で観察できるため、これらの画像を容易に認識できる。本実施形態における上記以外の効果は、前述の第1の実施形態と同様である。なお、本実施形態は、前述の第2乃至第9の実施形態のいずれかの実施形態と組み合わせることもできる。更に、後述の実施形態と組み合わせて使用することもできる。
なお、前述の第1乃至第10の実施形態においては、携帯電話等に搭載され、1人の観察者の左右の眼に相互に視差がある画像を供給して立体画像を表示するか、1人の観察者に複数種類の画像を同時に供給する画像表示装置の例を示したが、本発明に係る画像表示装置はこれに限定されず、大型の表示パネルを備え、複数の観察者に相互に異なる複数の画像を供給するものであってもよい。なお、後述の実施形態に関しても同様である。
次に、本発明の第11の実施形態について説明する。図41は、本実施形態に係る表示パネルを示す平面図であり、図42は本実施形態に係る表示装置を示す斜視図である。図41及び図42に示すように、本第11実施形態に係る半透過型液晶表示パネル221及び表示装置111は、上述の第7実施形態に記載の半透過型液晶表示パネル27及び表示装置17と比較して、左眼用画素46L及び右眼用画素46Rが使用されている点が異なる。
左眼用画素46Lにおいては、色層46Lcに設けられたスルーホール46Ldの形状が第7実施形態と異なる。具体的には、スルーホール46Ldの形状は階段状であり、したがってY軸方向におけるスルーホールの開口の幅が、X軸方向の座標により異なっている。例えば左眼用画素46Lにおいては、X軸方向における中央付近に、Y軸方向の開口幅が最も大きなスルーホールが形成されている。そして、中央付近からX軸方向に離れるに従い、Y軸方向の開口幅もステップ状に小さくなるように配置されている。また、右眼用画素46Rにおいても、同様である。本実施形態における上記以外の構成は、前述の第7の実施形態と同様である。即ち、前述の第7の実施形態と同様に、レンチキュラレンズ33を構成するシリンドリカルレンズ33aは、前述の第1実施形態に記載のレンチキュラレンズ3を構成するシリンドリカルレンズ3aよりも曲率半径が小さく、かつ前述の第3実施形態に記載のレンチキュラレンズ31を構成するシリンドリカルレンズ31aよりも曲率半径が大きい。
なお、図41において、遮光領域46Leは、左眼用画素46Lの透過領域46La及び反射領域46Lbを除いた部分に配置されている。これは、他の画素、及び他の実施形態においても同様である。
本実施形態においては、Y軸方向におけるスルーホール45Ldの開口幅が、X軸座標により異なるように構成されている。そして、レンチキュラレンズ33は、その焦点が画素からわずかに異なるように設定されている。このため、観察面に対する結像効果を弱めて、画素の像をぼかす効果を発揮しているものの、その程度はわずかであり、良好な分離特性が実現可能である。この二つの特徴により、本実施形態のように階段状の開口を有するスルーホールを使用した場合でも、前述の第2実施形態と同様、Y軸方向の開口幅がX軸方向に対してなだらかに変化する構成と同様の効果を発揮することができる。即ち、階段状開口に起因した視野角方向の色味むらの発生を抑制でき、使用者の違和感を低減することができる。
特に、液晶表示パネルの駆動方法としてTFT方式を使用した場合には、画素電極に表示する画像と対応した電圧を印加するためのトランジスタや、その電圧を保持するための蓄積容量など、構造物を多数配置する必要がある。この結果、これらの構造物のレイアウトによっては、前述の第2実施形態のようになだらかに変化する形状のスルーホールを好適に配置できない場合が発生する。このような場合には、本実施形態のように階段状の開口を有するスルーホールを適用し、レンチキュラレンズの分離性能、即ち左右の画素から発する光を異なる方向に分離する性能を僅かに低下させることにより、表示品質を向上することができる。
なお、本実施形態におけるレンチキュラレンズの焦点距離は、スルーホールにおける階段状の開口がそのまま観察面に投影されないように設定すればよく、例えば前述の第3実施形態と同様に考えることができる。即ち、ぼかし量は、階段状開口の各段のX軸方向における幅と同等に設定すればよい。これにより、スルーホールの階段状の形状に起因した視野角方向依存の色味むらを低減することができ、前述の第2実施形態と同様の画質を実現することができる。
なお、図41に示すように、X軸方向におけるスルーホールの開口幅は、色層の端部において大きく形成され、端部から離れるに従って小さくなるように形成されていることが望ましい。この形状は、換言すれば、色層の一部をかじり取った形状と表現することもできる。これにより、色層が鋭角状になるのを防止することができるため、スルーホールの形成が容易となるだけでなく、面内の形状のばらつきを低減して、均一な表示が実現できる。
更にまた、本実施形態においては、スルーホールの開口形状は階段状であるものとして説明したが、本発明はこれに限定されるものではない。Y軸方向の開口幅がX軸方向に対してステップ状に変化するスルーホール形状に対して、同様に適用することができる。
以上、本発明の第11実施形態についてまとめる。本実施形態における表示パネルは、マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記表示パネルの表示面において前記第1の方向と直交する第2の方向における前記スルーホールの幅が、前記第1の方向の位置に応じてステップ状に変化し、前記光学部材は前記画素と結像関係にないことを特徴とする。本発明においては、スルーホールの像をぼかして表示することにより、スルーホールの影響を低減でき、色味の変化を抑制することができる。また、スルーホールの配置の自由度を向上して、高い表示品質を実現することができる。本第11実施形態における上記以外の動作及び効果は、前述の第7実施形態と同様である。
次に、本発明の第12の実施形態について説明する。図43は、本実施形態に係る表示パネルを示す平面図であり、図44は本実施形態に係る表示装置を示す斜視図である。図43及び図44に示すように、本第12実施形態に係る半透過型液晶表示パネル222及び表示装置112は、上述の第2実施形態に記載の半透過型液晶表示パネル22及び表示装置12と比較して、左眼用画素47L及び右眼用画素47Rが使用されている点が異なる。
左眼用画素47Lにおいては、色層47Lcに設けられたスルーホール47Ldの形状が、是第2実施形態と異なる。具体的には、スルーホール47Ldの形状は逆台形状である。即ち、色層の端部側に下底を配置した台形となっている。そして、反射領域47Lbの角部には色層47Lcが存在するように、スルーホールが形成されている。また、右眼用画素47Rにおいても同様である。本実施形態における上記以外の構成は、前述の第2実施形態と同様である。本実施形態における上記以外の構成は、前述の第2の実施形態と同様である。
本実施形態においては、スルーホールは画素の表示領域の角部を除外して配置されている。即ち、画素の表示に使用する領域の角部には色層が存在するように、スルーホールは形成されている。一般的に、色層を形成するためのカラーレジストは、ある程度の厚みとなるように形成されている。この厚みは実現する色の濃さにも依存するが、最近では広色度域の表示が求められるため、増大する傾向にある。具体的には、液晶層の厚みは3乃至4マイクロメートルであるのに対して、色層を形成するカラーレジストの厚みは、2マイクロメートル程度となる。このように、スルーホールとその周辺とでは、厚み方向の構造に大きな差異が発生するので、この差異を低減するために、平坦化層が導入されることも多い。しかし、この差異を完全に低減することはできず、スルーホール部と色層部では、液晶層の厚みが若干異なっている。即ち、色層の存在しないスルーホール部の方が、液晶層の厚みは大きくなる。
