JP5461125B2 - Lead-free high-temperature bonding material - Google Patents
Lead-free high-temperature bonding material Download PDFInfo
- Publication number
- JP5461125B2 JP5461125B2 JP2009216387A JP2009216387A JP5461125B2 JP 5461125 B2 JP5461125 B2 JP 5461125B2 JP 2009216387 A JP2009216387 A JP 2009216387A JP 2009216387 A JP2009216387 A JP 2009216387A JP 5461125 B2 JP5461125 B2 JP 5461125B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- copper
- temperature
- solder
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、一般的なはんだ付け温度以上の高温環境下で使用される鉛フリー高温用接合材料に関するものである。 The present invention relates to a lead-free high-temperature bonding material used in a high-temperature environment that is equal to or higher than a general soldering temperature.
高温はんだは、一般的な接合用はんだ材料であるSn−Pb系はんだ合金のはんだ付け温度域でも接続部の強度を確保することができる。そのため、例えば、半導体装置内部は代表的な高温はんだのPb−5Snはんだ(融点:310〜314℃)にて、はんだ付けした後、半導体装置自身を基板に接続するリフローはんだ付けには半導体装置内部のはんだ付け部を溶かさないために融点の低い、汎用のSn−37Pb共晶はんだ(融点:183℃)で接続する温度階層接続が適用されている。 The high-temperature solder can ensure the strength of the connecting portion even in the soldering temperature range of the Sn—Pb solder alloy which is a general joining solder material. Therefore, for example, the inside of the semiconductor device is soldered with a typical high-temperature solder Pb-5Sn solder (melting point: 310 to 314 ° C.), and then reflow soldering for connecting the semiconductor device itself to the substrate is performed inside the semiconductor device. In order not to melt the soldering portion, a temperature hierarchical connection in which a general-purpose Sn-37Pb eutectic solder having a low melting point (melting point: 183 ° C.) is applied.
近年、環境問題対応として、EU圏で電子機器などに含まれるPbなどの特定有害物質を規制するRoHS指令などにより、製品の鉛フリー化が求められている。リフロー用はんだとしては、Sn−37Pb共晶はんだに代わり、Sn−Ag−Cu系共晶系合金(融点:227℃)が実用化されている。しかし、これらリフローはんだ以上の融点を有すことが求められる高温はんだについては、Au−20Sn(融点:280℃)が知られているが、Pb−Sn系はんだに対してコストや機械的特性の点で劣っているため殆ど使用されておらず、他の成分系についても実用化には至っていないため、RoHS指令において
もPb高温はんだについては適用除外項目となっている。
In recent years, in order to deal with environmental problems, lead-free products are required by the RoHS Directive that regulates specific harmful substances such as Pb contained in electronic devices in the EU. As the solder for reflow, Sn—Ag—Cu eutectic alloy (melting point: 227 ° C.) has been put into practical use instead of Sn-37Pb eutectic solder. However, Au-20Sn (melting point: 280 ° C.) is known as a high temperature solder required to have a melting point higher than these reflow solders. However, the cost and mechanical properties of Pb—Sn solder are lower. Since it is inferior in terms of use, it has hardly been used and other component systems have not been put into practical use. Therefore, even in the RoHS directive, Pb high-temperature solder is excluded from application.
また、高温はんだ合金の開発に関しては、例えば特開2003−260587号公報(特許文献1)には、Sn−Cu系はんだが記載されている。この方法によると、Sn粉末とCu粉末とを混合した材料をはんだペーストとして用い、高温はんだ付け時には、Sn粉末が溶けてはんだ付けに寄与すると同時に、Cu粉末と反応して高融点のSn−Cu金属間化合物相が生成する。この化合物相はリフロー時には溶けずにはんだ付け部の強度を保つ働きをするものである。 Regarding the development of a high-temperature solder alloy, for example, Japanese Patent Application Laid-Open No. 2003-260587 (Patent Document 1) describes Sn—Cu based solder. According to this method, a material in which Sn powder and Cu powder are mixed is used as a solder paste. During high-temperature soldering, Sn powder melts and contributes to soldering, and at the same time, reacts with Cu powder and has a high melting point Sn—Cu. An intermetallic phase is formed. This compound phase functions to maintain the strength of the soldered part without melting during reflow.
しかしながら、上述した特許文献1の発明によると、実用的に使用される粉末は10μm程度の大きさであるため、Cu粉末はすべて反応せず接合部Sn粉末とCu粉末との界面に生成する金属間化合物相の組織はCu粉末の表面に形成されるため粗く、強度にばらつきが生じる。更に、強度重視のためにはCu粉末を多く使用しなければならないため、Sn粉末の影響が大きい、はんだ付け特性が低下するなどの問題がある。また、金属間化合物の生成は融液状態のSnと固体状態のCuとの拡散反応によるため強度維持に寄与するCu6 Sn5 金属間化合物相の生成速度が遅く反応させるのに時間がかかるなどの問題
もある。
However, according to the invention of Patent Document 1 described above, since the powder that is practically used is about 10 μm in size, all of the Cu powder does not react and is generated at the interface between the joint Sn powder and the Cu powder. Since the structure of the intermetallic phase is formed on the surface of the Cu powder, it is rough and varies in strength. Furthermore, since much Cu powder must be used for emphasizing strength, there are problems such as a large influence of Sn powder and a decrease in soldering characteristics. In addition, since the formation of intermetallic compounds is due to the diffusion reaction between melted Sn and solid state Cu, the rate of formation of the Cu 6 Sn 5 intermetallic compound phase that contributes to strength maintenance is slow, and it takes time to react. There is also a problem.
一方、粉末を微細化した粒子をはんだ材に添加して特性改善に用いることも検討されているが、例えばWO2006/126564号公報(特許文献2)に示すように、1μm未満の粒子をはんだ付け後の組織を微細化する目的で添加されており、上述した特許文献2のような金属間化合物の接合部を得るための合金反応を目的とした添加はされていないのが現状である。 On the other hand, it has been studied to add fine particles of a powder to a solder material to improve the characteristics. For example, as shown in WO 2006/126564 (Patent Document 2), particles having a size of less than 1 μm are soldered. It is added for the purpose of refining the subsequent structure, and it is not added for the purpose of an alloy reaction for obtaining a joint portion of an intermetallic compound as in Patent Document 2 described above.
そこで、発明者らは、特開2008−178909号公報(特許文献3)にて、2種類の元素A及びBからなる合金で、元素Aが元素Bより融点が高く、元素Bからなる常温安定相と元素A及びBからなる常温安定相AmBn(m,nは合金系による固有の数値)を有する合金において元素Aを元素Bからなる常温安定相中に過飽和固溶させることによって作製した接合材料を用い、過飽和固溶体が分解して常温安定相AmBnが析出する温度に保持して溶解接合させることによってPb−Sn共晶はんだやSn−Ag−Cu鉛フリーはんだのリフロー温度においても接合強度を維持できることを見出した。 Therefore, the inventors disclosed in Japanese Patent Application Laid-Open No. 2008-178909 (Patent Document 3) an alloy composed of two types of elements A and B. Element A has a higher melting point than element B and is stable at room temperature composed of element B. A bonding material produced by supersaturating solid solution of element A in a room temperature stable phase composed of element B in an alloy having a room temperature stable phase AmBn composed of a phase and elements A and B (m and n are values inherent to the alloy system) Is used to maintain the bonding strength even at the reflow temperature of Pb-Sn eutectic solder and Sn-Ag-Cu lead-free solder by maintaining the temperature at which the supersaturated solid solution decomposes and the room temperature stable phase AmBn precipitates I found out that I can do it.
上記発明は、一般のはんだ付け時の接合強度を確保することを目的としており、元素AをCu、元素BをSnとした材料ではSn相が一定の割合で残存する。そのため、例えば半導体素子とヒートシンクを接合する接合材や高温環境下に曝される部材を接合するための材料として、急冷凝固したSnCu粉末を使用する場合、リフロー温度より更に高温となり、液相状態のSnが接合部より流れ出す可能性がある。
以上より、リフロー温度よりさらに高温側で、はんだ付け性を確保しつつ、溶融Sn液相が流れ出さず、強度を維持できる実用的な非Pb接合材は無いのが現状である。 As described above, there is no practical non-Pb bonding material that can maintain the strength without securing the solderability on the higher temperature side than the reflow temperature and without flowing the molten Sn liquid phase.
上述した特許文献3による急冷凝固したSnCu合金粉末に、直径が1μm未満の大きさ(以下、サブミクロンという)のCu系粉末を適量混合する。サブミクロンの粉末は比表面積が大きく反応性が高いため、過飽和固溶体からの析出反応に加えて更に添加Cu系粉末と余分Snとの反応により、接合部のCu6 Sn5 やCu3 Snを含む組織割合を増加させる。これにより接合温度は通常のはんだ接合温度と同じであるにも関わらず、接合後はリフローより高い温度でも高温強度を確保しつつ、液相状態のSnが流れ出さない接合部が得られる。 An appropriate amount of Cu-based powder having a diameter of less than 1 μm (hereinafter referred to as submicron) is mixed with the rapidly solidified SnCu alloy powder according to Patent Document 3 described above. Since the submicron powder has a large specific surface area and high reactivity, it contains Cu 6 Sn 5 and Cu 3 Sn in the joint by further reacting with the added Cu-based powder and extra Sn in addition to the precipitation reaction from the supersaturated solid solution. Increase organizational ratio. As a result, although the joining temperature is the same as the normal solder joining temperature, a joined portion in which Sn in the liquid phase does not flow out can be obtained while securing a high temperature strength even after the joining at a temperature higher than the reflow.
但し、Cuのサブミクロン粉末は、粉砕、気相反応等いずれの製造方法を採用してもコスト高となるが、より安価な酸化銅(Cu2 O、CuO)や表面酸化したCuでも比表面積が大きくなるサブミクロン粉末を用いた場合は、酸化層の影響を一般的な粉末よりも少なくでき、溶融Snと接触してCu6 Sn5 やCu3 Snと言ったCuとSnの反応による金属間化合物の形成が起こる。更に、はんだ用フラックスを添加した場合、はんだ用フラックスがはんだ粉末表面の酸化層だけでなく酸化銅の還元作用も同時に作用することで、より効果が高くなる。 However, Cu submicron powder is expensive regardless of the production method such as pulverization or gas phase reaction, but the specific surface area of copper oxide (Cu 2 O, CuO) or surface-oxidized Cu is also cheaper. When using submicron powders with a large particle size, the effect of the oxide layer can be reduced compared to general powders, and the metal caused by the reaction between Cu and Sn, such as Cu 6 Sn 5 or Cu 3 Sn, in contact with molten Sn Intermetallic compound formation occurs. Furthermore, when the solder flux is added, the solder flux acts not only on the oxide layer on the surface of the solder powder but also on the reducing action of copper oxide at the same time.
以上より、酸化銅や表面酸化したCu粉末でもサブミクロン粉末を使用した場合には過飽和析出反応に加えて上述の添加Cu粉末と余分Snとの反応により、接合部全体をCu6 Sn5 やCu3 Snを含む組織割合を増加させられる。これにより、接合温度は通常のはんだ接合温度と同じであるにも関わらず、接合後はリフローより高い温度でも溶融せずに高温強度を確保し、Snの流れ出しを防止できる接合部を得られることを見出した。 From the above, when submicron powder is used even with Cu oxide or surface oxidized Cu powder, in addition to the supersaturated precipitation reaction, the entire joined portion is made Cu 6 Sn 5 or Cu by reaction with the above-mentioned added Cu powder and excess Sn. 3 Increases the proportion of tissue containing Sn. As a result, it is possible to obtain a joint that can secure high-temperature strength without melting even at a temperature higher than reflow after joining, and prevent Sn from flowing out, even though the joining temperature is the same as the normal solder joining temperature. I found.
その発明の要旨とするところは、
(1)Snよりなる粉末および/またはSnCu合金よりなる粉末と、銅、酸化銅、酸化第二銅、表面酸化層を有する銅粉末のいずれか1種または2種以上からなる1μm未満の粒径の銅微粉末とを混合してなる材料であって、前記SnCu合金が、質量%で、Cuが38%以下で残部がSnと不可避的不純物からなると共に、前記Snよりなる粉末および/またはSnCu合金よりなる粉末と、前記銅微粉末の混合割合が、質量比で、7.00:3.00〜9.95:0.05である材料を用いることを特徴とする鉛フリー高温用接合材料。
The gist of the invention is that
(1) A particle diameter of less than 1 μm composed of any one or more of a powder composed of Sn and / or a powder composed of a SnCu alloy, and copper powder having copper, copper oxide, cupric oxide, and a surface oxide layer. The SnCu alloy is a material comprising a mixture of copper fine powder, and the SnCu alloy comprises , by mass%, Cu of 38% or less, the balance being Sn and inevitable impurities, and the Sn powder and / or SnCu. a powder of an alloy, the mixing ratio of the fine the copper fine powder, a mass ratio, 7.00: 3.00 to 9.95: bonding material for lead-free high temperature which comprises using a material that is 0.05 .
(2)Snよりなる粉末および/またはSnCu合金よりなる粉末と、銅、酸化銅、酸化第二銅、表面酸化層を有する銅粉末のいずれか1種または2種以上からなる1μm未満の粒径の銅微粉末を混合してなる材料に、フラックスを混合して用いることを特徴とする、請求項1に記載の鉛フリー高温用接合材料。 (2) a powder consisting of powder and / or SnCu alloy consisting Sn, copper, copper oxide, cupric oxide, copper powder that have a surface oxide layer either one or less than 1μm of two or more The lead-free high-temperature bonding material according to claim 1, wherein a flux is mixed with a material obtained by mixing copper fine powder having a particle size .
(3)Snよりなる粉末および/またはSnCu合金よりなる粉末と、銅、酸化銅、酸化第二銅、表面酸化層を有する銅粉末のいずれか1種または2種以上からなる1μm未満の粒径の銅微粉末を混合してなる材料に、フラックスを質量%で1〜30%添加することを特徴とする、請求項2に記載の鉛フリー高温用接合材料にある。 (3) a powder consisting of powder and / or SnCu alloy consisting Sn, copper, copper oxide, cupric oxide, copper powder that have a surface oxide layer either one or less than 1μm of two or more The lead-free high-temperature bonding material according to claim 2, wherein 1 to 30% by mass of flux is added to a material obtained by mixing copper fine powder having a particle size .
本発明材は、接合温度は通常のはんだ接合温度と同じであるにも関わらず、接合後はリフローより高い温度でも高温強度を確保しつつ、余分の溶融Snが流れ出さない接合部を得られる材料を提供するものであり、高温はんだ、高温部材接合用ロウ材、高温に曝される貫通孔に充填する封孔材等に対応した、鉛フリー高温用接合材として用いることが可能となる。 Although the material of the present invention has a bonding temperature that is the same as the normal solder bonding temperature, it is possible to obtain a bonded portion in which excess molten Sn does not flow out while securing high temperature strength even at a temperature higher than the reflow after bonding. The present invention provides a material, and can be used as a lead-free high-temperature bonding material corresponding to high-temperature solder, brazing material for bonding high-temperature members, sealing material filling through holes exposed to high temperatures, and the like.
以下本発明について詳細に説明する。
Sn粉末はアトマイズ法や粉砕法等で製造したものを用いれば良い。SnCu粉末は、Snと38質量%以下のCu合金組成を有するようにアトマイズ法やメルトスパン法および水中紡糸法などの急冷法によって作製する。そのときの形状については特に限定するものではなく、粉末、線、棒、薄帯、板等でもよい。本発明の組成範囲のSnCu合金中では、急冷しなければSn相とCu6 Sn5 金属間化合物が平衡状態図に従った割合で存在する。
The present invention will be described in detail below.
As the Sn powder, a powder produced by an atomizing method or a pulverizing method may be used. The SnCu powder is produced by a rapid cooling method such as an atomizing method, a melt span method, or an underwater spinning method so as to have Sn and a Cu alloy composition of 38% by mass or less. The shape at that time is not particularly limited, and may be powder, wire, bar, ribbon, plate or the like. In the SnCu alloy having the composition range of the present invention, the Sn phase and the Cu 6 Sn 5 intermetallic compound are present in a proportion according to the equilibrium diagram unless quenched.
しかし、急冷することによって本来の組成比よりもCuがSn相に強制固溶され、見かけ上Sn相比が増大し、かつこのSn固溶体は、本来のSn相とほぼ同等の230℃近傍で溶融し、良好なはんだ付けに寄与すると共に溶融したSn相は、Cu及び/または酸化銅、及び/または酸化第二銅、及び/または表面酸化層を有すCu粉末と金属間化合物を形成する反応が起こる。 However, by rapid cooling, Cu is forcibly dissolved in the Sn phase rather than the original composition ratio, the Sn phase ratio apparently increases, and this Sn solid solution melts at around 230 ° C., which is almost equivalent to the original Sn phase. In addition, the Sn phase that contributes to good soldering and melts forms an intermetallic compound with Cu and / or copper oxide and / or cupric oxide and / or Cu powder having a surface oxide layer. Happens.
急冷する方法は上述したように、アトマイズ法やメルトスパン法などがあるが、特に、ヘリウムガスアトマイズ法やメルトスパン法が急冷手段としては有効である。しかし、遠心噴霧やアルゴンアトマイズ、窒素ガスアトマイズは、はんだ粉末を量産的に製造する手段としては非常に有効であり、その冷却速度はアトマイズされた後の粉末粒径に依存するため、手段であっても細粒については、本発明の範疇に帰属するものである。また、例えば水中紡糸法によれば線材が得られる。また、中紡糸法と矯正または引抜き加工をすれば棒線が得られる。 As described above, the rapid cooling method includes the atomizing method and the melt span method, and the helium gas atomizing method and the melt span method are particularly effective as the rapid cooling means. However, centrifugal atomization, argon atomization, and nitrogen gas atomization are very effective means for mass production of solder powder, and the cooling rate depends on the particle size of the powder after atomization, and is a means. The fine grains belong to the category of the present invention. Further, for example, a wire is obtained by an underwater spinning method. In addition, a bar wire can be obtained by the mid-spinning method and straightening or drawing.
SnCu系合金中のCu含有量は38%以下が最適である。その理由は、ぬれ性を確保して、はんだ付けに寄与するSn固溶体量とはんだ付け後の強度維持に寄与するCu6 Sn5 金属間化合物量とのバランスで決定される。本発明材量の目的に適用するには、Cu量が38%を超えると急冷法であっても、Cu6 Sn5 金属間化合物生成量が大幅に多くなり、はんだ付けに寄与するSn固溶体量が減少し、ぬれ性が劣化して良好なはんだ付けが困難となるため、その上限を38%とした。また、Cu量が10%未満では、はんだ付け後の強度維持に寄与するCu6 Sn5 金属間化合物量を確保するためCu及び/または酸化銅、酸化第二銅、表面酸化層を有すCu粉末サブミクロン粉末の混合量が増加する傾向にあるため、好ましくは10〜32%とする。 The optimum Cu content in the SnCu alloy is 38% or less. The reason is determined by the balance between the amount of Sn solid solution contributing to soldering while ensuring wettability and the amount of Cu 6 Sn 5 intermetallic compound contributing to maintaining the strength after soldering. For application to the purpose of the present invention material amount, if the Cu amount exceeds 38%, even if the quenching method is used, the amount of Cu 6 Sn 5 intermetallic compound produced is greatly increased, and the amount of Sn solid solution that contributes to soldering The wettability deteriorates and good soldering becomes difficult, so the upper limit was made 38%. Further, if the Cu amount is less than 10%, Cu and / or copper oxide, cupric oxide, Cu having a surface oxide layer are provided to ensure the amount of Cu 6 Sn 5 intermetallic compound that contributes to maintaining the strength after soldering. Since the mixing amount of powder submicron powder tends to increase, it is preferably 10 to 32%.
Cu及び/または酸化銅、酸化第二銅、表面酸化層を有すサブミクロンのCu粉末はSnCuと同様の手法で作製後に粉砕等によりサブミクロンにする手法、もしくは気相中の反応や液相中の反応から直接得る手法、真空もしくは減圧下で金属を溶融させた蒸気より直接得る手法等がある。いずれの場合もSnまたはSnCu粉末と均一に分散させること、並びにSnとCuの金属間化合物を生成させる反応を促進するために比表面積を確保することが必要であり、本発明の材料として適用するためには、サブミクロン以下の粒径を有することが求められる。上記サブミクロン以下の粒径とは1μm以下である必要がある。1μmを超えるとSnまたはSnCu粉末と混合する際に均一に分散すること並びに反応を促進するための比表面積の確保が困難となる。したがって、1μm以下とした。 Submicron Cu powder with Cu and / or copper oxide, cupric oxide, and surface oxide layer is made by the same method as SnCu, then submicron by pulverization etc., or reaction or liquid phase in gas phase There are a technique obtained directly from the reaction inside, a technique obtained directly from vapor obtained by melting a metal under vacuum or reduced pressure, and the like. In any case, it is necessary to uniformly disperse with Sn or SnCu powder, and to secure a specific surface area in order to promote the reaction to form an intermetallic compound of Sn and Cu, and is applied as a material of the present invention. Therefore, it is required to have a particle size of submicron or less. The sub-micron particle size needs to be 1 μm or less. When it exceeds 1 μm, it becomes difficult to uniformly disperse when mixing with Sn or SnCu powder and to secure a specific surface area for promoting the reaction. Therefore, the thickness is set to 1 μm or less.
フラックスは、ロジン系や塩化物系フラックスで還元作用が150〜350℃で有効となるものであれば、一般的なはんだ付け用フラックスを用いてよい。フラックスは、はんだペーストの粘度を調整すると共に通常はんだボールの酸化皮膜を除去し、ぬれ性を確保するために用いられるが、本発明では酸化銅/酸化第二銅/表面酸化層を持つCu系粉末の還元作用を得るためにも用いられる。 As the flux, a general soldering flux may be used as long as it is a rosin-based or chloride-based flux whose reducing action is effective at 150 to 350 ° C. The flux is usually used to adjust the viscosity of the solder paste and remove the oxide film of the solder ball to ensure the wettability. In the present invention, the Cu-based oxide has a copper oxide / cupric oxide / surface oxide layer. It is also used to obtain a reducing action of powder.
SnCu粉末と、Cu及び/または酸化銅、酸化第二銅、表面酸化層を有すCu粉末との混合比を7.00:3.00〜9.95:0.05とする。Cu及び/または酸化銅、酸化第二銅、表面酸化層を有すCu粉末の混合比は、SnCu粉末のSn量とのバランスで決定される。しかし、7.00:3.00未満では、Cuが余剰となり、接合部にCuのクラスターが形成される。これは、250℃といった、通常のはんだ付け温度で溶融しないため接合に寄与せず、接合部全体の強度が低下する。9.95:0.05以上では、溶融・凝固後の接続部組織におけるCuSn金属間化合物の形成が不十分となり、残存Sn相が多くなりすぎ、CuSn金属間化合物でSn相を囲む接合部を得ることが困難となることから、7.00:3.00〜9.95:0.05とする。 The mixing ratio of SnCu powder and Cu and / or copper oxide, cupric oxide, Cu powder having a surface oxide layer is set to 7.00: 3.00 to 9.95: 0.05. The mixing ratio of Cu and / or copper oxide, cupric oxide, and Cu powder having a surface oxide layer is determined by the balance with the Sn amount of the SnCu powder. However, if it is less than 7.00: 3.00, Cu becomes excessive, and Cu clusters are formed at the joint. This does not melt at a normal soldering temperature such as 250 ° C., so it does not contribute to the joining, and the strength of the whole joint is reduced. When 9.95: 0.05 or more, formation of the CuSn intermetallic compound in the joint structure after melting and solidification becomes insufficient, the remaining Sn phase becomes too much, and the joint portion surrounding the Sn phase with the CuSn intermetallic compound is formed. Since it becomes difficult to obtain, it is set to 7.00: 3.00 to 9.95: 0.05.
フラックスは、はんだペーストの粘度を調整すると共に、溶融・凝固後の接続部組織におけるCuSn金属間化合物の形成促進させる。粉末表面の酸化層や酸化物の還元効果を発揮するためには、粉末混合材に対する重量比で1%以上必要である。但し30%を超えるとフラックス残渣が接合部組織内部に残るため、これがボイドとなり、接合部全体の強度が低下する。 The flux adjusts the viscosity of the solder paste and promotes the formation of CuSn intermetallic compounds in the joint structure after melting and solidification. In order to exert the reduction effect of the oxide layer and oxide on the powder surface, the weight ratio with respect to the powder mixture is 1% or more. However, if it exceeds 30%, the flux residue remains inside the joint structure, which becomes a void, and the strength of the whole joint is reduced.
上記フラックスとしては、例えばロジン系フラックス、塩化亜鉛等を含む水溶性フラックス等で、部品およびパターン表面の酸化物除去、はんだ付け中の再酸化防止並びに溶融はんだの表面張力低下の作用を有し、はんだ付け性を向上させるものをいう。さらに、フラックスの作用をさらに強化させ、はんだ付け性を向上させる酸無水物等の活性剤を添加しても良い。 As the above-mentioned flux, for example, a rosin flux, a water-soluble flux containing zinc chloride, etc., has the action of removing oxides on the surface of parts and patterns, preventing reoxidation during soldering, and reducing the surface tension of molten solder, What improves solderability. Furthermore, an activator such as an acid anhydride that further enhances the action of the flux and improves solderability may be added.
以上の範囲で制御された、接合材は通常のはんだ付け温度で十分な接合部を形成できる。かつ、得られた接合部はCuSn金属間化合物で形成されるため通常のはんだ付け温度で、接合強度を確保するとともに、液相のSnはCuSn金属間化合物で囲まれるため、流れ出しなどの悪影響を及ぼさない。 The bonding material controlled in the above range can form a sufficient bonding portion at a normal soldering temperature. In addition, since the obtained joint is formed of CuSn intermetallic compound, the bonding strength is ensured at a normal soldering temperature, and the liquid phase Sn is surrounded by the CuSn intermetallic compound. Does not reach.
図1は、Sn25Cuはんだ粉末とCu2 Oサブミクロン粉末を混合(混合比9:1)、塩化物系フラックスを重量比15%添加してペースト化、これを大気中で250℃にて加熱して形成した接合部の電子顕微鏡による断面観察状態を示す写真である。この図に示すように、図1(a)は混合状態を示す電子顕微鏡による断面写真であり、図1(b)は混合した後250℃で加熱、凝固後の電子顕微鏡による断面写真である。このように、結果を電子顕微鏡にて断面観察を実施し、成分についてはEDSにて分析を行い、組織の同定を行った。混合状態では、Sn25Cuはんだ粉末とCu2 Oサブミクロン粉末が反応せず、粉末外側にCu2 Oサブミクロン粉末が凝集しているが、フラックス混合したペーストを加熱した場合、反応が進み全てCu6 Sn5 相となっていることが分かる。 FIG. 1 shows a paste made by mixing Sn 25 Cu solder powder and Cu 2 O submicron powder (mixing ratio 9: 1), adding 15% by weight of chloride-based flux, and this is 250 ° C. in the atmosphere. It is a photograph which shows the cross-sectional observation state by the electron microscope of the junction part formed by heating. As shown in this figure, FIG. 1A is a cross-sectional photograph taken by an electron microscope showing a mixed state, and FIG. 1B is a cross-sectional photograph taken by an electron microscope after mixing and heating at 250 ° C. Thus, the results were subjected to cross-sectional observation with an electron microscope, the components were analyzed with EDS, and the tissue was identified. In the mixed state, the Sn 25 Cu solder powder and the Cu 2 O submicron powder do not react, and the Cu 2 O submicron powder is agglomerated on the outside of the powder. it is found that a Cu 6 Sn 5 phase.
以下、本発明について実施例により具体的に説明する。
図2は、本発明に係るSnCu粉末とCu2 Oサブミクロン粉末とフラックスとの混合ペーストを加熱してCu板同士を接合、その断面を研磨し電子顕微鏡により断面観察した状態を示す写真である。すなわち、Sn25Cu粉末とCu2 Oサブミクロン粉末を9.5:0.5で混合ペーストを作製し本発明材とした。Cu板の間に本発明材を塗布し、250℃で加熱して15分間保持した後、室温まで冷却してCu板同士を接合した。その接合断面を割出して研磨し、電子顕微鏡にて観察したものである。
Hereinafter, the present invention will be specifically described with reference to examples.
FIG. 2 is a photograph showing a state in which a mixed paste of SnCu powder, Cu 2 O submicron powder and flux according to the present invention is heated to bond Cu plates together, the cross section is polished, and the cross section is observed with an electron microscope. . That is, a mixed paste of Sn 25 Cu powder and Cu 2 O submicron powder was prepared at 9.5: 0.5 to obtain the material of the present invention. The material of the present invention was applied between Cu plates, heated at 250 ° C. and held for 15 minutes, and then cooled to room temperature to join the Cu plates together. The bonded cross section was indexed and polished, and observed with an electron microscope.
この図2に示すように、Cu板上でぬれ広がり、Cuとの界面にCu3 Sn、内部はCu6 Sn5 相となる接合部が得られた。この接合部はSnが見られないため融点が415℃以上となる。よって、本発明材は250℃加熱で部材を接合でき、かつ通常のはんだ付け温度以上の耐熱性を持ち、余分のSn相が無い接合部が得られた。同様に本発明材と比較材についてそれぞれ接合後、断面に沿って切断し、金属顕微鏡並びに走査型電子顕微鏡(SEM)にて観察を行った。その結果を表1に示す。 As shown in FIG. 2, a joint was obtained that spreads on the Cu plate and has Cu 3 Sn at the interface with Cu and a Cu 6 Sn 5 phase inside. Since this junction does not show Sn, the melting point is 415 ° C. or higher. Therefore, the material of the present invention was able to join members by heating at 250 ° C., and had a heat resistance equal to or higher than a normal soldering temperature, and a joined portion having no extra Sn phase was obtained. Similarly, the inventive material and the comparative material were each joined, then cut along a cross section, and observed with a metal microscope and a scanning electron microscope (SEM). The results are shown in Table 1.
表1に示す、ぬれ性はCu板と接合部が面接触、かつSnとCuが十分に拡散していることを示すCu3 Sn金属間化合物を形成しているのを○とし、点接触のみの場合は△、点接触も無いのをぬれ性無しの×とした。接合強度は、上記接合材(接合面積5mm2 )を350℃に再加熱し15分保持後、Cu板に加重を掛けて接合部の高温せん断試験を実施、せん断力5.0N以上を○とし、それ未満を強度不足の×とした。 The wettability shown in Table 1 indicates that the Cu plate and the joint are in surface contact, and a Cu 3 Sn intermetallic compound indicating that Sn and Cu are sufficiently diffused is formed as ◯, and only point contact. In the case of △, the absence of point contact was evaluated as x without wettability. The bonding strength was determined by reheating the above-mentioned bonding material (bonding area 5 mm 2 ) to 350 ° C. and holding it for 15 minutes, then applying a high temperature shear test to the bonded portion by applying a load to the Cu plate, and setting a shearing force of 5.0 N or more as “◯”. Less than that, it was set as x with insufficient strength.
表1に示すように、本発明例No.5〜7はSn粉末のみにCu系サブミクロン粉末を混合したもので、No.8〜9はCu系サブミクロン粉末を2種または3種混合したのち、Snおよび/またはSnCu合金粉末と混合したもの、No.10〜13はSn粉とSnCu粉を混合したのち、Cu系サブミクロン粉末を混合したものである。 As shown in Table 1, Example No. of the present invention. Nos. 5 to 7 are obtained by mixing Cu-based submicron powder only with Sn powder. Nos. 8 to 9 are obtained by mixing two or three Cu-based submicron powders and then mixing them with Sn and / or SnCu alloy powders. Nos. 10 to 13 are obtained by mixing Sn powder and SnCu powder and then mixing Cu-based submicron powder.
表1に示すように、比較例No.14はSnおよび/またはSnCu合金粉末中のCuが高いために、250℃でのぬれ性がなく、350℃での接合強度が弱い。比較例No.15はSnおよび/またはSnCu合金粉末中のCuが低いために、250℃でのぬれ性はあるが、350℃での接合強度が弱い。比較例No.16はサブミクロン粉末の粒径が大きいために、250℃でのぬれ性は点接触のみであり、350℃での接合強度が弱い。 As shown in Table 1, Comparative Example No. No. 14 has high Cu in the Sn and / or SnCu alloy powder, so there is no wettability at 250 ° C., and the bonding strength at 350 ° C. is weak. Comparative Example No. No. 15 has wettability at 250 ° C. due to low Cu in the Sn and / or SnCu alloy powder, but the bonding strength at 350 ° C. is weak. Comparative Example No. Since No. 16 has a large particle size of submicron powder, the wettability at 250 ° C. is only point contact, and the bonding strength at 350 ° C. is weak.
比較例No.17はサブミクロン粉末の混合がないために、250℃でのぬれ性はあるが、350℃での接合強度が弱い。比較例No.18はサブミクロン粉末の粒径が大きく、サブミクロン粉末との混合比が低く、かつフラックがないために、250℃でのぬれ性がなく、350℃での接合強度が弱い。 Comparative Example No. Since No. 17 has no mixing of submicron powder, it has wettability at 250 ° C., but the bonding strength at 350 ° C. is weak. Comparative Example No. No. 18 has a large particle size of the submicron powder, a low mixing ratio with the submicron powder, and no flack, so that there is no wettability at 250 ° C. and the bonding strength at 350 ° C. is weak.
比較例No.19はSnおよび/またはSnCu合金粉末中のCuが高く、250℃でのぬれ性がない。また、サブミクロン粉末との混合比が低いために、350℃での接合強度が弱い。比較例No.20はSnおよび/またはSnCu合金粉末中のCuが高く、250℃でのぬれ性が点接触になり、サブミクロン粉末との混合比が低く、かつフラックまたは活性剤が高いために、350℃での接合強度が弱い。これに対し、本発明例であるNo.1〜13は本発明の条件をいずれも満足していることから、ぬれ性および接合強度の優れていることが分かる。 Comparative Example No. No. 19 has high Cu in Sn and / or SnCu alloy powder, and does not have wettability at 250 ° C. Further, since the mixing ratio with the submicron powder is low, the bonding strength at 350 ° C. is weak. Comparative Example No. No. 20 is high in Cu in Sn and / or SnCu alloy powder, the wettability at 250 ° C. is point contact, the mixing ratio with submicron powder is low, and the flack or activator is high. The bonding strength of is weak. On the other hand, No. which is an example of the present invention. Since Nos. 1 to 13 satisfy all the conditions of the present invention, it is understood that the wettability and the bonding strength are excellent.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009216387A JP5461125B2 (en) | 2009-09-18 | 2009-09-18 | Lead-free high-temperature bonding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009216387A JP5461125B2 (en) | 2009-09-18 | 2009-09-18 | Lead-free high-temperature bonding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011062736A JP2011062736A (en) | 2011-03-31 |
JP5461125B2 true JP5461125B2 (en) | 2014-04-02 |
Family
ID=43949554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009216387A Expired - Fee Related JP5461125B2 (en) | 2009-09-18 | 2009-09-18 | Lead-free high-temperature bonding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5461125B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6118249B2 (en) * | 2011-06-29 | 2017-04-19 | 株式会社日本スペリア社 | Method for manufacturing solder joints with improved reliability |
EP3000554B1 (en) | 2013-04-09 | 2020-01-22 | Senju Metal Industry Co., Ltd. | Solder paste |
JP2016215278A (en) * | 2015-05-25 | 2016-12-22 | 有限会社 ナプラ | Joint material and joint structure |
JP6144440B1 (en) * | 2017-01-27 | 2017-06-07 | 有限会社 ナプラ | Preform for semiconductor encapsulation |
JP6156965B1 (en) * | 2017-03-31 | 2017-07-05 | 有限会社 ナプラ | Preform for semiconductor encapsulation |
JP2023121288A (en) * | 2022-02-21 | 2023-08-31 | 古河電気工業株式会社 | Joining material composition, method for producing joining material composition, joining film, method for manufacturing joined body, and joined body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005103554A (en) * | 2003-09-26 | 2005-04-21 | Tdk Corp | Soldering paste, manufacturing method of soldering paste and mounting structure of electronic component, and mounting method |
WO2006075459A1 (en) * | 2005-01-11 | 2006-07-20 | Murata Manufacturing Co., Ltd | Solder paste and electronic device |
-
2009
- 2009-09-18 JP JP2009216387A patent/JP5461125B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011062736A (en) | 2011-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9095936B2 (en) | Variable melting point solders | |
US10118260B2 (en) | Mixed alloy solder paste | |
KR101160860B1 (en) | Cream solder and method of soldering electronic part | |
TWI494441B (en) | Bi-Sn high temperature solder alloy | |
JP5461125B2 (en) | Lead-free high-temperature bonding material | |
WO1997028923A1 (en) | Solder, solder paste and soldering method | |
JP4722751B2 (en) | Powder solder material and bonding material | |
JP5403011B2 (en) | Electronic components bonded by die bonding | |
JP6811798B2 (en) | Molded solder and manufacturing method of molded solder | |
US9636784B2 (en) | Mixed alloy solder paste | |
CN115139009B (en) | Preformed solder and preparation method thereof, and preparation method of welded joint | |
JP2018511482A (en) | Hybrid alloy solder paste | |
JP2012121053A (en) | Lead free soldering alloy containing zinc as principal component | |
JP5633816B2 (en) | Au-Sn alloy solder | |
JP6706351B2 (en) | Solder joining method and solder joint | |
TWI695893B (en) | Solder paste | |
JP5758242B2 (en) | Lead-free bonding material | |
JP2000343273A (en) | Soldering alloy | |
JP2016059943A (en) | BALL-SHAPED Au-Ge-Sn-BASED SOLDER ALLOY AND ELECTRONIC COMPONENT USING THE SOLDER ALLOY | |
JP6936351B2 (en) | Molded solder manufacturing method | |
JP2008221330A (en) | Solder alloy | |
JP2007313548A (en) | Cream solder | |
CN108284286B (en) | Brazing alloy for die bonding | |
JP5646230B2 (en) | Lead-free bonding material and manufacturing method thereof | |
KR102069276B1 (en) | Electronic parts soldering cream and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120321 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5461125 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |