JP5467015B2 - Evaluation method of noise in railway vehicles - Google Patents

Evaluation method of noise in railway vehicles Download PDF

Info

Publication number
JP5467015B2
JP5467015B2 JP2010187384A JP2010187384A JP5467015B2 JP 5467015 B2 JP5467015 B2 JP 5467015B2 JP 2010187384 A JP2010187384 A JP 2010187384A JP 2010187384 A JP2010187384 A JP 2010187384A JP 5467015 B2 JP5467015 B2 JP 5467015B2
Authority
JP
Japan
Prior art keywords
sound
noise
discomfort
evaluation
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010187384A
Other languages
Japanese (ja)
Other versions
JP2012047483A (en
Inventor
由布子 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010187384A priority Critical patent/JP5467015B2/en
Publication of JP2012047483A publication Critical patent/JP2012047483A/en
Application granted granted Critical
Publication of JP5467015B2 publication Critical patent/JP5467015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、鉄道車両内騒音の評価方法に関するものである。   The present invention relates to a method for evaluating noise in a railway vehicle.

鉄道車両の車内音については、これまではA特性サウンドレベル〔以下、「騒音レベル」と言う、単位dB(A)〕を用いて評価することが主体であった。   Up to now, the in-vehicle sound of a railway vehicle has mainly been evaluated using the A characteristic sound level (hereinafter referred to as “noise level”, unit dB (A)).

特開2002−202699号公報JP 2002-202699 A

鈴木浩明,白戸宏明,小美濃幸司,「列車の車内快適性に影響する要因の特定」,鉄道総研報告,Vol.11,No.11,pp.31−36,1997Hiroaki Suzuki, Hiroaki Shirato, Koji Omino, “Identification of Factors Affecting In-car Comfort of Trains”, Railway Research Institute Report, Vol. 11, no. 11, pp. 31-36, 1997 鉄道総合技術研究所 研究開発テーマ報告,No.P430605G,「車内快適性の評価手法の開発」,2004.3Railway Technical Research Institute R & D Theme Report, No. P430605G, “Development of Evaluation Method for In-Vehicle Comfort”, 2004.3 株式会社小野測器 Oscope ver.2 マニュアル OS−0271 ユーザーズガイドOno Sokki Co., Ltd. Oscope ver. 2 Manual OS-0271 User's Guide

しかしながら、近年では、騒音レベルが小さくても乗客にとって不快感や煩わしさを感じる音の存在が、鉄道車両内の快適性を妨げる要因として挙げられるようになってきた。鉄道車両内には、車両走行音、各種の機器音など様々な騒音が混在し、このように多種多様な音に対する人間の不快度の違いは、単に騒音レベルの大小だけでは説明ができない。   However, in recent years, the presence of sounds that make passengers feel uncomfortable or annoying even when the noise level is low has been cited as a factor that impedes comfort in railway vehicles. Various noises such as vehicle running sounds and various equipment sounds are mixed in the railway vehicle, and the difference in human discomfort with such various sounds cannot be explained simply by the magnitude of the noise level.

例えば、騒音に対する心理的な不快感を緩和する一つの方策として、オフィスで使用されるOA機器に対しての騒音問題解決のために、心理音響パラメータのラウドネス値およびシャープネス値を用いた音の不快指数を考慮した音質改善方法が提案されている(上記特許文献1参照)。   For example, as one measure for alleviating psychological discomfort to noise, sound discomfort using the loudness value and sharpness value of psychoacoustic parameters is used to solve noise problems for office automation equipment used in offices. A sound quality improvement method considering an index has been proposed (see Patent Document 1).

しかしながら、鉄道車両内騒音については、静的機器における影響に限定されることなく走行に伴う影響も考慮しなければならず、異なったファクターを考慮しなければならないといった問題があった。   However, regarding the noise in the railway vehicle, there is a problem in that it is not limited to the influence on the static equipment, but the influence due to traveling must be taken into consideration, and different factors must be taken into consideration.

本発明は、上記状況に鑑みて、鉄道車両を対象に、車内で聞こえる各種の音が人間の不快感に及ぼす影響について主観評価実験を行うことにより明らかにし、より人間の感覚に合致した鉄道車両内騒音の評価方法を提供することを目的としている。   In view of the above-described situation, the present invention clarifies the effect of various sounds heard in a vehicle on human discomfort by performing subjective evaluation experiments on the rail vehicle, and more closely matches the human sense. The purpose is to provide an internal noise evaluation method.

本発明は、上記目的を達成するために、
〔1〕鉄道車両内騒音の評価方法において、ラウドネス(dB)だけではなく、シャープネス(acum)、トーナリティ(tu)、ラフネス(asper)、変動強度(vacil)を含む変数による回帰式に基づいた、鉄道車両内騒音に対する不快感の評価指標を用いる鉄道車両内騒音の評価方法であって、前記回帰式が、不快度=A×ラウドネス+B×シャープネス+C×トーナリティ+D×ラフネス+E×変動強度+F(定数)とした線形回帰式(A〜Eは非標準化係数)であり、前記変数はラウドネス(dB)、シャープネス(acum)、トーナリティ(tu)、ラフネス(asper)、変動強度(vacil)の5変数に基づくことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the evaluation method of noise in railway vehicles, not only loudness (dB), but also based on a regression equation with variables including sharpness (acum), tonality (tu), roughness (asper), and fluctuation intensity (vacil). A method of evaluating railroad vehicle noise using an evaluation index of discomfort with respect to railcar interior noise , wherein the regression equation is: discomfort level = A × loudness + B × sharpness + C × tourality + D × roughness + E × variation intensity + F (constant) ) Are linear regression equations (A to E are non-standardized coefficients), and the variables are five variables of loudness (dB), sharpness (acum), tonality (tu), roughness (asper), and fluctuation intensity (vacil). Based on .

〕上記〔1〕記載の鉄道車両内騒音の評価方法において、評価対象とする前記鉄道車両内騒音の種類が、新幹線車両の走行中および停車中の車内音であることを特徴とする。 [2] The evaluation method of [1] Symbol mounting rail vehicle in the noise, the type of the rail vehicle in the noise to be evaluated, characterized in that the vehicle is traveling Shinkansen vehicles and interior noise parked .

本発明によれば、鉄道車両内騒音に対する不快感を、上記の音質評価指標を組み合わせた多変数の回帰式によって表すことで、より人間の感覚に合致した鉄道車両内騒音の評価指標とすることができる。   According to the present invention, an unpleasant feeling with respect to noise in a railway vehicle is represented by a multivariable regression equation that combines the above sound quality evaluation indices, thereby making it an evaluation index of noise in a railway vehicle that better matches human senses. Can do.