次に、画素の表示に使用する領域の角部に着目すると、この領域は変曲点であり、液晶の異常配向が発生し易い傾向にある。特に、遮光領域を金属層でなくブラックレジストなどの有機層で形成した場合には、遮光領域の端部で段差が発生する。この段差の影響により液晶の異常配向が誘発される傾向にあり、特に直線部よりも角部において異常配向が発生する確率が高い。
本実施形態においては、液晶の異常配向が発生する確率の高い角部を除外してスルーホールを形成している。これにより、画素の角部にスルーホールを形成する場合や、画素の角部にスルーホールの端部を形成する場合と比較して、液晶の配向異常を低減することができる。従って、表示品質の向上が可能となる。本第12実施形態における上記以外の動作及び効果は、前述の第2実施形態と同様である。
次に、本発明の第13の実施形態について説明する。図45は、本実施形態に係る表示パネルを示す平面図であり、図46は本実施形態に係る表示装置を示す斜視図である。図45及び図46に示すように、本第13実施形態に係る半透過型液晶表示パネル223及び表示装置113は、上述の第1実施形態に記載の半透過型液晶表示パネル2及び表示装置1と比較して、2種類の左眼用画素401L及び402Lが使用され、2種類の右眼用画素401R及び402Rが使用されている点が異なる。
左眼用画素401Lの構造は、右眼用画素401Rの構造と同じである。同様に、左眼用画素402Lの構造は、右眼用画素402Rの構造と同じである。左眼用画素401Lと右眼用画素401Rは、組となって表示単位を形成している。そして、この左眼用画素401L及び右眼用画素401Rとからなる表示単位が、シリンドリカルレンズの配列方向であるX軸方向に沿って、繰り返し配置されている。また、左眼用画素402Lと右眼用画素402Rは、やはり組となって表示単位を形成している。そして、この左眼用画素402L及び右眼用画素402Rとからなる表示単位が、シリンドリカルレンズの配列方向であるX軸方向に沿って、繰り返し配置されている。更に、左眼用画素401L及び右眼用画素401Rとからなる表示単位の行と、左眼用画素402L及び右眼用画素402Rとからなる表示単位の行は、Y軸方向に沿って、交互に配置されている。
左眼用画素401Lにおいては、スルーホール401Ldが、画素の一部の領域にのみ形成されている。具体的には、前述の第1実施形態の左眼用画素4Lに対して、スルーホールがX軸方向において分断するように配置されている。例えば矩形状のスルーホールがX軸方向に連続しないように配置されている。そして、左眼用画素401Lと左眼用画素402Lとでは、この矩形状のスルーホールの位置、即ち各画素におけるスルーホールの相対位置が異なっている。特に、X軸方向における相対位置が異なっている。一例では、左眼用画素401Lにおけるスルーホール401Ldの相対位置は、左眼用画素402Lにおけるスルーホール402Ldの相対位置と、Y軸対称、即ちシリンドリカルレンズの配列方向と直交する方向に延伸する軸に対して対称な関係にある。本実施形態における上記以外の構成は、前述の第1の実施形態と同様である。
本実施形態においては、左眼用画素401L及び右眼用画素401Rを有する表示単位の行と、左眼用画素402L及び右眼用画素402Rを有する表示単位の行とを用いて、スルーホールの影響を補償することができ、高画質化が可能となる。
即ち、左眼用画素401Lにおけるスルーホール401LdのX軸方向の位置は、左眼用画素402Lにおけるスルーホール402LdのX軸方向の位置と異なっている。このため、レンチキュラレンズにより観察面に投影されるスルーホール401Ldの像の位置と、スルーホール402Ldの像の位置は異なったものとなる。これにより、スルーホールの像の位置が全画素で同一となる現象を防止でき、スルーホールの影響を低減することができる。換言すれば、レンズ等の光学部材の振分方向となる第1方向に対し、表示面内で直交する第2方向において隣接する表示単位は、スルーホールの相対位置が異なる画素を有している。そして、この第2方向に沿って隣接する画素を使用して、スルーホールの影響を補償することができる。
前述の第1実施形態から第12実施形態までの各実施形態においては、全画素が同じ構造であることが前提であった。これに対し、本実施形態では、異なる画素構造を採用してスルーホールの影響を低減している点が特徴的である。
本実施形態においては、特に薄膜トランジスタを使用した表示パネルに対して好適に適用することができる。特に、薄膜トランジスタや、この薄膜トランジスタと組み合わせて使用する蓄積容量等によりスルーホールの位置が限定されてしまう場合、行単位で薄膜トランジスタ等の位置を変えることで好適に適用可能である。例えば、画素中での薄膜トランジスタ等の位置が、行単位でY軸対称となるように配置することにより、本実施形態のスルーホール配置と好適に組み合わせることが可能となる。
更に本実施形態においては、各表示単位を構成する左眼用画素と右眼用画素において、スルーホールの位置が同様になるよう構成されている。即ち、各表示単位を構成する画素は、スルーホールの相対位置が同じである。これにより、左眼が視認する画素と右眼が視認する画素を同様にすることができるため、違和感の一層の低減が可能となる。特に、各表示単位を構成する左眼用画素と右眼用画素に同情報を表示することにより2D表示が実現される場合において、非常に有効である。
また、本実施形態においては、スルーホールの位置が異なる画素をY軸方向に沿って配置することにより、スルーホールの影響を低減している。これは特に、X軸方向に多数の画素を配置する必要がある多視点化の際に非常に有効となる。即ち、本実施形態においては、表示単位が左眼用画素と右眼用画素の2種類から構成される2視点の場合について説明したが、視点数を増やす場合にはX軸方向、即ちシリンドリカルレンズの配列方向に沿って、多数の画素を配置する必要がある。
例えば正方形の領域中に多数の多視点表示用画素を配置する場合では、X軸方向の画素密度が高くなるため、異なるスルーホール位置を有する画素をX軸方向に沿って配列するのは難しい。本実施形態のようにスルーホールの位置が異なる画素をY軸方向に沿って配置する方が好ましく、高画質化が可能となる。
また、正方形の領域中に限定することなく多視点表示用画素を配置した場合、即ちX軸方向の画素密度を向上することなく多視点表示を実現した場合には、X軸方向における表示単位のピッチが粗くなり、補償の効果が十分に得られなくなる。やはり、本実施形態のように、Y軸方向に隣接する画素を使用して補償するのが好ましい。
なお、カラー画素の配置に関しては、例えば赤緑青色の3色の画素を横ストライプ状に配置した場合、Y軸方向に隣接する赤色と緑色の画素のスルーホールの位置は異なるが、この緑色の画素に隣接する青色の画素のスルーホールの位置は赤色の画素と同じである。更に、この青色の画素に隣接する赤色の画素のスルーホールの位置は青色の画素とは異なる。これにより、同色の画素にのみ着色すると、スルーホールの位置が異なる画素が交互に配置されていることになる。即ち、スルーホールの位置が異なる画素の数と、カラー画素の色の数との関係においては、少なくとも同じ数でない方がよい。より好ましくは、互いに割り切れない関係にあることが望ましいことになる。これにより、直接隣接する画素でなくても、同じ役割を担う画素を使用して、実効的に補償効果を発揮することができる。
なお、スルーホールの開口高さ、即ちY軸方向におけるスルーホールの開口幅は、色の種類に応じて異なっていてもよい。即ち、本発明においては、レンズの分離方向であるX軸方向において、スルーホールの位置が異なる画素が存在する点が重要なポイントである。
本実施形態においては、スルーホールの位置が異なる2種類の画素を使用するものとして説明したが、本発明はこれに限定されず、更に多くの種類の画素を使用することもできる。本第13実施形態における上記以外の動作及び効果は、前述の第1実施形態と同様である。
次に、本発明の第14の実施形態について説明する。図47は、本実施形態に係る表示パネルを示す平面図であり、図48は本実施形態に係る表示装置を示す斜視図である。図47及び図48に示すように、本第14実施形態に係る半透過型液晶表示パネル224及び表示装置114は、上述の第13実施形態に記載の半透過型液晶表示パネル223及び表示装置113と比較して、左眼用画素と右眼用画素の配置が異なる。即ち、2種類の左眼用画素401L及び402Lが使用され、2種類の右眼用画素401R及び402Rが使用されている点は同じであるが、左眼用画素401L及び右眼用画素401Rから構成される表示単位がY軸方向に沿って繰り返し配置されている。そして、左眼用画素402L及び右眼用画素402Rから構成される表示単位がY軸方向に沿って繰り返し配置されている。即ち、2種類の表示単位の列が、X軸方向に交互に配置されていることになる。本実施形態における上記以外の構成は、前述の第13の実施形態と同様である。
本実施形態においては、X軸方向に隣接する表示単位を使用することにより、スルーホールの影響を補償することができる。即ち、レンズ等の光学部材の振分方向となる第1方向に隣接する表示単位は、スルーホールの相対位置が異なる画素を有している。Y軸方向には同じ画素が配置することになるため、特に横ストライプのカラー配置と好適に組み合わせて使用することができ、色の種類と画素の種類を独立に配置することができる。これは表示を均一化する点で好ましい。特に視点数よりも色層の種類が多い場合、例えば3色2視点の場合などに好適に適用できる。これはX軸方向の画素の数がY軸方向の画素の数より小さいからである。
このように表示を均一化する目的においては、スルーホールの位置が同じである画素が繰り返し配置される方向は、同色の画素が繰り返し配置される方向と直交する方が好ましい。更には、同色の画素が繰り返し配置される方向は、レンズの配列方向と同じ方向である方が好ましい。これは、レンズ作用により色の分離が発生するのを防ぐためである。従って、スルーホールの位置が同じである画素が繰り返し配置される方向は、レンズの配列方向と直交する方が好ましいことになる。そうでない場合には、前述の第13実施形態に記載のように、スルーホールの位置が異なる画素の数と、カラー画素の色の数に制約が発生することになる。本第14実施形態における上記以外の動作及び効果は、前述の第13実施形態と同様である。
次に、本発明の第15の実施形態について説明する。図49は、本実施形態に係る表示パネルを示す平面図であり、図50は本実施形態に係る表示装置を示す斜視図である。図49及び図50に示すように、本第15実施形態に係る半透過型液晶表示パネル225及び表示装置115は、上述の第13実施形態に記載の半透過型液晶表示パネル223及び表示装置113と比較して、左眼用画素と右眼用画素の配置が異なる。即ち、左眼用画素401L及び右眼用画素401Rから構成される表示単位と、左眼用画素402L及び右眼用画素402Rから構成される表示単位が市松模様状に配置されている。換言すれば、2種類の表示単位は、X軸方向に沿って交互に配置されるだけでなく、Y軸方向に沿っても交互に配置されている。本第15実施形態における上記以外の構成は、前述の第13実施形態と同様である。
本実施形態においては、X軸方向に沿って配置されている表示単位だけでなく、Y軸方向に沿って配置されている表示単位を使用して、スルーホールの影響を低減することができる。即ち、レンズ等の光学部材の振分方向となる第1方向に隣接する表示単位は、スルーホールの相対位置が異なる画素を有しており、かつ表示面内においてこの第1方向と直交する第2方向に隣接する表示単位もスルーホールの相対位置が異なる画素を有している。これにより、前述の第13実施形態よりも補償効果を高めることができるため、高画質化が可能となる。本第15実施形態における上記以外の動作及び効果は、前述の第13実施形態と同様である。
次に、本発明の第16の実施形態について説明する。図51は、本実施形態に係る表示パネルを示す平面図であり、図52は本実施形態に係る表示装置を示す斜視図である。図51及び図52に示すように、本第16実施形態に係る半透過型液晶表示パネル226及び表示装置116は、上述の第15実施形態に記載の半透過型液晶表示パネル225及び表示装置115と比較して、左眼用画素と右眼用画素の配置が異なる。即ち、左眼用画素401L及び右眼用画素401Rが使用されている点は同じであるが、左眼用画素403L及び右眼用画素403Rが使用されている点が異なる。左眼用画素403Lは、左眼用画素401Lを180度の回転対称に配置したものである。同様に、右眼用画素403Rは、右眼用画素403Lを180度の回転対称に配置したものである。そして、左眼用画素401L及び右眼用画素401Rから構成される表示単位と、左眼用画素403L及び右眼用画素403Rから構成される表示単位が、前述の第14実施形態と同様に、市松模様状に配置されている。本第16実施形態における上記以外の構成は、前述の第15実施形態と同様である。
本実施形態においては、2種類の表示単位を市松模様状に配置することにより、2次元の補償効果を発揮して高画質化が可能となる。更には、隣接する画素のスルーホールが近接して配置しているため、スルーホールとその周辺との段差に起因した液晶の異常配向を抑制でき、高画質化が可能となる。本第16実施形態における上記以外の動作及び効果は、前述の第15実施形態と同様である。
次に、本発明の第17の実施形態について説明する。図53は、本実施形態に係る表示パネルを示す平面図であり、図54は本実施形態に係る表示装置を示す斜視図である。図53及び図54に示すように、本第17実施形態に係る半透過型液晶表示パネル227及び表示装置117は、上述の第16実施形態に記載の半透過型液晶表示パネル226及び表示装置116と比較して、画素の形状、配置が大きく異なったものとなっている。
画素の形状に関しては、前述の実施形態は矩形を基本エレメントとしていたのに対し、本実施形態は台形を基本エレメントとしている。ここで、台形を基本エレメントとするということは、画素の表示領域の形状が台形であることを意味する。
具体的には、左眼用画素404Lにおいては、X軸方向に沿って隣接する画素との境界に位置する遮光領域が、Y軸方向から傾斜して配置されている。そして、左側に隣接する画素との境界に位置する遮光領域は、右側に隣接する画素との境界に位置する遮光領域と、反対の角度方向に傾斜して配置されている。これにより、台形の斜辺部が形成され、そして画素の表示領域が台形状に形成されている。即ち、透過領域404Laは台形であり、反射領域404Lbも台形である。なお、色層404Lcの形状は、スルーホール部を除外すると、前述の実施形態と同様である。また、スルーホール404Ldは台形状であり、やはり台形状である表示領域の上辺付近に配置されている。なお、スルーホール404Ldは、上辺のX軸方向中央付近ではなく、−X方向に偏って配置されている。
右眼用画素405Rは、左眼用画素404Lを180度の回転対称に配置したものである。そして、左眼用画素404Lと右眼用画素405Rにより表示単位が形成されている。
同様に、左眼用画素405Lは、左眼用画素404Lを180度の回転対称に配置したものである。また、右眼用画素404Rは、右眼用画素405Lを180度の回転対称に配置したものである。即ち、左眼用画素404Lと右眼用画素404Rは、画素の構造は同じであるが、レンズに対する位置関係が異なっている。左眼用画素405Lと右眼用画素405Rも同様であり、画素の構造は同じであり、レンズに対する位置関係が異なっている。なお、左眼用画素405Lと右眼用画素404Rにより表示単位が形成されている。
次に、これらの2種類の表示単位の配置について説明する。左眼用画素404L及び右眼用画素405Rから構成される表示単位の−Y方向側に、左眼用画素405L及び右眼用画素404Rから構成される表示単位が配置されている。前述のように、左眼用画素405Lは左眼用画素404Lを180度の回転対称に配置したものであるため、台形状の画素の上底同士が相対して配置されていることになる。同様に、右眼用画素405Rの下辺は、右眼用画素404Rの下辺と相対して配置されている。
そして、左眼用画素404L及び右眼用画素405Rから構成される表示単位の+X方向側に、左眼用画素404L及び右眼用画素405Rから構成される表示単位が配置されている。また、この左眼用画素404L及び右眼用画素405Rから構成される表示単位のーY方向側には、左眼用画素404L及び右眼用画素405Rから構成される表示単位が配置されている。
このようにして、シリンドリカルレンズの画像振分方向となるX軸方向において、隣接する画素の境界に配置された遮光領域がY軸方向から傾斜して配置されている。そしてこの傾斜の方向は、Y軸方向に隣接する画素において、一画素毎に交互に反対方向となっている。これにより、Y軸方向に沿って延伸する遮光領域は、Y軸方向に沿って延びるジグザグの線となっている。そして、このジグザグの線と、このジグザグの線をY軸に対して線対称に配置した別のジグザグの線とが、X軸方向に交互に配置されている。
本実施形態における別の特徴として、表示単位内における左眼用画素と右眼用画素が平行配置されていない点が挙げられる。例えば、左眼用画素404L及び右眼用画素405Rから構成される表示単位においては、右眼用画素405Rは左眼用画素404Lを180度の回転対称に配置したものである。即ち、この表示単位は、回転対称の関係に配置された画素を有している。
本来、このように、表示単位内において配置の異なる画素を使用するのは好ましくない。それは、左眼と右眼が異なる状態の画素を視認することになるからである。そこで、本実施形態においては、この問題を隣接表示単位による補償を使用して解決している。
本実施形態においては、左眼用画素404L及び右眼用画素405Rから構成される表示単位のーY方向側に、左眼用画素405L及び右眼用画素404Rから構成される表示単位が配置されている。この2種類の表示単位に着目すると、左眼用画素404Lは右眼用画素404Rと同じ構造である。そして、左眼用画素405Lは右眼用画素405Rと同じ構造である。このように、隣接する表示単位まで合わせることにより、同じ構造の画素を配置する。これが隣接表示単位による補償の考え方である。
そして、各画素のスルーホールは、各表示単位を構成する画素において、異なる構造に配置されている。しかし、この配置は、隣接する表示単位での補償が可能な状態である。本第17実施形態における上記以外の構成は、前述の第16実施形態と同様である。
本実施形態においては、2次元状の補償効果を発揮することができ、スルーホールの影響を低減して高品質な表示が可能となる。また、各画素の表示領域が台形状に形成されているため、レンズの振分方向となるX軸方向に沿って隣接する画素の間に存在する非表示領域の影響を低減することができ、視認性の向上が可能となる。更には、配線や薄膜トランジスタを効率良く配置できるため、表示に寄与する領域を大きく確保することができ、明るい表示が可能となる。また、上下に隣接する画素でスルーホールのみならず、反射領域や透過領域を近接して配置できるため、効率の良い配置が可能になり、明るい表示が可能となる。なお、本実施形態においては、基本的に1種類の画素のみが使用され、この1種類の画素が回転対称配置や線対称配置されている。即ち、使用している画素は1種類だけなので、設計の負荷を低減することができる。
なお、本実施形態におけるスルーホールは台形であるものとして説明した。しかし本発明はこれに限定されず、一例では矩形のスルーホールを使用することもできるし、平行四辺形状のスルーホールや、平行四辺形を左右に2分したような形状のスルーホールを使用することもできる。また、スルーホールは、台形状の表示領域を構成する上辺のX軸方向中央付近に配置されていてもよい。
更に、完全に台形状ではなく、台形を基本とした形状が使用されてもよい。一例では、台形の底辺側に、底辺と同幅の矩形を設けたような形状を適用することもできる。フォトリソグラフィにより形成される構造物は、均一な形状を実現するため、鋭角を持たない方が好ましい。台形の底辺側に矩形を配置した形状では、鋭角をなくして鈍角と直角のみで形状を構成することができる。これは、画素の表示領域の形状だけでなく、スルーホールの形状に対しても適用することができる。
ここで、カラー画素の配置例について説明しておく。本実施形態は、前述の第13実施形態に記載のように、スルーホールの相対位置が異なる画素がY軸方向に交互に配列する場合と同様に扱うことができる。例えば赤緑青色の3色の画素を横ストライプ状に配置した場合について考える。図53において、左端の画素列の左眼用画素404Lが赤色であり、この画素と−Y方向に隣接する左眼用画素405Lが緑色であるとする。このとき、赤色と緑色の画素のスルーホールの位置は異なる。前述のように、左眼用画素405Lの更に−Y方向側には、左眼用画素404Lが配置される。すると、この左眼用画素404Lは青色となり、+Y方向側の赤色の左眼用画素404Lとスルーホールの位置は同じになる。そして、青色の左眼用画素404LのーY方向側には、左眼用画素405L、左眼用画素404L、左眼用画素405Lがこの順に配置され、それぞれ、赤色、緑色、青色に割り当てられる。以上まとめると、+Y方向からーY方向に向かって、赤色の左眼用画素404L、緑色の左眼用画素405L、青色の左眼用画素404L、赤色の左眼用画素405L、緑色の左眼用画素404L、青色の左眼用画素405Lが、この順に配置される。そしてこのセットがY軸方向において繰り返し配置される。これにより、同色の画素にのみ着色すると、スルーホールの位置が異なる画素が交互に配置されていることになる。これにより、直接隣接する画素でなくても、同じ役割を担う画素を使用することにより、実効的に補償効果を発揮して高画質化が可能となる。このように、スルーホールの位置が異なる画素の数と、カラー画素の色の数との関係においては、少なくとも両者が同じ数でない方がよい。より好ましくは、互いに割り切れない関係にあることが望ましいことになる。
但し、前述の第13実施形態と比較して、各表示単位において、左眼用画素のスルーホールの位置が右眼用画素のスルーホールの位置と異なる。即ち、上述の左眼用画素のセットに対応する右眼用画素のセットは、+Y方向からーY方向に向かって、赤色の右眼用画素405R、緑色の右眼用画素404R、青色の右眼用画素405R、赤色の右眼用画素404R、緑色の右眼用画素405R、青色の右眼用画素404Rとなる。ただし、赤色の左眼用画素404Lは赤色の右眼用画素404Rと全く同じ構造である。即ち、左眼用画素のセットにおいて、RGBストライプの分だけY軸方向に位相をずらした画素配置が、右眼用画素のセットとなる。このように、RGBのセットとして考えると、同じ構成のセットが市松模様を形成して配置されていると表現することもできる。
本第17実施形態における上記以外の動作及び効果は、前述の第15実施形態と同様である。
次に、本発明の第18の実施形態について説明する。図55は、本実施形態に係る表示パネルを示す平面図であり、図56は本実施形態に係る表示装置を示す斜視図である。図55及び図56に示すように、本第18実施形態に係る半透過型液晶表示パネル228及び表示装置118は、上述の第13実施形態に記載の半透過型液晶表示パネル223及び表示装置113と比較して、画素の形状が異なる。ただし、画素の配置の規則性はほぼ同様である。
前述の第17実施形態における各画素が台形を基本エレメントとしていたのに対し、本実施形態における各画素は平行四辺形を基本エレメントとしている。即ち、左眼用画素406Lにおいては、透過領域406La及び反射領域406Lbが配置され、これらを合わせた表示領域が平行四辺形状となっている。なお、本実施形態においては、透過領域406Laも平行四辺形状であり、反射領域406Lbも平行四辺形状である。即ち、表示領域、透過領域、反射領域が全て平行四辺形状となるように、遮光領域406Leが形成されている。更には、スルーホール406Ldも平行四辺形状となるように、色層406Lcは形成されている。
右眼用画素406Rは左眼用画素406Lと同じ構造を有している。そして、左眼用画素406L及び右眼用画素406Rにより表示単位が形成されている。この左眼用画素406L及び右眼用画素406Rから構成される表示単位は、X軸方向に沿って繰り返し配置されている。
左眼用画素406L及び右眼用画素406Rから構成される表示単位の−Y方向側には、左眼用画素407L及び右眼用画素407Rから構成される表示単位が配置されている。なお、左眼用画素407Lは、左眼用画素406LをY軸対称に配置したものである。そして、右眼用画素407Rは左眼用画素407Lと同じ構造を有している。左眼用画素407L及び右眼用画素407Rから構成される表示単位は、X軸方向に沿って繰り返し配置されている。そして、左眼用画素406L及び右眼用画素406Rから構成される表示単位と、左眼用画素407L及び右眼用画素407Rから構成される表示単位が、Y軸方向に沿って交互に繰り返し配置されている。
本実施形態においては、スルーホール406Ldとスルーホール407LdのX座標を変えずに、Y座標のみを変えることにより、2つのスルーホールを同一直線上に配置した場合、スルーホールの開口高さ、即ちY軸方向の幅が、X軸方向の位置に依存せず、常に一定となっている。他のスルーホールに対しても同様である。即ち、Y軸方向に沿って隣接する表示単位を利用して、スルーホールのY軸方向の幅を常に一定にしていることが特徴である。換言すれば、前述の第13実施形態で記載した隣接画素補償の概念を利用して、前述の第1実施形態と同様の構造、即ちスルーホールのY軸方向の幅をX軸位置によらず一定とした構造が実現されている。本第18実施形態における上記以外の構成は、前述の第13実施形態と同様である。
本実施形態においては、隣接画素の補償効果を利用して、スルーホールの実効的な高さ、即ちY軸方向の幅を、X軸方向によらず一定にしている。これにより、スルーホールの影響を低減して高品質な表示が可能となる。通常、色層のプロセス条件によりスルーホールの最小の大きさは規定されている。従って、本発明の第1実施形態に記載のように、各画素単位でスルーホールの高さをX軸位置によらず一定にすると、スルーホールが大きすぎてしまう場合が発生する。例えば、精細度が高いパネルの場合などが相当する。本実施形態においては、スルーホールの高さは隣接画素を併せて一定に保たれるため、各画素のスルーホールの大きさを小さくすることができる。これにより、精細度を高めた場合でも、色純度の高い反射表示が実現できる。
また、前述の第17実施形態と同様に、レンズの振分方向となるX軸方向に沿って隣接する画素の間に存在する非表示領域の影響を低減することができ、表示の視認性が向上できる。なお、前述の第17実施形態においては、Y軸方向に沿って延伸する遮光領域が、Y軸方向に沿って延びるジグザグの線となっており、このジグザグの線と、このジグザグの線をY軸に対して線対称に配置した別のジグザグの線とが、X軸方向に交互に配置されていた。これに対して、本実施形態においては、Y軸方向に沿って延伸する遮光領域が、Y軸方向に沿って延びるジグザグの線となっている点は同じである。しかし、X軸方向には同種のジグザグ状の線が繰り返し配置されている点が異なる。
なお、横ストライプ構造のカラーフィルタに適用する場合には、Y軸方向におけるスルーホールの位置が異なる画素の種類数と、カラー画素の色の数が、少なくとも同じ数でない方がよい。より好ましくは、互いに割り切れない関係にあることが望ましい点は、前述の第13実施形態と同様である。これにより、直接隣接する画素でなくても、同じ役割を担う画素を使用して、実効的に補償効果を発揮することができるからである。
なお、本実施形態は、各画素が矩形を基本エレメントとした場合に対しても、同様に適用することができる。本第18実施形態における上記以外の動作及び効果は、前述の第13実施形態と同様である。
次に、本発明の第19の実施形態について説明する。図57は、本実施形態に係る表示パネルを示す平面図であり、図58は本実施形態に係る表示装置を示す斜視図である。図57及び図58に示すように、本第19実施形態に係る半透過型液晶表示パネル229及び表示装置119は、上述の第13実施形態に記載の半透過型液晶表示パネル223及び表示装置113と比較して、画素の形状、特にスルーホールの形状が異なる。ただし、画素の配置は同様である。そして、前述の第7実施形態のレンチキュラレンズ33が使用されている。レンチキュラレンズ33においては、前述のように、レンチキュラレンズを構成するシリンドリカルレンズの焦点距離が、レンズの主点と画素面との間の距離よりも小さい。
前述の第18実施形態においては、Y軸方向に位置する2種類のスルーホールを、そのX座標を保ったままで同一直線上に配置すると、2種類のスルーホールの合成された開口高さはX軸座標によらず一定となっていた。これに対し、本第19実施形態においては、Y軸方向に位置するスルーホールを合成しても、開口高さがX座標によらず一定とならない。具体的には、前述の第7実施形態のように、X軸方向に細分化されたスルーホールとなる。そこで、シリンドリカルレンズの焦点距離を小さくすることにより、スルーホールの開口高さのばらつきを均一化する。換言すれば、本実施形態は、前述の第13実施形態に記載した隣接画素補償の概念と、前述の第7実施形態に記載した細分化スルーホール及びデフォーカスレンズの概念を複合させたものである。従って、レンズの曲率半径の設定に関しては、前述の第3乃至第7実施形態を適用することができる。即ち、本実施形態において、Y軸方向に隣接する画素のスルーホールの合成像に対して、スルーホール開口幅やギャップ値を設定すればよい。本第19実施形態における上記以外の構成は、前述の第13実施形態と同様である。
本実施形態は、レンチキュラレンズを構成するシリンドリカルレンズの焦点距離を画素面からずらして配置することにより、前述の第18実施形態よりも更に面積の小さなスルーホールに対応できる。これは、前述の第18実施形態においては、複数種類のスルーホールの合成された開口高さがX軸座標によらず均一であったのに対し、本第19実施形態においては、X軸方向に細分化されたスルーホールにも対応できるからである。これにより、本実施形態は精細度の更なる向上に対応可能であり、色純度の高い反射表示が実現できる。本第19実施形態における上記以外の動作及び効果は、前述の第13実施形態と同様である。
なお、上述の各実施形態は夫々単独で実施してもよいが、適宜組み合わせて実施することも可能である。

Claims (19)

  1. マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが配列された第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の少なくとも表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記第1の方向と直交する方向を第2の方向とする場合、同一色の前記カラーフィルタ層を備えた前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とが前記第1の方向に配列され、異なる色の前記カラーフィルタ層を備えた同一視点用の画像を表示する前記画素が前記第2の方向に配列され、前記表示単位に含まれる前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素における前記スルーホールの前記第1の方向における相対的な位置は同一であり、前記第2の方向に隣接する画素における前記スルーホールの前記第1の方向における相対的な位置は異なることを特徴とする表示パネル。
  2. 前記第1の方向に隣接する前記表示単位に含まれる画素における前記スルーホールの第1の方向における相対的な位置は、同一であることを特徴とする請求項1に記載の表示パネル。
  3. 前記第1の方向に隣接する前記表示単位に含まれる画素は、前記第2の方向に延伸する線分に対して線対称に配置されることを特徴とする請求項1に記載の表示パネル。
  4. 前記第1の方向に隣接する前記表示単位に含まれる画素は、回転対称に配置されることを特徴とする請求項1に記載の表示パネル。
  5. 記同一視点用の画像を表示する複数画素において、前記第2方向に延伸する線分に対して線対称の関係の画素が存在することを特徴とする請求項1乃至4のいずれか1項に記載の表示パネル。
  6. 前記表示パネルの画素が平行四辺形状を呈し、前記第2方向に隣接する画素が前記第2方向に延伸する線分に対して線対称の関係であることを特徴とする請求項に記載の表示パネル。
  7. 記同一視点用の画像を表示する複数画素において、前記第2方向に延伸する線分に対して回転対称の関係の画素が存在することを特徴とする請求項1乃至4のいずれか1項に記載の表示パネル。
  8. 前記表示パネルの画素が台形状を呈することを特徴とする請求項に記載の表示パネル。
  9. 前記第2方向に隣接する画素に関し、前記各画素における前記スルーホールの相対的な位置及び形状が、前記第2方向に延伸する線分に対して、線対称の関係にあることを特徴とする請求項に記載の表示パネル。
  10. 前記第2方向に隣接する各画素において各スルーホールの前記第1の方向の相対位置を保ちつつ重ね合わる場合、前記第2方向におけるスルーホールの開口幅の合計値が、前記第1の方向によらず略一定となることを特徴とする請求項1乃至9のいずれか1項に記載の表示パネル。
  11. 前記光学部材は前記画素と結像関係にないことを特徴とする請求項1乃至10のいずれか1項に記載の表示パネル。
  12. 前記第2の方向における前記スルーホールの幅が、前記第1の方向に徐々に変化することを特徴とする請求項1乃至11のいずれか1項に記載の表示パネル。
  13. 前記スルーホールは前記各画素内において前記第1の方向に対して分断した形状をなすことを特徴とする請求項1乃至12のいずれか1項に記載の表示パネル。
  14. マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記各画素内において、前記スルーホールは前記第1の方向に対して分断した形状をなし、前記光学部材は前記画素と結像関係になく、前記光学部材は、少なくとも前記第1の方向にレンズが配列するように形成されたレンズアレイであり、前記レンズアレイのレンズピッチをLとし、このレンズの屈折率をnとし、観察距離ODにおける前記各画素の拡大投影像の周期をeとし、前記第1の方向における前記スルーホールの幅を各画素ピッチで除した値をtとし、このスルーホールの幅が各画素の幅の半分以上であるとき、前記レンズの曲率rが下記数式のいずれかを満たすことを特徴とする表示パネル。
    r≦OD×(n−1)×L/(n×(1−t)×e+(n−1)×L)
    r≧OD×(n−1)×L/(n×(1−t)×e−(n+1)×L)
  15. マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記各画素内において、前記スルーホールは前記第1の方向に対して分断した形状をなし、前記光学部材は前記画素と結像関係になく、前記光学部材は、少なくとも前記第1の方向にレンズが配列するように形成されたレンズアレイであり、前記レンズアレイのレンズピッチをLとし、このレンズの屈折率をnとし、観察距離ODにおける前記各画素の拡大投影像の周期をeとし、前記第1の方向における前記スルーホールの幅を各画素ピッチで除した値をtとし、このスルーホールの幅が各画素の幅の半分未満であるとき、前記レンズの曲率rが下記数式のいずれかを満たすことを特徴とする表示パネル。
    r≦OD×(n−1)×L/(n×t×e+(n−1)×L)
    r≧OD×(n−1)×L/(n×t×e−(n+1)×L)
  16. マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記各画素内において、前記スルーホールは前記第1の方向に対して分断した形状をなし、前記光学部材は前記画素と結像関係になく、前記光学部材は、少なくとも前記第1の方向に有限幅の開口が配列するように形成され、支持基板を有するパララックスバリアであり、前記パララックスバリアと前記画素との距離をHとし、前記支持基板の屈折率をnとし、観察距離ODにおける前記各画素の拡大投影像の周期をeとし、前記第1の方向における前記スルーホールの幅を各画素ピッチで除した値をtとし、このスルーホールの幅が各画素の幅の半分以上であるとき、前記パララックスバリアの開口の幅Sが下記数式を満たすことを特徴とする表示パネル。
    S≧2×H×tan(1/n×arcsin(sin(arctan((1−t)×e/OD/2))))
  17. マトリクス状に配列され少なくとも第1視点用の画像を表示する画素及び第2視点用の画像を表示する画素を含む複数の表示単位と、前記表示単位内における前記第1視点用の画像を表示する画素と前記第2視点用の画像を表示する画素とを配列した第1の方向に沿って前記各画素から出射した光を相互に異なる方向に振り分ける光学部材と、前記各画素の表示領域に夫々設けられたカラーフィルタ層と、前記各画素における前記カラーフィルタ層に設けられたスルーホールと、を有し、前記各画素内において、前記スルーホールは前記第1の方向に対して分断した形状をなし、前記光学部材は前記画素と結像関係になく、前記光学部材は、少なくとも前記第1の方向に有限幅の開口が配列するように形成され、支持基板を有するパララックスバリアであり、前記パララックスバリアと前記画素との距離をHとし、前記支持基板の屈折率をnとし、観察距離ODにおける前記各画素の拡大投影像の周期をeとし、前記第1の方向における前記スルーホールの幅を各画素ピッチで除した値をtとし、このスルーホールの幅が各画素の幅の半分未満であるとき、前記パララックスバリアの開口の幅Sが下記数式を満たすことを特徴とする表示パネル。
    S≧2×H×tan(1/n×arcsin(sin(arctan(t×e/OD/2))))
  18. 請求項1乃至17のいずれか1項に記載の表示パネルを有することを特徴とする表示装置。
  19. 請求項18に記載の表示装置を有することを特徴とする端末装置。
JP2008522612A 2006-06-27 2007-06-27 表示パネル、表示装置及び端末装置 Active JP5472783B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522612A JP5472783B2 (ja) 2006-06-27 2007-06-27 表示パネル、表示装置及び端末装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006176331 2006-06-27
JP2006176331 2006-06-27
JP2008522612A JP5472783B2 (ja) 2006-06-27 2007-06-27 表示パネル、表示装置及び端末装置
PCT/JP2007/062948 WO2008001825A1 (en) 2006-06-27 2007-06-27 Display panel, display device, and terminal device

Publications (2)

Publication Number Publication Date
JPWO2008001825A1 JPWO2008001825A1 (ja) 2009-11-26
JP5472783B2 true JP5472783B2 (ja) 2014-04-16

Family

ID=38845590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522612A Active JP5472783B2 (ja) 2006-06-27 2007-06-27 表示パネル、表示装置及び端末装置

Country Status (4)

Country Link
US (3) US8760761B2 (ja)
JP (1) JP5472783B2 (ja)
CN (2) CN101479643B (ja)
WO (1) WO2008001825A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099728A (zh) * 2008-07-15 2011-06-15 株式会社Ip舍路信 裸眼立体画面显示系统、裸眼立体画面显示装置、游戏机、视差屏障薄片
JP5488984B2 (ja) * 2009-04-15 2014-05-14 Nltテクノロジー株式会社 表示コントローラ、表示装置、画像処理方法及び画像処理プログラム
JP5380736B2 (ja) * 2009-04-15 2014-01-08 Nltテクノロジー株式会社 表示コントローラ、表示装置、画像処理方法及び画像処理プログラム
US8797231B2 (en) 2009-04-15 2014-08-05 Nlt Technologies, Ltd. Display controller, display device, image processing method, and image processing program for a multiple viewpoint display
KR20110024970A (ko) * 2009-09-03 2011-03-09 삼성전자주식회사 입체영상 표시 장치
JP2012094310A (ja) * 2010-10-26 2012-05-17 Panasonic Corp 照明装置
EP2461238B1 (en) 2010-12-02 2017-06-28 LG Electronics Inc. Image display apparatus including an input device
JP5732888B2 (ja) * 2011-02-14 2015-06-10 ソニー株式会社 表示装置及び表示方法
US9363504B2 (en) * 2011-06-23 2016-06-07 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
CN103135279B (zh) * 2011-12-05 2015-09-09 上海中航光电子有限公司 一种薄膜晶体管液晶显示装置
JP6358494B2 (ja) * 2013-02-27 2018-07-18 Tianma Japan株式会社 立体画像表示装置
CN104765158B (zh) * 2015-05-06 2017-08-29 合肥京东方光电科技有限公司 视差挡板及显示装置
CN106959551B (zh) * 2016-01-08 2023-12-19 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN105789261B (zh) * 2016-04-29 2018-03-06 京东方科技集团股份有限公司 像素阵列及其制造方法和有机发光二极管阵列基板
TWI634350B (zh) * 2016-08-10 2018-09-01 群睿股份有限公司 影像顯示方法
CN107765438B (zh) * 2016-08-18 2020-09-15 群睿股份有限公司 影像显示装置及影像显示方法
CN108139591B (zh) * 2016-09-20 2020-08-14 京东方科技集团股份有限公司 三维显示面板、包括其的三维显示设备、及其制造方法
US10732743B2 (en) * 2017-07-18 2020-08-04 Apple Inc. Concealable input region for an electronic device having microperforations
CN108594517B (zh) * 2018-05-04 2021-04-06 京东方科技集团股份有限公司 一种液晶显示装置及其控制方法
US11036321B2 (en) * 2018-07-27 2021-06-15 Lg Display Co., Ltd. Light control film and display apparatus including the same
CN109298536B (zh) * 2018-11-20 2023-09-12 成都航空职业技术学院 一种一维双视3d显示装置
JP7394691B2 (ja) 2020-04-07 2023-12-08 株式会社Imagica Group 立体表示装置
CN113752833B (zh) * 2021-09-14 2022-03-04 黑龙江天有为电子有限责任公司 一种汽车仪表盘
CN113625464A (zh) * 2021-09-17 2021-11-09 纵深视觉科技(南京)有限责任公司 一种立体显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333622A (ja) * 2001-03-07 2002-11-22 Sharp Corp 反射透過両用型カラー液晶表示装置
JP2003233063A (ja) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004184969A (ja) * 2002-10-11 2004-07-02 Seiko Epson Corp 電気光学装置の製造方法、電気光学装置及び電子機器
JP2004280052A (ja) * 2003-02-28 2004-10-07 Nec Corp 画像表示装置、携帯端末装置、表示パネル及び画像表示方法
JP2005031215A (ja) * 2003-07-09 2005-02-03 Hitachi Displays Ltd 液晶表示装置
JP2005208567A (ja) * 2003-12-25 2005-08-04 Nec Corp 画像表示装置、携帯端末装置、表示パネル及びレンズ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825466A (en) * 1996-01-18 1998-10-20 Image Technology International, Inc. 3D photo printer with image distortion correction
JPH06332354A (ja) 1993-05-20 1994-12-02 Toppan Printing Co Ltd 複数画像同時表示ディスプレイ
JP3335130B2 (ja) 1998-01-26 2002-10-15 シャープ株式会社 液晶表示装置
KR100389249B1 (ko) * 2000-04-29 2003-06-25 한국과학기술연구원 다시점 영상 표시 시스템
US6501521B2 (en) 2001-03-07 2002-12-31 Sharp Kabushiki Kaisha Transmission/reflection type color liquid crystal display device
JP2003066938A (ja) * 2001-08-24 2003-03-05 Sharp Corp 表示コントローラ、表示制御方法、および画像表示システム
WO2003085450A1 (fr) * 2002-04-04 2003-10-16 Sony Corporation Ecran a cristaux liquides
KR20050105570A (ko) * 2004-04-30 2005-11-04 엘지.필립스 엘시디 주식회사 패턴드 스페이서를 구비한 액정표시장치용 컬러필터 기판및 그 제조방법
CN100487782C (zh) * 2004-08-18 2009-05-13 奇景光电股份有限公司 彩色序列式显示器的显示方法
US7965365B2 (en) * 2004-09-03 2011-06-21 Nec Lcd Technologies, Ltd Image display device, portable terminal, display panel, and lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333622A (ja) * 2001-03-07 2002-11-22 Sharp Corp 反射透過両用型カラー液晶表示装置
JP2003233063A (ja) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004184969A (ja) * 2002-10-11 2004-07-02 Seiko Epson Corp 電気光学装置の製造方法、電気光学装置及び電子機器
JP2004280052A (ja) * 2003-02-28 2004-10-07 Nec Corp 画像表示装置、携帯端末装置、表示パネル及び画像表示方法
JP2005031215A (ja) * 2003-07-09 2005-02-03 Hitachi Displays Ltd 液晶表示装置
JP2005208567A (ja) * 2003-12-25 2005-08-04 Nec Corp 画像表示装置、携帯端末装置、表示パネル及びレンズ

Also Published As

Publication number Publication date
CN103257452B (zh) 2016-08-03
US10317688B2 (en) 2019-06-11
WO2008001825A1 (en) 2008-01-03
CN101479643B (zh) 2013-08-28
US20160259173A1 (en) 2016-09-08
US20090257119A1 (en) 2009-10-15
US20140240826A1 (en) 2014-08-28
US9360677B2 (en) 2016-06-07
CN101479643A (zh) 2009-07-08
US8760761B2 (en) 2014-06-24
CN103257452A (zh) 2013-08-21
JPWO2008001825A1 (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5472783B2 (ja) 表示パネル、表示装置及び端末装置
JP4371012B2 (ja) 画像表示装置、携帯端末装置、表示パネル及びレンズ
JP4492851B2 (ja) 視差バリアおよび複数表示ディスプレイ
US8248406B2 (en) Image display device, portable terminal device, display panel and image display method using the same
JP4947526B2 (ja) 画像表示装置
JP5316909B2 (ja) 立体画像表示装置、及び表示パネル
JP5544646B2 (ja) 表示装置及び端末装置
US7995166B2 (en) Display panel, display device, and terminal device
JP4196889B2 (ja) 画像表示装置及び携帯端末装置
JP2008134617A (ja) 表示装置、端末装置、表示パネル及び光学部材
JP5224236B2 (ja) 表示パネル、表示装置及び端末装置
JP2005157332A (ja) 立体画像表示装置、携帯端末装置、表示パネル及びフライアイレンズ
JP3925500B2 (ja) 画像表示装置及びそれを使用した携帯端末装置
JP5024800B2 (ja) 画像表示装置
JP4400242B2 (ja) 画像表示装置、携帯端末装置及び表示パネル
JP2007148420A (ja) 画像表示装置及びそれを使用した携帯端末装置
JP2009015337A (ja) 画像表示装置及び携帯端末装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5472783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250