JP5103775B2 - Detector, shape measuring device, and shape measuring method - Google Patents

Detector, shape measuring device, and shape measuring method Download PDF

Info

Publication number
JP5103775B2
JP5103775B2 JP2006095307A JP2006095307A JP5103775B2 JP 5103775 B2 JP5103775 B2 JP 5103775B2 JP 2006095307 A JP2006095307 A JP 2006095307A JP 2006095307 A JP2006095307 A JP 2006095307A JP 5103775 B2 JP5103775 B2 JP 5103775B2
Authority
JP
Japan
Prior art keywords
contact
less
pressure
kpa
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006095307A
Other languages
Japanese (ja)
Other versions
JP2007271367A (en
Inventor
忠晴 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2006095307A priority Critical patent/JP5103775B2/en
Publication of JP2007271367A publication Critical patent/JP2007271367A/en
Application granted granted Critical
Publication of JP5103775B2 publication Critical patent/JP5103775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detector for a shape measuring instrument, capable of quickly attaining accurate measurement with a probe that tracks along the surface shape of an object to be measured. <P>SOLUTION: A rod member 3 displaced in &plusmn;Z-directions, along the surface shape of a work W. Contact pressure, i.e. pressing force, of a contact part 35a to a surface of the work W is controlled so as to be constant at a proper value, by regulating control air supplied to a pressure acting chamber 27, when XY-scanning a probe unit 10A. The first air pressure in the pressure acting chamber 27 can be controlled therein with precision of 0.06 kPa or lower, by the existence of ultraprecise regulators R1, R2, and the contact pressure of the contact part 35a is thereby restrained about 2 mg or lower of fluctuations. That is, the fluctuations in the deformation of the work W, resulting from the fluctuation of the contact pressure becomes 1 nm or lower to make the measurement errors caused by the deformation of the work W to become 1 nm or lower. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、レンズその他の光学素子の表面形状等を測定するための形状測定装置用の検出器と、かかる検出器を利用した形状測定装置及び方法とに関するものである。   The present invention relates to a detector for a shape measuring device for measuring the surface shape and the like of a lens and other optical elements, and a shape measuring device and method using such a detector.

従来、ミラー面やレンズ面を有する光学素子について3次元形状(立体形状)を測定するための技術として、様々な技術が提案されてきた。例えば、被測定物の表面に対して触針を直接接触させて、その変位量を測定する接触式測定方法がある(特許文献1参照)。また、被測定物の表面にレーザ光線等を入射させて、その反射光を受光することにより表面の凹凸を測定する非接触式測定方法も提案されている(特許文献2参照)。   Conventionally, various techniques have been proposed as techniques for measuring a three-dimensional shape (three-dimensional shape) of an optical element having a mirror surface or a lens surface. For example, there is a contact-type measurement method in which a stylus is brought into direct contact with the surface of an object to be measured and the amount of displacement is measured (see Patent Document 1). In addition, a non-contact measurement method has been proposed in which a laser beam or the like is incident on the surface of an object to be measured and the surface irregularities are measured by receiving the reflected light (see Patent Document 2).

前者の接触式測定方法は、触針を被測定物に直接接触させるので、被測定物の表面物性に依存しない。このため、接触式測定方法は、多様な被測定物に対して正確な計測が可能である。このような接触式測定方法として、触針をエアベアリング型のシリンダで支持するものがあり、シリンダブロック中のロッドに対して、例えば制御された空気圧によって触針の自重をキャンセルする付勢力を与えている(特許文献3参照)。
特開平5−209741号公報 特許3046635号公報 特開2002−162220号公報
The former contact-type measurement method does not depend on the surface physical properties of the object to be measured because the stylus is brought into direct contact with the object to be measured. For this reason, the contact-type measurement method can accurately measure various objects to be measured. As such a contact-type measurement method, there is a method in which the stylus is supported by an air bearing type cylinder, and an urging force that cancels the weight of the stylus is applied to the rod in the cylinder block by, for example, controlled air pressure. (See Patent Document 3).
JP-A-5-209741 Japanese Patent No. 3046635 JP 2002-162220 A

上記のようなエアベアリング型のシリンダを用いた例では、触針に精密な付勢力を与えるために付勢力制御用のレギュレータを設けているが、エアベアリングについは、特別のレギュレータを設けておらず、加圧ガス源に接続されているだけである。しかしながら、本発明者による検討の結果、触針に対する付勢力制御用のレギュレータを設けただけでは、触針の被測定物に対する接触圧を十分に制御できないことが判明した。そして、エアベアリングに供給する空気圧の変動に起因して触針の接触圧が影響を受け、結果的に形状測定精度が下がることが判明した。   In the example using an air bearing type cylinder as described above, a regulator for biasing force control is provided to give a precise biasing force to the stylus, but a special regulator is not provided for the air bearing. Instead, it is only connected to a pressurized gas source. However, as a result of studies by the present inventor, it has been found that the contact pressure of the stylus against the object to be measured cannot be sufficiently controlled only by providing a regulator for controlling the urging force against the stylus. It has been found that the contact pressure of the stylus is affected by fluctuations in the air pressure supplied to the air bearing, resulting in a decrease in shape measurement accuracy.

そこで、本発明は、触針の接触圧を精密に制御することによって高精度の測定を実現することができる形状測定装置用の検出器を提供することを目的とする。   Therefore, an object of the present invention is to provide a detector for a shape measuring apparatus that can realize high-precision measurement by precisely controlling the contact pressure of a stylus.

また、本発明は、上記検出器を組み込んだ形状測定装置と、上記検出器を利用した形状測定方法とを提供することを目的とする。   Another object of the present invention is to provide a shape measuring device incorporating the detector and a shape measuring method using the detector.

上記課題を解決するため、本発明に係る形状測定装置用の検出器は、測定対象である被検知体に接触する接触体と、当該接触体を一端部に支持する軸状部材とを有する接触子と、軸方向を鉛直方向とし一端部を下端とした状態で、軸状部材を保持するシリンダ状の保持体と、保持体に付随して設けられて、第1空気圧の供給を受けて、接触子に対して軸方向に沿って鉛直方向上方の付勢力を与える付勢手段と、保持体に付随して設けられて、第2空気圧の供給を受けて、接触子を非接触で軸方向に変位可能に支持する空気軸受と、付勢手段に供給される第1空気圧を、0.02kPa以下の第1分解能で制御するとともに、0.06kPa以下の変動量で制御する第1の圧力レギュレータを有する第1給気制御部と、空気軸受に供給される第2空気圧を、0.02kPa以下の第2分解能で制御するとともに、0.06kPa以下の変動量で制御する第2の圧力レギュレータを有する第2給気制御部とを備え、前記付勢手段は、前記保持体に挿通される前記軸状部材の側面において、前記一端部側に面するように形成された段差状の応力発生面を有し、前記接触体の前記被検知体に対する接触圧は、0.7mg以下の分解能で制御されるとともに、2mg以下の変動量で制御される。 In order to solve the above problems, a detector for a shape measuring apparatus according to the present invention includes a contact body that contacts a body to be detected as a measurement target, and a contact member that has a shaft-like member that supports the contact body at one end. And a cylinder-shaped holding body that holds the shaft-shaped member in a state where the axial direction is a vertical direction and one end is a lower end, and is attached to the holding body and receives the supply of the first air pressure, a biasing means for applying a biasing force in the vertical direction upward along the axial direction with respect to the contacts, provided in association with the carrier, by receiving the supply of the second air pressure, axially contact without contact And a first pressure regulator that controls the first air pressure supplied to the urging means with a first resolution of 0.02 kPa or less and a fluctuation amount of 0.06 kPa or less. A first air supply control unit having a first supply air supply to the air bearing Air pressure controls in the following second resolution 0.02 kPa, and a second air supply control unit having a second pressure regulator controlled by the amount of variation of less 0.06KPa, said biasing means, said The side surface of the shaft-like member inserted through the holding body has a step-like stress generating surface formed so as to face the one end side, and the contact pressure of the contact body with respect to the detected body is 0 It is controlled with a resolution of .7 mg or less and controlled with a fluctuation amount of 2 mg or less.

上記検出器では、第1の圧力レギュレータが第1空気圧を0.02kPa以下の第1分解能で制御するとともに0.06kPa以下の変動量で制御し、第2の圧力レギュレータが第2空気圧を0.02kPa以下の第2分解能で制御するとともに0.06kPa以下の変動量で制御するので、空気軸受が付勢手段に干渉して被測定物に対する接触体の接触圧の設定精度が低下することを防止して付勢手段を本来の状態で動作させることができ、接触体の接触圧を精密に制御することができるので、高精度の形状測定を実現することができる。この際、接触体の被検知体に対する接触圧は、0.7mg以下の分解能で制御され、2mg以下の変動量で制御されることになるので、例えば樹脂等の成形品を測定対象とした場合において、測定対象の変形の変動が1nm以下となり、変形による測定誤差が1nm以下を実現することができる。 In the detector, the first pressure regulator controls the first air pressure with a first resolution of 0.02 kPa or less and a fluctuation amount of 0.06 kPa or less, and the second pressure regulator controls the second air pressure to 0. Since the control is performed with the second resolution of 02 kPa or less and with the fluctuation amount of 0.06 kPa or less, the air bearing prevents the biasing means from interfering with the setting accuracy of the contact pressure with respect to the object to be measured. Thus, the urging means can be operated in its original state, and the contact pressure of the contact body can be precisely controlled, so that highly accurate shape measurement can be realized. At this time, the contact pressure of the contact body with respect to the object to be detected is controlled with a resolution of 0.7 mg or less and controlled with a fluctuation amount of 2 mg or less. The variation of the deformation of the measurement object is 1 nm or less, and the measurement error due to the deformation can be 1 nm or less.

本発明の具体的な態様又は観点では、上記検出器において、第1給気制御部が、接触子の自重の一部をキャンセルするとともに、キャンセルされずに残った自重部分を接触体の測定対象に対する接触圧とする。この場合、接触子の自重を部分的に相殺した簡易な加重による接触圧の設定が可能になる。   In a specific aspect or aspect of the present invention, in the detector, the first air supply control unit cancels a part of the weight of the contactor and the weight part remaining without being canceled is measured by the contact body. Contact pressure. In this case, the contact pressure can be set by simple weighting that partially cancels the dead weight of the contact.

本発明の具体的な態様によれば、上記検出器において、付勢手段が、保持体を構成する外枠体の挿通孔に挿通される軸状部材の側面において、一端部側に面するように形成された段差状の応力発生面を有する。この場合、軸状部材の側面に簡易に形成することができる応力発生面によって、接触子に付与される付勢力を高精度で調整することができる。   According to a specific aspect of the present invention, in the detector described above, the urging means faces the one end side on the side surface of the shaft-like member that is inserted into the insertion hole of the outer frame body that constitutes the holding body. Has a step-like stress generating surface. In this case, the urging force applied to the contact can be adjusted with high accuracy by the stress generating surface that can be easily formed on the side surface of the shaft-shaped member.

本発明の別の態様によれば、軸状部材に設けられて検査光を反射する光検出面と、当該光検出面に検査光を照射するとともに反射光を検出する変位センサとをさらに備える。この場合、接触子の変位量を非接触でありながら高精度に計測することができ、この計測結果に基づいて、被検知体の表面の起伏等を高精度で測定することができる。   According to another aspect of the present invention, a light detection surface that is provided on the shaft-like member and reflects the inspection light, and a displacement sensor that irradiates the light detection surface with the inspection light and detects the reflected light are further provided. In this case, the displacement amount of the contact can be measured with high accuracy while being non-contact, and the undulation of the surface of the detected object can be measured with high accuracy based on the measurement result.

本発明の形状測定装置は、上述の検出器と、被測定物を接触子に対し軸方向に垂直な方向に相対移動させる移動手段と、移動手段による被測定物の相対移動に際して被測定物の表面と接触子との接触によって生ずる接触子の軸方向の変位量を、変位センサの出力に基づいて算出し、被測定物の形状を測定する演算手段と
を備える。
The shape measuring apparatus of the present invention includes the above-described detector, a moving unit that relatively moves the object to be measured in a direction perpendicular to the axial direction with respect to the contact, and a relative movement of the object to be measured by the moving unit. Computation means for calculating the amount of axial displacement of the contact caused by the contact between the surface and the contact based on the output of the displacement sensor and measuring the shape of the object to be measured.

上記形状測定装置では、移動手段によって被測定物を接触子に対して相対移動させつつ、演算手段によって変位センサの出力から接触子の変位量を算出するので、被測定物の表面形状を一連の処理として効率的に計測することができる。   In the above shape measuring apparatus, the displacement of the contact is calculated from the output of the displacement sensor by the computing means while moving the measured object relative to the contact by the moving means. It can be efficiently measured as a process.

本発明の形状測定方法は、被測定物の表面に接触する接触子を被測定物の表面に接触させながら相対走査させることにより、接触子の軸方向の位置を測定して被測定物の表面形状を測定する形状測定方法であって、軸状部材を保持するシリンダ状の保持体に付随して設けられた付勢手段によって、第1空気圧の供給を受けて接触子に対して軸方向に沿って鉛直方向上方の付勢力を与え、保持体に付随して設けられた空気軸受によって、第2空気圧の供給を受けて接触子を非接触で軸方向に変位可能に支持し、付勢手段は、保持体孔に挿通される軸状部材の側面において、一端部側に面するように形成された段差状の応力発生面を有し、接触子に対して軸方向に沿って鉛直方向上方又は下方の付勢力を与える付勢手段に供給する第1空気圧を第1空気圧を0.02kPa以下の第1分解能で制御するとともに0.06kPa以下の変動量で制御し、接触子を非接触で軸方向に変位可能に支持する空気軸受に供給する第2空気圧を0.02kPa以下の第2分解能で制御するとともに0.06kPa以下の変動量で制御することで、接触体の被検知体に対する接触圧が、0.7mg以下の分解能で制御されるとともに2mg以下の変動量で制御されることを特徴とする。

The shape measuring method of the present invention measures the axial position of a contact by contacting the contact that contacts the surface of the object to be measured while making contact with the surface of the object to be measured, thereby measuring the surface of the object to be measured. A shape measuring method for measuring a shape , wherein the first air pressure is supplied by an urging means attached to a cylindrical holding body for holding a shaft-shaped member and axially applied to a contact. An upward biasing force is applied along the holding body, and the air bearing provided in association with the holding body receives the supply of the second air pressure to support the contactor in a non-contacting manner so as to be displaceable in the axial direction. Has a step-like stress generating surface formed so as to face one end side on the side surface of the shaft- shaped member inserted through the holder hole, and is vertically upward along the axial direction with respect to the contact Alternatively, the first air pressure supplied to the urging means for applying the downward urging force is the first air pressure. The air pressure is controlled with a first resolution of 0.02 kPa or less and controlled with a fluctuation amount of 0.06 kPa or less, and the second air pressure supplied to the air bearing that supports the contactor so as to be displaceable in the axial direction without contact is 0.00. By controlling with a second resolution of 02 kPa or less and with a fluctuation amount of 0.06 kPa or less, the contact pressure of the contact body to the detected object is controlled with a resolution of 0.7 mg or less and a fluctuation amount of 2 mg or less. It is controlled by.

上記形状測定方法では、空気軸受が付勢手段に干渉して被測定物に対する接触体の接触圧の設定精度が低下することを防止できる。これにより、付勢手段を本来の状態で動作させることができ、接触体の接触圧を精密に制御することができるので、高精度の形状測定を実現することができる。この際、接触体の被検知体に対する接触圧は、0.7mg以下の分解能で制御され、2mg以下の変動量で制御されることになるので、例えば樹脂等の成形品を測定対象とした場合において、測定対象の変形の変動が1nm以下となり、変形による測定誤差が1nm以下を実現することができる。 In the above-described shape measuring method, it is possible to prevent the air bearing from interfering with the urging means to reduce the setting accuracy of the contact pressure of the contact body with respect to the object to be measured. Thereby, the urging means can be operated in its original state, and the contact pressure of the contact body can be precisely controlled, so that highly accurate shape measurement can be realized. At this time , the contact pressure of the contact body with respect to the object to be detected is controlled with a resolution of 0.7 mg or less and controlled with a fluctuation amount of 2 mg or less. The variation of the deformation of the measurement object is 1 nm or less, and the measurement error due to the deformation can be 1 nm or less.

以下、本発明の一実施形態である形状測定装置用の検出器を、図面に基づき具体的に説明する。   Hereinafter, a detector for a shape measuring apparatus according to an embodiment of the present invention will be specifically described with reference to the drawings.

図1は、実施形態の検出器10の正面図であり、図2は、図1に示す検出器10の要部を説明する側方拡大断面図である。   FIG. 1 is a front view of a detector 10 according to the embodiment, and FIG. 2 is an enlarged side sectional view for explaining a main part of the detector 10 shown in FIG.

検出器10は、本体側のプローブ装置10Aと、プローブ装置10Aの可動部の変位を検出するレーザ干渉計10Bとを備える。ここで、プローブ装置10Aは、保持体であるシリンダブロック2と、軸状部材であるロッド部材3と、支持部材4とを備える。   The detector 10 includes a probe device 10A on the main body side and a laser interferometer 10B that detects displacement of a movable portion of the probe device 10A. Here, the probe apparatus 10 </ b> A includes a cylinder block 2 that is a holding body, a rod member 3 that is a shaft-like member, and a support member 4.

プローブ装置10Aにおいて、シリンダブロック2は、支持部材4に固定されて安定した状態で支持されている。シリンダブロック2は、ロッド部材3をその軸方向が鉛直方向すなわちZ方向に延びるように保持する外枠体としての部分であり、図2に示すように中心にロッド挿通孔21を有している。ロッド挿通孔21は、断面略矩形状であって、シリンダブロック2が延びるべきZ方向に沿って延びている。このロッド挿通孔21は、Z方向に貫通しており、シリンダブロック2の上下両端面の中央部にて開口している。   In the probe apparatus 10A, the cylinder block 2 is fixed to the support member 4 and supported in a stable state. The cylinder block 2 is a portion as an outer frame body that holds the rod member 3 so that the axial direction of the rod member 3 extends in the vertical direction, that is, the Z direction, and has a rod insertion hole 21 at the center as shown in FIG. . The rod insertion hole 21 has a substantially rectangular cross section and extends along the Z direction in which the cylinder block 2 should extend. The rod insertion hole 21 penetrates in the Z direction and opens at the center of the upper and lower end faces of the cylinder block 2.

ロッド部材3は、被測定物或いは被検知体であるワークWの表面形状に追従して±Z方向に昇降する部分すなわち接触子であり、シリンダブロック2に設けたロッド挿通孔21に挿通されて、その軸方向であるZ方向に変位可能となっている。ロッド部材3の一端部である下端部31は、ロッド挿通孔21の下端面側の開口から下側に突出しており、ロッド部材3の上端部33は、ロッド挿通孔21の上端面側の開口から上側に突出している。なお、ロッド部材3は、四角柱状の軸状部材BDの上下方向に関する両端部31,33に、後述するプローブ本体35とミラー部材36とをそれぞれ設けたものである。軸状部材BDは、例えば低膨張係数で軽量なセラミック材料等によって一体的に形成される。   The rod member 3 is a portion that moves up and down in the ± Z direction following the surface shape of the workpiece W that is the object to be measured or the detected object, that is, a contact, and is inserted into a rod insertion hole 21 provided in the cylinder block 2. It is possible to displace in the Z direction which is the axial direction. The lower end portion 31 which is one end portion of the rod member 3 protrudes downward from the opening on the lower end surface side of the rod insertion hole 21, and the upper end portion 33 of the rod member 3 is the opening on the upper end surface side of the rod insertion hole 21. Protrudes upward from the top. In addition, the rod member 3 is provided with a probe main body 35 and a mirror member 36, which will be described later, at both end portions 31 and 33 in the vertical direction of the quadrangular columnar shaft member BD. The shaft-shaped member BD is integrally formed of, for example, a low-expansion coefficient and a lightweight ceramic material.

ロッド部材3の下端部31から突起するプローブ本体35の先端には、ルビー、ダイヤモンド又は鋼材等からなる球状の接触部35aが固着されている。接触部35aは、被測定物であるワークWに接触するための接触体となっており、軸状部材BDとともにZ方向に変位可能となっている。このような接触部35aを設けることにより、プローブ本体35によってワークW表面が傷つけられる可能性を低減でき、かつ、プローブ本体35をワークW表面に安定して接触させることができる。なお、接触部35aは、プローブ本体35とともに交換可能になっている。つまり、プローブ本体35の上部には例えば雄ネジ35cが形成されており、下端部31の下部には例えば雌ネジ35dが形成されており、下端部31に対して複数種類のプローブ本体35を着脱可能に取り付けることができる。つまり、ワークWの形成材料や表面形状に応じて複数種類のプローブ本体35を使い分けることができ、接触部35aの材料や形状を適宜変更することができる。   A spherical contact portion 35 a made of ruby, diamond, steel, or the like is fixed to the tip of the probe main body 35 protruding from the lower end portion 31 of the rod member 3. The contact portion 35a is a contact body for making contact with the workpiece W, which is an object to be measured, and can be displaced in the Z direction together with the shaft-shaped member BD. By providing such a contact portion 35a, the possibility that the surface of the workpiece W is damaged by the probe main body 35 can be reduced, and the probe main body 35 can be stably brought into contact with the surface of the workpiece W. The contact portion 35a can be exchanged together with the probe main body 35. That is, for example, a male screw 35 c is formed on the upper portion of the probe main body 35, and a female screw 35 d is formed on the lower portion of the lower end portion 31. For example, a plurality of types of probe main bodies 35 are attached to and detached from the lower end portion 31. Can be attached as possible. That is, a plurality of types of probe main bodies 35 can be used properly according to the forming material and surface shape of the workpiece W, and the material and shape of the contact portion 35a can be appropriately changed.

ロッド部材3の上端部33に固定された被測定部であるZミラー部材36の上面は、XY面内に延びる鏡面であり、ロッド部材3のZ方向の変位を検出するための光検出面すなわちZミラー36aとなっている。このZミラー36aは、上方に設けた変位センサすなわち光照射手段としてのレーザ干渉計10B(図1参照)からの検出光MLを反射するので、レーザ干渉計10Bでは、反射光RLに基づいてロッド部材3の変位量を算出することができる。   The upper surface of the Z mirror member 36 which is a measurement target fixed to the upper end portion 33 of the rod member 3 is a mirror surface extending in the XY plane, that is, a light detection surface for detecting the displacement of the rod member 3 in the Z direction. A Z mirror 36a is provided. Since the Z mirror 36a reflects the detection light ML from the displacement sensor provided above, that is, the laser interferometer 10B (see FIG. 1) as the light irradiation means, the laser interferometer 10B uses the rod based on the reflected light RL. The displacement amount of the member 3 can be calculated.

ロッド部材3の側面3aには、鉛直上方の+Z方向に浮上力を作用させる部分として、段差部39が形成されている。この段差部39は、プローブ本体35側すなわち鉛直方向下方に面するように形成された応力発生面39aを有する。この応力発生面39aは、後に詳述するように、ロッド部材3の自重を少なくとも部分的に解消する鉛直方向上方の推力又は付勢力(浮上力)をロッド部材3にもたらす付勢手段としての役割を果たす。段差部39によってロッド部材3に対して付与される鉛直方向上方の推力又は付勢力により、ロッド部材3の自重を部分的に相殺した中吊り状態にでき、さらに、ロッド部材3が鉛直方向下方に降下しようとする力を調節することができる。これにより、ロッド部材3下端の接触部35aをワークW表面に対して任意の力で接触させることができる。   A stepped portion 39 is formed on the side surface 3a of the rod member 3 as a portion for applying a levitation force in the + Z direction vertically above. This stepped portion 39 has a stress generating surface 39a formed so as to face the probe main body 35 side, that is, downward in the vertical direction. As will be described in detail later, the stress generating surface 39a serves as an urging means for providing the rod member 3 with a thrust or urging force (levitation force) upward in the vertical direction that at least partially eliminates the weight of the rod member 3. Fulfill. Due to the thrust or urging force vertically applied to the rod member 3 by the step portion 39, the rod member 3 can be in a suspended state in which the weight of the rod member 3 is partially offset, and the rod member 3 is moved downward in the vertical direction. You can adjust the power to descend. Thereby, the contact part 35a of the rod member 3 lower end can be made to contact with the workpiece | work W surface with arbitrary forces.

シリンダブロック2に形成されたロッド挿通孔21の内壁面21aにおける上側部分には、この内壁面21aに沿って多孔質体からなる上側軸受部材23が設けられている。この上側軸受部材23は、ロッド部材3の外周面SSに対面する複数組の多孔質板を備えて構成される。また、ロッド挿通孔21の内壁面21aにおける下側部分にも、この内壁面21aに沿って多孔質体からなる下側軸受部材24が設けられている。この下側軸受部材24も、ロッド部材3の外周面SSに対面する複数組の多孔質板を備えて構成される。以上説明した上側軸受部材23及び下側軸受部材24は、下記のロッド部材3の外周面SSとともに、ロッド部材3をZ方向に変位可能に非接触で支持する空気軸受として機能する。   An upper bearing member 23 made of a porous body is provided along the inner wall surface 21 a at the upper portion of the inner wall surface 21 a of the rod insertion hole 21 formed in the cylinder block 2. The upper bearing member 23 includes a plurality of sets of porous plates facing the outer peripheral surface SS of the rod member 3. Also, a lower bearing member 24 made of a porous body is provided along the inner wall surface 21 a at the lower portion of the inner wall surface 21 a of the rod insertion hole 21. The lower bearing member 24 also includes a plurality of sets of porous plates that face the outer peripheral surface SS of the rod member 3. The upper bearing member 23 and the lower bearing member 24 described above function as an air bearing that supports the rod member 3 in a non-contact manner so as to be displaceable in the Z direction together with the outer peripheral surface SS of the rod member 3 described below.

シリンダブロック2の外側面には給気ポート26が形成されている。この給気ポート26は、軸受け部である上側軸受部材23及び下側軸受部材24を介してロッド挿通孔21の内壁面21aに連通しており、エア供給源Pからの加圧エアは、超精密レギュレータ(圧力密レギュレータ)R2及び配管L2を介して上側軸受部材23や下側軸受部材24に供給される。給気ポート26への制御エアの供給圧力は、例えば配管L2の経路上に設けた圧力センサPSによって監視されており、圧力センサPSの検出結果は、圧力制御弁を内蔵する超精密レギュレータR2にフィードバックされる。つまり、両軸受部材23,24の背面に供給される気圧は、第2給気制御部である超精密レギュレータR2によって高精度に調整可能であり、不図示の制御装置によって遠隔的に制御される。超精密レギュレータR2からの加圧エアは、上側軸受部材23や下側軸受部材24を通り抜けて外表面に達し、ロッド部材3の側面3aに向けて噴出される。両軸受部材23,24から噴出された加圧エアの静圧により、ロッド部材3が非接触でシリンダブロック2のロッド挿通孔21に対して上下方向に変位可能に支持される。   An air supply port 26 is formed on the outer surface of the cylinder block 2. The air supply port 26 communicates with the inner wall surface 21a of the rod insertion hole 21 via the upper bearing member 23 and the lower bearing member 24 which are bearings, and the pressurized air from the air supply source P is super It is supplied to the upper bearing member 23 and the lower bearing member 24 through a precision regulator (pressure tight regulator) R2 and a pipe L2. The supply pressure of the control air to the air supply port 26 is monitored by, for example, a pressure sensor PS provided on the path of the pipe L2, and the detection result of the pressure sensor PS is sent to an ultra-precision regulator R2 having a built-in pressure control valve. Provide feedback. That is, the air pressure supplied to the back surfaces of the bearing members 23 and 24 can be adjusted with high precision by the super-precision regulator R2, which is the second air supply control unit, and is remotely controlled by a control device (not shown). . The pressurized air from the ultraprecision regulator R2 passes through the upper bearing member 23 and the lower bearing member 24, reaches the outer surface, and is jetted toward the side surface 3a of the rod member 3. The rod member 3 is supported so as to be displaceable in the vertical direction with respect to the rod insertion hole 21 of the cylinder block 2 in a non-contact manner by the static pressure of the pressurized air ejected from both the bearing members 23 and 24.

上側軸受部材23と下側軸受部材24との間であって、ロッド部材3の段差部39の下側には、圧力作用室27が形成されている。この圧力作用室27は、ロッド挿通孔21にロッド部材3を挿通した場合に、ロッド挿通孔21の内壁面21aとロッド部材3の側面3aや応力発生面39aとの間に挟まれた半気密状態の空間となる。ここで、超精密レギュレータR1の圧力分解能は、後述するように例えば0.02kPa程度以下に設定される。   A pressure acting chamber 27 is formed between the upper bearing member 23 and the lower bearing member 24 and below the step portion 39 of the rod member 3. When the rod member 3 is inserted into the rod insertion hole 21, the pressure acting chamber 27 is a semi-airtight structure sandwiched between the inner wall surface 21 a of the rod insertion hole 21 and the side surface 3 a of the rod member 3 or the stress generation surface 39 a. It becomes a space of state. Here, the pressure resolution of the ultraprecision regulator R1 is set to about 0.02 kPa or less, as will be described later.

シリンダブロック2の外側面の中段には、推力ポート28が形成されている。この推力ポート28は、ロッド挿通孔21内壁側の圧力作用室27に連通しており、エア供給源Pからの加圧エアは、超精密レギュレータ(圧力密レギュレータ)R1及び配管L1を介して圧力作用室27に供給される。推力ポート28への制御エアの供給圧力は、例えば配管L1の経路上に設けた圧力センサPSによって監視されており、圧力センサPSの検出結果は、圧力制御弁を内蔵する超精密レギュレータR1にフィードバックされる。つまり、圧力作用室27内の気圧は、第1給気制御部である超精密レギュレータR1によって高精度に調整可能であり、不図示の制御装置によって遠隔的に制御される。以上説明した圧力作用室27、及び推力ポート28は、ロッド部材3の側面3aに設けた段差部39とともに、鉛直上方の+Z方向に浮上力を作用させる部分、すなわちロッド部材3に対して鉛直方向上方に付勢力を与えるための付勢手段として機能する。ここで、超精密レギュレータR1の圧力分解能は、後述するように例えば0.02kPa程度以下に設定される。   A thrust port 28 is formed in the middle of the outer surface of the cylinder block 2. The thrust port 28 communicates with the pressure acting chamber 27 on the inner wall side of the rod insertion hole 21. Pressurized air from the air supply source P is pressured via the ultraprecision regulator (pressure tight regulator) R1 and the pipe L1. It is supplied to the working chamber 27. The supply pressure of control air to the thrust port 28 is monitored by, for example, a pressure sensor PS provided on the path of the pipe L1, and the detection result of the pressure sensor PS is fed back to the ultraprecision regulator R1 having a built-in pressure control valve. Is done. That is, the atmospheric pressure in the pressure working chamber 27 can be adjusted with high accuracy by the ultraprecision regulator R1 that is the first air supply control unit, and is remotely controlled by a control device (not shown). The pressure action chamber 27 and the thrust port 28 described above, together with the stepped portion 39 provided on the side surface 3 a of the rod member 3, are the portions in which the levitation force is applied in the + Z direction vertically above, that is, the rod member 3 in the vertical direction. It functions as an urging means for applying an urging force upward. Here, the pressure resolution of the ultraprecision regulator R1 is set to about 0.02 kPa or less, as will be described later.

以上のような超精密レギュレータR2によって推力ポート28に制御エアが供給された場合、段差部39の応力発生面39aに対して制御エアが作用する。つまり、推力ポート28からの制御エアによって、ロッド部材3に対して根元側の+Z方向に押し出す推力すなわち浮上力が与えられる。ここで、段差部39の段差面積である応力発生面39aの面積は、加圧エアの圧力に対応して必要とする浮上力を生じさせることができるようになっているので、超精密レギュレータR1から供給される加圧エアの圧力を制御することによって、ロッド部材3の自重を解消するような鉛直方向上方の付勢力すなわち浮上力をロッド部材3に付与することができる。さらに、超精密レギュレータR1から供給される加圧エアの気圧値を調整することによって、段差部39によってロッド部材3に与えられる浮上力が変化するので、ロッド部材3下端の接触部35aをワークW表面に対して任意の押圧力で接触させることができる。   When the control air is supplied to the thrust port 28 by the ultraprecision regulator R2 as described above, the control air acts on the stress generation surface 39a of the step portion 39. That is, the thrust that pushes in the + Z direction on the root side, that is, the floating force, is applied to the rod member 3 by the control air from the thrust port 28. Here, the area of the stress generating surface 39a, which is the step area of the stepped portion 39, can generate the necessary levitation force corresponding to the pressure of the pressurized air, so that the super-precision regulator R1. By controlling the pressure of the pressurized air supplied from above, it is possible to apply an upward biasing force, that is, a lifting force, to the rod member 3 so as to eliminate the weight of the rod member 3. Further, by adjusting the pressure value of the pressurized air supplied from the ultra-precision regulator R1, the levitation force applied to the rod member 3 by the step portion 39 changes, so that the contact portion 35a at the lower end of the rod member 3 is moved to the workpiece W. The surface can be brought into contact with any pressing force.

ここで、軸受部材23,24用の超精密レギュレータR2と、圧力作用室27用の超精密レギュレータR1とについて、それらの役割を具体的に説明する。   Here, the roles of the ultraprecision regulator R2 for the bearing members 23 and 24 and the ultraprecision regulator R1 for the pressure acting chamber 27 will be specifically described.

ロッド部材3に与えられる付勢力すなわち浮上力を制御することによって、ワークW表面に対する接触部35aの接触圧の制御が達成される。ワークWが例えば樹脂等の成形品である場合、接触部35aの接触圧によって表面が変形するので、このような接触圧の変動を抑えることで表面形状の測定誤差も低減される。樹脂等の成形品であるワークWの変形による測定誤差を例えば1nm以下に抑えるためには、表面変形による誤差発生を低減することが前提となり、接触部35aの接触圧を約2mg程度以下の変動量に抑える必要がある。具体例で説明すると、樹脂成型品であるワークWをルビー製の接触部35aによって計測する場合、10mgの接触圧の変動が3.6nmの表面変形の増減を生じさせることが分かっており、このような表面変形の増減がそのまま測定誤差となる。   By controlling the urging force, that is, the levitation force applied to the rod member 3, control of the contact pressure of the contact portion 35a against the surface of the workpiece W is achieved. When the workpiece W is a molded product such as a resin, for example, the surface is deformed by the contact pressure of the contact portion 35a. Therefore, the measurement error of the surface shape is also reduced by suppressing such variation of the contact pressure. In order to suppress the measurement error due to deformation of the workpiece W, which is a molded product such as resin, to 1 nm or less, for example, it is premised on that error generation due to surface deformation is reduced, and the contact pressure of the contact portion 35a varies by about 2 mg or less. It is necessary to limit the amount. If it demonstrates with a specific example, when measuring the workpiece | work W which is a resin molded product with the contact part 35a made from a ruby, it turns out that the fluctuation | variation of 10 mg of contact pressure will cause the increase / decrease in surface deformation of 3.6 nm. Such an increase or decrease in surface deformation directly becomes a measurement error.

接触部35aの接触圧を上記のように約2mg程度以下の変動量に抑えるためには、圧力作用室27用に設けた超精密レギュレータR1の生成する第1空気圧を0.06kPa以下の変動量で制御する必要がある。これは、ロッド部材3に設けた応力発生面39aの面積が0.7mm程度以下であることを前提としている。逆にいうと、超精密レギュレータR1が第1空気圧を0.06kPa以下の精度で制御できるならば、接触部35aの接触圧を約2mg程度以内の変動に収めることができ、ワークWの変形による測定誤差を1nm程度以下にできることが期待される。この際、超精密レギュレータR1が生成する第1空気圧を0.06kPa以下の精度で制御するためには、一般に、超精密レギュレータR1の性能である第1分解能を0.02kPa程度以下とする必要がある。 In order to suppress the contact pressure of the contact portion 35a to a fluctuation amount of about 2 mg or less as described above, the first air pressure generated by the ultraprecision regulator R1 provided for the pressure action chamber 27 is a fluctuation amount of 0.06 kPa or less. It is necessary to control with. This is based on the premise that the area of the stress generating surface 39a provided on the rod member 3 is about 0.7 mm 2 or less. In other words, if the super-precision regulator R1 can control the first air pressure with an accuracy of 0.06 kPa or less, the contact pressure of the contact portion 35a can be kept within a fluctuation of about 2 mg. It is expected that the measurement error can be reduced to about 1 nm or less. At this time, in order to control the first air pressure generated by the ultraprecision regulator R1 with an accuracy of 0.06 kPa or less, it is generally necessary to set the first resolution, which is the performance of the ultraprecision regulator R1, to about 0.02 kPa or less. is there.

一方、超精密レギュレータR1によって生成される第1空気圧だけを精密に制御しても、現実の検出器10において、接触部35aの接触圧を約2mg程度以下の変動量に抑えることはできない。これは、軸受部材23,24に供給される第2空気圧の変動に起因して接触部35aの接触圧が影響を受け、結果的に形状測定精度が下がるからであると考えられる。つまり、圧力作用室27と軸受部材23,24とは、完全に遮断されておらず相互に連通しているため、圧力作用室27に与えられる第1空気圧と、軸受部材23,24に与えられる第2空気圧とは、互いに干渉し合っており測定精度に影響することを本発明者は見いだした。つまり、軸受部材23,24に供給される第2空気圧については、本来、軸支持の安定度や滑らかさに影響するものであり、圧力作用室27に供給される第1空気圧の場合のように圧力変動が形状測定精度に直接影響するものではない。しかしながら、上記のように、軸受部材23,24と圧力作用室27との間である程度の空気の流通が生じる可能性があるので、第2空気圧の変動が圧力作用室27中における空気圧に外乱を及ぼす可能性があり、これが無視できない程度になる場合があることを本発明者は確認した。このため、超精密レギュレータR1によって第1空気圧を0.06kPa以下の変動量に制御するだけでなく、超精密レギュレータR2によって、第2空気圧を第1空気圧と同等以下である0.06kPa以下の変動量に制御する。これにより、接触部35aの接触圧を約2mg程度以下に確実に保持することができ、ワークWの変形による測定誤差を1nm程度以下に確実に保持することが期待される。以上において、超精密レギュレータR2が生成する第2空気圧を0.06kPa以下の精度で制御するためには、一般に、超精密レギュレータR2の性能である第2分解能を第1分解能と等価な0.02kPa程度以下とする必要がある。なお、超精密レギュレータR2の第2分解能は、超精密レギュレータR1の第1分解能と正確に一致する必要はなく、略等価以下であればよい。ここで、第1分解能と第2分解能とが略等価であるとは、両分解能の差が0〜0.01kPa以下であることを意味する。つまり、本実施形態において、超精密レギュレータR2の第2分解能は、0.02kPa±0.01kPa以下となる。

On the other hand, even if only the first air pressure generated by the superprecision regulator R1 is precisely controlled, the contact pressure of the contact portion 35a cannot be suppressed to a fluctuation amount of about 2 mg or less in the actual detector 10. This is presumably because the contact pressure of the contact portion 35a is affected by the fluctuation of the second air pressure supplied to the bearing members 23, 24, and as a result, the shape measurement accuracy is lowered. That is, since the pressure acting chamber 27 and the bearing members 23 and 24 are not completely cut off and communicate with each other, the first air pressure given to the pressure acting chamber 27 and the bearing members 23 and 24 are given. The present inventor has found that the second air pressure interferes with each other and affects the measurement accuracy. That is, the second air pressure supplied to the bearing members 23 and 24 inherently affects the stability and smoothness of the shaft support, as in the case of the first air pressure supplied to the pressure working chamber 27. Pressure fluctuations do not directly affect shape measurement accuracy. However, as described above, there is a possibility that a certain amount of air flows between the bearing members 23 and 24 and the pressure action chamber 27, so that the fluctuation of the second air pressure disturbs the air pressure in the pressure action chamber 27. The present inventor has confirmed that there is a possibility that this may occur, and this may not be negligible. For this reason, not only the first air pressure is controlled to the fluctuation amount of 0.06 kPa or less by the super-precision regulator R1, but also the fluctuation of 0.06 kPa or less, which is equal to or less than the first air pressure, by the super-precision regulator R2. Control the amount. Thereby, the contact pressure of the contact part 35a can be reliably held to about 2 mg or less, and it is expected that the measurement error due to deformation of the workpiece W is reliably held to about 1 nm or less. In the above, in order to control the second air pressure generated by the ultraprecision regulator R2 with an accuracy of 0.06 kPa or less, generally, the second resolution that is the performance of the ultraprecision regulator R2 is 0.02 kPa equivalent to the first resolution. Must be less than or equal to Note that the second resolution of the super-precision regulator R2 does not need to be exactly the same as the first resolution of the super-precision regulator R1, and may be less than or equal to the equivalent. Here, that the first resolution and the second resolution are substantially equivalent means that the difference between the two resolutions is 0 to 0.01 kPa or less. That is, in the present embodiment, the second resolution of the ultraprecision regulator R2 is 0.02 kPa ± 0.01 kPa or less.

図1に戻って、プローブ装置10Aの上方に配置されたレーザ干渉計10Bは、図示を省略するが、レーザ光源、干渉用光学系、センサ等からなる公知の構造を有している。レーザ干渉計10Bからのレーザ光すなわち検出光MLは、ロッド部材3の上端部に設けられたZミラー部材36のZミラー36aに向けて照射されるようになっており、Zミラー36aからの戻り光である反射光RLは、レーザ干渉計10Bの方向に反射されてレーザ干渉計10Bで検出されるようになっている。レーザ干渉計10Bでは、反射光RLの位相変化に基づいてロッド部材3のZ方向の変位量を算出することができる。   Returning to FIG. 1, the laser interferometer 10 </ b> B disposed above the probe device 10 </ b> A has a known structure including a laser light source, an interference optical system, a sensor, and the like, although not shown. Laser light, that is, detection light ML from the laser interferometer 10B is irradiated toward the Z mirror 36a of the Z mirror member 36 provided at the upper end of the rod member 3, and returns from the Z mirror 36a. The reflected light RL, which is light, is reflected in the direction of the laser interferometer 10B and is detected by the laser interferometer 10B. In the laser interferometer 10B, the displacement amount in the Z direction of the rod member 3 can be calculated based on the phase change of the reflected light RL.

この検出器10では、エア供給源Pから供給される加圧エアによって、ロッド部材3が、ロッド挿通孔21内の軸受部材23,24に対して非接触で支持される。また、エア供給源Pから推力ポート28を介して圧力作用室27に供給される制御エアによって、ロッド部材3に対して鉛直方向上方すなわち+Z方向に任意の浮上力(推力)が付与される。結果的に、ロッド部材3は、シリンダブロック2内でほとんど浮いた状態で−Z方向にわずかに付勢された状態となる。この状態で、ワークWの表面にロッド部材3の下端に設けた接触部35aを接触させ、プローブ装置10AをワークWに対してXY面内で相対的に走査させることにより、ロッド部材3は、ワークWの表面形状に沿って±Z方向に変位する。プローブ装置10AのXY走査に際しては、圧力作用室27に供給する制御エアの調整により、ワークWの表面に対する接触部35aの接触圧すなわち押圧力が適正値で一定となるように制御される。この際、超精密レギュレータR1,R2の存在によって、圧力作用室27内の第1空気圧を0.06kPa以下の精度で制御することができ、接触部35aの接触圧を約2mg程度以下の変動量に抑えることができる。つまり、接触圧の変動に起因するワークWの変形の変動を1nm以下に抑えることができ、ワークWの変形による測定誤差が1nm以下に抑えられる。そして、ワークW表面に対する接触部35aの接触圧が保たれた状態でのプローブ装置10AのXY走査と並行して、レーザ干渉計10Bからのレーザ光がZミラー36aに向けて照射され、ロッド部材3のZ方向の変位量が算出される。このZ変位量に基づいてワークWの立体形状が計測される。   In the detector 10, the rod member 3 is supported by the pressurized air supplied from the air supply source P in a non-contact manner with respect to the bearing members 23 and 24 in the rod insertion hole 21. Further, by the control air supplied from the air supply source P to the pressure acting chamber 27 via the thrust port 28, an arbitrary levitation force (thrust) is applied to the rod member 3 in the vertical direction, that is, in the + Z direction. As a result, the rod member 3 is slightly biased in the −Z direction while almost floating in the cylinder block 2. In this state, the contact member 35a provided at the lower end of the rod member 3 is brought into contact with the surface of the workpiece W, and the probe device 10A is scanned relative to the workpiece W in the XY plane. It is displaced in the ± Z direction along the surface shape of the workpiece W. When the probe apparatus 10A performs XY scanning, the control air supplied to the pressure working chamber 27 is adjusted so that the contact pressure of the contact portion 35a with respect to the surface of the workpiece W, that is, the pressing force is constant at an appropriate value. At this time, the first air pressure in the pressure working chamber 27 can be controlled with an accuracy of 0.06 kPa or less due to the presence of the ultra-precision regulators R1 and R2, and the contact pressure of the contact portion 35a is about 2 mg or less. Can be suppressed. That is, the deformation variation of the workpiece W due to the variation of the contact pressure can be suppressed to 1 nm or less, and the measurement error due to the deformation of the workpiece W can be suppressed to 1 nm or less. The laser beam from the laser interferometer 10B is irradiated toward the Z mirror 36a in parallel with the XY scanning of the probe device 10A in a state where the contact pressure of the contact portion 35a with the surface of the workpiece W is maintained, and the rod member 3 in the Z direction is calculated. Based on this Z displacement amount, the three-dimensional shape of the workpiece W is measured.

なお、シリンダブロック2の例えば上端部には、差動センサ(不図示)が設けられている。この差動センサは、シリンダブロック2中の基準位置からロッド部材3が変位した方向を検出するためのものである。これにより、シリンダブロック2中でロッド部材3が上昇した場合、例えばH信号が出力され、これに応じてシリンダブロック2全体を不図示の機構によって緩やかに上昇させることができ、ロッド部材3を基準位置に戻すことが可能になる。逆に、シリンダブロック2中でロッド部材3が降下した場合、例えばL信号が出力され、これに応じてシリンダブロック2を不図示の機構によって緩やかに上昇させてロッド部材3を基準位置に戻すことが可能になる。つまり、シリンダブロック2に対するロッド部材3の位置を略一定に保ちつつプローブ装置10Aを全体として±Z方向に昇降させることができる。   A differential sensor (not shown) is provided at the upper end of the cylinder block 2, for example. This differential sensor is for detecting the direction in which the rod member 3 is displaced from the reference position in the cylinder block 2. As a result, when the rod member 3 rises in the cylinder block 2, for example, an H signal is output, and the entire cylinder block 2 can be gently raised by a mechanism (not shown) accordingly, It becomes possible to return to the position. On the contrary, when the rod member 3 is lowered in the cylinder block 2, for example, an L signal is output, and the cylinder block 2 is gently raised by a mechanism (not shown) in accordance with this to return the rod member 3 to the reference position. Is possible. That is, the probe apparatus 10A can be moved up and down in the ± Z direction as a whole while keeping the position of the rod member 3 with respect to the cylinder block 2 substantially constant.

図3(a)及び3(b)は、図1に示す検出器10を変位両検出手段として組み込んだ形状測定装置100の構造を説明する正面図及び側面図である。この形状測定装置100は、定盤81上に、XYステージ装置82と、Z駆動装置84とを固定した構造を有する。XYステージ装置82やZ駆動装置84等の動作は、演算手段としての制御装置99によって制御されている。   FIGS. 3A and 3B are a front view and a side view for explaining the structure of the shape measuring apparatus 100 in which the detector 10 shown in FIG. 1 is incorporated as both displacement detecting means. This shape measuring apparatus 100 has a structure in which an XY stage device 82 and a Z driving device 84 are fixed on a surface plate 81. The operations of the XY stage device 82, the Z drive device 84, and the like are controlled by a control device 99 as a calculation means.

XYステージ装置82は、移動手段であり、制御装置99の制御下で図示を省略する駆動制御部に駆動されて動作する。XYステージ装置82は、このXYステージ装置82の上部に設けた載置台82a上に着脱可能に固定された測定用治具HDを、XY面内で2次元的に任意の位置に滑らかに移動させることができる。測定用治具HDの位置は、載置台82aに設けたXミラー部材83aとYミラー部材83bとを利用して検出される。すなわち、Xミラー部材83aに対向して定盤81上に取り付けたレーザ干渉計83dを利用して載置台82aのX軸方向の位置が分かる。また、Yミラー部材83bに対向して定盤81上に取り付けたレーザ干渉計83eを利用して載置台82aのY軸方向の位置が分かる。   The XY stage device 82 is a moving unit, and is operated by being driven by a drive control unit (not shown) under the control of the control device 99. The XY stage device 82 smoothly moves the measurement jig HD, which is detachably fixed on the mounting table 82a provided on the XY stage device 82, two-dimensionally to an arbitrary position in the XY plane. be able to. The position of the measurement jig HD is detected using the X mirror member 83a and the Y mirror member 83b provided on the mounting table 82a. That is, the position of the mounting table 82a in the X-axis direction can be determined using the laser interferometer 83d attached on the surface plate 81 so as to face the X mirror member 83a. Further, the position of the mounting table 82a in the Y-axis direction can be determined by using a laser interferometer 83e mounted on the surface plate 81 so as to face the Y mirror member 83b.

Z駆動装置84は、フレーム85上に昇降機構86を固定したものであり、昇降機構86は、フレーム85上部に固定されZ方向に延びる支持軸86aと、支持軸86aに支持されてZ軸方向に移動する昇降部材86bと、昇降部材86bを昇降させる昇降駆動装置86cと、昇降部材86bに支持されたプローブ装置10Aとを備える。   The Z drive device 84 has a lifting mechanism 86 fixed on a frame 85. The lifting mechanism 86 is fixed to the upper part of the frame 85 and extends in the Z direction, and is supported by the support shaft 86a to be in the Z axis direction. And an elevating member 86b that moves up and down, an elevating drive device 86c that elevates and lowers the elevating member 86b, and a probe device 10A supported by the elevating member 86b.

昇降機構86において、昇降部材86bは、支持軸86aに非接触に支持されて滑らかに昇降運動する。昇降部材86bは、前方下部に図1で説明したプローブ装置10Aを保持しており、プローブ装置10Aに設けたプローブ本体35の昇降運動に伴って滑らかに昇降する。なお、プローブ装置10Aは、図2で説明したように、給気ポート26にエア供給源Pから制御エアの供給を受けており、ロッド部材3を非接触で静圧支持しつつZ軸に可動な状態に保つ。また、プローブ装置10Aは、推力ポート28にエア供給源Pから制御エアの供給を受けており、超精密レギュレータR1等によって昇降する力の調整が可能である。以上により、ロッド部材3先端に設けた接触部35aをワークWの表面に一定の力で押し付けることができる。つまり、測定用治具HDに固定された光学素子すなわちワークWの表面が昇降・変位しても、プローブ本体35の先端をワークWの表面に対して低負荷で接した状態に維持できる。また、昇降駆動装置86cは、プローブ装置10Aに内蔵した差動センサの検出結果に基づいてフィードバックをかけつつ昇降部材86bとともにプローブ装置10Aを昇降させる。これにより、ロッド部材3の先端に一定の低負荷を掛けた状態でロッド部材3を広範囲に亘って昇降させることができる。よって、ロッド部材3すなわちプローブ本体35を上記のように一定の負荷をかけた状態で昇降させつつ、XYステージ装置82を適宜動作させて測定用治具HDに載置したワークWをXY面内で2次元的に走査するように移動させるならば、プローブ本体35の先端を測定用治具HDに載置したワークWの光学面に沿って2次元的に移動させることができる。つまり、レーザ干渉計83d,83eを利用して得た載置台82aのXY座標と、レーザ干渉計10Bを利用して得たプローブ本体35のZ座標とを、制御装置99で対応付けつつ必要な演算処理を適宜行うことにより、ワークWの光学面の3次元的な表面形状を測定することができる。   In the elevating mechanism 86, the elevating member 86b is supported in a non-contact manner by the support shaft 86a and smoothly moves up and down. The elevating member 86b holds the probe device 10A described in FIG. 1 at the front lower portion, and smoothly elevates as the probe main body 35 provided in the probe device 10A moves up and down. As described with reference to FIG. 2, the probe device 10 </ b> A is supplied with control air from the air supply source P to the air supply port 26, and can move on the Z axis while supporting the rod member 3 in a non-contact manner. Keep in good condition. Further, the probe device 10A is supplied with control air from the air supply source P to the thrust port 28, and can adjust the lifting and lowering force by the ultraprecision regulator R1 or the like. As described above, the contact portion 35a provided at the tip of the rod member 3 can be pressed against the surface of the workpiece W with a constant force. That is, even if the optical element fixed to the measurement jig HD, that is, the surface of the workpiece W is moved up and down, the tip of the probe body 35 can be maintained in contact with the surface of the workpiece W with a low load. Further, the lift drive device 86c moves the probe device 10A up and down together with the lift member 86b while applying feedback based on the detection result of the differential sensor built in the probe device 10A. Thereby, the rod member 3 can be moved up and down over a wide range in a state where a constant low load is applied to the tip of the rod member 3. Therefore, the workpiece W placed on the measuring jig HD is moved in the XY plane by appropriately operating the XY stage device 82 while raising and lowering the rod member 3, that is, the probe main body 35 with a constant load as described above. The tip of the probe body 35 can be moved two-dimensionally along the optical surface of the workpiece W placed on the measurement jig HD. That is, the control device 99 associates the XY coordinates of the mounting table 82a obtained using the laser interferometers 83d and 83e with the Z coordinate of the probe main body 35 obtained using the laser interferometer 10B. By appropriately performing arithmetic processing, the three-dimensional surface shape of the optical surface of the workpiece W can be measured.

なお、プローブ本体35の先端位置の変位(Z座標の変化)は、プローブ本体35とともに昇降するロッド部材3の上端に設けたZミラー部材36を利用して検出される。すなわち、Zミラー部材36に対向してフレーム85上に取り付けたレーザ干渉計10Bを利用して、検出光MLをZミラー部材36に照射させつつ反射光RLを検出させることにより、プローブ本体35下端すなわちワークWの表面のZ軸方向の位置が間接的に分かる。   The displacement of the tip position of the probe body 35 (change in the Z coordinate) is detected using a Z mirror member 36 provided at the upper end of the rod member 3 that moves up and down together with the probe body 35. That is, the lower end of the probe main body 35 is detected by using the laser interferometer 10B mounted on the frame 85 so as to face the Z mirror member 36 and detecting the reflected light RL while irradiating the Z mirror member 36 with the detection light ML. That is, the position in the Z-axis direction on the surface of the workpiece W is indirectly known.

以上実施形態に即して本発明を説明したが、本発明は上記実施形態限定されるものではない。例えば、ロッド部材3に形成する段差部39や応力発生面39aの個数や形状は、適宜変更することができる。   Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments. For example, the number and shape of the stepped portion 39 and the stress generating surface 39a formed on the rod member 3 can be changed as appropriate.

また、上側軸受部材23や下側軸受部材24の配置や個数も、被測定物や測定条件等に応じて適宜変更することができる。   Further, the arrangement and number of the upper bearing member 23 and the lower bearing member 24 can be appropriately changed according to the measurement object, measurement conditions, and the like.

また、ワークWを定盤81側に固定し、XYステージ装置82やZ駆動装置84によって、検出器10を3次元的に移動させつつ、ロッド部材3を変位させることによってワークW表面の形状を測定することもできる。   The workpiece W is fixed to the surface plate 81 side, and the shape of the surface of the workpiece W is changed by displacing the rod member 3 while moving the detector 10 three-dimensionally by the XY stage device 82 and the Z driving device 84. It can also be measured.

本発明の一実施形態に係る変位量検出器の側面図である。It is a side view of the displacement amount detector which concerns on one Embodiment of this invention. 図1の変位量検出器に組み込まれるプローブ装置の側方断面図である。FIG. 2 is a side sectional view of a probe device incorporated in the displacement detector of FIG. 1. (a)及び(b)は、それぞれ図1に示すプローブ装置を組み込んだ形状測定装置の構造を説明する正面図及び側面図である。(A) And (b) is the front view and side view explaining the structure of the shape measuring apparatus incorporating the probe apparatus shown in FIG. 1, respectively.

符号の説明Explanation of symbols

2…シリンダブロック、 3…ロッド部材、 3a…側面、 4…支持部材、 10…検出器、 10A…プローブ装置、 10B…レーザ干渉計、 21…ロッド挿通孔、 23,24…軸受部材、 26…給気ポート、 27…圧力作用室、 28…推力ポート、 31…下端部、 35…プローブ本体、 36…ミラー部材、 36a…ミラー、 39…段差部、 39a…応力発生面、 82…XYステージ装置、 82a…載置台、 83a,83b…ミラー部材、 83d,83e…レーザ干渉計、 84…Z駆動装置、 86…昇降機構、 99…制御装置、 BD…軸状部材、 HD…測定用治具、 L1…配管、 L2…配管、 ML…検出光、 RL…反射光、 P…エア供給源、 PS…圧力センサ、 R1,R2…超精密レギュレータ     DESCRIPTION OF SYMBOLS 2 ... Cylinder block, 3 ... Rod member, 3a ... Side surface, 4 ... Supporting member, 10 ... Detector, 10A ... Probe apparatus, 10B ... Laser interferometer, 21 ... Rod insertion hole, 23, 24 ... Bearing member, 26 ... Air supply port, 27 ... Pressure working chamber, 28 ... Thrust port, 31 ... Lower end, 35 ... Probe body, 36 ... Mirror member, 36a ... Mirror, 39 ... Stepped portion, 39a ... Stress generating surface, 82 ... XY stage device 82a ... mounting table, 83a and 83b ... mirror member, 83d and 83e ... laser interferometer, 84 ... Z drive device, 86 ... elevating mechanism, 99 ... control device, BD ... shaft-like member, HD ... measuring jig, L1 ... Piping, L2 ... Piping, ML ... Detection light, RL ... Reflection light, P ... Air supply source, PS ... Pressure sensor, R1, R2 ... Ultra precision regulator

Claims (7)

測定対象である被検知体に接触する接触体と、当該接触体を一端部に支持する軸状部材とを有する接触子と、
軸方向を鉛直方向とし前記一端部を下端とした状態で、前記軸状部材を保持するシリンダ状の保持体と、
前記保持体に付随して設けられて、第1空気圧の供給を受けて、前記接触子に対して前記軸方向に沿って鉛直方向上方の付勢力を与える付勢手段と、
前記保持体に付随して設けられて、第2空気圧の供給を受けて、前記接触子を非接触で前記軸方向に変位可能に支持する空気軸受と、
前記付勢手段に供給される前記第1空気圧を、0.02kPa以下の第1分解能で制御するとともに、0.06kPa以下の変動量で制御する第1の圧力レギュレータを有する第1給気制御部と、
前記空気軸受に供給される前記第2空気圧を、0.02kPa以下の第2分解能で制御するとともに、0.06kPa以下の変動量で制御する第2の圧力レギュレータを有する第2給気制御部と、
を備え、
前記付勢手段は、前記保持体に挿通される前記軸状部材の側面において、前記一端部側に面するように形成された段差状の応力発生面を有し、
前記接触体の前記被検知体に対する接触圧は、0.7mg以下の分解能で制御されるとともに、2mg以下の変動量で制御される形状測定装置用の検出器。
A contact having a contact body that is in contact with a body to be detected that is a measurement target, and a shaft-like member that supports the contact body at one end;
A cylindrical holding body that holds the shaft-shaped member in a state where the axial direction is a vertical direction and the one end is the lower end;
An urging means provided along with the holding body, receiving a supply of first air pressure, and applying an urging force vertically upward along the axial direction to the contact;
An air bearing that is provided in association with the holding body, receives the supply of second air pressure, and supports the contactor so as to be displaceable in the axial direction without contact;
A first air supply control unit having a first pressure regulator for controlling the first air pressure supplied to the urging means with a first resolution of 0.02 kPa or less and a variation amount of 0.06 kPa or less. When,
A second air supply control unit having a second pressure regulator for controlling the second air pressure supplied to the air bearing with a second resolution of 0.02 kPa or less and controlling with a fluctuation amount of 0.06 kPa or less; ,
With
The biasing means has a step-like stress generation surface formed to face the one end side on the side surface of the shaft-like member inserted through the holding body,
The contact pressure of the contact body with respect to the detected body is controlled with a resolution of 0.7 mg or less, and is a detector for a shape measuring apparatus controlled with a fluctuation amount of 2 mg or less.
前記第1給気制御部は、前記接触子の自重の一部をキャンセルするとともに、キャンセルされずに残った自重部分を前記接触体の測定対象に対する接触圧とする請求項1記載の検出器。   2. The detector according to claim 1, wherein the first air supply control unit cancels a part of the weight of the contactor and uses the remaining weight part without being canceled as a contact pressure with respect to a measurement target of the contact body. 前記被検知体の変形による測定誤差が1nm以下である請求項1及び請求項2のいずれか一項に記載の検出器。   The detector according to any one of claims 1 and 2, wherein a measurement error due to deformation of the detected object is 1 nm or less. 前記軸状部材に設けられて検査光を反射する光検出面と、当該光検出面に検査光を照射するとともに反射光を検出する変位センサとをさらに備えることを特徴とする請求項1から請求項3のいずれか一項記載の検出器。 According claim 1, further comprising a light detection surface for reflecting the inspection light is provided on the shaft-like member, and a displacement sensor for detecting the reflected light irradiates the inspection light on the optical detection surface Item 4. The detector according to any one of Items 3 to 3 . 請求項4記載の検出器と、
被測定物を前記接触子に対し軸方向に垂直な方向に相対移動させる移動手段と、
前記移動手段による被測定物の相対移動に際して被測定物の表面と前記接触子との接触によって生ずる前記接触子の前記軸方向の変位量を、前記変位センサの出力に基づいて算出し、被測定物の形状を測定する演算手段と
を備える形状測定装置。
A detector according to claim 4 ;
Moving means for moving the object to be measured relative to the contact in a direction perpendicular to the axial direction;
The amount of displacement of the contact in the axial direction caused by the contact between the surface of the object to be measured and the contact during relative movement of the object to be measured by the moving means is calculated based on the output of the displacement sensor. A shape measuring device comprising a computing means for measuring the shape of an object.
被測定物の表面に接触する接触子を被測定物の表面に接触させながら相対走査させることにより、前記接触子の軸方向の位置を測定して被測定物の表面形状を測定する形状測定方法であって、
前記軸状部材を保持するシリンダ状の保持体に付随して設けられた付勢手段によって、第1空気圧の供給を受けて前記接触子に対して前記軸方向に沿って鉛直方向上方の付勢力を与え、前記保持体に付随して設けられた空気軸受によって、第2空気圧の供給を受けて前記接触子を非接触で前記軸方向に変位可能に支持し、
前記付勢手段は、前記保持体孔に挿通される前記軸状部材の側面において、前記一端部側に面するように形成された段差状の応力発生面を有し、
前記接触子に対して前記軸方向に沿って鉛直方向上方又は下方の付勢力を与える付勢手段に供給する第1空気圧を0.02kPa以下の第1分解能で制御するとともに0.06kPa以下の変動量で制御し、前記接触子を非接触で前記軸方向に変位可能に支持する空気軸受に供給する第2空気圧を0.02kPa以下の第2分解能で制御するとともに0.06kPa以下の変動量で制御することで、前記接触体の前記被検知体に対する接触圧が、0.7mg以下の分解能で制御されるとともに2mg以下の変動量で制御されることを特徴とする形状測定方法。
A shape measuring method for measuring the surface shape of the object to be measured by measuring the position in the axial direction of the contact by causing the contactor contacting the surface of the object to be measured to be relatively scanned while contacting the surface of the object to be measured. Because
The biasing means provided along with the cylindrical holder that holds the shaft-shaped member receives a first air pressure and biases the contactor in the vertical direction along the axial direction. The air bearing provided along with the holding body receives the supply of the second air pressure and supports the contactor so as to be displaceable in the axial direction without contact.
The biasing means has a step-like stress generating surface formed to face the one end side on the side surface of the shaft-like member inserted through the holding body hole,
The first air pressure supplied to the urging means for applying an urging force vertically upward or downward along the axial direction to the contact is controlled with a first resolution of 0.02 kPa or less and a fluctuation of 0.06 kPa or less. The second air pressure supplied to the air bearing that supports the contactor so as to be displaceable in the axial direction without contact is controlled with a second resolution of 0.02 kPa or less and a fluctuation amount of 0.06 kPa or less. By controlling, the contact pressure of the contact body with respect to the object to be detected is controlled with a resolution of 0.7 mg or less and controlled with a fluctuation amount of 2 mg or less.
被検知体の変形による測定誤差が1nm以下である請求項6に記載の形状測定方法。 The shape measuring method according to claim 6 , wherein a measurement error due to deformation of the detected object is 1 nm or less.
JP2006095307A 2006-03-30 2006-03-30 Detector, shape measuring device, and shape measuring method Active JP5103775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095307A JP5103775B2 (en) 2006-03-30 2006-03-30 Detector, shape measuring device, and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095307A JP5103775B2 (en) 2006-03-30 2006-03-30 Detector, shape measuring device, and shape measuring method

Publications (2)

Publication Number Publication Date
JP2007271367A JP2007271367A (en) 2007-10-18
JP5103775B2 true JP5103775B2 (en) 2012-12-19

Family

ID=38674328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095307A Active JP5103775B2 (en) 2006-03-30 2006-03-30 Detector, shape measuring device, and shape measuring method

Country Status (1)

Country Link
JP (1) JP5103775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422752B (en) * 2017-09-05 2024-04-12 机科发展科技股份有限公司 Force-applying adjustable measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261238A (en) * 1995-03-23 1996-10-08 Mitsutoyo Corp Correction method and correction device of bearing displacement characteristic in guiding mechanism of hydrostatic bearing
DE60033272T2 (en) * 1999-03-03 2007-11-29 Riken, Wako PROBE-TYPE FORM-MEASUREMENT PROBE AND NC-MACHINING DEVICE AND FORM-MEASURING METHOD USING THE MEASURING TELEVISION
JP2006078367A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Measuring probe

Also Published As

Publication number Publication date
JP2007271367A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US7685733B2 (en) Micro force measurement device, micro force measurement method, and micro surface shape measurement probe
US6539642B1 (en) Probe type shape measuring sensor, and NC processing equipment and shape measuring method using the sensor
EP2431826A1 (en) A measurement configuration based on linear scales able to measure to a target also moving perpendicular to the measurement axis
JP3272952B2 (en) 3D shape measuring device
US8191408B2 (en) Measuring instrument
CN103389052A (en) Vertical shape measuring device capable of compensating shaft system errors of wafer
JP4923441B2 (en) Shape measuring instrument
JP5103775B2 (en) Detector, shape measuring device, and shape measuring method
JP4972764B2 (en) Detector, shape measuring device, and shape measuring method
JP2001317933A (en) Shape-measuring apparatus
JP5255422B2 (en) Shape measuring probe
US20130004283A1 (en) Control method and apparatus for positioning a stage
JP5468721B2 (en) Displacement detector and shape measuring device
Huang et al. Embedded sensor system for five-degree-of-freedom error detection on machine tools
JP2011240457A (en) Cutting device, and cutting method
JP5292668B2 (en) Shape measuring apparatus and method
KR102228711B1 (en) Shape measuring probe
JP7340761B2 (en) measurement probe
JP2012081570A (en) Positioning implement for long object to be measured
JP7465243B2 (en) Stage device and electron beam drawing device
JP2009063417A (en) Profile measuring device and method for controlling profile measuring device
JP2007170879A (en) Displacement amount detector and shape measuring instrument
JP2004053299A (en) Machine for measuring thickness in plate-like material work
Asai et al. Edge profile measurement of micro-cutting tools on a diamond turning machine
JP2006337076A (en) Shape-measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5103775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350