本発明に係る鉄道車両内騒音の測定位置の概略図である。It is the schematic of the measurement position of the noise in a railway vehicle which concerns on this invention. 本発明に係る実験時の室内配置および音響機材の接続概要を示す図である。It is a figure which shows the indoor arrangement | positioning at the time of the experiment which concerns on this invention, and the outline of a connection of an audio equipment. 本発明に係る被験者実験に用いた音の主観評価シートを示す図である。It is a figure which shows the subjective evaluation sheet | seat of the sound used for the test subject experiment based on this invention. 本発明に係る不快度の主観評価点と物理指標値との相関を示す図である。It is a figure which shows the correlation with the subjective evaluation point of the discomfort degree based on this invention, and a physical parameter | index value. 本発明に係る代表的な6種類の音について、「うるささ」と「不快度」についての各主観評価点の関係を示す図である。It is a figure which shows the relationship of each subjective evaluation point about "noisiness" and "discomfort degree" about six types of typical sounds which concern on this invention. 本発明に係る代表的な6種類の音について、図9で示した不快度に対する評価点と騒音レベルとの関係を抜粋したものを示す図である。It is a figure which shows what extracted the relationship between the evaluation point with respect to the discomfort degree shown in FIG. 9, and a noise level about six types of typical sounds which concern on this invention. 本発明に係る代表的な6種類の音のうち、惰行走行音、連換のみの空調音、低級音およびピンクノイズについて狭帯域で分析したパワースペクトルを示す図である。It is a figure which shows the power spectrum analyzed in the narrow band about the coasting sound, the air conditioning sound only for interchange, a low-order sound, and pink noise among six types of typical sounds which concern on this invention. 本発明に係るラウドネス以外の音質評価指標値と「不快度」についての主観評価点との関係を示す図である。It is a figure which shows the relationship between the sound quality evaluation index value other than the loudness which concerns on this invention, and the subjective evaluation point about "discomfort degree". ラウドネス、シャープネス、トーナリティ、変動強度の4変数による回帰式による不快度の主観評価値について計算値と実験結果との相関を示す図である。It is a figure which shows the correlation with a calculated value and an experimental result about the subjective evaluation value of the discomfort degree by the regression formula by four variables of loudness, sharpness, tonality, and fluctuation intensity.

鉄道車両内騒音の評価方法は、ラウドネス(dB)だけではなく、シャープネス(acum)、トーナリティ(tu)、ラフネス(asper)、変動強度(vacil)を含む変数による回帰式に基づいた、鉄道車両内騒音に対する不快感の評価指標を用いる鉄道車両内騒音の評価方法であって、前記回帰式が、不快度=A×ラウドネス+B×シャープネス+C×トーナリティ+D×ラフネス+E×変動強度+F(定数)とした線形回帰式(A〜Eは非標準化係数:後述の不快度の式の説明の項参照)であり、前記変数はラウドネス(dB)、シャープネス(acum)、トーナリティ(tu)、ラフネス(asper)、変動強度(vacil)の5変数に基づくことを特徴とする。 Railroad vehicle noise evaluation method is based not only on loudness (dB) but also on the basis of regression equations with variables including sharpness (acum), tonality (tu), roughness (asper), and fluctuation intensity (vacil). An evaluation method of noise in a railway vehicle using an evaluation index of discomfort with respect to noise, wherein the regression equation is discomfort = A × loudness + B × sharpness + C × tourality + D × roughness + E × variation intensity + F (constant) A linear regression equation (A to E are non-standardized coefficients: see the description of the expression of discomfort described later), and the variables are loudness (dB), sharpness (acum), tonality (tu), roughness (asper), It is based on five variables of fluctuation intensity (vacil).

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、新幹線鉄道車両の車内音について説明する。   First, the interior sound of the Shinkansen railway vehicle will be described.

走行時の新幹線鉄道車両内には、走行に伴って発生するレール−車輪系からの転動音や空力音などが、車両の天井、側面、床面などの部材を透過して伝搬するほか、主電動機やパンタグラフなどの床下、屋根上搭載機器からの機器音、客車室内に存在する空気調和装置や照明装置からの音、さらには乗客の会話なども含めると多種多様な音が混在している。   In the Shinkansen railcar during traveling, rolling noise and aerodynamic sound generated from the rail-wheel system that accompanies traveling travels through the vehicle's ceiling, side, floor surface, etc. A wide variety of sounds are included, including equipment sounds from underfloor and rooftop equipment such as traction motors and pantographs, sounds from air conditioners and lighting equipment in passenger car cabins, and passenger conversations. .

本発明では、これらの新幹線鉄道車両内騒音に対する乗客の心理的な不快度についての検討を行うため、3種類の新幹線車両(A,B,C形式)において走行中および停車中の様々な車内騒音を収録した。なお、この測定にあたっては積分型普通騒音計(RION NL−20)を用いた。   In the present invention, in order to examine the passenger's psychological discomfort with respect to the noise in the Shinkansen railway vehicles, various in-vehicle noises during traveling and stopping in the three types of Shinkansen vehicles (A, B, C type). Was recorded. In this measurement, an integral type normal sound level meter (RION NL-20) was used.

図1は本発明に係る鉄道車両内騒音の測定位置の概略図である。   FIG. 1 is a schematic view of a measurement position of noise in a railway vehicle according to the present invention.

この図において、1は鉄道車両、2は車輪、3は台車、4はドア、5は窓、6は車体左右中心線、7は車体前後中心線、8は床面である。   In this figure, 1 is a railway vehicle, 2 is a wheel, 3 is a carriage, 4 is a door, 5 is a window, 6 is a vehicle body centerline, 7 is a vehicle body centerline, and 8 is a floor surface.

測定位置は、車体前後中心線7上(車体中央部の座席位置に相当)とした。高さは、乗客の耳の位置に相当するように床面8から1.2mとした。   The measurement position was on the vehicle body front-rear center line 7 (corresponding to the seat position at the center of the vehicle body). The height was set to 1.2 m from the floor 8 so as to correspond to the position of the passenger's ear.

(鉄道車両の車内騒音の特徴)
停車時および走行中に新幹線鉄道電車車内で収録した音を分析した結果、停車時の車内では主電動機音よりも空調音が主であり、さらに空調音は作動条件によって音スペクトルが異なっていることがわかった。なお、走行中の車内では、高速での定速走行時は空調音や機器音よりも走行音の寄与が大きい。
(Characteristics of railway vehicle interior noise)
As a result of analyzing the sound recorded in the Shinkansen railway train when stopped and traveling, the air conditioning sound is more dominant than the main motor sound in the stopped vehicle, and the sound spectrum of the air conditioning sound varies depending on the operating conditions. I understood. In a running car, the contribution of running sound is greater than air conditioning noise and equipment sound during constant speed running at high speed.

新幹線の車内で収録した音はそれぞれスペクトル形式が異なっており、このような音のスペクトルの違いは、聴感上の音色の違いに反映される。これらの車内騒音に対する乗客の心理的な不快度について主観評価実験を行う際、実際の新幹線車両内で収録したこれらの車内騒音を評価対象とした。また、走行中の車両内では、低級音(カタカタ音)と呼ばれる車内艤装部材の振動に伴う音が時折観測されている。これらの音はその発生が予測できず、知覚することで不快度が増す音となり得るため、観測された際にリニアPCMレコーダにより音を収録した。この音も被験者実験による不快度の評価対象とした。   Sounds recorded in the Shinkansen trains have different spectrum formats, and such differences in sound spectrum are reflected in differences in audible tone. When performing subjective evaluation experiments on passengers' psychological discomfort with respect to these in-vehicle noises, these in-vehicle noises recorded in actual Shinkansen vehicles were evaluated. Further, in a running vehicle, a sound accompanied by vibration of the in-vehicle fitting member, which is called a low-order sound (katakatsu sound), is occasionally observed. Since these sounds cannot be predicted and can be perceived as sounds that increase discomfort, they were recorded with a linear PCM recorder when observed. This sound was also subject to evaluation of discomfort by the subject experiment.

(音に対する不快感と音質評価)
車内の騒音に対する乗客の不快感についての調査は、騒音に限らず、振動、温度、照明等の34項目を対象に車内の快適性に関わるアンケート調査を実施し、心理量(満足度)と30分間実測した物理量とを比較した例がある(上記非特許文献1参照)。この結果では、車内騒音のうち車両走行音については、50%の時間率騒音レベル(L50)が心理量と物理量の対応が良いとされている。ただし、このとき物理量として検討された指標は、市販の積分型騒音計(RION NL−14)で算出できる等価騒音レベル(LAeq )と時間率騒音レベル(LX )であり、いずれも騒音レベルを基にしたものである。また、車内快適性シミュレータを用いて、音と振動、映像の複合環境下での快適性を調査した結果、音に対する不快感は振動や視覚情報と音の性質に依存し、特に後者については、一般的な走行音に比べて走行と無関係と思われる音はより不快に感じられ、逆に映像のある橋梁通過時の音のように、現象が一時的であって被験者にとってやむを得ないと見なされる音に対する不快度は低いとの報告がなされている(上記非特許文献2参照)。
(Sound discomfort and sound quality evaluation)
The survey on passenger discomfort with respect to vehicle interior noise is not limited to noise, but a survey on 34 items such as vibration, temperature, lighting, etc. is conducted on the comfort of the vehicle. There is an example in which physical quantities actually measured for minutes are compared (see Non-Patent Document 1 above). According to this result, regarding the vehicle running sound among the in-vehicle noise, the time rate noise level (L 50 ) of 50% is considered to have a good correspondence between the psychological quantity and the physical quantity. However, indicators are considered as a physical quantity at this time is a commercially available integral sound level meter (RION NL-14) equivalent noise level can be calculated by (L Aeq) and percentile level (L X), both the noise level It is based on. In addition, as a result of investigating the comfort in the mixed environment of sound and vibration and video using the in-vehicle comfort simulator, discomfort to the sound depends on the nature of the vibration and visual information and sound, especially for the latter, Compared to general driving sounds, sounds that seem to be irrelevant to driving seem to be more unpleasant, and conversely, like the sound when passing through a bridge with images, the phenomenon is considered temporary and unavoidable for the subject It has been reported that the degree of discomfort with sound is low (see Non-Patent Document 2 above).

ある音に対する「快・不快」「煩わしさ」といった主観の評価は、必ずしも音の大きさにのみ依存するわけではなく、前述したように、振動や視覚の影響のほか、スペクトルや継続時間など音の持つ性質全体にも影響される。このように、人間が感じる音の特徴を音質といい、音の「大きさ」や「高さ」などの様々な物理指標によって示すことができる。このような音質指標によって音を評価し、レベルは小さくとも不快な音を除き、利用者にとって快適な音環境を作るための試みは、主に自動車の車内音や家電OA機器などの分野で近年数多く実施されてきている(上記特許文献1参照)。しかし、どの種の音質指標が人間の主観評価に適合するかは、それがどのような感覚(うるさいか、快・不快かなど)であるかに依存するのは勿論のこと、評価対象とする音の種類や聴取環境によっても異なり、さらには音に対する個人的な好みや先入観なども大きな影響を与えるため、どのような音に対してもそれを聞くあらゆる人間の主観評価値と高い相関をもつ音質評価指標は存在しないと言ってよい。   Subjective evaluations such as “pleasant / uncomfortable” and “annoyance” for a sound do not necessarily depend only on the volume of the sound. As mentioned above, in addition to the effects of vibration and vision, sound such as spectrum and duration It is also influenced by the whole nature of. In this way, the feature of sound that humans feel is called sound quality, and can be indicated by various physical indexes such as “volume” and “height” of the sound. In recent years, an attempt to create a sound environment that is comfortable for the user by evaluating the sound with such a sound quality index and excluding the unpleasant sound even if the level is small mainly in the fields of the interior sound of automobiles and home appliances OA equipment. Many have been implemented (see Patent Document 1 above). However, which kind of sound quality index is suitable for human subjective evaluation depends on what kind of feeling (noisy, pleasant / unpleasant, etc.) it is, of course, it should be evaluated Depending on the type of sound and listening environment, personal preferences and preconceptions of sound also have a great impact, so any sound that has a high correlation with the subjective evaluation value of any person who hears it It can be said that there is no sound quality evaluation index.

音質を評価する指標として、音の大きさや強さに対する人間の感覚に依存した「ラウドネス(単位:sone)」がよく知られている。定常的な音に対するラウドネスはISOで規格化されている。音に対する「快・不快」の感覚は、第一に『その音が「うるさい」かどうか』という感覚に強く依存しているとされており、ラウドネスにより音を評価することは最も基本的と考えられる。また、人間が感じる音の大きさとして計算される騒音レベルは、Fletcher−Munsonが提案した等ラウドネス(等感覚)曲線を基にした周波数補正係数(A特性)を使用して重み付けされており、ラウドネスとの相関が高い。   As an index for evaluating sound quality, “loudness (unit)” depending on the human sense of loudness and intensity is well known. Loudness for stationary sound is standardized by ISO. The sensation of “pleasantness / discomfort” for sound is said to be strongly dependent on the sense of “whether the sound is“ noisy ”” or not, and it is most fundamental to evaluate the sound by loudness. It is done. In addition, the noise level calculated as the volume of the sound felt by humans is weighted using a frequency correction coefficient (A characteristic) based on an equal loudness (isosensory) curve proposed by Fletcher-Munson. High correlation with loudness.

市販されているソフトウェアパッケージ(上記非特許文献3参照)(以下、単に,Oscopeという)により算出できる音質評価パラメータには、ラウドネス以外にシャープネス(単位:acum、音の甲高さを示し、周波数分析した結果の重心が高域に偏る割合で示される)、トーナリティ(単位:tu、音の成分に純音が含まれる割合)、ラフネス(単位:asper、音の粗さ感を示し、ラウドネスの変調周期が比較的短く(70Hz)変動するもの)、変動強度(単位:vacil、音の変動感を示し、ラウドネスの変調周期が長く(4Hz)変動するもの)がある。
(被験者による主観評価実験)
(1)実験の概要
上記したように、車内騒音には多種多様なものがあり、その大きさも様々である。本発明の主眼は、「大きさ」だけでは評価できない車内騒音に対する不快感の原因がどこにあるかを明らかにすることであるため、実際に収録した車内騒音を実験室環境でスピーカにより再生し、被験者がその印象を答える主観評価実験を実施した。また、主観評価の結果との比較に用いる音の物理量は前述の各種音質評価指標の実測値とし、主観評価試験において被験者が座る椅子の位置に騒音計(RION NL−04)のマイクロホンを設置してスピーカからの再生音を収録し、前述したソフトウェア(Oscope)により解析して得た。音の再生方法や実験方法の詳細は以下に示す。
Sound quality evaluation parameters that can be calculated using a commercially available software package (see Non-Patent Document 3 above) (hereinafter simply referred to as Oscope) include sharpness (unit: acum, pitch of sound) in addition to loudness, and frequency analysis. The result shows that the center of gravity is biased toward the high frequency), tonality (unit: tu, ratio of sound component containing pure tone), roughness (unit: asper, sound roughness), loudness modulation period Is relatively short (fluctuates at 70 Hz)) and fluctuation intensity (unit: vacil, which shows a sense of fluctuation in sound, and the modulation period of loudness fluctuates long (4 Hz)).
(Subjective evaluation experiment by subjects)
(1) Outline of Experiment As described above, there are various types of in-vehicle noise, and the sizes thereof are also various. The main point of the present invention is to clarify the cause of discomfort with respect to in-vehicle noise that cannot be evaluated only by “size”, so that the recorded in-vehicle noise is reproduced by a speaker in a laboratory environment, A subjective evaluation experiment was conducted in which the subjects answered their impressions. In addition, the physical quantity of sound used for comparison with the result of subjective evaluation is the measured value of the above-mentioned various sound quality evaluation indices, and a microphone of a sound level meter (RION NL-04) is installed at the position of the chair where the subject sits in the subjective evaluation test. The sound reproduced from the speaker was recorded and analyzed by the software (Oscope) described above. Details of the sound reproduction method and experimental method are shown below.

(提示音)
評価対象とする音刺激は、図1に示した測定位置で収録した車内騒音のほか、比較のために別途作成した音を加えて、表1に示す26種類とした。
(Presentation sound)
In addition to the in-vehicle noise recorded at the measurement position shown in FIG. 1, the sound stimuli to be evaluated were 26 types shown in Table 1 by adding separately prepared sounds for comparison.

Figure 0005467015
Figure 0005467015

ピンクノイズとは、オクターブバンドなど定比幅の周波数分析において全バンドのパワーレベルが等しい音である。一つの音刺激の出力継続時間は15秒とし、実際の車両内で収録した音ファイルから音の特徴に大きく変化がない15秒間を切り出し、他の雑音などで15秒間に満たない場合は安定した部分を繰り返して再生した。   Pink noise is a sound with the same power level in all bands in frequency analysis of a constant ratio width such as an octave band. The output duration of one sound stimulus is 15 seconds, and 15 seconds with no significant change in sound characteristics are cut out from the sound file recorded in the actual vehicle, and stable when it is less than 15 seconds due to other noise, etc. The part was played repeatedly.

音刺激の提示レベルは、騒音レベルで5dB刻み3段階となるようにした。このため、評価対象とする全音刺激数は78個である。各音刺激の騒音レベルは、車内騒音での平均的なレベルを参考にして、被験者の耳の位置で約60, 65, 70dB (A) となるようにした。   The presentation level of the sound stimulus was set to 3 levels in 5 dB increments with respect to the noise level. For this reason, the total number of sound stimuli to be evaluated is 78. The sound level of each sound stimulus was set to about 60, 65, 70 dB (A) at the position of the subject's ear with reference to the average level in the vehicle interior noise.

(主観評価実験)
被験者による主観評価実験は、鉄道総合技術研究所内の防音室において、男女21名(男性16名、女性5名、年齢は25〜54歳で平均年齢39.3歳)に対して1名ずつ実施した。被験者は全員新幹線の利用経験があり、これまで聴覚に異常を指摘された経験のある者はいなかった。スピーカは被験者の前方左右に被験者に向けて設置し、振動面から椅子の位置までの距離は水平にそれぞれ約1mとした。実験時の室内配置および音響機材の接続概要を図2に示す。
(Subjective evaluation experiment)
Subjective evaluation experiments by subjects were conducted one by one for 21 men and women (16 men, 5 women, age 25 to 54 years old, average age 39.3 years old) in the soundproof room in the Railway Technical Research Institute. did. All subjects had experience of using the Shinkansen, and no one had any experience with abnormal hearing. The speakers were installed on the front left and right of the subject toward the subject, and the distance from the vibration surface to the chair position was about 1 m horizontally. Fig. 2 shows an outline of the room layout and connection of audio equipment during the experiment.

図2において、図2(a)は実験室配置を、図2(b)は音響出力機材の接続を示す図である。   In FIG. 2, FIG. 2 (a) is a laboratory arrangement, and FIG. 2 (b) is a diagram showing connection of sound output equipment.

これらの図において、11は防音室、12は右側のスピーカ、13は左側のスピーカ、14は出力用機材、14−1は音出力用PC、14−2はUSBオーディオキャプチャー、14−3はデジタルイコライザー、14−4はデジタルアンプ、14−5はスピーカ、Aは被験者、Bは実験者である。   In these drawings, 11 is a soundproof room, 12 is a right speaker, 13 is a left speaker, 14 is output equipment, 14-1 is a sound output PC, 14-2 is USB audio capture, and 14-3 is digital. Equalizer, 14-4 is a digital amplifier, 14-5 is a speaker, A is a subject, and B is an experimenter.

被験者実験により主観評価を行う場合、設問の設定が重要であるが、今回の設問はそれぞれの音に対する印象の評価に主眼をおき、表現の異なる4つの設問への回答を求めた。   When subjective evaluation is performed by subject experiment, setting of questions is important, but this time we focused on evaluating impressions for each sound and asked for answers to four questions with different expressions.

図3は本発明に係る被験者実験に用いた音の主観評価シートを示す図である。   FIG. 3 is a view showing a subjective evaluation sheet for sound used in the subject experiment according to the present invention.

1つ目の設問は、一般的な騒音の評価で用いられている「うるささ」という表現を用いて、「1.全くうるさくない」から「5.非常にうるさい」までの5段階での評価とした。2つ目の設問は、本発明の主目的である「不快感」について直截的に尋ね、3つ目の設問は、「鉄道車内の音としてこの音がずっと(30分以上)継続したら気になるかどうか」について同じく5段階での評価とした。また、過去の研究(上記非特許文献2参照)の際に用いた評価項目を参考にし、4つ目の設問として、「鉄道車内の音として許容できるか」という尋ね方で「問題ない」「やや気になる程度」「不快だが許容できる」「不快であり許容できない」の4段階での評価も行った。なお、これらの評価項目は、以後、本発明ではそれぞれ「うるささ」「不快度」「気になり度」「許容度」と示す。また、この場合の鉄道は、新幹線等の優等列車を想定してもらった。   The first question is a five-step evaluation from "1. Not very noisy" to "5. Very noisy" using the expression "noisy" used in general noise evaluation. did. The second question asks directly about “discomfort”, which is the main purpose of the present invention, and the third question says, “If this sound continues for a long time (more than 30 minutes) Similarly, the evaluation was based on five levels. In addition, referring to the evaluation items used in past research (see Non-Patent Document 2 above), the fourth question is “no problem” and “no problem”. The evaluation was also made in four levels: “A little worrisome”, “Uncomfortable but acceptable” and “Uncomfortable and unacceptable”. These evaluation items are hereinafter referred to as “noisy”, “discomfort”, “degree of concern”, and “tolerance” in the present invention. In this case, the railway was assumed to be an excellent train such as the Shinkansen.

実験では、15秒間継続する78種類の音をランダムな順序でスピーカから再生し、それぞれの音について被験者自身の主観による評価点が定まったところで、再生中でも主観評価シートの当てはまる数値に○を記入するように促した。   In the experiment, 78 kinds of sounds that last for 15 seconds are reproduced from the speaker in a random order, and when the evaluation points according to the subject's own subjectivity are determined for each sound, ○ is entered in the numerical value to which the subjective evaluation sheet applies even during reproduction. Urged to.

(実験結果)
得られた主観評価点について全回答者の平均値を算出し、各騒音評価指標および音質評価指標との相関について分析した。音の評価指標値(物理量)は、被験者の耳の位置(椅子の中心から0.1m後方で床から1mの高さとした)に騒音計のマイクロホンを設置して、スピーカから再生される評価音を収録し、騒音計の音圧AC信号をデータレコーダに収録したものをOscopeによって処理して得た。各評価値は、音が15秒間継続するうちの最初と最後を除いた中間10秒間に対する全周波数域での平均値とした。相関分析に用いた物理評価指標は、騒音レベル、音圧レベル(F特性)、ラウドネスのほか、上記したシャープネス、トーナリティ、ラフネス、および変動強度を含めた7種類とした。これらの物理指標値と主観評価点との相関を分析した結果を表2に示す。
(Experimental result)
The average value of all respondents was calculated for the obtained subjective evaluation points, and the correlation with each noise evaluation index and sound quality evaluation index was analyzed. The evaluation index value (physical quantity) of the sound is the evaluation sound reproduced from the speaker by installing a microphone of a sound level meter at the position of the subject's ear (0.1 m behind the chair and 1 m from the floor). The sound pressure AC signal of the sound level meter recorded in a data recorder was obtained by processing with Oscope. Each evaluation value was an average value in the entire frequency range for the middle 10 seconds excluding the first and last of the sound lasting 15 seconds. The physical evaluation indices used for the correlation analysis were seven types including the above-mentioned sharpness, tonality, roughness, and fluctuation intensity in addition to the noise level, sound pressure level (F characteristic), and loudness. Table 2 shows the results of analyzing the correlation between these physical index values and subjective evaluation points.

Figure 0005467015
Figure 0005467015

これから、「不快度」についての主観評価点と騒音レベルとの相関は低く(決定係数R2 =0.6)、快適性を評価する際には騒音レベルだけでは不十分であることがわかる。これに対し、一般的に騒音の評価の際に用いられる「うるささ」についての主観評価点は、これまでの知見同様に騒音レベルとの相関が比較的高い(R2 =0.8)ことが確かめられた。 From this, it can be seen that the correlation between the subjective evaluation point and the noise level with respect to the “discomfort level” is low (determination coefficient R 2 = 0.6), and the noise level alone is insufficient when the comfort is evaluated. On the other hand, the subjective evaluation point for “noisiness” generally used for noise evaluation has a relatively high correlation with the noise level (R 2 = 0.8) as in the previous knowledge. It was confirmed.

(「不快度」についての主観評価)
表2に示した相関分析の結果、「不快度」についての主観評価点と最も相関が高い物理評価指標はラウドネスで、R2 =0.7程度、次に相関が高いのが騒音レベルでR2 =0.6程度であった。
(Subjective evaluation of “discomfort”)
As a result of the correlation analysis shown in Table 2, the physical evaluation index having the highest correlation with the subjective evaluation point regarding “discomfort” is loudness, R 2 = 0.7, and the next highest correlation is the noise level R 2 = about 0.6.

図4は本発明に係る不快度の主観評価点と物理指標値との相関を示す図であり、図4(a)は不快度とラウドネスの相関、図4(b)は不快度と騒音レベルの相関を示す。   FIG. 4 is a diagram showing the correlation between the subjective evaluation point of discomfort and the physical index value according to the present invention, FIG. 4 (a) is the correlation between discomfort and loudness, and FIG. 4 (b) is the discomfort and noise level. The correlation is shown.

図4 (a) より、ラウドネスとの相関において「不快度」の主観評価値が回帰直線から最も大きくずれているのは、ピンクノイズと連続換気装置のみ作動時の空調音であること、さらに低級音に関しても他の音に比べて不快に感じる傾向が増していることがわかる。また、図4 (b) から、騒音レベルが同程度であっても、音の種類によって「不快度」に対する評価点に大きく差があることがわかる。したがって、音に対する不快感は、単純にその音が耳に聞こえる大きさ(騒音レベルやラウドネス)だけにはよらず、他の要因にも影響されていると考えられる。   From Fig. 4 (a), the subjective evaluation value of "discomfort" in the correlation with loudness is the largest deviation from the regression line because of pink noise and air-conditioning sound when only the continuous ventilator is in operation. It can be seen that the tendency to feel uncomfortable as compared with other sounds is also increasing. Further, from FIG. 4B, it can be seen that even if the noise level is the same level, there is a large difference in the evaluation score for “discomfort” depending on the type of sound. Therefore, it is considered that the discomfort with the sound is influenced not only by the magnitude (noise level and loudness) that the sound can be heard but also by other factors.

図5は、本発明に係る代表的な6種類の音について、「うるささ」と「不快度」についての各主観評価点の関係を示す図である。   FIG. 5 is a diagram showing the relationship between subjective evaluation points for “noisy” and “discomfort” for six typical types of sounds according to the present invention.

これらは、ピンクノイズ以外、すべてある形式の新幹線車両に関する音である。この図から、連換のみの音(凡例○)や走行音に会話を合成した音(走行音+会話、凡例◇)は「うるささ」に対する主観評価点よりも「不快度」に対する評価点が悪く、低級音(凡例■)やピンクノイズ(凡例●)ではさらに不快度が強くなっている。これに対して、惰行走行音(凡例●)や空調のみ(強制モード)(凡例▲)の音は「うるささ」よりも「不快度」に対する評価点がやや良かった。以上から、音に対する「うるささ」と「不快度」についての主観評価点は音の種類によって異なる傾向を示しており、音環境についての快適性を評価するためには騒音レベルだけでは不十分であると言える。   These are all sounds related to a certain type of Shinkansen vehicles, except for pink noise. From this figure, the sound of only commutation (Legend ○) and the sound that synthesized conversation with the running sound (Running Sound + Conversation, Legend ◇) have a worse evaluation score for “discomfort” than the subjective evaluation score for “noisy” , Lower tone (Legend ■) and pink noise (Legend ●) are more unpleasant. In contrast, the sound of coasting sound (legend ●) and air conditioning only (forced mode) (legend ▲) gave a slightly better evaluation score for “discomfort” than “noisy”. From the above, subjective evaluation points for “noisiness” and “discomfort” for sound show different tendencies depending on the type of sound, and noise level alone is not enough to evaluate comfort for sound environment. It can be said.

(音の大きさによらない不快感の要因)
上記したように、音に対して感じる不快感は、耳に聞こえる大きさ(騒音レベル)は同程度でも音の種類によって不快度の評価点数が異なり、この差は騒音レベルやラウドネスだけでは示すことができない音の性質の違いにより生じていると考えられる。
(Factors of discomfort independent of loudness)
As described above, the discomfort felt with respect to the sound is the same level of noise (noise level), but the discomfort rating score varies depending on the type of sound. This difference is indicated only by the noise level and loudness. It is thought to be caused by the difference in the nature of the sound that cannot be performed.

図6は、図5と同じ6種類の音について、図4 (b) で示した不快度に対する評価点と騒音レベルとの関係を抜粋したものを示す図である。図6から、最も不快感を感じている音(ピンクノイズ:凡例●)と、不快の最も小さい音〔空調のみ(強制モード):凡例▲〕とでは不快度の主観評価点で2段階の差が見られる。また、連換のみの音(凡例○)と空調のみ(強制)の音はどちらも同形式の車両の空調に起因し、稼働の条件だけが異なるものであるが、主観評価点では約1段階と明らかな差が見られる。   FIG. 6 is a diagram showing an excerpt of the relationship between the evaluation score for the discomfort level shown in FIG. 4B and the noise level for the same six types of sounds as in FIG. From FIG. 6, there is a two-stage difference in subjective evaluation points of discomfort between the sound with the most unpleasant feeling (pink noise: legend ●) and the sound with the least discomfort [air conditioning only (forced mode): legend ▲]. Is seen. In addition, the sound of conversion only (legend ○) and the sound of air conditioning only (forced) are both due to the air conditioning of the same type of vehicle, and only the operating conditions are different. A clear difference is seen.

音に対する不快感の感じ方の違いには、聴取環境なども含め様々な要因があると考えられるが、今回の主観評価実験では聴取環境は揃えているため、あくまでも音の物理的な性質の違いによるものと考えられる。上記したように、ピンクノイズや連換のみの空調音は明らかに他の音と比べて違和感を感じる音であり、この違和感が不快感を増す方向に反映されたとみられる。このような音の物理的な性質の違いを説明するために考えられたものが、上記したラウドネス以外の音質指標であり、一例が、シャープネス、トーナリティ、ラフネス、変動強度といった音の周波数特性の違いや音の変動感をあらわす指標である。   It is thought that there are various factors, including the listening environment, in the difference in the feeling of discomfort with the sound, but since the listening environment is the same in this subjective evaluation experiment, the difference in the physical properties of the sound is only It is thought to be due to. As described above, the pink noise and the air-conditioning sound of only the interchange are clearly uncomfortable sounds compared to other sounds, and this discomfort seems to be reflected in the direction of increasing discomfort. In order to explain such differences in the physical properties of sound, sound quality indicators other than the above-mentioned loudness are considered, and examples include differences in sound frequency characteristics such as sharpness, tonality, roughness, and fluctuation intensity. It is an index that represents the fluctuation of sound and sound.

図7は、本発明に係る代表的な6種類の音のうち、惰行走行音〔図7(a)〕、連換のみの空調音〔図7(b)〕、低級音〔図7(c)〕およびピンクノイズ〔図7(d)〕について狭帯域で分析したパワースペクトルを示す図である。すべて、提示レベルが最大(約70dB)のときの実測結果に対して、周波数重み特性Aで補正したパワースペクトルである。   FIG. 7 shows a coasting sound [FIG. 7 (a)], an air conditioning sound only for conversion [FIG. 7 (b)], and a low-order sound [FIG. 7 (c). ]] And pink noise [FIG. 7 (d)] are diagrams showing power spectra analyzed in a narrow band. All are power spectra obtained by correcting the actual measurement result when the presentation level is maximum (about 70 dB) with the frequency weighting characteristic A.

連換のみの空調音〔図7 (b) 〕は、100Hz付近に他の周波数域に比べて30dB近く大きな明確なピークを持っている。このように、特定の周波数に鋭いピークを持つ音は、音質評価指標ではトーナリティ(純音度)の値が高いと考えられる。   The air conditioning sound of only conversion [FIG. 7 (b)] has a clear peak near 100 dB which is larger than other frequency regions near 100 Hz. Thus, a sound having a sharp peak at a specific frequency is considered to have a high tonality (pure tone) value in the sound quality evaluation index.

また、ピンクノイズ〔図7 (d) 〕は、他の車内騒音に比べて低周波数域から高周波数域まで広がったなだらかな半円状の形状を示しており、高周波数域の割合が高い。このような音は、シャープネス(甲高さ)の値が高いと考えられる。   Further, pink noise [FIG. 7 (d)] has a gentle semicircular shape extending from a low frequency range to a high frequency range as compared with other in-vehicle noises, and the ratio of the high frequency range is high. Such a sound is considered to have a high sharpness value.

図8は本発明に係るラウドネス以外の音質評価指標値と「不快度」についての主観評価点との関係を示す図である。なお、図8には音圧レベル値(周波数重み補正をしていない素のレベル値)との関係も併せて示した。図8 (b) から、ピンクノイズは他の音に比べてシャープネス値が高いこと、図8 (c) から、連換のみの空調音は他に比べてトーナリティ値が高いことが確かめられる。   FIG. 8 is a diagram showing the relationship between the sound quality evaluation index value other than the loudness according to the present invention and the subjective evaluation point regarding the “discomfort level”. FIG. 8 also shows the relationship with the sound pressure level value (a prime level value without frequency weight correction). From FIG. 8 (b), it can be confirmed that pink noise has a higher sharpness value than other sounds, and FIG. 8 (c) confirms that the air-conditioning sound of only conversion has a higher tonality value than the other sounds.

図5、図6において抜粋した6種類の音について、「不快度」についての主観評価点と各音質評価指標値を表3に示す。なお、ここでは騒音レベルを約70dBとした音について示した。   Table 6 shows the subjective evaluation points and “sound quality evaluation index values” for “discomfort” for the six types of sounds extracted in FIGS. 5 and 6. Here, a sound with a noise level of about 70 dB is shown.

Figure 0005467015
Figure 0005467015

トーナリティやシャープネスはどちらも、スペクトルの特性に依存し、音の大きさには依存しない量であるため、同じ種類の音であればこれらの指標値は同じであり、全評価音を対象にした場合では、表2で示したように「不快度」に対する主観評価点との相関はそれぞれの指標単独では非常に低くなる。しかし、表3で示したように、音の大きさ(騒音レベル)を合わせた場合には、トーナリティやシャープネスが他の音に比べて高い音は「不快度」に対する主観評価点も他に比べて悪い傾向がある。つまり、同じ大きさの音であっても「不快度」に差が生じる一因として、トーナリティやシャープネスに差があることが考えられる。   Both tonality and sharpness depend on the spectral characteristics and do not depend on the volume of the sound, so these index values are the same for the same type of sound, and all evaluation sounds were targeted. In some cases, as shown in Table 2, the correlation between the “discomfort level” and the subjective evaluation point is very low for each index alone. However, as shown in Table 3, when the volume of sound (noise level) is adjusted, the tonality and sharpness of the sound is higher than that of the other sounds. Tend to be bad. In other words, there is a difference in tonality and sharpness as one factor that causes a difference in “discomfort” even with the same volume of sound.

なお、表3において「不快度」に関する主観評価点が悪い低級音や走行音+会話の音について見ると、ラフネスや変動強度の値が他の音に比べやや高めであり、これらの指標によっても不快感の増加を説明できるとも想像できるが、これらの音に関しては、その原因が特定できないことに対する不快感や音源そのものへの嫌悪感といった心理的要素が大きく、単純な物理指標だけで示すことは困難であると考えられる。   In addition, in Table 3, when looking at low-pitched sounds and running sounds + conversational sounds with a poor subjective evaluation score regarding “discomfort”, the values of roughness and fluctuation intensity are slightly higher than those of other sounds. It can be imagined that the increase in discomfort can be explained, but with regard to these sounds, psychological factors such as discomfort to the cause that cannot be identified and disgust to the sound source itself are large, and it is possible to show only with simple physical indicators It is considered difficult.

(不快感を考慮した車内音に対する評価指標)
今後、より快適な車内音環境を実現するためには、車内で聞こえるさまざまな音について、その大きさだけでなく、上記したように音質評価指標も含めた総合的な不快感を検討し乗客にとって心地良いように調整することが一つの方策である。このためには、鉄道車両内騒音に対する不快感を上記の音質評価指標を組み合わせた多変数の回帰式によって表すことで、より人間の感覚に合致した車内騒音の評価指標とすることが考えられる。例えば、この式によって計算した主観評価点の計算値がある基準(例えば、今回の主観評価点において「だいぶ不快」に対応する評価点4)を超えたときに、その音について詳細な分析をして音質改善に向けた対策をとることで、車内音環境についての快適性を向上させることが期待できる。
(Evaluation index for in-vehicle sound considering discomfort)
In the future, in order to realize a more comfortable in-vehicle sound environment, not only the volume of various sounds that can be heard in the vehicle, but also the overall discomfort including the sound quality evaluation index as described above will be examined. One measure is to adjust it comfortably. For this purpose, it is conceivable that an uncomfortable feeling with respect to the noise in the railway vehicle is expressed by a multivariable regression equation combined with the above sound quality evaluation index so as to be an evaluation index of the in-vehicle noise more matched to the human sense. For example, when the calculated value of the subjective evaluation score calculated by this formula exceeds a certain standard (for example, evaluation score 4 corresponding to “very discomfort” in the current subjective evaluation score), the sound is analyzed in detail. By taking measures to improve sound quality, it can be expected that comfort in the interior sound environment will be improved.

上記したように、車内騒音に対する乗客の不快感は、まず第一に音の聞こえる大きさを示すラウドネスとの相関が高いが、それだけでは同じ大きさの音でも不快度が異なる理由を説明できない。これを説明するため、他の音質評価指標も用いた重回帰分析により、さらに不快度との相関が高く乗客の不快感をより効率的に説明できるような総合的な評価指標を提案する。市販の統計解析ソフト(SPSS)を用いて、次に示す線形回帰式において各変数の係数を検討した。   As described above, passenger discomfort with respect to in-vehicle noise has a high correlation with loudness, which indicates how loud the sound can be heard, but it cannot explain why the discomfort level differs even with the same loudness. In order to explain this, a comprehensive evaluation index that has a higher correlation with the discomfort level and can more efficiently explain passenger discomfort is proposed by multiple regression analysis using other sound quality evaluation indices. Using commercially available statistical analysis software (SPSS), the coefficient of each variable was examined in the following linear regression equation.

不快度=A×ラウドネス+B×シャープネス+C×トーナリティ
+D×ラフネス+E×変動強度+F(定数) … (1)
7つの音質評価指標のうち、音圧レベル、騒音レベルはラウドネスと同じく「音の大きさ」という特徴を示すものであるため除外し、残る5つの指標を説明変数として、最も効率的な変数の組み合わせを重回帰分析のステップワイズ法により検討した。表4にその結果を示す。ただし、従属変数としては主観評価点(5段階評価の平均点)、説明変数である各音質指標値としてはそれぞれの実測値を用いたので、係数A〜E(非標準化係数)では各変数の寄与の大小は比較できない。このため、表4には寄与度をあらわす標準化係数を併せて示す。
Discomfort = A x loudness + B x sharpness + C x tonality + D x roughness + E x fluctuation intensity + F (constant) (1)
Of the seven sound quality evaluation indexes, the sound pressure level and the noise level are excluded because they show the characteristic of “sound volume” like the loudness, and the remaining five indexes are used as explanatory variables. The combination was examined by the stepwise method of multiple regression analysis. Table 4 shows the results. However, since subjective evaluation points (average score of five-level evaluation) are used as dependent variables and actual measurement values are used as sound quality index values that are explanatory variables, coefficients A to E (non-standardized coefficients) The magnitude of contribution cannot be compared. For this reason, Table 4 also shows the standardization coefficient representing the degree of contribution.

Figure 0005467015
Figure 0005467015

このように、鉄道車両内騒音に対する不快感を評価するには、ラウドネスだけではなく複数の音質指標を用いることにより、さらに相関の高い評価式〔上記式 (1) 〕を提案することができる。表4から、モデル(2)(3変数)または(3)(4変数)が妥当と思われるが、どの変数をいくつ選ぶかについては、それぞれの音質指標が表す物理的な意味と評価対象とする音を詳細に検討することによって最適なものを選択する必要がある。   Thus, in order to evaluate the discomfort with respect to the noise in the railway vehicle, it is possible to propose a highly correlated evaluation formula [the above formula (1)] by using not only the loudness but also a plurality of sound quality indexes. From Table 4, model (2) (three variables) or (3) (four variables) seems to be appropriate, but how many variables to choose depends on the physical meanings and evaluation targets of each sound quality index. It is necessary to select the most suitable one by examining the sound to be played in detail.

ここでは、例として、今回の被験者による主観評価実験において、表4のモデル(3)(ラウドネス、シャープネス、トーナリティ、変動強度の4変数による回帰式)による不快度の主観評価値について、計算値と実験結果との相関を図9に示す。   Here, as an example, in the subjective evaluation experiment by the subject this time, for the subjective evaluation value of discomfort by the model (3) in Table 4 (regression equation with four variables of loudness, sharpness, tonality, and fluctuation intensity) The correlation with the experimental results is shown in FIG.

本発明によれば、
(1) 鉄道車両内で聞こえる様々な音に対して、所内の防音室において被験者による主観評価実験を行った。主観評価値とその音の各種音質評価指標値を比較することによって、車内音に対する人間の主観がどの音質評価指標と相関が高いかを確認した。
According to the present invention,
(1) Subjective tests were conducted by subjects in a soundproof room in the soundproof room for various sounds that can be heard in railway cars. By comparing the subjective evaluation value and the various sound quality evaluation index values of the sound, it was confirmed which sound quality evaluation index the human subjectivity with respect to the in-vehicle sound had a high correlation with.

この結果、鉄道車両内騒音に対して「うるささ」を感じる度合いは、その音のラウドネスあるいは騒音レベルと相関が高い。これに対して「不快度」の度合いは、ラウドネスや騒音レベルとの相関は高いがそれだけでは十分には評価できない。「うるささ」と「不快度」に対する主観評価は音によってやや異なる傾向があり、音の大きさ、うるささが同程度でも音質によって不快感が異なることが確認された。   As a result, the degree of feeling “noisy” with respect to noise in the railway vehicle is highly correlated with the loudness or noise level of the sound. On the other hand, the degree of “discomfort” is highly correlated with loudness and noise level, but it cannot be evaluated sufficiently. Subjective evaluations for “noisiness” and “discomfort” tend to be slightly different depending on the sound, and it was confirmed that discomfort differs depending on the sound quality even if the sound volume and loudness are similar.

(2) 鉄道車両内の音に対する不快感について最も相関の高い評価量はラウドネスであるが、重回帰分析を行った結果、さらに他の音質評価指標値も加えた多重回帰式によってさらに相関の高い評価指標とすることができることを示した。    (2) Loudness is the most highly correlated evaluation value for unpleasantness of sound in railway vehicles, but as a result of multiple regression analysis, it is further correlated by multiple regression equations that include other sound quality evaluation index values. It was shown that it can be used as an evaluation index.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の鉄道車両内騒音の評価方法として、人間の感覚に合致した鉄道車両騒音の評価指標を用いることができる。   As an evaluation method for noise in a railway vehicle according to the present invention, an evaluation index for railway vehicle noise that matches a human sense can be used.

1 鉄道車両
2 車輪
3 台車
4 ドア
5 窓
6 車体左右中心線
7 車体前後中心線
8 床面
11 防音室
12 右側のスピーカ
13 左側のスピーカ
14 出力用機材
14−1 音出力用PC
14−2 USBオーディオキャプチャー
14−3 デジタルイコライザー
14−4 デジタルアンプ
14−5 スピーカ
A 被験者
B 実験者
DESCRIPTION OF SYMBOLS 1 Railcar 2 Wheel 3 Bogie 4 Door 5 Window 6 Car body left-right center line 7 Car body front-rear center line 8 Floor surface 11 Soundproof room 12 Right speaker 13 Left speaker 14 Output equipment 14-1 Sound output PC
14-2 USB audio capture 14-3 Digital equalizer 14-4 Digital amplifier 14-5 Speaker A Subject B Experimenter

Claims (2)

ラウドネス(dB)だけではなく、シャープネス(acum)、トーナリティ(tu)、ラフネス(asper)、変動強度(vacil)を含む変数による回帰式に基づいた、鉄道車両内騒音に対する不快感の評価指標を用いる鉄道車両内騒音の評価方法であって、前記回帰式が、不快度=A×ラウドネス+B×シャープネス+C×トーナリティ+D×ラフネス+E×変動強度+F(定数)とした線形回帰式(A〜Eは非標準化係数)であり、前記変数はラウドネス(dB)、シャープネス(acum)、トーナリティ(tu)、ラフネス(asper)、変動強度(vacil)の5変数に基づくことを特徴とする鉄道車両内騒音の評価方法。 An evaluation index of discomfort with respect to noise in a railway vehicle is used based on a regression equation based on variables including not only loudness (dB) but also sharpness (acum), tonality (tu), roughness (asper), and fluctuation intensity (vacil). A method of evaluating noise in a railway vehicle, wherein the regression equation is a linear regression equation in which the degree of discomfort = A × loudness + B × sharpness + C × tourality + D × roughness + E × variation intensity + F (constant). Evaluation of noise in a railway vehicle characterized in that the variable is based on five variables: loudness (dB), sharpness (acum), tonality (tu), roughness (asper), and fluctuation intensity (vacil). Method. 請求項1記載の鉄道車両内騒音の評価方法において、評価対象とする前記鉄道車両内騒音の種類が、新幹線車両の走行中および停車中の車内音であることを特徴とする鉄道車両内騒音の評価方法。 In the evaluation method of claim 1 Symbol in mounting the rail vehicle noise, the rail vehicle in the type of noise, railroad-vehicle noise, which is a traveling Shinkansen vehicles and interior noise parked to be evaluated Evaluation method.
JP2010187384A 2010-08-24 2010-08-24 Evaluation method of noise in railway vehicles Expired - Fee Related JP5467015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187384A JP5467015B2 (en) 2010-08-24 2010-08-24 Evaluation method of noise in railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187384A JP5467015B2 (en) 2010-08-24 2010-08-24 Evaluation method of noise in railway vehicles

Publications (2)

Publication Number Publication Date
JP2012047483A JP2012047483A (en) 2012-03-08
JP5467015B2 true JP5467015B2 (en) 2014-04-09

Family

ID=45902554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187384A Expired - Fee Related JP5467015B2 (en) 2010-08-24 2010-08-24 Evaluation method of noise in railway vehicles

Country Status (1)

Country Link
JP (1) JP5467015B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014212733A1 (en) * 2014-07-01 2016-01-07 Bayerische Motoren Werke Aktiengesellschaft Auditory examination of noises
KR101730598B1 (en) * 2015-03-30 2017-04-26 한양대학교 산학협력단 Apparatus and method for measuring flow rate based on vibration signal quantification
CA2990891A1 (en) 2015-06-30 2017-01-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forchung E.V. Method and device for associating noises and for analyzing
JP6699919B2 (en) * 2015-07-23 2020-05-27 日清オイリオグループ株式会社 Method and system for evaluating texture of porous food using regression equation
JP6768479B2 (en) * 2016-12-09 2020-10-14 大成建設株式会社 Building wind noise evaluation method
CN106933146B (en) * 2017-03-14 2023-04-14 吉林大学 Pedestrian warning sound control method for electric car
JP6980270B2 (en) * 2017-08-25 2021-12-15 地方独立行政法人東京都立産業技術研究センター Approximate sensory evaluation method of target sound under background noise and approximate sensory evaluation system of target sound under background noise
JP2019039857A (en) * 2017-08-28 2019-03-14 公益財団法人鉄道総合技術研究所 Evaluation method of in-car noise due to rail wavy abrasion, in-car noise evaluation system, and rail maintenance method using the same
KR102267098B1 (en) * 2017-11-07 2021-06-21 현대모비스 주식회사 Diagnostic apparatus and method for air conditioning noise of vehicle
CN109342076A (en) * 2018-09-20 2019-02-15 无锡吉兴汽车声学部件科技有限公司 Vehicle acoustics ten point system evaluation method
JP7415294B2 (en) 2019-11-07 2024-01-17 株式会社竹中工務店 Construction noise monitoring device
CN111949942B (en) * 2020-07-11 2023-11-10 中国第一汽车股份有限公司 Evaluation method for noise linearity in accelerating vehicle
CN112097894A (en) * 2020-08-17 2020-12-18 浙江工业大学 Method for detecting radiation noise qualification of horizontal driver of automobile seat
CN113125000B (en) * 2021-04-20 2022-11-29 中国汽车工程研究院股份有限公司 Abnormal sound grade judging method for in-vehicle air conditioning system
CN114544194B (en) * 2022-01-25 2023-06-23 东风汽车集团股份有限公司 Vehicle road noise evaluation method based on spectrum analysis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257621A (en) * 2000-12-27 2002-09-11 Ricoh Co Ltd Image forming apparatus and method of evaluating sound quality of image forming apparatus
JP2002196632A (en) * 2000-12-27 2002-07-12 Ricoh Co Ltd Image forming apparatus
JP2004219976A (en) * 2002-07-29 2004-08-05 Ricoh Co Ltd Image formation apparatus, sound quality evaluation method, method of manufacturing image formation apparatus, and method of remodeling image formation apparatus
JP4521524B2 (en) * 2005-11-30 2010-08-11 学校法人日本大学 Track state analysis method, track state analysis apparatus, and track state analysis program
JP4819507B2 (en) * 2006-01-18 2011-11-24 株式会社リコー Apparatus sound quality evaluation method and apparatus sound quality evaluation apparatus
JP2009036603A (en) * 2007-08-01 2009-02-19 Calsonic Kansei Corp Method and system for evaluating sound quality of air-conditioning sound

Also Published As

Publication number Publication date
JP2012047483A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5467015B2 (en) Evaluation method of noise in railway vehicles
Soeta et al. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function
Parizet et al. Noise assessment in a high-speed train
Kaczmarek et al. Annoyance of time-varying road-traffic noise
JP2010066217A (en) Method for evaluating sound quality of air conditioning sound, and air conditioning unit
Kuwano et al. Psychological evaluation of sound environment in a compartment of a high-speed train
JP2014201300A (en) Vehicle-approach notification device and vehicle-approach notification method
Samardzic et al. In-vehicle speech intelligibility for different driving conditions using the Speech Transmission Index
Swart Interior and Motorbay sound quality evaluation of full electric and hybrid-electric vehicles based on psychoacoustics
JP2009036603A (en) Method and system for evaluating sound quality of air-conditioning sound
Khan Evaluation of acoustical comfort in passenger trains
Soeta et al. Subjective preference for air-conditioner sounds inside a car in summer and winter
Parizet et al. Continuous evaluation of noise uncomfort in a bus
Fiebig et al. Psychoacoustic evaluation of traffic noise
Wagner et al. Subjective and objective evaluation of the air conditioning sound
Masullo et al. HVAC noise in car cabin: a preliminary comparison between ICEVs and HEVs
Hardy Railway passengers and noise
Shafiquzzaman Khan Effects of masking sound on train passenger aboard activities and on other interior annoying noises
Kuwano et al. Subjective impression of copy machine noises: An examination of physical metrics for the evaluation of sound quality
Yamauchi et al. Perceptual difference on HVAC sound quality between electric and conventional vehicles
Carr Perception of wind noise in vehicles
Zakri et al. Evaluating perceived acoustic environment in executive class passenger train using soundscape approach
Hidayah et al. Noise Identification in Passenger Train and It's Relation to Passenger Perception
Patania et al. Analysis of acoustic climate on board public transport
Swart The psychoacoustics of electric vehicle signature sound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees