JP5468721B2 - Displacement detector and shape measuring device - Google Patents

Displacement detector and shape measuring device Download PDF

Info

Publication number
JP5468721B2
JP5468721B2 JP2006041863A JP2006041863A JP5468721B2 JP 5468721 B2 JP5468721 B2 JP 5468721B2 JP 2006041863 A JP2006041863 A JP 2006041863A JP 2006041863 A JP2006041863 A JP 2006041863A JP 5468721 B2 JP5468721 B2 JP 5468721B2
Authority
JP
Japan
Prior art keywords
shaft
displacement
contact
rod member
urging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006041863A
Other languages
Japanese (ja)
Other versions
JP2007218815A (en
Inventor
忠晴 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006041863A priority Critical patent/JP5468721B2/en
Publication of JP2007218815A publication Critical patent/JP2007218815A/en
Application granted granted Critical
Publication of JP5468721B2 publication Critical patent/JP5468721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レンズその他の光学素子の表面形状等を測定するための変位量検出器及びこれを組み込んだ形状測定装置に関するものである。   The present invention relates to a displacement detector for measuring the surface shape and the like of a lens and other optical elements, and a shape measuring apparatus incorporating the same.

従来、被測定物として50mm以下のサイズの光学素子(いわゆるマイクロレンズ)について3次元形状(立体形状)を測定するための技術として、様々な技術が提案されてきた。例えば、被測定物の表面に対して触針を直接接触させて、その変位量を測定する接触式測定方法がある(特許文献1参照)。また、被測定物の表面にレーザ光線等を入射させて、その反射光を受光することにより表面の凹凸を測定する非接触式測定方法も提案されている(特許文献2参照)。前者の接触式測定方法は、触針を被測定物に直接接触させるので、被測定物の表面物性に依存しない。このため、接触式測定方法は、多様な被測定物に対して正確な計測が可能である。
特開平5−209741号公報 特許3046635号公報
Conventionally, various techniques have been proposed as techniques for measuring a three-dimensional shape (three-dimensional shape) of an optical element (so-called microlens) having a size of 50 mm or less as an object to be measured. For example, there is a contact-type measurement method in which a stylus is brought into direct contact with the surface of an object to be measured and the amount of displacement is measured (see Patent Document 1). In addition, a non-contact measurement method has been proposed in which a laser beam or the like is incident on the surface of an object to be measured and the surface irregularities are measured by receiving the reflected light (see Patent Document 2). The former contact-type measurement method does not depend on the surface physical properties of the object to be measured because the stylus is brought into direct contact with the object to be measured. For this reason, the contact-type measurement method can accurately measure various objects to be measured.
JP-A-5-209741 Japanese Patent No. 3046635

しかし、上記接触式測定方式においては、接触圧の変動がそのまま、被測定物の変形量の差となり測定誤差となる。よって、測定精度を向上させるためには、より精密に接触圧を一定に保つ必要がある。   However, in the above-described contact type measurement method, the variation in the contact pressure is the same as the difference in the deformation amount of the object to be measured, resulting in a measurement error. Therefore, in order to improve the measurement accuracy, it is necessary to keep the contact pressure constant more precisely.

そこで、本発明は、触針を簡易に支持することができ、表面形状の計測を高精度化することができる変位量検出器を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a displacement detector that can easily support a stylus and can increase the accuracy of surface shape measurement.

また、本発明は、上記のような変位量検出器を組み込んだ高精度で小型の形状測定装置を提供することを目的とする。   It is another object of the present invention to provide a highly accurate and compact shape measuring apparatus incorporating the above displacement detector.

上記課題を解決するため、本発明に係変位量検出器は、測定対象である被検知体に接触する接触体を軸方向の一端部に支持するロッド部材と、軸方向を鉛直方向とし前記一端部を下端とするように、前記ロッド部材を鉛直方向に移動可能なように保持する保持体と、気圧を利用することによって前記ロッド部材に対して前記軸方向に沿って鉛直方向上方に第1の付勢力を与える第1付勢手段と、前記ロッド部材に対して前記軸方向に沿って鉛直方向上方に一定である第2の付勢力を与え、前記第1付勢手段とは異なる機構で動作する異なる種類の第2付勢手段とを備え、前記ロッド部材の自重の力に比較して前記第1及び第2付勢手段による付勢力のいずれもが小さい。 To solve the above problems, engaging Ru displacement detector of the present invention a rod member for supporting the one axial end of the contact body in contact with the sensing object which is measured, the axial and vertical direction the A holding body that holds the rod member so as to be movable in the vertical direction so that the one end portion is a lower end, and a vertical upward direction along the axial direction with respect to the rod member by using atmospheric pressure. A first urging unit that applies one urging force, and a mechanism that differs from the first urging unit by applying a second urging force that is constant upward in the vertical direction along the axial direction to the rod member . Different types of second urging means that operate in the above-described manner, and both of the urging forces of the first and second urging means are smaller than the force of the weight of the rod member .

上記変位量検出器では、第1及び第2付勢手段が、ロッド部材に対して軸方向に沿って鉛直方向上方に所定の付勢力を与えるので、ロッド部材の重量を第1付勢手段と第2付勢部材とで分担して支えることになる。この結果、異なる種類の一対の付勢手段によってロッド部材に与える浮上力を比較的小さくすることができるので、ロッド部材の応答性を確保しつつ、第1及び第2付勢手段によって付与される浮上力の設定精度を向上させることができる。結果的に、被検知体に対する接触体の接触圧を微小に設定することができるだけでなく、接触圧を高分解能(すなわち高精度)に設定することができる。これにより、被検知体に対する接触体の接触圧を高精度に設定することができるので、ロッド部材又は軸状部材の変位量検出精度を高めることができ、被検知体の表面形状の測定精度を向上させることができる。 In the displacement detector, the first and second biasing means, because it provides a predetermined biasing force upward in the vertical direction along the axial direction relative to the rod member, a first biasing means the weight of the rod member It will be shared and supported by the second urging member. As a result, the levitation force applied to the rod member by a pair of different types of urging means can be made relatively small, so that the responsiveness of the rod member is ensured and applied by the first and second urging means. The setting accuracy of levitation force can be improved. As a result, not only the contact pressure of the contact body with respect to the detection target can be set minutely, but also the contact pressure can be set with high resolution (that is, high accuracy). Thereby, since the contact pressure of the contact body with respect to a to-be-detected body can be set with high precision, the displacement amount detection accuracy of a rod member or a shaft-like member can be raised, and the measurement accuracy of the surface shape of the to-be-detected body can be improved. Can be improved.

本発明の具体的な態様又は観点では、上記第1及び第2の変位量検出器において、前記第1付勢手段が、前記保持体を構成する外枠体の挿通孔に挿通される前記軸状部材の側面において前記一端部側に面するように形成された応力発生面と、前記軸状部材の前記応力発生面に所定の気圧を付与することによって前記軸方向に沿った鉛直方向上方に第1の付勢力に対応する浮上力を与える軸方向浮上手段とを備える。   In a specific aspect or aspect of the present invention, in the first and second displacement detectors, the shaft through which the first urging means is inserted into an insertion hole of an outer frame body constituting the holding body. A stress generating surface formed to face the one end side of the side surface of the cylindrical member, and vertically upward along the axial direction by applying a predetermined atmospheric pressure to the stress generating surface of the axial member. And an axial levitation means for providing a levitation force corresponding to the first urging force.

上記変位量検出器では、前記第1付勢手段を構成する軸方向浮上手段が、応力発生面に対して所定の気圧を付与することによって鉛直方向上方に浮上力を与える。この際、軸方向浮上手段が応力発生面を介して軸状部材に与える浮上力を比較的小さくすることができるので、浮上力の設定精度を向上させることができる。結果的に、被検知体に対する接触体の接触圧を微小に設定することができるだけでなく、接触圧を高分解能で設定することができる。   In the displacement amount detector, the axial levitation means constituting the first urging means gives a levitation force upward in the vertical direction by applying a predetermined atmospheric pressure to the stress generating surface. At this time, the levitation force applied to the shaft-like member by the axial levitation means via the stress generating surface can be made relatively small, so that the setting accuracy of the levitation force can be improved. As a result, not only can the contact pressure of the contact body with respect to the object to be detected be set minutely, but also the contact pressure can be set with high resolution.

本発明の別の態様では、前記軸状部材の側面と前記外枠体の内面との間に配置されて、当該軸状部材を前記軸方向に変位可能な状態に非接触で支持する軸受け部を備える。この場合、軸受け部が軸状部材を非接触で支持するので、軸方向に垂直な水平方向のガタを少なくすることができる。   In another aspect of the present invention, a bearing portion that is disposed between a side surface of the shaft-shaped member and an inner surface of the outer frame body and supports the shaft-shaped member in a state displaceable in the axial direction without contact. Is provided. In this case, since the bearing portion supports the shaft-like member in a non-contact manner, the play in the horizontal direction perpendicular to the axial direction can be reduced.

本発明のさらに別の態様では、軸受け部の内面に、当該内面と軸状部材の外壁面との間に気圧を付与して、軸状部材を非接触状態で静圧支持するための圧力制御部を有する。この場合、軸状部材が軸受け部に非接触状態で支持されるので、軸状部材の変位の応答性等を高めることができ、厳密で精度の高い変位量計測が可能になる。   In yet another aspect of the present invention, pressure control is performed to statically support the shaft-shaped member in a non-contact state by applying an air pressure between the inner surface and the outer wall surface of the shaft-shaped member on the inner surface of the bearing portion. Part. In this case, since the shaft-like member is supported in a non-contact state on the bearing portion, it is possible to improve the responsiveness of the displacement of the shaft-like member, and it is possible to measure the displacement amount precisely and with high accuracy.

本発明のさらに別の態様では、上記変位量検出器において、応力発生面が、軸状部材の側面に設けられた段差状の部分に形成されている。この場合、軸状部材の側面に応力発生面を簡易に形成することができる。   In still another aspect of the present invention, in the displacement detector, the stress generating surface is formed in a stepped portion provided on the side surface of the shaft-shaped member. In this case, a stress generating surface can be easily formed on the side surface of the shaft-shaped member.

本発明のさらに別の態様では、軸方向浮上手段によって軸状部材に付与される浮上力が、第2付勢手段によって軸状部材に付与される第2の付勢力よりも小さい。この場合、浮上力の設定精度をより向上させることができ、被検知体に対する接触体の接触圧をより高分解能とすることができる。   In still another aspect of the present invention, the levitation force applied to the shaft-shaped member by the axial levitation means is smaller than the second urging force applied to the shaft-shaped member by the second urging means. In this case, the setting accuracy of the levitation force can be further improved, and the contact pressure of the contact body with respect to the detected body can be made higher resolution.

本発明のさらに別の態様では、軸方向浮上手段によって軸状部材に付与される浮上力が、被検知体の形状、被検知体の表面硬度、軸状部材及び接触体の総重量、第2付勢手段によって付与される第2の付勢力、及び接触体の硬度の少なくとも1つに基づいて設定される。この場合、浮上力を測定条件に合わせて合理的なものに設定することができる。   In still another aspect of the present invention, the levitation force applied to the shaft-shaped member by the axial levitation means is the shape of the detected body, the surface hardness of the detected body, the total weight of the shaft-shaped member and the contact body, It is set based on at least one of the second urging force applied by the urging means and the hardness of the contact body. In this case, the levitation force can be set to a reasonable value according to the measurement conditions.

本発明のさらに別の態様では、軸状部材の軸方向に関する変位量を検出する際に使用される被測定部を備える。この場合、被測定部の変位を検出することによって、軸状部材の変位ひいては被検知体の表面形状を測定することができる。   In still another aspect of the present invention, the device includes a portion to be measured that is used when detecting the amount of displacement in the axial direction of the shaft-shaped member. In this case, by detecting the displacement of the portion to be measured, the displacement of the shaft-like member and thus the surface shape of the detected body can be measured.

本発明のさらに別の態様では、被測定部が検査光を反射する光検出面を有する。この場合、軸状部材の変位量を非接触でありながら高精度に計測することができる。   In yet another aspect of the present invention, the part to be measured has a light detection surface that reflects the inspection light. In this case, the displacement amount of the shaft-like member can be measured with high accuracy while being non-contact.

本発明のさらに別の態様では、接触体が、軸状部材の本体に対して交換可能に取り付けられている。この場合、被検知体の材料や形状に合わせた接触体を選択して軸状部材の一端に取り付けることができる。   In still another aspect of the present invention, the contact body is attached to the main body of the shaft-like member in a replaceable manner. In this case, the contact body matched with the material and shape of the to-be-detected body can be selected and attached to one end of the shaft-shaped member.

本発明のさらに別の態様では、軸状部材の軸方向の変位量を検出する変位センサを備える。この場合、変位センサによって軸状部材の変位量すなわち接触体の変位量を計測することができ、この計測結果に基づいて、被検知体の表面の起伏等を測定することができる。   In still another aspect of the present invention, a displacement sensor that detects the amount of axial displacement of the shaft-like member is provided. In this case, the displacement sensor can measure the displacement amount of the shaft member, that is, the displacement amount of the contact body, and based on the measurement result, the undulation of the surface of the detection object can be measured.

本発明に係る形状測定装置は、上述の変位量検出器と、被検知体を軸状部材に対し軸方向に垂直な方向に相対移動させる移動手段と、移動手段による被検知体の相対移動に際して被検知体の表面と接触体との接触によって生ずる軸状部材の軸方向の変位量を、変位センサの出力に基づいて算出し、被検知体の形状を測定する演算手段とを備える。   The shape measuring apparatus according to the present invention includes the above-described displacement detector, a moving means for moving the detected body relative to the shaft member in a direction perpendicular to the axial direction, and a relative movement of the detected body by the moving means. Computation means for calculating the amount of axial displacement of the shaft-like member caused by contact between the surface of the detected body and the contact body based on the output of the displacement sensor and measuring the shape of the detected body.

上記形状測定装置では、移動手段によって被検知体を軸状部材に対して相対移動させつつ、演算手段によって変位センサの出力から軸状部材の変位量を算出するので、被検知体の表面形状を一連の処理として効率的に計測することができる。   In the shape measuring apparatus, the displacement of the shaft-shaped member is calculated from the output of the displacement sensor by the computing means while the detected body is moved relative to the shaft-shaped member by the moving means. It can be efficiently measured as a series of processes.

以下、本発明の一実施形態である変位量検出器を、図面に基づき具体的に説明する。なお、この変位量検出器は、面形状計測装置に組み込まれる。   Hereinafter, a displacement detector according to an embodiment of the present invention will be specifically described with reference to the drawings. The displacement detector is incorporated in the surface shape measuring device.

図1は、実施形態の変位量検出器10の正面図であり、図2は、図1に示す変位量検出器10の要部を説明する側方拡大断面図である。   FIG. 1 is a front view of a displacement detector 10 according to the embodiment, and FIG. 2 is an enlarged side sectional view for explaining a main part of the displacement detector 10 shown in FIG.

変位量検出器10は、本体側のプローブ装置10Aと、プローブ装置10Aの可動部の変位を検出するレーザ干渉計10Bとを備える。ここで、プローブ装置10Aは、外枠体或いは保持体であるシリンダブロック2と、軸状部材を含むロッド部材3と、支持体4と、支柱部材5と、コイルバネ6とを備える。 The displacement detector 10 includes a probe device 10A on the main body side and a laser interferometer 10B that detects the displacement of the movable part of the probe device 10A. Here, the probe device 10 </ b> A includes a cylinder block 2 that is an outer frame body or a holding body, a rod member 3 including a shaft-shaped member, a support body 4, a support member 5, and a coil spring 6.

プローブ装置10Aにおいて、シリンダブロック2は、支持体4に固定されて安定した状態で支持されている。シリンダブロック2は、ロッド部材3をその軸方向が鉛直方向すなわちZ方向に延びるように保持する部分であり、図2に示すように中心にロッド挿通孔21を有している。ロッド挿通孔21は、断面略矩形状であって、シリンダブロック2が延びるべきZ方向に沿って延びている。このロッド挿通孔21は、Z方向に貫通しており、シリンダブロック2の上下両端面の中央部にて開口している。   In the probe apparatus 10A, the cylinder block 2 is fixed to the support body 4 and supported in a stable state. The cylinder block 2 is a portion that holds the rod member 3 such that its axial direction extends in the vertical direction, that is, the Z direction, and has a rod insertion hole 21 at the center as shown in FIG. The rod insertion hole 21 has a substantially rectangular cross section and extends along the Z direction in which the cylinder block 2 should extend. The rod insertion hole 21 penetrates in the Z direction and opens at the center of the upper and lower end faces of the cylinder block 2.

後者のロッド部材3は、測定対象或いは被検知体であるワークWの表面形状に追従して±Z方向に昇降する部分であり、シリンダブロック2に設けたロッド挿通孔21に挿通されて、その軸方向であるZ方向に変位可能となっている。ロッド部材3の一端部である下端部31は、ロッド挿通孔21の下端面側の開口から下側に突出しており、ロッド部材3の上端部33は、ロッド挿通孔21の上端面側の開口から上側に突出している。なお、ロッド部材3は、四角柱状の軸状部材BDの両端部31,33に、後述するプローブ本体35とミラー部材36とをそれぞれ設けたものである。軸状部材BDは、例えば低膨張係数で軽量なセラミック材料等によって一体的に形成される。   The latter rod member 3 is a part that moves up and down in the ± Z direction following the surface shape of the workpiece W that is a measurement object or a detection object, and is inserted into a rod insertion hole 21 provided in the cylinder block 2. It can be displaced in the Z direction, which is the axial direction. The lower end portion 31 which is one end portion of the rod member 3 protrudes downward from the opening on the lower end surface side of the rod insertion hole 21, and the upper end portion 33 of the rod member 3 is the opening on the upper end surface side of the rod insertion hole 21. Protrudes upward from the top. In addition, the rod member 3 is provided with a probe main body 35 and a mirror member 36, which will be described later, at both end portions 31 and 33 of a rectangular columnar shaft-shaped member BD, respectively. The shaft-shaped member BD is integrally formed of, for example, a low-expansion coefficient and a lightweight ceramic material.

ロッド部材3の下端部31から突起するプローブ本体35の先端には、ルビー、ダイヤモンド又は鋼材からなる球状の接触部35aが固着されている。接触部35aは、被測定対象であるワークWに接触するための接触体となっており、軸状部材BDとともにZ方向に変位可能となっている。このような接触部35aを設けることにより、プローブ本体35によってワークW表面が傷つけられることを回避でき、かつ、プローブ本体35をワークW表面に安定して接触させることができる。なお、接触部35aは、プローブ本体35とともに交換可能になっている。つまり、プローブ本体35の上部には例えば雄ネジ35cが形成されており、下端部31の下部には例えば雌ネジ35dが形成されている。下端部31にプローブ本体35を固定した状態では、両者に設けた雄ネジ35c及び雌ネジ35dが互いに螺合して確実な固定が確保される。また、プローブ本体35を下端部31に対して軸まわりに適宜回転させることにより、プローブ本体35を下端部31から分離することができ、下端部31に対して別の種類のプローブ本体35を取り付けることができる。つまり、ワークWの形成材料や表面形状に応じて複数種類のプローブ本体35を使い分けることができ、接触部35aの材料や形状を適宜変更することができる。具体的には、接触部35aとして、ダイヤモンド球、ルビー球、鋼球等を用いることができる。   A spherical contact portion 35 a made of ruby, diamond or steel is fixed to the tip of the probe main body 35 protruding from the lower end portion 31 of the rod member 3. The contact portion 35a is a contact body for making contact with the workpiece W to be measured, and can be displaced in the Z direction together with the shaft-shaped member BD. By providing such a contact portion 35a, the surface of the workpiece W can be prevented from being damaged by the probe body 35, and the probe body 35 can be stably brought into contact with the surface of the workpiece W. The contact portion 35a can be exchanged together with the probe main body 35. That is, for example, a male screw 35 c is formed on the upper portion of the probe main body 35, and a female screw 35 d is formed on the lower portion of the lower end portion 31. In a state where the probe main body 35 is fixed to the lower end 31, the male screw 35 c and the female screw 35 d provided on both are screwed together to ensure secure fixing. Further, the probe main body 35 can be separated from the lower end 31 by appropriately rotating the probe main body 35 around the axis with respect to the lower end 31, and another type of probe main body 35 is attached to the lower end 31. be able to. That is, a plurality of types of probe main bodies 35 can be used properly according to the forming material and surface shape of the workpiece W, and the material and shape of the contact portion 35a can be appropriately changed. Specifically, a diamond ball, a ruby ball, a steel ball, or the like can be used as the contact portion 35a.

ロッド部材3の上端部33に固定された被測定部であるZミラー部材36の上面は、XY面内に延びる鏡面であり、ロッド部材3のZ方向の変位を検出するための光検出面すなわちZミラー36aとなっている。このZミラー36aは、上方に設けた変位センサすなわち光照射手段としてのレーザ干渉計10B(図1参照)からの検出光MLを反射するので、レーザ干渉計10Bでは、反射光RLに基づいてロッド部材3の変位量を算出することができる。   The upper surface of the Z mirror member 36 which is a measurement target fixed to the upper end portion 33 of the rod member 3 is a mirror surface extending in the XY plane, that is, a light detection surface for detecting the displacement of the rod member 3 in the Z direction. A Z mirror 36a is provided. Since the Z mirror 36a reflects the detection light ML from the displacement sensor provided above, that is, the laser interferometer 10B (see FIG. 1) as the light irradiation means, the laser interferometer 10B uses the rod based on the reflected light RL. The displacement amount of the member 3 can be calculated.

なお、ロッド部材3の上端部33には、上方から延びるコイルバネ6(図1参照)の下端に固定される係止部38が設けられている。コイルバネ6の上端は、シリンダブロック2を支持する支持体4から鉛直方向上方に延びる支柱部材5の上端部51に設けた係止部51aに固定されている。つまり、ロッド部材3には、コイルバネ6に吊るされた状態で鉛直方向上方すなわち+Z方向に適当な付勢力が与えられており、ロッド部材3は、重量が一部相殺されて軽くなったような状態となっている。コイルバネ6は、後述する超精密レギュレータR2等からなる第1付勢手段と種類が異なる駆動装置であり、ロッド部材3に対して鉛直方向上方に第2の付勢力を与える第2付勢手段である。

The upper end portion 33 of the rod member 3 is provided with a locking portion 38 that is fixed to the lower end of the coil spring 6 (see FIG. 1) extending from above. The upper end of the coil spring 6 is fixed to a locking portion 51 a provided on the upper end portion 51 of the column member 5 extending vertically upward from the support body 4 that supports the cylinder block 2. That is, the rod member 3 is given an appropriate urging force vertically upward, that is, in the + Z direction while being suspended by the coil spring 6, and the rod member 3 seems to be lightened by partially canceling the weight. It is in a state. Coil spring 6, a driving device type is different from that of the first biasing means comprising a super precision regulator R2, etc., which will be described later, second biasing means for providing a second biasing force in the vertical upward direction with respect to the rod member 3 It is.

ロッド部材3の側面3aには、鉛直上方の+Z方向に追加的な浮上力を作用させる部分として、段差部39が形成されている。この段差部39は、プローブ本体35側すなわち鉛直方向下方に面するように形成された応力発生面39aを有する。この応力発生面39aは、後に詳述するように、ロッド部材3の自重を部分的に解消する鉛直方向上方の推力(浮上力)をロッド部材3にもたらす役割を果たす。段差部39によってロッド部材3に対して付与される鉛直方向上方の推力と、コイルバネ6によってロッド部材3に対して付与される鉛直方向上方の付勢力とを併せることにより、ロッド部材3の自重を相殺した中吊り状態にでき、さらに、ロッド部材3が鉛直方向下方に移動しようとする力を調節することができる。これにより、ロッド部材3下端の接触部35aをワークW表面に対して任意の力で接触させることができる。   On the side surface 3a of the rod member 3, a stepped portion 39 is formed as a portion for applying an additional levitation force in the + Z direction vertically above. This stepped portion 39 has a stress generating surface 39a formed so as to face the probe main body 35 side, that is, downward in the vertical direction. As will be described in detail later, the stress generating surface 39a plays a role of causing the rod member 3 to generate a thrust (levitation force) upward in the vertical direction that partially eliminates the weight of the rod member 3. By combining the vertical upward thrust applied to the rod member 3 by the step portion 39 and the vertical upward biasing force applied to the rod member 3 by the coil spring 6, the weight of the rod member 3 is reduced. It is possible to make a half-suspended state that cancels out, and it is possible to adjust the force with which the rod member 3 tries to move downward in the vertical direction. Thereby, the contact part 35a of the rod member 3 lower end can be made to contact with the workpiece | work W surface with arbitrary forces.

シリンダブロック2に形成されたロッド挿通孔21の内壁面21aにおける上側部分には、この内壁面21aに沿って多孔質体からなる上側軸受部材23が設けられている。また、ロッド挿通孔21の内壁面21aにおける下側部分には、この内壁面21aに沿って多孔質体からなる下側軸受部材24が設けられている。   An upper bearing member 23 made of a porous body is provided along the inner wall surface 21 a at the upper portion of the inner wall surface 21 a of the rod insertion hole 21 formed in the cylinder block 2. In addition, a lower bearing member 24 made of a porous body is provided along the inner wall surface 21 a at the lower portion of the inner wall surface 21 a of the rod insertion hole 21.

シリンダブロック2の外側面には給気ポート26が形成されている。この給気ポート26は、軸受け部である上側軸受部材23及び下側軸受部材24を介してロッド挿通孔21の内壁面21aに連通しており、エア供給源Pからの加圧エアが配管L1を介して直接的に供給される。結果的に、エア供給源Pからの加圧エアは、上側軸受部材23や下側軸受部材24を通り抜けて外表面に達し、ロッド部材3の側面3aに向けて噴出される。両軸受部材23,24から噴出された加圧エアの静圧により、ロッド部材3がシリンダブロック2のロッド挿通孔21に対して上下の適所にて非接触で支持される。つまり、両軸受部材23,24は、静圧スラスト軸受として機能している。   An air supply port 26 is formed on the outer surface of the cylinder block 2. The air supply port 26 communicates with the inner wall surface 21a of the rod insertion hole 21 via the upper bearing member 23 and the lower bearing member 24 which are bearings, and the pressurized air from the air supply source P is connected to the pipe L1. It is supplied directly via. As a result, the pressurized air from the air supply source P passes through the upper bearing member 23 and the lower bearing member 24, reaches the outer surface, and is ejected toward the side surface 3 a of the rod member 3. The rod member 3 is supported by the static pressure of the pressurized air ejected from the bearing members 23 and 24 in a non-contact manner at appropriate positions above and below the rod insertion hole 21 of the cylinder block 2. That is, both bearing members 23 and 24 function as a static pressure thrust bearing.

上側軸受部材23と下側軸受部材24との間であって、ロッド部材3の段差部39の下側には、圧力作用室27が形成されている。この圧力作用室27は、ロッド挿通孔21にロッド部材3を挿通した場合に、ロッド挿通孔21の内壁面21aとロッド部材3の側面3aや応力発生面39aとの間に挟まれた半気密状態の空間となる。   A pressure acting chamber 27 is formed between the upper bearing member 23 and the lower bearing member 24 and below the step portion 39 of the rod member 3. When the rod member 3 is inserted into the rod insertion hole 21, the pressure acting chamber 27 is a semi-airtight structure sandwiched between the inner wall surface 21 a of the rod insertion hole 21 and the side surface 3 a of the rod member 3 or the stress generation surface 39 a. It becomes a space of state.

シリンダブロック2の外側面の中段上側には、推力ポート28が形成されている。この推力ポート28は、ロッド挿通孔21内壁側の圧力作用室27に連通しており、エア供給源Pからの加圧エアは、配管L2及び超精密レギュレータR2を介して圧力作用室27に供給される。推力ポート28への制御エアの供給圧力は、例えば配管L2の経路上に設けた圧力センサPSによって監視されており、圧力センサPSの検出結果は、軸方向浮上手段であり圧力制御弁を内蔵する超精密レギュレータR2にフィードバックされる。つまり、圧力作用室27の気圧は、超精密レギュレータR2によって高精度に調整可能であり、不図示の制御装置によって遠隔的に制御される。以上説明した圧力作用室27、推力ポート28、圧力センサPS、及び超精密レギュレータR2は、ロッド部材3に対して鉛直方向上方に第1の付勢力を与える第1付勢手段として機能する。ここで、超精密レギュレータR2の圧力分解能は、例えば0.03〜0.05Pa程度に設定される。そして、推力ポート28によってロッド部材3に付与される圧力分解能は、(推力ポート28の全浮上力)/(推力ポート28の全給エアー圧)×(超精密レギュレータR2の分解能)で与えられる。なお、推力ポート28によってロッド部材3に付与される圧力分解能は、コイルバネ6によってロッド部材3に付与される浮上力の分解能と同等かそれ以下となっている。コイルバネ6によって与えられる浮上力の分解能が推力ポート28によって与えられる浮上力の分解能よりも低い場合、超精密レギュレータR2による圧力制御がコイルバネ6によって阻害されることになるからである。   A thrust port 28 is formed on the upper middle of the outer surface of the cylinder block 2. The thrust port 28 communicates with the pressure action chamber 27 on the inner wall side of the rod insertion hole 21. Pressurized air from the air supply source P is supplied to the pressure action chamber 27 via the pipe L2 and the ultraprecision regulator R2. Is done. The supply pressure of the control air to the thrust port 28 is monitored by, for example, a pressure sensor PS provided on the path of the pipe L2, and the detection result of the pressure sensor PS is an axial levitation means and incorporates a pressure control valve. It is fed back to the ultraprecision regulator R2. That is, the atmospheric pressure in the pressure working chamber 27 can be adjusted with high precision by the ultraprecision regulator R2, and is remotely controlled by a control device (not shown). The pressure action chamber 27, the thrust port 28, the pressure sensor PS, and the ultraprecision regulator R <b> 2 described above function as a first urging unit that applies a first urging force to the rod member 3 in the vertical direction. Here, the pressure resolution of the ultraprecision regulator R2 is set to about 0.03 to 0.05 Pa, for example. The pressure resolution applied to the rod member 3 by the thrust port 28 is given by (total thrust force of the thrust port 28) / (total air supply pressure of the thrust port 28) × (resolution of the ultraprecision regulator R2). Note that the pressure resolution applied to the rod member 3 by the thrust port 28 is equal to or less than the resolution of the levitation force applied to the rod member 3 by the coil spring 6. This is because when the resolution of the levitation force provided by the coil spring 6 is lower than the resolution of the levitation force provided by the thrust port 28, the pressure control by the ultraprecision regulator R2 is inhibited by the coil spring 6.

以上のような超精密レギュレータR2によって推力ポート28に制御エアが供給された場合、段差部39の応力発生面39aに対して制御エアが作用する。つまり、推力ポート28からの制御エアによって、ロッド部材3に対して根元側の+Z方向に押し出す推力すなわち浮上力が与えられる。ここで、段差部39の段差面積である応力発生面39aの面積は、加圧エアの圧力に対応して必要とする浮上力を生じさせることができるようになっているので、超精密レギュレータR2から供給される加圧エアの気圧を制御することによって、ロッド部材3の自重をコイルバネ6を補って部分的に解消するような鉛直方向上方の推力すなわち浮上力をロッド部材3に付与することができる。さらに、超精密レギュレータR2から供給される加圧エアの気圧値を変化させることによって、段差部39によってロッド部材3に与えられる浮上力が変化するので、ロッド部材3下端の接触部35aをワークW表面に対して任意の押圧力で接触させることができる。   When the control air is supplied to the thrust port 28 by the ultraprecision regulator R2 as described above, the control air acts on the stress generation surface 39a of the step portion 39. That is, the thrust that pushes in the + Z direction on the root side, that is, the floating force, is applied to the rod member 3 by the control air from the thrust port 28. Here, the area of the stress generating surface 39a, which is the step area of the stepped portion 39, can generate the necessary levitation force corresponding to the pressure of the pressurized air, so that the super-precision regulator R2 By controlling the pressure of the pressurized air supplied from the rod member 3, it is possible to apply to the rod member 3 thrust in the vertical direction, that is, lift force, which partially eliminates the weight of the rod member 3 by supplementing the coil spring 6. it can. Furthermore, since the levitation force applied to the rod member 3 by the step portion 39 is changed by changing the pressure value of the pressurized air supplied from the ultraprecision regulator R2, the contact portion 35a at the lower end of the rod member 3 is moved to the workpiece W. The surface can be brought into contact with any pressing force.

図3は、超精密レギュレータR2によって設定される加圧エアの気圧値と、加圧エアによってロッド部材3に与えられる浮上力との関係を説明するグラフである。実線は、コイルバネ6による付勢力を加えた場合であり、加圧エアによる浮上力を小さく設定できる例を示し、点線は、加圧エアによる浮上力のみを用いた例を示す。いずれの場合においても、加圧エアの気圧値を大きくすることによって、ロッド部材3の浮上力を直線的に増大させることができる。ただし、気圧値と浮上力とのグラフの傾き値が小さいほど、ロッド部材3の浮上力の分解能を小さくすることができ、より精密な押圧力で接触部35aをワークW表面に接触させることができ、ロッド部材3の上下動をより高感度で精密なものとすることができる。具体的な実施例では、加圧エアの気圧値を0〜0.2MPaとして、接触部35aによる接触圧の分解能を0.01〜0.02mNとすることができた。一方、コイルバネ6を用いないで加圧エアのみでロッド部材3を浮上させた比較例では、加圧エアの気圧値を0〜0.2MPaとして、接触部35aによる接触圧の分解能を0.05〜0.10mNまでしか設定できない。 FIG. 3 is a graph illustrating the relationship between the pressure value of the pressurized air set by the ultraprecision regulator R2 and the levitation force applied to the rod member 3 by the pressurized air. A solid line indicates a case where the urging force by the coil spring 6 is applied, and an example in which the levitation force by the pressurized air can be set small, and a dotted line indicates an example using only the levitation force by the pressurized air. In any case, the floating force of the rod member 3 can be increased linearly by increasing the pressure value of the pressurized air. However, the smaller the slope value of the barometric pressure value and the levitation force graph, the smaller the resolution of the levitation force of the rod member 3, and the contact portion 35a can be brought into contact with the surface of the workpiece W with a more precise pressing force. Thus, the vertical movement of the rod member 3 can be made more sensitive and precise. In a specific embodiment, the pressure value of the pressurized air as 0~0.2MPa, the resolution of the contact pressure by the contact portion 35a could be a 0.01~0.02MN. On the other hand, in the comparative example in which float the rod member 3 only in compressed air without using the coil spring 6, the pressure value of the pressurized air as 0~0.2MPa, the resolution of the contact pressure by the contact portions 35a 0. It can only be set from 05 to 0.10 mN.

また、具体的な測定例において、接触部35aとして半径4μmのダイヤモンド球を用いた場合、ワークW表面に対する接触部35aの押圧力すなわち接触圧を例えば15mg程度とした。また、別の実施例において、接触部35aとして半径0.25mmのルビー球を用いた場合、ワークW表面に対する接触部35aの押圧力すなわち接触圧を例えば50mg程度とした。   In a specific measurement example, when a diamond sphere having a radius of 4 μm is used as the contact portion 35a, the pressing force of the contact portion 35a against the surface of the workpiece W, that is, the contact pressure is set to about 15 mg, for example. In another embodiment, when a ruby ball having a radius of 0.25 mm is used as the contact portion 35a, the pressing force of the contact portion 35a against the surface of the workpiece W, that is, the contact pressure is set to about 50 mg, for example.

なお、加圧エアの気圧値の設定は、ワークWの表面形状、ワークWの表面硬度、ロッド部材3の総重量、コイルバネ6によって付与される浮上力、及び接触部35aの硬度のいずれか又は2つ以上の組み合わせに基づいて設定される。以上において、ワークWの表面形状には、滑らかな面、段差、V溝等が含まれ、ワークWの表面硬度には、金属材料や樹脂材料を含む各種素材の広範な硬度が含まれる。また、ロッド部材3の総重量や接触部35aの硬度は、接触部35aの材料がルビーやダイヤモンドといったいずれの材料であるかによって変化する。   The setting of the pressure value of the pressurized air is any one of the surface shape of the workpiece W, the surface hardness of the workpiece W, the total weight of the rod member 3, the levitation force applied by the coil spring 6, and the hardness of the contact portion 35a. It is set based on a combination of two or more. In the above, the surface shape of the workpiece W includes a smooth surface, a step, a V-groove, and the like, and the surface hardness of the workpiece W includes a wide range of hardnesses of various materials including a metal material and a resin material. Further, the total weight of the rod member 3 and the hardness of the contact portion 35a vary depending on which material, such as ruby or diamond, is used for the material of the contact portion 35a.

図1に戻って、プローブ装置10Aの上方に配置されたレーザ干渉計10Bは、図示を省略するが、レーザ光源、干渉用光学系、センサ等からなる公知の構造を有している。レーザ干渉計10Bからの検出光MLレーザ光は、ロッド部材3の上端部に設けられたZミラー部材36のZミラー36aに向けて照射されるようになっており、Zミラー36aからの反射光RL検出光は、レーザ干渉計10Bの方向に反射されてレーザ干渉計10Bで検出されるようになっている。レーザ干渉計10Bでは、反射光RLの位相変化に基づいてロッド部材3のZ方向の変位量を算出することができる。   Returning to FIG. 1, the laser interferometer 10 </ b> B disposed above the probe device 10 </ b> A has a known structure including a laser light source, an interference optical system, a sensor, and the like, although not shown. The detection light ML laser light from the laser interferometer 10B is irradiated toward the Z mirror 36a of the Z mirror member 36 provided at the upper end of the rod member 3, and the reflected light from the Z mirror 36a. The RL detection light is reflected in the direction of the laser interferometer 10B and is detected by the laser interferometer 10B. In the laser interferometer 10B, the displacement amount in the Z direction of the rod member 3 can be calculated based on the phase change of the reflected light RL.

この変位量検出器10では、エア供給源Pから供給される加圧エアによって、ロッド部材3が、ロッド挿通孔21内の軸受部材23,24とに対して非接触で支持される。また、エア供給源Pから推力ポート28を介して圧力作用室27に供給される制御エアによって、ロッド部材3に対して鉛直方向上方すなわち+Z方向に任意の浮上力(推力)が付与される。この際、ロッド部材3は、コイルバネ6に吊るされた状態で、その自重を一部相殺する付勢力で持ち上げられる。結果的に、ロッド部材3は、シリンダブロック2内でほとんど浮いた状態で−Z方向にわずかに付勢された状態となる。この状態で、ワークWの表面にロッド部材3の下端に設けた接触部35aを接触させ、プローブ装置10AをワークWに対してXY面内で相対的に走査させることにより、ロッド部材3は、ワークWの表面形状に沿って±Z方向に変位する。プローブ装置10AのXY走査に際しては、圧力作用室27に供給する制御エアの調整により、ワークWの表面に対する接触部35aの接触圧が任意に設定可能な適正値で一定となるように制御される。そして、プローブ装置10AのXY走査と並行して、レーザ干渉計10Bからのレーザ光がZミラー36aに向けて照射され、ロッド部材3のZ方向の変位量が算出される。このZ変位量に基づいてワークWの立体形状が計測される。   In the displacement detector 10, the rod member 3 is supported by the pressurized air supplied from the air supply source P in a non-contact manner with respect to the bearing members 23 and 24 in the rod insertion hole 21. Further, by the control air supplied from the air supply source P to the pressure acting chamber 27 via the thrust port 28, an arbitrary levitation force (thrust) is applied to the rod member 3 in the vertical direction, that is, in the + Z direction. At this time, the rod member 3 is lifted by an urging force that partially cancels its own weight in a state of being hung by the coil spring 6. As a result, the rod member 3 is slightly biased in the −Z direction while almost floating in the cylinder block 2. In this state, the contact member 35a provided at the lower end of the rod member 3 is brought into contact with the surface of the workpiece W, and the probe device 10A is scanned relative to the workpiece W in the XY plane. It is displaced in the ± Z direction along the surface shape of the workpiece W. During the XY scanning of the probe device 10A, the control air supplied to the pressure acting chamber 27 is adjusted so that the contact pressure of the contact portion 35a against the surface of the workpiece W is kept constant at an arbitrarily settable appropriate value. . In parallel with the XY scanning of the probe device 10A, the laser beam from the laser interferometer 10B is irradiated toward the Z mirror 36a, and the displacement amount of the rod member 3 in the Z direction is calculated. Based on this Z displacement amount, the three-dimensional shape of the workpiece W is measured.

なお、シリンダブロック2の例えば上端部には、差動センサ(不図示)が設けられている。この差動センサは、シリンダブロック2中の基準位置からロッド部材3が変位した方向を検出するためのものである。これにより、シリンダブロック2中でロッド部材3が上昇した場合、例えばH信号が出力され、これに応じてシリンダブロック2全体を不図示の機構によって緩やかに上昇させることができ、ロッド部材3を基準位置に戻すことが可能になる。逆に、シリンダブロック2中でロッド部材3が降下した場合、例えばL信号が出力され、これに応じてシリンダブロック2を不図示の機構によって緩やかに上昇させてロッド部材3を基準位置に戻すことが可能になる。つまり、シリンダブロック2に対するロッド部材3の位置を略一定に保ちつつプローブ装置10Aを全体として±Z方向に昇降させることができる。   A differential sensor (not shown) is provided at the upper end of the cylinder block 2, for example. This differential sensor is for detecting the direction in which the rod member 3 is displaced from the reference position in the cylinder block 2. As a result, when the rod member 3 rises in the cylinder block 2, for example, an H signal is output, and the entire cylinder block 2 can be gently raised by a mechanism (not shown) accordingly, It becomes possible to return to the position. On the contrary, when the rod member 3 is lowered in the cylinder block 2, for example, an L signal is output, and the cylinder block 2 is gently raised by a mechanism (not shown) in accordance with this to return the rod member 3 to the reference position. Is possible. That is, the probe apparatus 10A can be moved up and down in the ± Z direction as a whole while keeping the position of the rod member 3 with respect to the cylinder block 2 substantially constant.

図4(a)及び4(b)は、図1に示す変位量検出器10を変位両検出手段として組み込んだ面形状測定装置100の構造を説明する正面図及び側面図である。この面形状測定装置100は、定盤81上に、XYステージ装置82と、Z駆動装置84とを固定した構造を有する。XYステージ装置82やZ駆動装置84等の動作は、演算出段段としての制御装置99によって制御されている。   FIGS. 4A and 4B are a front view and a side view for explaining the structure of the surface shape measuring apparatus 100 in which the displacement amount detector 10 shown in FIG. 1 is incorporated as both displacement detection means. The surface shape measuring apparatus 100 has a structure in which an XY stage device 82 and a Z driving device 84 are fixed on a surface plate 81. The operations of the XY stage device 82, the Z drive device 84, and the like are controlled by a control device 99 as a calculation output stage.

XYステージ装置82は、移動手段であり、制御装置99の制御下で図示を省略する駆動制御部に駆動されて動作する。XYステージ装置82は、このXYステージ装置82の上部に設けた載置台82a上に着脱可能に固定された測定用治具HDを、XY面内で2次元的に任意の位置に滑らかに移動させることができる。測定用治具HDの位置は、載置台82aに設けたXミラー部材83aとYミラー部材83bとを利用して検出される。すなわち、Xミラー部材83aに対向して定盤81上に取り付けたレーザ干渉計83dを利用して載置台82aのX軸方向の位置が分かる。また、Yミラー部材83bに対向して定盤81上に取り付けたレーザ干渉計83eを利用して載置台82aのY軸方向の位置が分かる。   The XY stage device 82 is a moving unit, and is operated by being driven by a drive control unit (not shown) under the control of the control device 99. The XY stage device 82 smoothly moves the measurement jig HD, which is detachably fixed on the mounting table 82a provided on the XY stage device 82, two-dimensionally to an arbitrary position in the XY plane. be able to. The position of the measurement jig HD is detected using the X mirror member 83a and the Y mirror member 83b provided on the mounting table 82a. That is, the position of the mounting table 82a in the X-axis direction can be determined using the laser interferometer 83d attached on the surface plate 81 so as to face the X mirror member 83a. Further, the position of the mounting table 82a in the Y-axis direction can be determined by using a laser interferometer 83e mounted on the surface plate 81 so as to face the Y mirror member 83b.

Z駆動装置84は、フレーム85上に昇降機構86を固定したものであり、昇降機構86は、フレーム85上部に固定されZ方向に延びる支持軸86aと、支持軸86aに支持されてZ軸方向に移動する昇降部材86bと、昇降部材86bを昇降させる昇降駆動装置86cと、昇降部材86bに支持されたプローブ装置10Aとを備える。   The Z drive device 84 has a lifting mechanism 86 fixed on a frame 85. The lifting mechanism 86 is fixed to the upper part of the frame 85 and extends in the Z direction, and is supported by the support shaft 86a to be in the Z axis direction. A lifting / lowering member 86b, a lifting / lowering driving device 86c for lifting / lowering the lifting / lowering member 86b, and a probe device 10A supported by the lifting / lowering member 86b.

昇降機構86において、昇降部材86bは、支持軸86aに非接触に支持されて滑らかに昇降運動する。昇降部材86bは、前方下部に図1で説明したプローブ装置10Aを保持しており、プローブ装置10Aに設けたプローブ本体35の昇降運動に伴って滑らかに昇降する。なお、プローブ装置10Aは、図2で説明したように、給気ポート26にエア供給源Pから制御エアの供給を受けており、ロッド部材3を非接触で静圧支持しつつZ軸に可動な状態に保つ。また、プローブ装置10Aは、推力ポート28にエア供給源Pから制御エアの供給を受けており、超精密レギュレータR2によって昇降する力の調整が可能である。以上により、ロッド部材3先端に設けた接触部35aをワークWの表面に一定の力で押し付けるこことができる。つまり、測定用治具HDに固定された光学素子すなわちワークWの表面が昇降・変位しても、プローブ本体35の先端をワークWの表面に対して低負荷で接した状態に維持できる。また、昇降駆動装置86cは、プローブ装置10Aに内蔵した差動センサの検出結果に基づいてフィードバックをかけつつ昇降部材86bとともにプローブ装置10Aを昇降させる。これにより、ロッド部材3の先端に一定の低負荷を掛けた状態でロッド部材3を広範囲に亘って昇降させることができる。よって、ロッド部材3すなわちプローブ本体35を上記のように一定の負荷をかけた状態で昇降させつつ、XYステージ装置82を適宜動作させて測定用治具HDに載置したワークWをXY面内で2次元的に走査するように移動させるならば、プローブ本体35の先端を測定用治具HDに載置したワークWの光学面に沿って2次元的に移動させることができる。つまり、レーザ干渉計83d,83eを利用して得た載置台82aのXY座標と、レーザ干渉計10Bを利用して得たプローブ本体35のZ座標とを、制御装置99で対応付けつつ必要な演算処理を適宜行うことにより、ワークWの光学面の3次元的な表面形状を測定することができる。   In the elevating mechanism 86, the elevating member 86b is supported in a non-contact manner by the support shaft 86a and smoothly moves up and down. The elevating member 86b holds the probe device 10A described in FIG. 1 at the front lower portion, and smoothly elevates as the probe main body 35 provided in the probe device 10A moves up and down. As described with reference to FIG. 2, the probe device 10 </ b> A is supplied with control air from the air supply source P to the air supply port 26, and can move on the Z axis while supporting the rod member 3 in a non-contact manner. Keep in good condition. Further, the probe device 10A is supplied with control air from the air supply source P to the thrust port 28, and can adjust the lifting and lowering force by the ultraprecision regulator R2. As described above, the contact portion 35a provided at the tip of the rod member 3 can be pressed against the surface of the workpiece W with a constant force. That is, even if the optical element fixed to the measurement jig HD, that is, the surface of the workpiece W is moved up and down, the tip of the probe body 35 can be maintained in contact with the surface of the workpiece W with a low load. Further, the lift drive device 86c moves the probe device 10A up and down together with the lift member 86b while applying feedback based on the detection result of the differential sensor built in the probe device 10A. Thereby, the rod member 3 can be moved up and down over a wide range in a state where a constant low load is applied to the tip of the rod member 3. Therefore, the workpiece W placed on the measuring jig HD is moved in the XY plane by appropriately operating the XY stage device 82 while raising and lowering the rod member 3, that is, the probe main body 35 with a constant load as described above. The tip of the probe body 35 can be moved two-dimensionally along the optical surface of the workpiece W placed on the measurement jig HD. That is, the control device 99 associates the XY coordinates of the mounting table 82a obtained using the laser interferometers 83d and 83e with the Z coordinate of the probe main body 35 obtained using the laser interferometer 10B. By appropriately performing arithmetic processing, the three-dimensional surface shape of the optical surface of the workpiece W can be measured.

なお、プローブ本体35の先端位置の変位は、プローブ本体35とともに昇降するロッド部材3の上端に設けたZミラー部材36を利用して検出される。すなわち、Zミラー部材36に対向してフレーム85上に取り付けたレーザ干渉計10Bを利用して、検出光MLをZミラー部材36に照射させつつ反射光RLを検出させることにより、プローブ本体35下端すなわちワークWの表面のZ軸方向の位置が間接的に分かる。   The displacement of the tip position of the probe main body 35 is detected using a Z mirror member 36 provided at the upper end of the rod member 3 that moves up and down together with the probe main body 35. That is, the lower end of the probe main body 35 is detected by using the laser interferometer 10B mounted on the frame 85 so as to face the Z mirror member 36 and detecting the reflected light RL while irradiating the Z mirror member 36 with the detection light ML. That is, the position in the Z-axis direction on the surface of the workpiece W is indirectly known.

以上実施形態に即して本発明を説明したが、本発明は上記実施形態限定されるものではない。例えば、ロッド部材3に形成する段差部39や応力発生面39aの個数や形状は、適宜変更することができる。   Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments. For example, the number and shape of the stepped portion 39 and the stress generating surface 39a formed on the rod member 3 can be changed as appropriate.

また、上側軸受部材23や下側軸受部材24の配置や個数も、測定対象や測定条件等に応じて適宜変更することができる。   Further, the arrangement and number of the upper bearing member 23 and the lower bearing member 24 can be appropriately changed according to the measurement object, measurement conditions, and the like.

また、コイルバネ6は、一定の付勢力をロッド部材3に付与できるものであれば、他の代替物に置き換えることができる。   Further, the coil spring 6 can be replaced with another alternative as long as it can apply a constant urging force to the rod member 3.

また、ワークWを定盤81側に固定し、XYステージ装置82やZ駆動装置84によって、変位量検出器10を3次元的に移動させつつ、ロッド部材3を変位させることによってワークW表面の形状を測定することもできる。   Further, the workpiece W is fixed on the surface plate 81 side, and the rod member 3 is displaced while the displacement amount detector 10 is moved three-dimensionally by the XY stage device 82 and the Z driving device 84 to thereby displace the surface of the workpiece W. The shape can also be measured.

本発明の一実施形態に係る変位量検出器の側面図である。It is a side view of the displacement amount detector which concerns on one Embodiment of this invention. 図1の変位量検出器に組み込まれるプローブ装置の側方断面図である。FIG. 2 is a side sectional view of a probe device incorporated in the displacement detector of FIG. 1. 図2のプローブ装置に供給される加圧エアの気圧値と浮上力との関係を説明するグラフである。It is a graph explaining the relationship between the atmospheric pressure value of the pressurized air supplied to the probe apparatus of FIG. 2, and levitation force. (a)及び(b)は、それぞれ図1に示すプローブ装置を組み込んだ面形状測定装置の構造を説明する正面図及び側面図である。(A) And (b) is the front view and side view explaining the structure of the surface shape measuring apparatus which each incorporated the probe apparatus shown in FIG.

符号の説明Explanation of symbols

2…シリンダブロック、 3…ロッド部材、 3a…側面、 6…コイルバネ、 10…変位量検出器、 10A…プローブ装置、 10B…レーザ干渉計、 21…ロッド挿通孔、 21a…内壁面、 23,24…軸受部材、 27…圧力作用室、 28…推力ポート、 31…下端部、 35…プローブ本体、 35a…接触部、 36…Zミラー部材、 39…段差部、 39a…応力発生面
DESCRIPTION OF SYMBOLS 2 ... Cylinder block, 3 ... Rod member, 3a ... Side surface, 6 ... Coil spring, 10 ... Displacement amount detector, 10A ... Probe apparatus, 10B ... Laser interferometer, 21 ... Rod insertion hole, 21a ... Inner wall surface, 23, 24 DESCRIPTION OF SYMBOLS ... Bearing member 27 ... Pressure action chamber 28 ... Thrust port 31 ... Lower end part 35 ... Probe main body 35a ... Contact part 36 ... Z mirror member 39 ... Step part 39a ... Stress generating surface

Claims (12)

測定対象である被検知体に接触する接触体を軸方向の一端部に支持する軸状部材を含むロッド部材と、
軸方向を鉛直方向とし前記一端部を下端とするように、前記ロッド部材を鉛直方向に移動可能なように保持する保持体と、
気圧を利用することによって前記ロッド部材に対して前記軸方向に沿って鉛直方向上方に第1の付勢力を与える第1付勢手段と、
前記ロッド部材に対して前記軸方向に沿って鉛直方向上方に一定である第2の付勢力を与え、前記第1付勢手段とは異なる機構で動作する異なる種類の第2付勢手段と、
を備え、
前記ロッド部材の自重の力に比較して前記第1及び第2付勢手段による付勢力のいずれもが小さい変位量検出器。
A rod member including a shaft-like member that supports a contact body that is in contact with the body to be detected, which is a measurement target, at one end in the axial direction;
A holding body for holding the rod member so as to be movable in the vertical direction so that the axial direction is the vertical direction and the one end is the lower end;
First urging means for applying a first urging force vertically upward along the axial direction to the rod member by utilizing atmospheric pressure;
A second urging unit of a different type that applies a second urging force that is constant upward in the vertical direction along the axial direction to the rod member , and operates by a mechanism different from the first urging unit;
With
A displacement amount detector in which both of the urging forces of the first and second urging means are smaller than the force of the weight of the rod member .
前記第1付勢手段は、前記保持体を構成する外枠体の挿通孔に挿通される前記軸状部材の側面において前記一端部側に面するように形成された応力発生面と、前記軸状部材の前記応力発生面に所定の気圧を付与することによって前記軸方向に沿った鉛直方向上方に第1の付勢力に対応する浮上力を与える軸方向浮上手段とを備える請求項記載の変位量検出器。 The first urging means includes a stress generating surface formed to face the one end side on a side surface of the shaft-like member inserted through an insertion hole of an outer frame body constituting the holding body, and the shaft the stress generation surface of Jo member by applying a predetermined air pressure according to claim 1, further comprising an axial levitation means for providing a lifting force corresponding to the first energizing force upward in the vertical direction along the axial direction Displacement detector. 前記軸状部材の側面と前記外枠体の内面との間に配置されて、当該軸状部材を前記軸方向に変位可能な状態に非接触で支持する軸受け部を備える請求項記載の変位量検出器。 The displacement according to claim 2, further comprising a bearing portion that is disposed between a side surface of the shaft-shaped member and an inner surface of the outer frame body and supports the shaft-shaped member in a non-contact manner so as to be displaceable in the axial direction. Quantity detector. 前記軸受け部の内面に、当該内面と前記軸状部材の外壁面との間に気圧を付与して、前記軸状部材を非接触状態で静圧支持するための圧力制御部を有する請求項記載の変位量検出器An inner surface of the bearing portion, according to claim 3 having a pressure controller for by applying a pressure and static pressure supporting the shaft-like member in a non-contact state between the inner surface and the outer wall surface of the shaft-like member The displacement detector described. 前記応力発生面は、前記軸状部材の側面に設けられた段差状の部分に形成されている請求項から請求項のいずれか一項記載の変位量検出器。 The displacement detector according to any one of claims 2 to 4 , wherein the stress generating surface is formed in a stepped portion provided on a side surface of the shaft-shaped member. 前記軸方向浮上手段によって前記軸状部材に付与される前記浮上力は、前記第2付勢手段によって前記軸状部材に付与される前記第2の付勢力よりも小さい請求項から請求項のいずれか一項記載の変位量検出器。 The axial said lift force by floating means is applied to the shaft-like member, according to claim 5 small claims 2 than the second bias force applied to the shaft-like member by the second biasing means The displacement amount detector according to any one of the above. 前記軸方向浮上手段によって前記軸状部材に付与される前記浮上力は、前記被検知体の形状、前記被検知体の表面硬度、前記軸状部材及び前記接触体の総重量、前記第2付勢手段によって付与される前記第2の付勢力、及び前記接触体の硬度の少なくとも1つに基づいて設定される請求項から請求項のいずれか一項記載の変位量検出器。 The levitation force applied to the shaft-shaped member by the axial levitation means includes the shape of the detected body, the surface hardness of the detected body, the total weight of the shaft-shaped member and the contact body, and the second attachment. The displacement detector according to any one of claims 2 to 6 , which is set based on at least one of the second urging force applied by the urging means and the hardness of the contact body. 前記ロッド部材は、前記軸状部材の前記軸方向に関する変位量を検出する際に使用される被測定部を備える請求項1から請求項のいずれか一項記載の変位量検出器。 The displacement amount detector according to any one of claims 1 to 7 , wherein the rod member includes a portion to be measured that is used when detecting a displacement amount of the shaft-shaped member in the axial direction. 前記被測定部は、検査光を反射する光検出面を有する請求項記載の変位量検出器。 The displacement detector according to claim 8 , wherein the part to be measured has a light detection surface that reflects inspection light. 前記接触体は、前記軸状部に対して交換可能に取り付けられている請求項1から請求項のいずれか一項記載の変位量検出器。 The contact body, the displacement amount detector according to one of claims 1 to 9 which is mounted exchangeably with respect to the shaft-like member. 前記軸状部材の前記軸方向の変位量を検出する変位センサを備える請求項1から請求項10のいずれか一項記載の変位量検出器。 The displacement amount detector according to any one of claims 1 to 10 , further comprising a displacement sensor that detects a displacement amount of the shaft-like member in the axial direction. 請求項11記載の変位量検出器と、
前記被検知体を前記軸状部材に対し前記軸方向に垂直な方向に相対移動させる移動手段と、
前記移動手段による前記被検知体の相対移動に際して前記被検知体の表面と前記接触体との接触によって生ずる前記軸状部材の前記軸方向の変位量を、前記変位センサの出力に基づいて算出し、被検知体の形状を測定する演算手段と
を備える形状測定装置。
A displacement detector according to claim 11 ;
Moving means for moving the detected body relative to the axial member in a direction perpendicular to the axial direction;
Based on the output of the displacement sensor, the amount of displacement of the shaft-like member caused by the contact between the surface of the detected body and the contact body during the relative movement of the detected body by the moving means is calculated. A shape measuring device comprising: an arithmetic means for measuring the shape of the body to be detected.
JP2006041863A 2006-02-20 2006-02-20 Displacement detector and shape measuring device Active JP5468721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041863A JP5468721B2 (en) 2006-02-20 2006-02-20 Displacement detector and shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041863A JP5468721B2 (en) 2006-02-20 2006-02-20 Displacement detector and shape measuring device

Publications (2)

Publication Number Publication Date
JP2007218815A JP2007218815A (en) 2007-08-30
JP5468721B2 true JP5468721B2 (en) 2014-04-09

Family

ID=38496268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041863A Active JP5468721B2 (en) 2006-02-20 2006-02-20 Displacement detector and shape measuring device

Country Status (1)

Country Link
JP (1) JP5468721B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175004U (en) * 1981-04-30 1982-11-05
JPS62140002A (en) * 1985-12-13 1987-06-23 Sumitomo Metal Ind Ltd Method and apparatus for measuring surface roughness
JP2519823B2 (en) * 1990-08-17 1996-07-31 株式会社東芝 Displacement measuring device
JP3420327B2 (en) * 1994-05-26 2003-06-23 株式会社ミツトヨ Touch signal probe
JPH116703A (en) * 1997-06-16 1999-01-12 Azuma:Kk Touch sensor
EP1134543B1 (en) * 1999-03-03 2007-02-07 Riken Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor
JP3983637B2 (en) * 2002-09-20 2007-09-26 株式会社リコー Method and apparatus for controlling stylus probe mechanism
JP2007206047A (en) * 2006-02-02 2007-08-16 Metrol Ltd Contact type position sensor

Also Published As

Publication number Publication date
JP2007218815A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US6539642B1 (en) Probe type shape measuring sensor, and NC processing equipment and shape measuring method using the sensor
JP4933775B2 (en) Micro surface shape measurement probe
NL8402862A (en) APPARATUS FOR POSITIONING A WORKPIECE IN A LOCALIZED VACUUM PROCESSING SYSTEM.
KR20090064340A (en) Processing apparatus
EP2233248A1 (en) Grinding device for manufacturing optical element, method for manufacturing optical element and precise measurement device for precisely measuring shape and size of die assembly or optical element used for manufacturing optical element
JP4923441B2 (en) Shape measuring instrument
JP2006284435A (en) Probe holding device, measuring device using it, processing device, optical device, and surface shape measuring device
JP5468721B2 (en) Displacement detector and shape measuring device
JP4972764B2 (en) Detector, shape measuring device, and shape measuring method
JP5103775B2 (en) Detector, shape measuring device, and shape measuring method
JP5193337B2 (en) Micro surface shape measurement probe
US9019510B2 (en) Control method and apparatus for positioning a stage
JP5255422B2 (en) Shape measuring probe
JP2006202920A (en) Processing machine
Huang et al. Embedded sensor system for five-degree-of-freedom error detection on machine tools
CN105180826A (en) Three-dimensional Shape Measurement Apparatus
JP5690549B2 (en) Measurement jig for long objects for measurement
TWI732206B (en) Shape measuring probe
JP5292668B2 (en) Shape measuring apparatus and method
JP2007170879A (en) Displacement amount detector and shape measuring instrument
JP2747254B2 (en) Fluid bearing device
JP2009063417A (en) Profile measuring device and method for controlling profile measuring device
JP2007218881A (en) Shape measuring apparatus
JP2560063B2 (en) Scale accuracy measuring device
Asai et al. Edge profile measurement of micro-cutting tools on a diamond turning machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120820

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5468721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150