JP5470997B2 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
JP5470997B2
JP5470997B2 JP2009098694A JP2009098694A JP5470997B2 JP 5470997 B2 JP5470997 B2 JP 5470997B2 JP 2009098694 A JP2009098694 A JP 2009098694A JP 2009098694 A JP2009098694 A JP 2009098694A JP 5470997 B2 JP5470997 B2 JP 5470997B2
Authority
JP
Japan
Prior art keywords
temperature
detection element
infrared detection
linear
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098694A
Other languages
English (en)
Other versions
JP2010249392A (ja
Inventor
博久 今井
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009098694A priority Critical patent/JP5470997B2/ja
Publication of JP2010249392A publication Critical patent/JP2010249392A/ja
Application granted granted Critical
Publication of JP5470997B2 publication Critical patent/JP5470997B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Ovens (AREA)

Description

本発明は、被加熱物を加熱するマイクロ波加熱装置に関するものである。
代表的なマイクロ波加熱装置である電子レンジは、代表的な被加熱物である食品を直接的に加熱できるので、鍋や釜を準備する必要がない簡便さがあり生活上の不可欠な機器に
なっている。
電子レンジでは使い勝手を向上させるために、食品の加熱進行度合いを検出して自動的に加熱を停止させるために、非接触で温度検出できる赤外線センサを搭載したものがある。その中でも、赤外線センサで1点の温度ではなく、電子レンジの加熱室内全体の温度分布を検出し、部分的な温度上昇があってもそれを検出して加熱制御するものがある。
例えば、赤外線検出素子を複数、一列に配列し、その一列に配列された赤外線センサをその配列方向と直交する方向に移動させることで、二次元温度分布を検出している(特許文献1参照)。
特開2005−283117号公報
しかしながら、このような構成の一列に配列された複数の赤外線検出素子を移動させて温度分布を検出するには、広い範囲を移動させなければならず、そのために移動時間を要することで、温度分布検出に要する時間が長いという課題がある。
オーブンレンジなどで加熱庫内の食品を加熱する場合には、食品は急速に温度上昇しているものであり、その変化している食品温度を的確に検出して加熱制御するためにはより速く温度分布検出をする必要がある。
特に、二次元温度分布を検出して仕上がりを検出するだけでなく、加熱分布まで制御する場合には、部分的な温度上昇を検出すれば、速やかに温度の低い部分を加熱するように、加熱分布を切り替えなければならず、より速く温度分布を検出する必要がある。
本発明は、上記課題を解決するためになされたものであり、高速で温度分布を検出し、きめ細かく適切にマイクロ波の供給を制御できるマイクロ波加熱装置を提供することを目的とする。
本発明のマイクロ波加熱装置は、被加熱物を収納する加熱室と、前記加熱室にマイクロ波を供給するマイクロ波供給手段と、前記加熱室内の温度分布を検出する温度分布検出手段と、前記温度分布検出手段の検出結果に基づき前記マイクロ波供給手段を制御する加熱制御手段を有し、前記温度分布検出手段は赤外線を検出する複数の赤外線検出素子を直線状に配置した直線状赤外線検出素子群を複数有し、前記複数の直線状赤外線検出素子群を視野が所定の等間隔となるよう開けて配置した構成の二次元赤外線検出素子群と、前記各赤外線検出素子からの検出信号より温度情報に換算する温度換算部と、前記直線状赤外線検出素子群の直線方向と直交する方向に前記二次元赤外線検出素子群を移動させる駆動手段と、前記駆動手段を制御する駆動制御手段を有し、前記駆動制御手段は前記複数の直線状赤外線検出素子群の視野の間隔の角度だけ前記駆動手段にて往復移動させ往復駆動の端部にて隣接する前記直線状赤外線検出素子群の視野と一致するよう重なる範囲を有して移動するよう制御し、前記温度換算部は前記往復駆動の端部における隣接する前記直線状赤外線検出素子群の視野が一致する位置の出力に基づき隣接する前記赤外線検出素子の温度換算結果が一致するよう平均化処理して前記温度換算部の温度換算を補正する補正部を有する構成である。
この構成により、温度分布検出手段は、直線状に配置した各赤外線検出素子が視野となる箇所の温度に応じた出力を発生し、温度換算部が順次各赤外線検出素子を選択してその出力から温度換算する。
そして、直線状赤外線検出素子群は複数あり、各直線状赤外線検出素子群の視野の間隔は等しく配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させて温度分布を検出する。
このため、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となる。このようにして検出した温度分布で、加熱制御手段がマイクロ波供給手段を制御するので、きめ細かくマイクロ波の供給を制御できる。
別の赤外線検出素子で同じ視野の温度を検出することにより、互いに平均化して温度換算結果が一致するよう補正できるので、素子間ばらつきを吸収することができ、温度分布検出の精度を向上させることができて、マイクロ波供給をより適切に行うことができる。
本発明によれば、各直線状赤外線検出素子群は視野の間隔が等しくなるように配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させる。このため、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となり、きめ細かく適切にマイクロ波の供給を制御できるマイクロ波加熱装置を提供することができる。
本発明の実施の形態1にかかるマイクロ波加熱装置の正面断面構成図 本発明の実施の形態1にかかるマイクロ波加熱装置の側面断面構成図(図1中のA−A‘断面図) 本発明の実施の形態1にかかるマイクロ波加熱装置の温度分布検出手段の概略断面構成図 本発明の実施の形態1にかかるマイクロ波加熱装置の二次元赤外線検出素子群の構成図 本発明の実施の形態1にかかるマイクロ波加熱装置の二次元赤外線検出素子群による加熱室内での視野を示す説明図 本発明の実施の形態1にかかるマイクロ波加熱装置の温度分布検出手段による二次元温度分布検出の説明図 本発明の実施の形態1にかかるマイクロ波加熱装置の温度分布検出手段による加熱室内での二次元温度分布検出の説明図 本発明の実施の形態1にかかるマイクロ波加熱装置の信号処理回路の構成図 本発明の実施の形態1にかかるマイクロ波加熱装置の加熱制御手段の動作を説明するフローチャート 本発明の実施の形態2にかかるマイクロ波加熱装置の温度分布検出手段による二次元温度分布検出の説明図 本発明の実施の形態2にかかるマイクロ波加熱装置の信号処理回路の構成図
以下、本発明に係る実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
図1、図2は本発明に係る代表的なマイクロ波加熱装置である電子レンジ1の構成図で、図1は正面から見た断面図、図2は図1のA−A‘断面図である。
図1に示すように、電子レンジ1は、代表的な被加熱物である食品を載置する載置台2と、その載置台2の上部に形成される食品を収納して加熱する加熱室3と、食品を加熱するためにマイクロ波を供給するマイクロ波供給手段4と、加熱室2内部の温度分布を検出する温度分布検出手段5より構成し、載置台2はセラミックやガラスなどの低損失誘電材料からなるためにマイクロ波が容易に透過できる性質で構成している。
マイクロ波供給手段4は、代表的なマイクロ波発生手段であるマグネトロン6から放射されたマイクロ波を加熱室3に下方から伝送する導波管7と、加熱室3内の載置台2より下方に形成されるアンテナ空間8と、導波管7内のマイクロ波を加熱室3内に放射するため、導波管7からアンテナ空間8にわたり、加熱室3の幅方向に対して対称位置に取り付けられた二つの回転アンテナ9、10と、回転アンテナ9、10を回転駆動できる代表的な駆動手段としてのモータ11、12とを含む構成となっている。
図2に示すように、電子レンジ1にはドア13が備えられており、設定手段14がドア13の下部に配置されている。設定手段14は、使用者が、食品や調理内容に応じて様々な調理メニューを選択できるものである。この選択結果と温度分布検出手段5が検出する加熱室3の温度分布に基づき、加熱制御手段15はマグネトロン6やモータ11、12を制御する。
回転アンテナ9、10は放射指向性を有する。本実施の形態1にかかる電子レンジ1は、回転アンテナ9、10の放射指向性の強い部位を所定の向きに制御して特定の食品を集中加熱する。
回転アンテナ9、10は、結合部の中心が回転駆動の中心となるようにモータ11、12のシャフトに嵌合された構成とし、回転の中心は加熱室3内の中心から略等距離に配置する。この構成により、例えば加熱室3の中央付近を加熱するのであれば回転アンテナ9、10の放射指向性の強い部分を中央付近に向けることにより加熱可能とする。
また、回転アンテナ9、10のそれぞれの放射指向性の強い部分をどちらの方向に向けるかで、加熱室3内の自在の箇所を局所的に加熱することができる。回転アンテナ9、10を所定の向きに向けるためには、モータ11、12としてステッピングモータを用いたり、あるいは一定回転のモータであっても基準位置を検出して通電時間を制御したりするなどの手段がある。
次に、図3を参照して、本実施の形態1の電子レンジ1が備える温度分布検出手段5について説明する。二次元赤外線検出素子群16における各赤外線検出素子はサーモパイルで構成され、金属製のカン17の中に封じ込めている。
カン17にはレンズ18が取り付けられており、レンズ18の焦点と二次元赤外線検出素子群16の位置関係で各サーモパイルの視野を規定している。
二次元赤外線検出素子群16の各サーモパイルの出力信号は金属線19を介して、プリント基板20に接続され、カン17と共に固定されている。プリント基板20には電源が供給され各種電子部品より成る信号処理回路21が搭載されている。プリント基板20に
はコネクタ22が搭載されていて、コネクタ22にはリード線23が接続されていて、信号処理回路21で処理された信号を出力する。
以上は、樹脂より成るケース24の中に一体的に収納されており、ケース24には赤外線が通過する通過孔25とリード線23を通すためのリード線孔26が設けられる。
また、駆動手段であるステッピングモータ27は、二次元赤外線検出素子群16を内部に収納したケース24に取り付けられ、ケース24全体を駆動するものであり、図面の奥と手前の方向に往復駆動する。そのステッピングモータの駆動を制御するのが駆動制御手段28である。
図4は、二次元赤外線検出素子群16の構成を示すものである。二次元赤外線検出素子群16はサーモパイル16a、16d、16g、16jより成る直線状赤外線検出素子群16Aと、サーモパイル16b、16e、16h、16kより成る直線状赤外線検出素子群16Bと、サーモパイル16c、16f、16i、16lより成る直線状赤外線検出素子群16Cとでそれぞれ構成されている。
直線状赤外線検出素子群16Aと16Bの視野の間隔と直線状赤外線検出素子群16Bと16Cの視野の間隔は、等しくなるように配置されている。そしてその中央に配置された直線状赤外線検出素子群16Bの直線軸29に直交するように図面の左右の方向に、ステッピングモータ27および駆動制御手段28により視野を往復移動させる。
図5は、二次元赤外線検出素子群16による加熱室3の視野を示したものである。12個のサーモパイル16a〜16lにより、4箇所の直線状の視野が3本、間隔を開けるようにして形成されている。
図4において、ステッピングモータ27および駆動制御手段28により各直線状検出素子群16A、16B、16Cを移動させて、その隙間を埋めるようにして温度分布を取得する例を図6、図7を用いて説明する。
図6に示すように、直線軸29を29−1、29−2、29−3と移動させる。そうすると、サーモパイル16a、16d、16g、16jより成る直線状検出素子群16Aは、図6中でAの領域の温度分布を検出することになり、またサーモパイル16b、16e、16h、16kより成る直線状検出素子群16Bは、Bの領域の温度分布を、またサーモパイル16c、16f、16i、16lより成る直線状検出素子群16Cは、Cの領域の温度分布を検出する。このため、全体としては、直線軸2の移動より十分広い領域の温度分布を検出することができる。
この温度分布検出を電子レンジ1で行う例が図7である。図7に示すように、間隔を開けて配置された直線状の視野3本を、その間隔を埋めるように移動することで、わずかな移動で載置台2の上全体を温度検出でき、高速で加熱室3内の二次元温度分布検出が可能となっている。
次に、信号処理回路21の構成について図8を用いて説明する。一般にマルチプレクサと呼ばれる切替え器30A、30B、30Cは、切替え信号発生器31からの信号に基づき、いずれかの赤外線検出器を選択して後段の信号処理回路への接続を切替える。切替え器30Aは直線状赤外線検出素子群16Aに属する各赤外線検出素子16a、16d、16g、16jの切替えを、切替え器30Bは直線状赤外線検出素子群16Bに属する各赤外線検出素子16b、16e、16h、16kの切替えを、切替え器30Cは直線状赤外線検出素子群16Cに属する各赤外線検出素子16c、16f、16i、16jの切替え
をそれぞれ行う。
増幅回路32A、32B、32Cは、切替え器30A、30B、30Cで接続されたいずれかのサーモパイルの信号を増幅する。AD変換器33A、33B、33Cは、増幅された各サーモパイルのアナログ信号をデジタル値に変換する。切替え器30A〜30C、増幅回路32A〜32C、AD変換器33A〜33Cは、いずれも直線状赤外線検出素子群16A、16B、16Cと対応しており、サーモパイル16a、16b、16cが同時に選択され、増幅されAD変換され、またサーモパイル16d、16e、16fが同時に、サーモパイル16g、16h、16iが同時に、サーモパイル16j、16k、16lが同時に選択され、増幅され、AD変換される。
温度換算部34は、AD変換器33A〜33Cでデジタル値に変換された各サーモパイルの信号を基に順次温度の値を算出する。サーモパイル16a〜16lはそれぞれ感度にばらつきがあるので、精度良く温度換算するために感度を予め測定し、その感度に対応した定数を感度記憶部35に記憶している。
温度換算部34では、この感度記憶部35に記憶されている感度定数に従い温度換算することで、サーモパイル16a〜16lの視野となっている箇所の温度を精度良く算出する。
一般にサーモパイルは、視野となる対象物の温度の4乗とサーモパイル自身の温度の4乗との差に比例する電圧を出力するものである。従って、接触型の例えばサーミスタなどの温度センサ(図示せず)によりサーモパイル自身の温度T1を測定しその温度T1の4乗を算出して、そこにAD変換器33A〜33Cでデジタル値に変換されたサーモパイルの電圧値を定数K倍したものを加算して、その加算した値の4乗根を算出すれば視野となる対象物の温度となる。
この定数Kに相当するものが、サーモパイルの感度の逆数に比例するものであり、各サーモパイルには感度のばらつきがあるので、一通りの定数Kではなく、サーモパイル16a〜16lそれぞれに対応した定数Ka〜Klを感度定数記憶部35に記憶している。
通信制御部36は、送信器37と受信器38を備えていて、温度換算部34で算出された、サーモパイル16a〜16lの視野となっている箇所の温度を、送信器37より加熱制御手段15に順次シリアル送信していく。通信のタイミングを取るために受信器38で加熱制御手段15からの信号も受信している。
このようにしてリード線9でアナログ電圧によって送電するのでなく、デジタル値をシリアル通信するので、ノイズなどの影響を受けにくい精度の良い温度分布検出ができる。特に、電子レンジの場合には、マイクロ波がノイズ源となって温度分布検出手段5から加熱制御手段15までのリード線のアナログ電圧を不安定にさせることがあり、アナログ電圧でなくデジタル信号をシリアル通信することで、ノイズの影響を受けにくくできる。
次に、この温度分布検出手段5で検出した温度分布に基づいた加熱制御手段15の制御動作について、図9のフローチャートを用いて説明する。
加熱を開始すると、まず温度分布検出手段5により初期の温度分布、即ち各温度検出箇所の初期温度T0を検出する(S101)。次に温度分布検出手段5により温度分布、即ち各温度検出箇所の温度を検出する(S102)。そして食品ポイント判定を行う(S103)。
この食品ポイント判定では、S102で検出した温度TとS101で検出した初期温度T0との差を算出し、更に経過時間tで除算することで、単位時間当たりの温度上昇率を算出する。この算出値が予め設定した温度上昇率ΔTaより大きければ、その温度検出箇所は食品であると判定する。
次に、S103で食品と判定した箇所の温度Tfの中から最高温度Tfmaxと最低温度Tfminを抽出し、その温度差(Tfmax−Tfmin)を算出して、それが予め定めた所定の温度差Tbより大きいかどうかを判定する(S104)。
そして、温度差が所定値より大きければ(S104−Yes)、局所加熱を行い(S105)、温度差が所定値より大きくなければ(S104−No)、全体加熱を行う(S106)。
ここで、食品の中での最低温度Tfminを検出した箇所にマイクロ波が集中するように、二つの回転アンテナ9、10を停止させて局所加熱を行う。
温度分布検出手段5は、サーモパイル16a〜16lの12箇所、さらにそれを移動させて多数の温度を検出しているが、その各温度検出箇所それぞれに対応する最もマイクロ波を集中させることのできる二つのアンテナ9、10の角度を予め記憶していて、Tfminを検出した箇所に対応する角度に停止させる。
また、マイクロ波を集中させるのでなく、全体に分散させるために、二つの回転アンテナ9、10を停止させずに回転させ続け、加熱室3内を全体的に加熱する全体加熱を行う。食品の中での最高温度と最低温度との差があまりないような場合には、最低温度箇所にマイクロ波を集中させなくてもよいので、全体加熱する。
局所加熱をするか全体加熱をするかの切替えや、また局所加熱するときにはどこの箇所を加熱するかは、温度分布検出手段5の検出温度から決定するものであり、この切替えが遅れると食品を適切に加熱することが困難になり、温度分布検出を高速で行うことで、その切替えの精度が向上する。
そして、加熱終了するかどうかを判定し(S107)、まだ加熱終了しないのであれば(S107−No)、S102に戻って温度分布検出からの処理を繰り返し、加熱終了するのであれば(S107−Yes)、マグネトロン6を停止して加熱を終了する。
加熱終了の判定方法についてはいくつかの方法があるが、最も簡単な方法としては、温度分布検出手段5で検出した食品の最高温度Tfmaxが設定した温度を超えると、加熱終了という方法がある。
他の加熱終了の方法としては、例えば、温度分布検出手段が検出する食品の最高温度が設定温度を超えてから、一定時間追加加熱をした後に加熱終了とし、その追加加熱時間は最高温度が設定温度を超えるまでに要した時間に一定の比率を乗じて決定する方法がある。
また、温度分布検出手段5で検出する多数箇所の温度のうち、設定温度を超えた箇所の数が設定した数を超えると加熱終了、あるいはそこから一定時間の追加加熱をしたりする方法もある。いずれにしても、温度分布検出手段で検出する温度で加熱終了を判断するものであり、温度分布検出を高速で行うことで、その判断の精度が向上するものである。
(実施の形態2)
次に本発明の実施の形態2について説明する。実施の形態1で説明した図1〜図5に示す基本的な構成は変わらないので説明を省略する。図4において、ステッピングモータ27および駆動制御手段28により各直線状検出素子群16A、16B、16Cを移動させて、その隙間を埋めるようにして温度分布を取得し、図10のような二次元温度分布を検出する。
このとき、実施の形態1より移動させるステップを一つ多くしていて、Aの領域の右端とBの領域の左端が重なるように、またBの領域の右端とCの領域の左端が重なるようにしている。即ち、AとBの領域の端で重なる箇所においては、サーモパイル16aと16b、サーモパイル16dと16e、サーモパイル16gと16h、サーモパイル16jと16kはそれぞれ同じ視野の温度を検出することになる。
また同様に、BとCの領域の端で重なる箇所においては、サーモパイル16bとサーモパイル16c、サーモパイル16eとサーモパイル16f、サーモパイル16hとサーモパイル16i、サーモパイル16kとサーモパイル16lは、それぞれ同じ視野の温度を検出することになる。
同時に同じ視野の温度を検出していれば、同じ温度を検出することになるはずである。これが実際にはステッピングモータで視野を移動させているので同時ではないが、十分に短時間であれば、同じ温度を検出しているものとして扱うことができる。
図11に信号処理回路21の構成を示す。実施の形態1と異なる点は、温度換算部34に補正部39を備えている点である。補正部39がサーモパイル16a〜16lの感度定数Ka〜Klを補正する。サーモパイル16a、16b、16cの感度定数Ka、Kb、Kcについてであれば、AとBが重なる領域での16aによる検出温度と16bによる検出温度が等しくなるように、そして且つBとCが重なる領域での16bによる検出温度と16cによる検出温度が等しくなるように感度定数Ka、Kb、Kcを再計算して補正するのである。
補正の方法はいろいろあるがその一例を説明する。まずサーモパイル16aとサーモパイル16cを比較してサーモパイル自身の温度との温度差の大きい方を選んで補正する。それが仮にサーモパイル16aであれば、AとBの領域の重なる点でのサーモパイル16a、16bの温度は等しくその平均値であるものとする。
そうすると、正しい温度は二つの平均値であるとして、平均値の温度の4乗とサーモパイル自身の温度の4乗との差、および、AD変換で得られたサーモパイル16a、16bの出力から再度感度定数Ka、Kbが計算される。そして感度記憶部35に記憶されている感度定数Ka、Kbを書き換える。
次に、この書き換えられたKbを基に計算したサーモパイル16bによる視野の温度と、BとCの領域の重なる点でのサーモパイル16cによる視野の温度は等しいものとして、感度補正されたKbにより計算した16bの温度の4乗とサーモパイル自身の温度の4乗との差、および、AD変換で得られたサーモパイル16cの出力から再度感度定数Kcが計算される。そして感度記憶部35に記憶されている感度定数Kcを書き換える。
同様にして、領域の重なる箇所でのサーモパイル16d、16e、16fの温度よりKd、Ke、Kfを書き換え、また領域の重なる箇所でのサーモパイル16g、16h、16iの温度よりKg、Kh、Kiを書き換え、また領域の重なる箇所でのサーモパイル16j、16k、16lの温度よりKj、Kk、Klを書き換える。こうして書き換えた感度定数Ka〜Klで次の温度分布検出を行う。
感度は予め測定して感度定数として温度記憶部35に記憶させておくが、実際の環境では温度、湿度、対象物の放射率などにより若干ずれた値をとることがよくある。これが複数のサーモパイルで温度分布を検出する上では、サーモパイルにより違った感度のずれ方をする。
このため、Aの領域とBの領域の境目やBの領域とCの領域の境目で不連続な分布となったりすることもあるが、こうした境目の温度は等しい温度を検出しているということで補正を入れることで、より精度の高い温度分布検出ができるようになる。
この補正方法では、同じ視野の温度を、時間差をあけて検出した2種類の温度を等しいものという前提で補正している。しかし、実際にはその間に温度上昇しているので、異なった温度であり、後から検出したほうが高温になっているものなので、その分を考慮して、例えば後から検出したほうの温度が高くそれが所定範囲内であれば、補正計算は行わない、あるいは、後から検出したほうの温度から所定温度低い温度と先に検出した温度で平均値を計算するなどしても良い。
以上の説明において、赤外線検出素子としてサーモパイルを用いたが、これは他に置き換えても良く、例えば焦電センサとチョッパを使って視野が対象物となっているときとチョッパで遮られているときの出力の差を出力としてもよい。
また、4素子で直線状赤外線検出素子群を構成したり、それを3列用いることで二次元赤外線検出素子群としたりしたが、これもその構成に拘るものでなく、直線状赤外線検出素子群を構成する赤外線検出素子数を増やせば、より細かな温度分布を検出できるものであり、列数を増やせばより高速で温度分布検出できるものである。
以上のように、本発明は、各直線状赤外線検出素子群は視野の間隔が等しくなるように配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させるものである。
これにより、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となり、きめ細かく適切にマイクロ波の供給を制御できる。
従って、食品に代表される各種誘電体の加熱、解凍、陶芸加熱、乾燥、焼結、或いは生体化学反応等の用途にも適用することができる。
3 加熱室
4 マイクロ波供給手段
5 温度分布検出手段
15 加熱制御手段
16 二次元赤外線検出素子群
16a〜16l 赤外線検出素子
16A〜16C 直線状赤外線検出素子群
27 駆動手段
28 駆動制御手段
34 温度換算部
36 通信制御部
39 補正部

Claims (1)

  1. 被加熱物を収納する加熱室と、前記加熱室にマイクロ波を供給するマイクロ波供給手段と、前記加熱室内の温度分布を検出する温度分布検出手段と、前記温度分布検出手段の検出結果に基づき前記マイクロ波供給手段を制御する加熱制御手段を有し、前記温度分布検出手段は赤外線を検出する複数の赤外線検出素子を直線状に配置した直線状赤外線検出素子群を複数有し、前記複数の直線状赤外線検出素子群を視野が所定の等間隔となるよう開けて配置した構成の二次元赤外線検出素子群と、前記各赤外線検出素子からの検出信号より温度情報に換算する温度換算部と、前記直線状赤外線検出素子群の直線方向と直交する方向に前記二次元赤外線検出素子群を移動させる駆動手段と、前記駆動手段を制御する駆動制御手段を有し、前記駆動制御手段は前記複数の直線状赤外線検出素子群の視野の間隔の角度だけ前記駆動手段にて往復移動させ往復駆動の端部にて隣接する前記直線状赤外線検出素子群の視野と一致するよう重なる範囲を有して移動するよう制御し、前記温度換算部は前記往復駆動の端部における隣接する前記直線状赤外線検出素子群の視野が一致する位置の出力に基づき隣接する前記赤外線検出素子の温度換算結果が一致するよう平均化処理して前記温度換算部の温度換算を補正する補正部を有するマイクロ波加熱装置。
JP2009098694A 2009-04-15 2009-04-15 マイクロ波加熱装置 Expired - Fee Related JP5470997B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098694A JP5470997B2 (ja) 2009-04-15 2009-04-15 マイクロ波加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098694A JP5470997B2 (ja) 2009-04-15 2009-04-15 マイクロ波加熱装置

Publications (2)

Publication Number Publication Date
JP2010249392A JP2010249392A (ja) 2010-11-04
JP5470997B2 true JP5470997B2 (ja) 2014-04-16

Family

ID=43311932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098694A Expired - Fee Related JP5470997B2 (ja) 2009-04-15 2009-04-15 マイクロ波加熱装置

Country Status (1)

Country Link
JP (1) JP5470997B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548936B2 (ja) * 2009-04-15 2014-07-16 パナソニック株式会社 温度分布検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129686U (ja) * 1984-02-08 1985-08-30 フジテツク株式会社 混雑度検出装置
JP2743427B2 (ja) * 1989-01-13 1998-04-22 日本電気株式会社 赤外線撮像装置
JPH07280641A (ja) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd 赤外線センサ装置
JP3062590B2 (ja) * 1997-03-24 2000-07-10 防衛庁技術研究本部長 走査型赤外線検出器
JP3204237B2 (ja) * 1999-01-22 2001-09-04 日本電気株式会社 トラックボール
JP2001254955A (ja) * 2000-03-10 2001-09-21 Sanyo Electric Co Ltd 調理器
JP2005283117A (ja) * 2000-04-28 2005-10-13 Sanyo Electric Co Ltd 電子レンジ
JP2004324978A (ja) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp 加熱調理器

Also Published As

Publication number Publication date
JP2010249392A (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
CN101473692B (zh) 微波加热装置
US6132084A (en) Infrared non-contact temperature measurement for household appliances
EP1150549B1 (en) Microwave oven with infrared detection element
JPH08159479A (ja) マイクロウェーブオーブン
WO2014145607A1 (en) Preferentially directing electromagnetic energy towards colder regions of object being heated by microwave oven
JP5548936B2 (ja) 温度分布検出装置
JP5470997B2 (ja) マイクロ波加熱装置
JPH06147492A (ja) 高周波加熱装置
JP4735276B2 (ja) 高周波加熱装置
JPH06201137A (ja) 調理器具
KR100485510B1 (ko) 전기가열 조리기
JP5611113B2 (ja) マイクロ波放射計用高温校正源の温度制御方法
JP2721827B2 (ja) サーモパイルセンサを用いた温度測定装置及び温度測定方法
JP5052476B2 (ja) 誘導加熱調理器
JPH07254484A (ja) 誘導加熱調理器
JP2004241220A (ja) 誘導加熱調理器
JP2003287232A (ja) 加熱調理器
JP5076631B2 (ja) マイクロ波加熱装置およびプログラム
JPH03289916A (ja) 加熱調理器
US7316505B2 (en) Method of defining the emission coefficient of a surface to be heated
KR100230784B1 (ko) 전자레인지의 부하위치 판단장치 및 방법
KR0176842B1 (ko) 써모파일 센서를 이용한 온도 측정장치 및 방법
JP2002198165A (ja) 高周波加熱装置
JP2008282693A (ja) マイクロ波加熱装置
JP2008286458A (ja) マイクロ波加熱装置およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5470997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees