JP5456382B2 - Method and apparatus for manufacturing semiconductor wafer - Google Patents

Method and apparatus for manufacturing semiconductor wafer Download PDF

Info

Publication number
JP5456382B2
JP5456382B2 JP2009143816A JP2009143816A JP5456382B2 JP 5456382 B2 JP5456382 B2 JP 5456382B2 JP 2009143816 A JP2009143816 A JP 2009143816A JP 2009143816 A JP2009143816 A JP 2009143816A JP 5456382 B2 JP5456382 B2 JP 5456382B2
Authority
JP
Japan
Prior art keywords
semiconductor
stage
semiconductor wafer
laser beam
chamfered portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009143816A
Other languages
Japanese (ja)
Other versions
JP2011003624A (en
Inventor
洋介 国司
秀樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2009143816A priority Critical patent/JP5456382B2/en
Publication of JP2011003624A publication Critical patent/JP2011003624A/en
Application granted granted Critical
Publication of JP5456382B2 publication Critical patent/JP5456382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、薄い半導体ウェーハを切り出して製造する半導体ウェーハの製造方法及びその装置に関するものである。   The present invention relates to a method and apparatus for manufacturing a semiconductor wafer by cutting and manufacturing a thin semiconductor wafer.

従来、シリコンのインゴットから薄い半導体ウェーハを切り出したり、切り出した半導体ウェーハを薄片化する方法としては、図示しないが、加工ステージに搭載された厚く丸い半導体の表面にレーザ光線を集光レンズを介して照射し、厚い半導体の内部に集光点を形成して変質層を複数形成し、加工ステージと共に厚い半導体を回転させて複数の変質層を接続するとともに、厚い半導体の内部に加工領域を設け、この加工領域を設けることにより、薄い半導体ウェーハの中間品を形成し、その後、この中間品の表面を加工領域を境に剥離して薄い半導体ウェーハを得る方法が提案されている(特許文献1、2、3、4、5参照)。   Conventionally, as a method of cutting out a thin semiconductor wafer from a silicon ingot, or slicing the cut out semiconductor wafer, although not shown, a laser beam is passed through a condensing lens on the surface of a thick round semiconductor mounted on a processing stage. Irradiate, form a condensing point inside the thick semiconductor to form a plurality of altered layers, rotate the thick semiconductor together with the processing stage to connect the plurality of altered layers, and provide a processing region inside the thick semiconductor, A method has been proposed in which an intermediate product of a thin semiconductor wafer is formed by providing this processing region, and then the surface of the intermediate product is peeled off at the processing region to obtain a thin semiconductor wafer (Patent Document 1, 2, 3, 4, 5).

半導体は、平面円形に形成され、加工ステージの中心部に位置合わせされる。また、レーザ光線は、YAGレーザのようなパルスレーザ、あるいはCOレーザ等のCWレーザが適宜採用され、制御装置による出力制御下でレーザ照射装置から厚い半導体の表面、具体的には、半導体表面の中心部から周縁部にかけて照射される。レーザ照射装置は、厚い半導体の表面に太いレーザ光線を照射して均一な変質層を形成できるよう、厚い半導体に対して集光レンズと共に全体が精密に移動可能に構成されている。 The semiconductor is formed in a planar circle and is aligned with the center of the processing stage. The laser beam is suitably a pulse laser such as a YAG laser, or a CW laser such as a CO 2 laser, and the surface of the semiconductor is thickened from the laser irradiation device under the output control by the control device. Irradiation is performed from the center to the periphery. The laser irradiation apparatus is configured so that the whole of the thick semiconductor can be precisely moved together with the condenser lens so that a uniform altered layer can be formed by irradiating a thick laser beam on the surface of the thick semiconductor.

集光レンズは、厚い半導体の表面にダメージを与えることなく、厚い半導体の内部に加工領域を適切に設ける観点から、大きな開口数のレンズが使用され、大きく広がった円錐形のレーザ光線を半導体に導くよう機能する。   The condenser lens uses a lens with a large numerical aperture from the viewpoint of appropriately providing a processing region inside the thick semiconductor without damaging the surface of the thick semiconductor, and a conically shaped laser beam that spreads widely is applied to the semiconductor. Functions to guide.

特開2005‐294656号公報Japanese Patent Laid-Open No. 2005-294656 特開2005‐059354号公報JP 2005-059354 A 特開2005‐33190号公報JP 2005-33190 A 特開2004‐079667号公報JP 2004-079667 A 特開2001‐102332号公報Japanese Patent Laid-Open No. 2001-102332

しかしながら、従来の方法では、レーザ光線の制御に限界があるので、半導体表面の中心部付近にレーザ光線を照射する場合には、半導体表面の中心部が高速で回転する関係上、過剰な照射を招いたり、照射が困難化することがあり、その結果、半導体に悪影響を及ぼすおそれがある。また、半導体表面の周縁部にレーザ光線を照射する場合には、照射エネルギの密度が不足して加工領域を十分に設けることができず、その結果、中間品の表面を適切に剥離して薄い半導体ウェーハを得るのが困難な場合がある。   However, in the conventional method, since there is a limit to the control of the laser beam, when the laser beam is irradiated near the center of the semiconductor surface, excessive irradiation is performed because the center of the semiconductor surface rotates at high speed. Invitation or irradiation may be difficult, and as a result, the semiconductor may be adversely affected. In addition, when a laser beam is irradiated to the peripheral portion of the semiconductor surface, the density of the irradiation energy is insufficient and a processing region cannot be provided sufficiently, and as a result, the surface of the intermediate product is appropriately peeled and thin It may be difficult to obtain a semiconductor wafer.

さらに、半導体の表面にダメージを与えることなく、厚い半導体の内部に加工領域を設けるためには、レーザ照射装置やその光学系を精密に移動させる必要があるので、装置が複雑で大掛かりになるおそれがある。   Furthermore, in order to provide a processing region inside a thick semiconductor without damaging the surface of the semiconductor, it is necessary to move the laser irradiation device and its optical system precisely, which may make the device complicated and large. There is.

本発明は上記に鑑みなされたもので、レーザ光線を適切に照射して半導体に悪影響を及ぼしたり、半導体ウェーハの獲得が困難になるのを抑制し、製造装置の簡素化を図ることのできる半導体ウェーハの製造方法及びその装置を提供することを目的としている。   The present invention has been made in view of the above, and a semiconductor that can appropriately irradiate a laser beam to adversely affect a semiconductor or suppress the difficulty of obtaining a semiconductor wafer, thereby simplifying a manufacturing apparatus. An object of the present invention is to provide a wafer manufacturing method and an apparatus therefor.

本発明においては上記課題を解決するため、移動ステージに回転ステージを支持させた加工ステージと、この加工ステージに搭載された半導体にレーザ光線を照射するレーザ照射手段とを備え、加工ステージの回転ステージに搭載された半導体の表面にレーザ光線を集光レンズを介し照射して半導体の内部に集光点を形成し、半導体と集光点とを相対的に移動させ、半導体の内部に加工領域を設けることにより、半導体ウェーハの中間品を形成するとともに、この中間品の表面を加工領域を境に剥離して半導体ウェーハを得る半導体ウェーハの製造方法であって、
加工ステージの回転ステージに半導体を搭載してその面取り部を回転ステージの回転軸に間隔をおいて接近させ、加工ステージの移動ステージを移動させて集光レンズの光軸を半導体の表面周縁部側に位置させ、半導体の内部に集光点を形成できるようレーザ照射手段の高さを調整し、集光点の線速度が一定になるよう回転ステージを回転させるとともに、レーザ照射手段からレーザ光線を照射し、加工ステージの移動ステージを移動させてレーザ光線を回転ステージが所定の回転角で回転する度に半導体の面取り部方向に所定のピッチで移動させ、回転ステージの回転軸と集光レンズの光軸との接近に応じ、回転ステージの回転数を抑制して集光点の線速度を低下させることにより、半導体の面取り部にレーザ光線を重点的に照射し、その後、集光レンズの光軸が半導体の面取り部を通過し、回転ステージの回転軸と集光レンズの光軸とが所定の近距離に達した場合に、レーザ照射手段の照射を停止して半導体ウェーハの中間品を形成することを特徴としている。
In order to solve the above-described problems, the present invention includes a processing stage in which a rotary stage is supported by a moving stage, and a laser irradiation means for irradiating a semiconductor mounted on the processing stage with a laser beam, and the rotary stage of the processing stage. The surface of the semiconductor mounted on the semiconductor is irradiated with a laser beam through a condensing lens to form a condensing point inside the semiconductor, the semiconductor and the condensing point are moved relatively, and a processing region is formed inside the semiconductor. By providing an intermediate product of a semiconductor wafer, a method for manufacturing a semiconductor wafer to obtain a semiconductor wafer by separating the surface of the intermediate product from the processing region,
A semiconductor is mounted on the rotating stage of the processing stage, and the chamfered portion is moved closer to the rotating shaft of the rotating stage with a space between them, and the moving stage of the processing stage is moved so that the optical axis of the condenser lens is on the semiconductor surface peripheral side. The height of the laser irradiation means is adjusted so that the focal point can be formed inside the semiconductor, the rotary stage is rotated so that the linear velocity of the focal point is constant, and the laser beam is emitted from the laser irradiation means. Irradiate, move the moving stage of the processing stage, and move the laser beam at a predetermined pitch in the direction of the chamfered part of the semiconductor each time the rotary stage rotates at a predetermined rotation angle. In response to the approach to the optical axis, the rotational speed of the rotary stage is suppressed to reduce the linear velocity of the condensing point, so that the laser beam is focused on the chamfered portion of the semiconductor, , When the optical axis of the condenser lens passes through the chamfered portion of a semiconductor, the optical axis of the rotating shaft and the condenser lens of the rotary stage has reached a predetermined short distance, the semiconductor stop irradiation of the laser irradiation means It is characterized by forming an intermediate product of a wafer.

また、加工ステージの回転ステージに複数の半導体を配列して各半導体の面取り部を回転ステージの回転軸に間隔をおいて接近させることができる。
また、加工ステージの回転ステージに半導体と錘体とを配列し、これら半導体の面取り部と錘体の隅部とを回転ステージの回転軸に間隔をおいてそれぞれ接近させることができる。
In addition, a plurality of semiconductors can be arranged on the rotary stage of the processing stage, and the chamfered portions of the semiconductors can be brought close to the rotary shaft of the rotary stage with an interval.
In addition, a semiconductor and a weight can be arranged on the rotary stage of the processing stage, and the chamfered portion of the semiconductor and the corner of the weight can be brought close to the rotation axis of the rotary stage, respectively.

なお、半導体の表面周縁部側と面取り部との間を移動するレーザ光線のピッチ間隔を狭めることにより、半導体の面取り部にレーザ光線を重点的に照射することもできる。
また、半導体ウェーハの中間品の一部を除去して加工領域を露出させることも可能である。
Note that by narrowing the pitch interval of the laser beam that moves between the peripheral surface side of the semiconductor and the chamfered portion, the laser beam can be focused on the chamfered portion of the semiconductor.
It is also possible to remove a part of the intermediate product of the semiconductor wafer to expose the processing region.

また、中間品の剥離開始領域に対するレーザ光線の照射量を、剥離開始領域以外の他領域に対するレーザ光線の照射量の2倍以上とすることも可能である。
また、中間品の表裏面のうち少なくとも表面に剥離補助基材を固定し、この剥離補助基材と共に中間品の表面を剥離して半導体ウェーハを得ることも可能である。
Moreover, it is also possible to make the irradiation amount of the laser beam with respect to the peeling start area | region of an intermediate product into 2 times or more of the irradiation amount of the laser beam with respect to other areas other than a peeling start area | region.
It is also possible to fix a peeling auxiliary base material to at least the surface of the front and back surfaces of the intermediate product and peel the surface of the intermediate product together with the peeling auxiliary base material to obtain a semiconductor wafer.

また、本発明においては上記課題を解決するため、半導体を搭載する加工ステージと、この加工ステージに搭載された半導体にレーザ光線を照射するレーザ照射手段と、これら加工ステージとレーザ照射手段とを制御する制御手段とを備え、
加工ステージに搭載された半導体の表面にレーザ光線を集光レンズを介し照射して半導体の内部に集光点を形成し、半導体と集光点とを相対的に移動させ、半導体の内部に加工領域を設けることにより、半導体ウェーハの中間品を形成するとともに、この中間品の表面を加工領域を境に剥離して半導体ウェーハを得る製造装置であって、
加工ステージは、半導体を搭載する回転ステージと、この回転ステージを支持して移動可能な移動ステージとを含み、回転ステージに半導体を搭載してその面取り部を回転ステージの回転軸に間隔をおいて接近させ、
制御手段は、加工ステージの移動ステージを移動させて集光レンズの光軸を回転ステージに搭載された半導体の表面周縁部側あるいは面取り部付近に位置させ、半導体の内部に集光点を形成できるようレーザ照射手段の高さを調整する機能と、集光点の線速度が一定になるよう回転ステージの回転数を制御して回転させ、レーザ照射手段からレーザ光線を照射するとともに、加工ステージの移動ステージを移動させてレーザ光線を回転ステージが所定の回転角で回転する度に半導体の面取り部方向あるいは表面周縁部側に移動させる機能と、回転ステージの回転軸と集光レンズの光軸とが所定の距離に達した場合にレーザ照射手段の照射を停止する機能とを実現することを特徴としている。
Further, in the present invention, in order to solve the above problems, a processing stage for mounting a semiconductor, a laser irradiation means for irradiating a semiconductor mounted on the processing stage with a laser beam, and the processing stage and the laser irradiation means are controlled. Control means for
The surface of the semiconductor mounted on the processing stage is irradiated with a laser beam through a condenser lens to form a condensing point inside the semiconductor, and the semiconductor and the condensing point are moved relative to each other to process the semiconductor. A manufacturing apparatus for obtaining a semiconductor wafer by forming an intermediate product of a semiconductor wafer by providing a region, and peeling the surface of the intermediate product with a processing region as a boundary,
The processing stage includes a rotary stage on which a semiconductor is mounted and a movable stage that can move while supporting the rotary stage. The semiconductor is mounted on the rotary stage, and the chamfered portion is spaced from the rotation axis of the rotary stage. Approach
The control means can move the moving stage of the processing stage so that the optical axis of the condensing lens is located on the surface peripheral edge side or near the chamfered portion of the semiconductor mounted on the rotary stage, thereby forming a condensing point inside the semiconductor. The function of adjusting the height of the laser irradiation means and the rotation speed of the rotary stage are controlled so that the linear velocity of the condensing point is constant , the laser irradiation means is irradiated with the laser beam, and the processing stage The function of moving the moving stage to move the laser beam toward the chamfered portion of the semiconductor or the surface peripheral edge each time the rotating stage rotates at a predetermined rotation angle, and the rotation axis of the rotating stage and the optical axis of the condenser lens And a function of stopping the irradiation of the laser irradiation means when a predetermined distance is reached.

なお、レーザ照射手段は、半導体の表面と集光レンズとの間に介在するレーザ光線用の収差増強ガラスと、集光レンズ及び収差増強ガラスを保持する上下動可能な焦点位置調整手段とを含むと良い。
また、制御手段は、回転ステージの回転軸と集光レンズの光軸との接近に応じて集光点の線速度を低下させ、半導体の表面周縁部側と面取り部との間を移動するレーザ光線のピッチ間隔を狭めることにより、半導体の面取り部にレーザ光線を重点的に照射する機能を実現することが好ましい。
The laser irradiation means includes an aberration-enhancing glass for laser beams interposed between the semiconductor surface and the condensing lens, and a vertically movable focus position adjusting means for holding the condensing lens and the aberration-enhancing glass. And good.
In addition, the control means reduces the linear velocity of the condensing point according to the approach between the rotation axis of the rotary stage and the optical axis of the condensing lens, and moves between the semiconductor surface peripheral edge side and the chamfered portion. It is preferable to realize the function of intensively irradiating the chamfered portion of the semiconductor with the laser beam by narrowing the pitch interval of the beam.

ここで、特許請求の範囲における加工ステージの移動ステージは、少なくともX方向とY方向の少なくともいずれかに移動する一軸構造であれば良い。また、半導体としては、シリコン、シリコンカーバイト、サファイヤ、ダイヤモンド等が該当する。この半導体は、少なくとも適当な長さにブロック化されたインゴットや厚い(例えば、0.1〜10mmの厚さ)半導体ウェーハが該当し、単数複数の数を問うものではない。半導体は、平面矩形、多角形、三角形、円形等に形成することができる。半導体の面取り部は、半導体の四隅部にそれぞれ切り欠かれていても良いし、四隅部のうち一の隅部に切り欠かれていても良く、又斜めでも良いし、湾曲形でも良い。   Here, the moving stage of the processing stage in the claims may be a uniaxial structure that moves in at least one of the X direction and the Y direction. As the semiconductor, silicon, silicon carbide, sapphire, diamond, and the like are applicable. This semiconductor corresponds to an ingot or a thick (for example, 0.1 to 10 mm) semiconductor wafer that is blocked to an appropriate length, and does not ask for a plurality of numbers. The semiconductor can be formed into a planar rectangle, polygon, triangle, circle, or the like. The chamfered portion of the semiconductor may be cut out at each of the four corners of the semiconductor, may be cut out at one of the four corners, may be oblique, or may be curved.

錘体は、半導体と同じ形でも良いし、そうでなくても良い。また、レーザ光線は、多光子吸収と呼ばれる光学的損傷現象を発生させるタイプでも良いし、そうでなくても良い。このレーザ光線は、半導体の表面周縁部と面取り部付近の一方から他方に移動する際、同心円、渦巻き形、螺旋形等のパターンを描くことが好ましい。また、集光レンズには、凹面鏡や各種レンズが含まれる。収差増強ガラスは、単数複数を特に問うものではない。さらに、制御手段は、コントローラでも良いし、制御プログラムでも良い。この制御手段は、回転ステージの回転軸の距離と集光レンズの光軸との距離により、レーザ照射手段を制御する。具体的には、レーザ光線の照射を抑制したり、停止することが好ましい。   The weight may be the same shape as the semiconductor, or it may not be. The laser beam may or may not be a type that generates an optical damage phenomenon called multiphoton absorption. The laser beam preferably draws a pattern such as a concentric circle, a spiral shape, or a spiral shape when moving from one of the semiconductor surface peripheral portion and the chamfered portion to the other. The condensing lens includes a concave mirror and various lenses. The aberration-enhancing glass is not particularly limited to one or more. Further, the control means may be a controller or a control program. This control means controls the laser irradiation means by the distance between the rotation axis of the rotary stage and the optical axis of the condenser lens. Specifically, it is preferable to suppress or stop laser beam irradiation.

本発明によれば、半導体表面の所定の範囲、例えば半導体の表面周縁部側から面取り部までの範囲にレーザ光線を照射するので、従来のように平面円形の半導体の表面中心部付近にレーザ光線を照射する必要がない。したがって、回転軸の近傍でレーザ光線の照射が過剰化したり、半導体の表面に意図しない加工がなされたり、半導体の周縁部でレーザ光線の照射が不足するようなことが少ない。   According to the present invention, the laser beam is irradiated to a predetermined range of the semiconductor surface, for example, the range from the surface peripheral edge side to the chamfered portion of the semiconductor. There is no need to irradiate. Accordingly, there are few cases where the laser beam irradiation is excessive in the vicinity of the rotation axis, the semiconductor surface is unintentionally processed, or the laser beam irradiation is insufficient at the periphery of the semiconductor.

本発明によれば、レーザ光線を適切に照射して半導体に悪影響を及ぼしたり、半導体ウェーハの獲得が困難になるのを抑制し、製造装置の簡素化を図ることができるという効果がある。また、集光点の線速度が一定になるよう回転ステージを回転させた後、回転ステージの回転軸と集光レンズの光軸との接近に応じ、回転ステージの回転数を抑制して集光点の線速度を低下させるので、半導体の面取り部に、中間品の表面を剥離する際の剥離開始領域を効率良く形成することができる。
また、加工ステージの回転ステージに半導体と錘体とを配列し、これら半導体の面取り部と錘体の隅部とを回転ステージの回転軸に間隔をおいてそれぞれ接近させれば、回転テーブルのバランスを良好に維持することができる。
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that it can suppress that it exerts a bad influence on a semiconductor by irradiating a laser beam appropriately, or it becomes difficult to acquire a semiconductor wafer, and can simplify a manufacturing apparatus. In addition, after rotating the rotary stage so that the linear velocity of the condensing point is constant, the rotational speed of the rotary stage is reduced to condense according to the approach between the rotary axis of the rotary stage and the optical axis of the condenser lens. Since the point linear velocity is reduced, a peeling start region for peeling the surface of the intermediate product can be efficiently formed in the chamfered portion of the semiconductor.
Moreover, if the semiconductor and the weight are arranged on the rotary stage of the processing stage, and the chamfered part of the semiconductor and the corner of the weight are brought close to the rotation axis of the rotary stage, respectively, the balance of the rotary table is achieved. Can be maintained well.

また、半導体の表面周縁部側から面取り部までの間を移動するレーザ光線のピッチ間隔を狭めることにより、半導体の面取り部にレーザ光線を重点的に照射しても、半導体の面取り部に、中間品の表面を剥離する際の剥離開始領域を効率良く形成することができる。 In addition, by narrowing the pitch interval of the laser beam moving from the peripheral surface side of the semiconductor to the chamfered portion, even if the laser beam is focused on the chamfered portion of the semiconductor, the chamfered portion of the semiconductor is The peeling start area | region at the time of peeling the surface of goods can be formed efficiently.

また、レーザ照射手段に、半導体の表面と集光レンズとの間に介在するレーザ光線用の収差増強ガラスと、集光レンズ及び収差増強ガラスを保持する上下動可能な焦点位置調整手段とを含めば、集光スポットを拡大してレーザ光線の照射回数を減少させることができる。さらに、レーザ照射手段の集光レンズと収差増強ガラス以外の部品を動作させる必要がないので、製造装置の構造の簡素化が期待できる。   Further, the laser irradiation means includes an aberration-enhancing glass for laser light interposed between the semiconductor surface and the condenser lens, and a vertically movable focal position adjusting means for holding the condenser lens and the aberration-enhancing glass. For example, the condensing spot can be enlarged to reduce the number of times of laser beam irradiation. Furthermore, since it is not necessary to operate components other than the condensing lens of the laser irradiation means and the aberration-enhancing glass, the structure of the manufacturing apparatus can be simplified.

本発明に係る半導体ウェーハの製造方法及びその装置の実施形態を模式的に示す全体斜視説明図である。It is a whole perspective explanatory view showing typically the embodiment of the manufacturing method of the semiconductor wafer concerning the present invention, and its device. 本発明に係る半導体ウェーハの製造方法及びその装置の実施形態におけるレーザ光線の照射状態を模式的に示す要部説明図である。It is principal part explanatory drawing which shows typically the irradiation state of the laser beam in embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention, and its apparatus. 本発明に係る半導体ウェーハの製造方法及びその装置の実施形態における半導体ウェーハに照射されるレーザ光線のパターンを模式的に示す平面説明図である。It is plane explanatory drawing which shows typically the pattern of the laser beam irradiated to the semiconductor wafer in embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention, and its apparatus. 本発明に係る半導体ウェーハの製造方法及びその装置の実施形態における中間品の表面を剥離する途中の.状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state in the middle of peeling the surface of the intermediate | middle goods in embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention, and its apparatus. 本発明に係る半導体ウェーハの製造方法及びその装置の第2の実施形態を模式的に示す全体斜視説明図である。It is a whole perspective explanatory view showing typically a 2nd embodiment of a manufacturing method of a semiconductor wafer concerning the present invention, and its device. 本発明に係る半導体ウェーハの製造方法及びその装置の第3の実施形態における半導体ウェーハに照射されるレーザ光線のパターンを模式的に示す平面説明図である。It is plane explanatory drawing which shows typically the pattern of the laser beam irradiated to the semiconductor wafer in 3rd Embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention, and its apparatus. 本発明に係る半導体ウェーハの製造方法及びその装置の第4の実施形態を模式的に示す平面説明図である。It is a plane explanatory view showing a 4th embodiment of a manufacturing method of a semiconductor wafer concerning the present invention, and its device typically.

以下、図面を参照して本発明の実施形態を説明すると、本実施形態における半導体ウェーハの製造装置は、図1ないし図4に示すように、複数の厚い半導体ウェーハ1を搭載する加工ステージ10と、この加工ステージ10に搭載された複数の半導体ウェーハ1にレーザ光線21を照射するレーザ照射装置20と、これら加工ステージ10とレーザ照射装置20とをそれぞれ制御する制御装置30とを備え、半導体ウェーハ1の表面にレーザ光線21を集光レンズ23を介し照射して半導体ウェーハ1の内部に集光点26を形成し、半導体ウェーハ1と集光点26とを相対的に移動させ、半導体ウェーハ1の内部に加工領域3を形成することにより、薄い半導体ウェーハ6の中間品5を形成し、この中間品5の表面を加工領域3を境に剥離して太陽電池用の薄い半導体ウェーハ6を得る製造装置である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. A semiconductor wafer manufacturing apparatus according to the present embodiment includes a processing stage 10 on which a plurality of thick semiconductor wafers 1 are mounted, as shown in FIGS. The semiconductor wafer includes a laser irradiation device 20 for irradiating a plurality of semiconductor wafers 1 mounted on the processing stage 10 with a laser beam 21, and a control device 30 for controlling the processing stage 10 and the laser irradiation device 20, respectively. 1 is irradiated with a laser beam 21 through a condensing lens 23 to form a condensing point 26 inside the semiconductor wafer 1, and the semiconductor wafer 1 and the condensing point 26 are moved relative to each other. The intermediate product 5 of the thin semiconductor wafer 6 is formed by forming the processing region 3 inside the substrate, and the surface of the intermediate product 5 is peeled off with the processing region 3 as a boundary. Is a manufacturing apparatus for obtaining a thin semiconductor wafer 6 of the solar cell.

複数(本実施形態では4枚)の半導体ウェーハ1は、平面矩形を描くよう突き合わせた配列状態で加工ステージ10に搭載される。各半導体ウェーハ1は、特に限定されるものではないが、例えば平面矩形で肉厚のシリコンウェーハからなり、レーザ光線21の照射される表面が予め平坦化されていることが好ましい。この半導体ウェーハ1の四隅部は、少なくとも一隅部がグラインダ等で斜めに切り欠かれ、この切り欠かれた隅部が面取り部2とされる。   A plurality (four in this embodiment) of semiconductor wafers 1 are mounted on the processing stage 10 in an arrayed state so as to draw a plane rectangle. Each semiconductor wafer 1 is not particularly limited, but is preferably made of, for example, a planar rectangular and thick silicon wafer, and the surface irradiated with the laser beam 21 is preferably planarized in advance. At least one corner of the four corners of the semiconductor wafer 1 is cut obliquely with a grinder or the like, and the cut corner is used as a chamfer 2.

加工ステージ10とレーザ照射装置20の一部とは、精密な回転、移動、上下動等を図る観点から、図示しない防振性の台座に固定され、加工ステージ10の上方にレーザ照射装置20が配設される。   The processing stage 10 and a part of the laser irradiation apparatus 20 are fixed to a vibration-proof base (not shown) from the viewpoint of precise rotation, movement, vertical movement, etc., and the laser irradiation apparatus 20 is located above the processing stage 10. Arranged.

加工ステージ10は、図1に示すように、複数の半導体ウェーハ1を水平に搭載する回転ステージ11と、この回転ステージ11の下面から垂直下方に伸びる支持軸12を直立状態に支持してX方向に移動可能なX方向移動ステージ15とを備えて構成される。   As shown in FIG. 1, the processing stage 10 supports a rotating stage 11 on which a plurality of semiconductor wafers 1 are mounted horizontally and a support shaft 12 extending vertically downward from the lower surface of the rotating stage 11 in an upright state to support the X direction. And a movable X-direction moving stage 15.

回転ステージ11は、表面に複数の半導体ウェーハ1を着脱自在に位置決め固定する平面矩形の保持テーブル13が装着され、所定のモータの駆動により回転する。この回転ステージ11、支持軸12、及び保持テーブル13は、中心部が位置合わせされる。保持テーブル13の表面中心部から半径外方向にややずれた箇所には、各半導体ウェーハ1の面取り部2が位置する。したがって、複数の半導体ウェーハ1は、面取り部2が回転ステージ11の回転軸14(支持軸12の中心でもある)に間隔をおいてそれぞれ接近し、合成重心が回転ステージ11の回転軸14と略一致する。   The rotary stage 11 is mounted with a planar rectangular holding table 13 that detachably positions and fixes a plurality of semiconductor wafers 1 on the surface, and rotates by driving a predetermined motor. The rotation stage 11, the support shaft 12, and the holding table 13 are aligned at the center. A chamfered portion 2 of each semiconductor wafer 1 is located at a position slightly shifted from the center of the surface of the holding table 13 in the radially outward direction. Therefore, in the plurality of semiconductor wafers 1, the chamfered portions 2 approach the rotating shaft 14 (which is also the center of the support shaft 12) of the rotating stage 11 with a gap therebetween, and the combined center of gravity is substantially the same as the rotating shaft 14 of the rotating stage 11. Match.

所定のモータとしては、例えばレーザ光線21の照射特性に応じ、回転数を制御可能なステッピングモータや各種サーボモータ(例えば、ACサーボモータ)等が適宜採用されるが、半導体ウェーハ1の表面周縁部にレーザ光線21を均一に照射する観点から、間歇的ではなく、連続的に駆動するサーボモータが好ましい。   As the predetermined motor, for example, a stepping motor capable of controlling the number of rotations or various servo motors (for example, AC servo motor) according to the irradiation characteristics of the laser beam 21 is appropriately employed. From the viewpoint of uniformly irradiating the laser beam 21 with the laser beam, a servo motor that is continuously driven, not intermittent, is preferable.

X方向移動ステージ15は、例えば所定のモータの駆動で回転する螺子棒により水平にスライドしたり、所定のシリンダの駆動で進退動するプランジャロッドにより水平にスライドする。また、所定のモータの駆動で回転するエンドレスの駆動ベルトにより水平にスライドする構成でも良いし、リニアモータの駆動で水平にスライドする構成でも良い。   The X-direction moving stage 15 slides horizontally, for example, by a screw rod that rotates by driving a predetermined motor, or horizontally by a plunger rod that moves forward and backward by driving a predetermined cylinder. Moreover, the structure which slides horizontally by the endless drive belt rotated by the drive of a predetermined motor may be sufficient, and the structure which slides horizontally by the drive of a linear motor may be sufficient.

レーザ照射装置20は、図1や図2に示すように、レーザ光線21を下方に向けて照射する固定のレーザ光源22と、このレーザ光源22から照射されたレーザ光線21を集光する集光レンズ23と、半導体ウェーハ1の表面と集光レンズ23との間に介在するレーザ光線21用の収差増強ガラス24と、集光レンズ23及び収差増強ガラス24を上下に並べて保持する上下動可能な焦点位置調整具25とを備え、半導体ウェーハ1の表面状態を撮像して検査・測定可能な検査装置(図示せず)が選択的に付設される。   As shown in FIG. 1 and FIG. 2, the laser irradiation device 20 includes a fixed laser light source 22 that irradiates a laser beam 21 downward, and a light condensing that condenses the laser beam 21 emitted from the laser light source 22. The lens 23, the aberration-enhancing glass 24 for the laser beam 21 interposed between the surface of the semiconductor wafer 1 and the condensing lens 23, and the condensing lens 23 and the aberration-enhancing glass 24 are arranged vertically and can be moved up and down. An inspection apparatus (not shown) that includes a focal position adjustment tool 25 and that can inspect and measure the surface state of the semiconductor wafer 1 is selectively provided.

レーザ光源22は、半導体ウェーハ1の内部に集光点26を形成する観点から、半導体ウェーハ1に対して透過性のある光源が使用される。例えば、シリコン製のインゴットやスライスされたシリコン製の半導体ウェーハ1の場合には、YAGレーザの基本波や炭酸ガスレーザ等、波長1000nm以上の赤外線レーザが使用される。   As the laser light source 22, a light source that is transmissive to the semiconductor wafer 1 is used from the viewpoint of forming a condensing point 26 inside the semiconductor wafer 1. For example, in the case of a silicon ingot or a sliced silicon semiconductor wafer 1, an infrared laser having a wavelength of 1000 nm or more such as a fundamental wave of a YAG laser or a carbon dioxide gas laser is used.

集光レンズ23は、半導体ウェーハ1の内部にレーザ光線21のエネルギを効率的に集中させるよう機能する。この集光レンズ23の開口数(NA)は、半導体ウェーハ1の表面におけるアブレーション等による損失を防止する観点から、大きな数値、具体的には0.5以上、0.5〜0.8が好ましい。   The condenser lens 23 functions to efficiently concentrate the energy of the laser beam 21 inside the semiconductor wafer 1. The numerical aperture (NA) of the condenser lens 23 is preferably a large numerical value, specifically 0.5 or more and 0.5 to 0.8 from the viewpoint of preventing loss due to ablation or the like on the surface of the semiconductor wafer 1. .

収差増強ガラス24は、特に限定されるものではないが、例えば厚いカバーガラスやスライドガラス等が使用され、集光スポットを拡大してその間隔を大きくし、単位面積当たりのレーザ光線21の照射回数を削減するよう機能する。また、焦点位置調整具25は、例えば集光レンズ23と収差増強ガラス24とを挟持して相対向する左右一対の保持爪等からなり、半導体ウェーハ1の表面に対して光軸27方向に集光レンズ23を上下動し、半導体ウェーハ1の内部に焦点を移動させ、集光点26を形成して加工領域3を加工する。   The aberration-enhancing glass 24 is not particularly limited. For example, a thick cover glass, a slide glass, or the like is used. The condensing spot is enlarged to increase the interval, and the number of times the laser beam 21 is irradiated per unit area. Function to reduce. The focal position adjuster 25 is composed of, for example, a pair of left and right holding claws that oppose each other with the condenser lens 23 and the aberration-enhancing glass 24 interposed therebetween. The optical lens 23 is moved up and down, the focal point is moved inside the semiconductor wafer 1, the condensing point 26 is formed, and the processing region 3 is processed.

制御装置30は、図1に示すように、例えばプリント回路基板からなる回路基板に、水晶発振回路、演算処理機能を有するCPU、ROM、RAM、動作不良等を検知するエラー検知センサ、その他の電子部品が実装され、加工ステージ10とレーザ照射装置20とにケーブルを介してそれぞれ接続されており、CPUがRAMを作業領域としてROMに記憶された所定のプログラムを読み込むことにより、コンピュータとして所定の機能を実現する。   As shown in FIG. 1, the control device 30 includes, for example, a circuit board made of a printed circuit board, a crystal oscillation circuit, a CPU having an arithmetic processing function, a ROM, a RAM, an error detection sensor for detecting malfunctions, and other electronic devices. Components are mounted and connected to the processing stage 10 and the laser irradiation device 20 via cables, respectively, and the CPU reads a predetermined program stored in the ROM using the RAM as a work area, thereby causing a predetermined function as a computer. To realize.

具体的には、加工ステージ10のX方向移動ステージ15をX方向に移動させて集光レンズ23の光軸27を回転ステージ11に搭載された半導体ウェーハ1の表面周縁部側に位置させ、半導体ウェーハ1の内部に集光点26を形成できるようレーザ照射装置20の高さを調整する機能と、集光点26の線速度が一定になるよう回転ステージ11の回転数を制御して回転させ、レーザ照射装置20からレーザ光線21を照射するとともに、加工ステージ10のX方向移動ステージ15をX方向に移動させてレーザ光線21を回転ステージ11が所定の回転角度(例えば360°等)で回転する毎に半導体ウェーハ1の表面周縁部側から面取り部2方向に所定のピッチで移動させる機能と、回転ステージ11の回転軸14と集光レンズ23の光軸27との接近に応じて集光点の線速度を低下させ、かつ半導体ウェーハ1の表面周縁部側から面取り部2方向に移動するレーザ光線21のピッチ間隔を狭める機能と、回転ステージ11の回転軸14と集光レンズ23の光軸27とが所定の近距離に達した場合にレーザ照射装置20の照射を停止する機能とを実現する(図1、図3参照)。   Specifically, the X-direction moving stage 15 of the processing stage 10 is moved in the X direction so that the optical axis 27 of the condenser lens 23 is positioned on the surface peripheral edge side of the semiconductor wafer 1 mounted on the rotary stage 11, and the semiconductor The function of adjusting the height of the laser irradiation device 20 so that the condensing point 26 can be formed inside the wafer 1 and the rotational speed of the rotary stage 11 are controlled so that the linear velocity of the condensing point 26 is constant. In addition to irradiating the laser beam 21 from the laser irradiation device 20, the X-direction moving stage 15 of the processing stage 10 is moved in the X direction so that the rotation stage 11 rotates the laser beam 21 at a predetermined rotation angle (eg, 360 °). Each time, the function of moving the semiconductor wafer 1 from the surface peripheral edge side toward the chamfered portion 2 at a predetermined pitch, the light of the rotating shaft 14 of the rotating stage 11 and the condenser lens 23 27, the function of reducing the linear velocity of the condensing point in accordance with the approach to 27 and narrowing the pitch interval of the laser beam 21 moving from the surface peripheral edge side of the semiconductor wafer 1 toward the chamfered portion 2, and the rotation of the rotary stage 11 The function of stopping the irradiation of the laser irradiation device 20 when the axis 14 and the optical axis 27 of the condenser lens 23 reach a predetermined short distance is realized (see FIGS. 1 and 3).

上記構成において、半導体ウェーハ1を切り出して薄い半導体ウェーハ6を製造する場合には、先ず、加工ステージ10の回転ステージ11に加工対象である複数の半導体ウェーハ1を保持テーブル13を介し配列して各半導体ウェーハ1の面取り部2を保持テーブル13の中心部の周囲に位置させ、この複数の半導体ウェーハ1の表面を揃えて略面一とし、加工ステージ10のX方向移動ステージ15をX方向に移動させてレーザ照射装置20の集光レンズ23の光軸27を回転ステージ11に搭載された半導体ウェーハ1の表面周縁部側に位置させる。   In the above configuration, when the semiconductor wafer 1 is cut out and the thin semiconductor wafer 6 is manufactured, first, a plurality of semiconductor wafers 1 to be processed are arranged on the rotary stage 11 of the processing stage 10 via the holding table 13. The chamfered portion 2 of the semiconductor wafer 1 is positioned around the central portion of the holding table 13, the surfaces of the plurality of semiconductor wafers 1 are made to be substantially flush, and the X-direction moving stage 15 of the processing stage 10 is moved in the X direction. Thus, the optical axis 27 of the condensing lens 23 of the laser irradiation apparatus 20 is positioned on the surface peripheral edge side of the semiconductor wafer 1 mounted on the rotary stage 11.

こうして集光レンズ23の光軸27を半導体ウェーハ1の表面周縁部側に位置させたら、半導体ウェーハ1の表面に集光点26が位置するようレーザ照射装置20の焦点位置調整具25を下降させ、その後、半導体ウェーハ1の内部に加工領域3用の集光点26を形成できるよう焦点位置調整具25を下降させ、半導体ウェーハ1の表面に集光レンズ23と収差増強ガラス24とを接近させる。   When the optical axis 27 of the condensing lens 23 is thus positioned on the surface peripheral edge side of the semiconductor wafer 1, the focal position adjusting tool 25 of the laser irradiation device 20 is lowered so that the condensing point 26 is located on the surface of the semiconductor wafer 1. Thereafter, the focal position adjuster 25 is lowered so that the condensing point 26 for the processing region 3 can be formed inside the semiconductor wafer 1, and the condensing lens 23 and the aberration enhancing glass 24 are brought close to the surface of the semiconductor wafer 1. .

次いで、集光点26の線速度が一定値になるよう回転ステージ11の回転数を制御しつつ回転させ、集光点26の線速度が一定値に達したら、レーザ照射装置20からレーザ光線21を照射するとともに、加工ステージ10のX方向移動ステージ15をX方向に移動させ、レーザ光線21を回転ステージ11が一回転する毎に半導体ウェーハ1の表面周縁部側から面取り部2方向に所定のピッチで移動させる。   Next, the rotation speed of the rotary stage 11 is controlled so that the linear velocity of the condensing point 26 becomes a constant value. When the linear velocity of the condensing point 26 reaches a constant value, the laser beam 21 is emitted from the laser irradiation device 20. , The X-direction moving stage 15 of the processing stage 10 is moved in the X direction, and the laser beam 21 is rotated in a predetermined direction from the surface peripheral edge side of the semiconductor wafer 1 to the chamfered portion 2 each time the rotary stage 11 rotates once. Move with pitch.

この際、回転ステージ11は、集光点26の線速度が一定値を維持するよう回転を継続する。また、レーザ光線21は、X方向移動ステージ15の移動で回転する回転ステージ11の回転軸14が接近して来ることにより、半導体ウェーハ1の表面周縁部側から面取り部2方向に同心円のパターンを描きながら移動し、半導体ウェーハ1の内部に加工領域3を半導体ウェーハ1の表面に平行に連続形成する(図2参照)。
レーザ光線21の照射に際しては、半導体ウェーハ1の表面状態を撮像して測定する検査装置によりスキャンしながらレーザ光線21を照射することができる。
At this time, the rotary stage 11 continues to rotate so that the linear velocity of the condensing point 26 maintains a constant value. In addition, the laser beam 21 forms a concentric pattern from the surface peripheral edge side of the semiconductor wafer 1 toward the chamfered portion 2 when the rotating shaft 14 of the rotating stage 11 rotating by the movement of the X-direction moving stage 15 approaches. It moves while drawing, and the processing region 3 is continuously formed inside the semiconductor wafer 1 parallel to the surface of the semiconductor wafer 1 (see FIG. 2).
When the laser beam 21 is irradiated, the laser beam 21 can be irradiated while being scanned by an inspection apparatus that images and measures the surface state of the semiconductor wafer 1.

回転ステージ11の回転軸14と集光レンズ23の光軸27とが接近し、半導体ウェーハ1の面取り部2手前上方に集光レンズ23の光軸27が位置したら、回転ステージ11の回転数を抑制して集光点の線速度を低下させ、半導体ウェーハ1の表面周縁部側から面取り部2方向に移動するレーザ光線21のピッチ間隔を狭めることにより、半導体ウェーハ1の面取り部2にレーザ光線21を重点的に照射して中間品5の表面を剥離する際の剥離開始領域4を形成する。   When the rotating shaft 14 of the rotating stage 11 and the optical axis 27 of the condensing lens 23 approach each other and the optical axis 27 of the condensing lens 23 is positioned in front of the chamfered portion 2 of the semiconductor wafer 1, the rotational speed of the rotating stage 11 is set. By reducing the linear velocity of the condensing point and reducing the pitch interval of the laser beams 21 moving from the surface peripheral edge side of the semiconductor wafer 1 toward the chamfered portion 2, the laser beam is applied to the chamfered portion 2 of the semiconductor wafer 1. The peeling start area | region 4 at the time of peeling the surface of the intermediate article 5 by irradiating 21 mainly is formed.

集光レンズ23の光軸27が半導体ウェーハ1の面取り部2を通過して保持テーブル13の中心部付近に位置し、回転ステージ11の回転軸14と集光レンズ23の光軸27とが所定の近距離に達するとともに、回転ステージ11の回転数が上限値に達したら、回転ステージ11の回転とレーザ照射装置20の照射とを停止することにより、薄い半導体ウェーハ6の中間品5を形成することができる。   The optical axis 27 of the condenser lens 23 passes through the chamfered portion 2 of the semiconductor wafer 1 and is located near the center of the holding table 13, and the rotational axis 14 of the rotary stage 11 and the optical axis 27 of the condenser lens 23 are predetermined. When the rotation speed of the rotary stage 11 reaches the upper limit value, the rotation of the rotary stage 11 and the irradiation of the laser irradiation device 20 are stopped to form the intermediate product 5 of the thin semiconductor wafer 6. be able to.

薄い半導体ウェーハ6の中間品5を形成したら、中間品5の全表面に剥離補助板40を着脱自在に粘着固定し、その後、連続した加工領域3を境界面として中間品5を剥離補助板40と共に剥離開始領域4から上方に剥離(図4参照)すれば、半導体ウェーハ1から中間品5が剥離することにより、中間品5が薄い半導体ウェーハ6となる。薄い半導体ウェーハ6は、そのまま使用されたり、あるいは必要に応じて他の半導体ウェーハ6の端面に接着される。   When the intermediate product 5 of the thin semiconductor wafer 6 is formed, the peeling auxiliary plate 40 is detachably adhered and fixed to the entire surface of the intermediate product 5, and then the intermediate product 5 is peeled off with the continuous processing region 3 as a boundary surface. At the same time, if peeling is performed upward from the peeling start region 4 (see FIG. 4), the intermediate product 5 is peeled from the semiconductor wafer 1, whereby the intermediate product 5 becomes a thin semiconductor wafer 6. The thin semiconductor wafer 6 is used as it is or bonded to the end face of another semiconductor wafer 6 as necessary.

剥離補助板40は、特に限定されるものではないが、例えば半導体ウェーハ1よりも大きい平板からなり、薄い半導体ウェーハ6の中間品5に対向する平坦な対向面に、自己粘着性のシートが粘着される。この剥離補助板40として、例えばアクリル板等を適宜使用することができる。   The auxiliary peeling plate 40 is not particularly limited. For example, the peeling auxiliary plate 40 is made of a flat plate larger than the semiconductor wafer 1, and a self-adhesive sheet adheres to a flat facing surface facing the intermediate product 5 of the thin semiconductor wafer 6. Is done. As the peeling auxiliary plate 40, for example, an acrylic plate or the like can be used as appropriate.

なお、剥離補助板40を粘着固定する際、回転ステージ11から取り外した半導体ウェーハ1の裏面に別の剥離補助板40を着脱自在に粘着固定し、中間品5の剥離をさらに容易にしても良い。   When the peeling auxiliary plate 40 is adhesively fixed, another peeling auxiliary plate 40 may be detachably attached to the back surface of the semiconductor wafer 1 detached from the rotary stage 11 to further facilitate the peeling of the intermediate product 5. .

上記構成によれば、保持テーブル13の中心部の周囲に半導体ウェーハ1の面取り部2を位置させ、半導体ウェーハ1の表面周縁部側から面取り部2までの範囲にレーザ光線21を照射するので、半導体ウェーハ1表面の中心部付近にレーザ光線21を照射する必要が全くなく、レーザ光線21の照射が過剰化したり、困難になることがない。したがって、半導体ウェーハ6に何ら悪影響を及ぼすことがない。   According to the above configuration, the chamfered portion 2 of the semiconductor wafer 1 is positioned around the center portion of the holding table 13, and the laser beam 21 is irradiated to the range from the surface peripheral edge side of the semiconductor wafer 1 to the chamfered portion 2. There is no need to irradiate the laser beam 21 near the center of the surface of the semiconductor wafer 1, and the irradiation of the laser beam 21 does not become excessive or difficult. Therefore, the semiconductor wafer 6 is not adversely affected.

また、半導体ウェーハ1表面の周縁部にレーザ光線21を照射する場合には、集光点26の線速度が一定値を維持するよう回転ステージ11を回転させるので、照射エネルギの密度を適切な値にして十分な加工領域3を設け、中間品5の表面を適切に剥離して薄い半導体ウェーハ6を容易に得ることができる。さらに、レーザ照射装置20のレーザ光源22やレーザ発振器等を固定し、焦点位置調整具25のみを精密に上下動させれば良いので、レーザ光源22やレーザ発振器の動作時の振動に伴う弊害を排除したり、装置が複雑で大掛かりになるおそれを有効に払拭することができる。   In addition, when the laser beam 21 is irradiated to the peripheral edge of the surface of the semiconductor wafer 1, the rotation stage 11 is rotated so that the linear velocity of the condensing point 26 is maintained at a constant value, so that the density of the irradiation energy is an appropriate value. Thus, a sufficient processing region 3 is provided, and the surface of the intermediate product 5 is appropriately peeled off so that a thin semiconductor wafer 6 can be easily obtained. Furthermore, since the laser light source 22 and the laser oscillator of the laser irradiation device 20 are fixed and only the focus position adjustment tool 25 needs to be moved up and down precisely, there is an adverse effect caused by vibration during the operation of the laser light source 22 and the laser oscillator. It is possible to effectively eliminate the risk of being eliminated or making the apparatus complicated and large.

次に、図5は本発明の第2の実施形態を示すもので、この場合には、加工ステージ10を、複数の半導体ウェーハ1を水平に搭載する回転ステージ11と、この回転ステージ11の支持軸12を直立に支持してX方向に移動可能なX方向移動ステージ15と、このX方向移動ステージ15を支持してY方向に移動可能なY方向移動ステージ16とを備えた多軸構造に構成するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。   Next, FIG. 5 shows a second embodiment of the present invention. In this case, the processing stage 10 includes a rotating stage 11 on which a plurality of semiconductor wafers 1 are mounted horizontally, and a support for the rotating stage 11. A multi-axis structure including an X-direction moving stage 15 that supports the shaft 12 upright and can move in the X-direction, and a Y-direction moving stage 16 that supports the X-direction moving stage 15 and can move in the Y-direction. I am trying to configure it. The other parts are the same as those in the above embodiment, and the description thereof is omitted.

本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、必要に応じてY方向移動ステージ16を移動させつつ半導体ウェーハ1を加工することができるので、製造作業の円滑化、簡素化、迅速化、容易化を図ることができるのは明らかである。   In this embodiment, the same effect as that of the above embodiment can be expected, and the semiconductor wafer 1 can be processed while moving the Y-direction moving stage 16 as necessary. Obviously, it can be made easier, faster and easier.

次に、図6は本発明の第3の実施形態を示すもので、この場合には、回転テーブル11の保持テーブル13に複数の半導体ウェーハ1を90°の間隔をおいて配列し、この複数の半導体ウェーハ1の枚数を4枚から2枚に減少させるようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待できるのは明らかである。
Next, FIG. 6 shows a third embodiment of the present invention. In this case, a plurality of semiconductor wafers 1 are arranged on the holding table 13 of the turntable 11 at intervals of 90 °. The number of semiconductor wafers 1 is reduced from four to two. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
Obviously, in this embodiment, the same effect as that of the above embodiment can be expected.

次に、図7は本発明の第4の実施形態を示すもので、この場合には、回転テーブル11の保持テーブル13に、枚数を減らした複数の半導体ウェーハ1と複数の錘体41とを配列し、各半導体ウェーハ1の面取り部2と各錘体41の隅部とを回転ステージ11の回転軸14に間隔をおいてそれぞれ接近させ、回転テーブル11の回転ムラを防止するようにしている。   Next, FIG. 7 shows a fourth embodiment of the present invention. In this case, a plurality of semiconductor wafers 1 and a plurality of weight bodies 41 with a reduced number of sheets are placed on the holding table 13 of the rotary table 11. The chamfered portions 2 of the respective semiconductor wafers 1 and the corner portions of the respective weight bodies 41 are respectively brought close to the rotary shaft 14 of the rotary stage 11 with a space therebetween to prevent rotation unevenness of the rotary table 11. .

複数の半導体ウェーハ1と複数の錘体41とは、交互に配列される。また、錘体41は、特に限定されるものではないが、例えば半導体ウェーハ1と略同様の重量を有する平面矩形で肉厚のダミーウェーハからなり、四隅部のうち少なくとも一隅部がグラインダ等で斜めに切り欠かれており、この切り欠かれた隅部が面取り部42とされる。その他の部分については、上記実施形態と同様であるので説明を省略する。   The plurality of semiconductor wafers 1 and the plurality of weight bodies 41 are alternately arranged. The weight body 41 is not particularly limited. For example, the weight body 41 is formed of a planar rectangular and thick dummy wafer having substantially the same weight as the semiconductor wafer 1, and at least one corner portion of the four corner portions is slanted by a grinder or the like. The chamfered portion 42 is formed by the cut corner. The other parts are the same as those in the above embodiment, and the description thereof is omitted.

本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、保持テーブル13に半導体ウェーハ1の他、複数の錘体41をも配列するので、回転テーブル11の回転バランスを良好に保ち、しかも、アンバランスに伴う回転時の振動を抑制防止することができる。   Also in this embodiment, the same effect as the above embodiment can be expected, and in addition to the semiconductor wafer 1, a plurality of weights 41 are also arranged on the holding table 13, so that the rotation balance of the turntable 11 is kept good. Moreover, it is possible to suppress and prevent vibration during rotation accompanying unbalance.

なお、上記実施形態では加工ステージ10の回転ステージ11を単に回転させたが、必要に応じ、回転ステージ11を昇降させても良い。また、回転ステージ11の保持テーブル13に半導体ウェーハ1を固定して搭載したが、回転ステージ11に半導体ウェーハ1をワックス、粘着テープ、クランプ具等を介して搭載しても良い。また、特に支障を来たさなければ、集光レンズ23のみ使用し、収差増強ガラス24を省略しても良い。また、レーザ光線21の照射開始点は、保持テーブル13の中心部でも良いし、周縁部でも良い。要するに、半導体ウェーハ1の面取り部2付近から表面周縁部方向にレーザ光線を照射して移動させることができる。   In the above embodiment, the rotary stage 11 of the processing stage 10 is simply rotated. However, the rotary stage 11 may be moved up and down as necessary. Further, although the semiconductor wafer 1 is fixed and mounted on the holding table 13 of the rotary stage 11, the semiconductor wafer 1 may be mounted on the rotary stage 11 via wax, adhesive tape, a clamp tool, or the like. Further, if there is no particular problem, only the condensing lens 23 may be used and the aberration enhancing glass 24 may be omitted. Further, the irradiation start point of the laser beam 21 may be the central portion of the holding table 13 or the peripheral portion. In short, the semiconductor wafer 1 can be moved by being irradiated with a laser beam from the vicinity of the chamfered portion 2 of the semiconductor wafer 1 toward the surface peripheral portion.

また、上記実施形態では中間品5の表面に剥離補助板40を粘着固定し、中間品5を剥離補助板40と共に剥離開始領域4から剥離したが、中間品5を剥離開始領域4から剥離する前に、半導体ウェーハ1の表面や周面を一部除去し、剥離開始領域4の側面(周面)に加工領域3を露出させて中間品5の剥離を容易化することもできる。   In the above embodiment, the auxiliary peeling plate 40 is adhered and fixed to the surface of the intermediate product 5, and the intermediate product 5 is peeled off from the peeling start area 4 together with the peeling auxiliary plate 40, but the intermediate product 5 is peeled off from the peeling start area 4. Before, it is possible to remove the intermediate product 5 easily by removing a part of the surface and the peripheral surface of the semiconductor wafer 1 and exposing the processing region 3 to the side surface (peripheral surface) of the separation start region 4.

加工領域3を露出させる方法としては、半導体ウェーハ1の表面から加工領域3までの深さを集光レンズ23の位置や屈折率から予測し、半導体ウェーハ1の周面にレーザ光線21を照射して一部除去する方法、半導体ウェーハ1の表面をダイヤモンドカッタやレーザーアブレーション等の手段により一部除去する方法等があげられる。このように剥離開始領域4の側面に加工領域3を露出させ、剥離作業の起点とすれば、中間品5を円滑かつ容易に剥離することができる。   As a method of exposing the processing region 3, the depth from the surface of the semiconductor wafer 1 to the processing region 3 is predicted from the position and refractive index of the condenser lens 23, and the peripheral surface of the semiconductor wafer 1 is irradiated with the laser beam 21. And a method of partially removing the surface of the semiconductor wafer 1 by means such as diamond cutter or laser ablation. Thus, if the process area | region 3 is exposed to the side surface of the peeling start area | region 4 and it is made the starting point of a peeling operation | work, the intermediate product 5 can be peeled smoothly and easily.

以下、本発明に係る半導体ウェーハの製造方法及びその装置の実施例を比較例と共に説明する。   Embodiments of a semiconductor wafer manufacturing method and apparatus according to the present invention will be described below together with comparative examples.

先ず、鏡面研磨された10□mmの単結晶シリコンインゴットからなる複数の半導体ウェーハと、この複数の半導体ウェーハを粘着テープを介して位置決め保持する加工ステージと、この加工ステージに搭載された半導体ウェーハにレーザ光線を照射するレーザ照射装置と、これら加工ステージとレーザ照射装置とを制御する制御装置とを用意し、加工ステージとレーザ照射装置とを防振性の台座に固定した。   First, a plurality of semiconductor wafers made of mirror-polished 10 □ mm single crystal silicon ingots, a processing stage for positioning and holding the plurality of semiconductor wafers via an adhesive tape, and a semiconductor wafer mounted on the processing stage A laser irradiation device for irradiating a laser beam and a control device for controlling the processing stage and the laser irradiation device were prepared, and the processing stage and the laser irradiation device were fixed to a vibration-proof base.

複数(本実施例では4個)の半導体ウェーハは、面取り部が加工ステージの回転ステージの回転軸に間隔をおいてそれぞれ接近し、合成重心が回転ステージの回転軸と略一致する。各半導体ウェーハは、その隅部に1mmの面取り部が形成され、2mmの厚さとされる。また、加工ステージは、図1に示すように、複数の半導体ウェーハを水平に並べて搭載する回転ステージと、この回転ステージの支持軸を直立状態に支持してX方向に10mmのストロークで移動可能なX方向移動ステージとを備えたステージを使用した。   In a plurality (four in this embodiment) of semiconductor wafers, the chamfered portions approach the rotation axis of the rotation stage of the processing stage with a space therebetween, and the resultant center of gravity substantially coincides with the rotation axis of the rotation stage. Each semiconductor wafer has a chamfered portion of 1 mm at the corner and has a thickness of 2 mm. Further, as shown in FIG. 1, the processing stage can be moved with a stroke of 10 mm in the X direction by supporting a rotating stage on which a plurality of semiconductor wafers are horizontally arranged and supporting shafts of the rotating stage in an upright state. A stage with an X-direction moving stage was used.

回転ステージは、支持軸を挟んで−2〜18mmの範囲にレーザ光線を照射できるようレーザ照射装置と共に調整され、毎分回転数が0〜60rpmの範囲で調整される。また、X方向移動ステージは、移動速度が0〜15mm/秒の範囲で調整され、支持軸から−0.050〜19.950mmの範囲にレーザ光線を照射できるようレーザ照射装置と共に調整される。   The rotation stage is adjusted together with the laser irradiation device so that the laser beam can be irradiated in a range of −2 to 18 mm across the support shaft, and the rotation speed is adjusted in the range of 0 to 60 rpm. The X-direction moving stage is adjusted with the laser irradiation device so that the moving speed is adjusted in the range of 0 to 15 mm / second and the laser beam can be irradiated in the range of −0.050 to 19.950 mm from the support shaft.

レーザ照射装置は、図1に示すように、波長1064nm、繰り返し発振周波数10kHz、出力0.68W、パルス幅200n秒でYAGレーザを照射する装置を使用した。このレーザ照射装置の集光レンズは、開口数(NA)が0.8で、2mmの焦点距離とした。また、収差増強ガラスとしては、厚み0.15mm、屈折率が1.5のカバーガラスを用いた。   As the laser irradiation apparatus, as shown in FIG. 1, a YAG laser irradiation apparatus having a wavelength of 1064 nm, a repetition oscillation frequency of 10 kHz, an output of 0.68 W, and a pulse width of 200 nsec was used. The condenser lens of this laser irradiation apparatus had a numerical aperture (NA) of 0.8 and a focal length of 2 mm. As the aberration-enhancing glass, a cover glass having a thickness of 0.15 mm and a refractive index of 1.5 was used.

制御装置は、コントローラからなり、加工ステージの回転ステージやX方向移動ステージの位置、回転数、移動速度を制御するとともに、レーザ照射装置のレーザ照射のON‐OFFを制御する装置を使用した。   The control device is composed of a controller and used to control the position, rotation speed, and movement speed of the rotary stage of the processing stage and the X-direction moving stage, and to control ON / OFF of laser irradiation of the laser irradiation apparatus.

次いで、加工ステージの回転ステージに複数の半導体ウェーハを配列して各半導体ウェーハの面取り部を保持テーブルの中心部の周囲に位置させ、この複数の半導体ウェーハの表面を揃えて±3μmとし、加工ステージのX方向移動ステージをX方向に移動させてレーザ照射装置の集光レンズの光軸を回転ステージに搭載された半導体ウェーハの表面周縁部側に位置させた。   Next, a plurality of semiconductor wafers are arranged on the rotation stage of the processing stage, the chamfered portions of each semiconductor wafer are positioned around the central portion of the holding table, and the surfaces of the plurality of semiconductor wafers are aligned to ± 3 μm. The X-direction moving stage was moved in the X direction so that the optical axis of the condenser lens of the laser irradiation apparatus was positioned on the peripheral edge side of the surface of the semiconductor wafer mounted on the rotating stage.

こうして集光レンズの光軸を半導体ウェーハの表面周縁部側に位置させたら、半導体ウェーハの表面に集光点が位置するようレーザ照射装置の焦点位置調整具を下降させ、その後、半導体ウェーハの内部に加工領域用の集光点を形成できるよう焦点位置調整具を下降させ、半導体ウェーハの表面に集光レンズと収差増強ガラスとを接近させた。この際の距離は、集光点の深さが0.05〜0.2mmの範囲の場合には、集光点の深さの0.3〜0.4倍である。   When the optical axis of the condensing lens is thus positioned on the peripheral edge side of the surface of the semiconductor wafer, the focus adjustment tool of the laser irradiation device is lowered so that the condensing point is located on the surface of the semiconductor wafer, and then the inside of the semiconductor wafer Then, the focal position adjuster was lowered so as to form a condensing point for the processing area, and the condensing lens and the aberration-enhancing glass were brought close to the surface of the semiconductor wafer. The distance at this time is 0.3 to 0.4 times the depth of the condensing point when the depth of the condensing point is in the range of 0.05 to 0.2 mm.

次いで、集光点の線速度が10mm/秒となるよう回転ステージの回転数を制御しつつ回転させ、集光点の線速度が10mm/秒に達したら、レーザ照射装置からレーザ光線を照射するとともに、加工ステージのX方向移動ステージをX方向に移動させ、回転ステージが一回転する毎に回転ステージの回転軸を光軸方向に1μmピッチで移動させた。   Next, the rotation speed of the rotating stage is controlled so that the linear velocity at the focal point becomes 10 mm / second, and when the linear velocity at the focal point reaches 10 mm / second, the laser beam is emitted from the laser irradiation device. At the same time, the X-direction moving stage of the processing stage was moved in the X direction, and the rotation axis of the rotation stage was moved at a pitch of 1 μm in the optical axis direction every time the rotation stage made one rotation.

次いで、半導体ウェーハの面取り部手前上方に集光レンズの光軸が位置したら、回転ステージの回転数を抑制して集光点の線速度を3mm/秒に調整し、半導体ウェーハの表面周縁部側から面取り部方向に移動するレーザ光線のピッチ間隔を0.5μmピッチに狭めることにより、半導体ウェーハの面取り部にレーザ光線を重点的に照射して中間品の表面を剥離する際の剥離開始領域を形成し、薄い半導体ウェーハの中間品を形成した後、レーザ光線の照射を停止した。   Next, when the optical axis of the condensing lens is positioned in front of the chamfered portion of the semiconductor wafer, the rotational speed of the rotary stage is suppressed and the linear velocity of the condensing point is adjusted to 3 mm / second, and the surface peripheral portion side of the semiconductor wafer By narrowing the pitch interval of the laser beam moving from the chamfered part to the chamfered part to 0.5 μm pitch, the peeling start region when peeling the surface of the intermediate product by irradiating the chamfered part of the semiconductor wafer with focus on the laser beam After forming and forming an intermediate product of a thin semiconductor wafer, irradiation of the laser beam was stopped.

上記作業の際、加工ステージのX方向移動ステージを10mm秒で往復移動させた。また、レーザ光線の照射停止後、中間品の外観を観察したが、表面は鏡面のままであり、外観に変化は見られなかった。   During the above operation, the X-direction moving stage of the processing stage was reciprocated in 10 mm seconds. Further, after the laser beam irradiation was stopped, the appearance of the intermediate product was observed, but the surface remained a mirror surface, and no change was observed in the appearance.

薄い半導体ウェーハの中間品を形成したら、加工ステージの回転ステージから薄い半導体ウェーハの中間品を取り外してその剥離開始領域の周面を劈開で除去し、剥離開始領域の周面に加工領域を露出させ、中間品の表裏面に5mmの厚さを有するアクリル板製の剥離補助板をそれぞれ粘着固定し、その後、連続した加工領域を境界面として中間品を剥離補助板と共に剥離開始領域から剥離することにより、薄い半導体ウェーハを容易に製造することができた。   After the thin semiconductor wafer intermediate product is formed, the thin semiconductor wafer intermediate product is removed from the rotating stage of the processing stage, the peripheral surface of the separation start region is removed by cleavage, and the processing region is exposed to the peripheral surface of the separation start region. , Acrylic plate peeling auxiliary plates having a thickness of 5 mm are adhesively fixed to the front and back surfaces of the intermediate product, and then the intermediate product is peeled from the peeling start region together with the peeling auxiliary plate with the continuous processing region as a boundary surface. Thus, a thin semiconductor wafer could be easily manufactured.

比較例Comparative example

基本的には実施例と同様だが、回転ステージの回転数を毎秒1回転に固定し、半導体ウェーハの表面にレーザ光線を照射した。
その他は実施例と同様にして薄い半導体ウェーハの中間品を形成したが、レーザ光線の照射を停止して中間品の外観を観察したところ、中間品の表面中心部に白化が認められた。
Although basically the same as the embodiment, the rotation speed of the rotary stage was fixed to 1 rotation per second, and the surface of the semiconductor wafer was irradiated with a laser beam.
Other than that, an intermediate product of a thin semiconductor wafer was formed in the same manner as in the example. When the appearance of the intermediate product was observed after stopping the laser beam irradiation, whitening was observed at the center of the surface of the intermediate product.

中間品を取り外してその剥離開始領域の周面を劈開で除去し、剥離開始領域の周面に加工領域を露出させ、中間品の表裏面に5mmの厚さを有するアクリル板製の剥離補助板をそれぞれ粘着固定して剥離しようとしたが、加工領域を境界面として剥離することができず、薄い半導体ウェーハを得ることができなかった。   The intermediate product is removed, the peripheral surface of the peeling start region is removed by cleavage, the processing region is exposed on the peripheral surface of the peeling start region, and an acrylic plate peeling auxiliary plate having a thickness of 5 mm on the front and back surfaces of the intermediate product However, it was not possible to peel off using the processing region as a boundary surface, and a thin semiconductor wafer could not be obtained.

1 半導体ウェーハ(半導体)
2 面取り部
3 加工領域
4 剥離開始領域
5 中間品
6 薄い半導体ウェーハ(半導体ウェーハ)
10 加工ステージ
11 回転ステージ
12 支持軸
13 保持テーブル
14 回転軸
15 X方向移動ステージ(移動ステージ)
16 Y方向移動ステージ
20 レーザ照射装置(レーザ照射手段)
21 レーザ光線
22 レーザ光源
23 集光レンズ
24 収差増強ガラス
25 焦点位置調整具(焦点位置調整手段)
26 集光点
27 光軸
30 制御装置(制御手段)
40 剥離補助板
41 錘体
42 面取り部(隅部)
1 Semiconductor wafer (semiconductor)
2 Chamfered part 3 Processing area 4 Peeling start area 5 Intermediate product 6 Thin semiconductor wafer (semiconductor wafer)
DESCRIPTION OF SYMBOLS 10 Processing stage 11 Rotating stage 12 Support shaft 13 Holding table 14 Rotating shaft 15 X direction moving stage (moving stage)
16 Y-direction moving stage 20 Laser irradiation device (laser irradiation means)
21 Laser beam 22 Laser light source 23 Condensing lens 24 Aberration enhancing glass 25 Focus position adjuster (focal position adjusting means)
26 Condensing point 27 Optical axis 30 Control device (control means)
40 Peeling auxiliary plate 41 Weight 42 Chamfer (corner)

Claims (7)

移動ステージに回転ステージを支持させた加工ステージと、この加工ステージに搭載された半導体にレーザ光線を照射するレーザ照射手段とを備え、加工ステージの回転ステージに搭載された半導体の表面にレーザ光線を集光レンズを介し照射して半導体の内部に集光点を形成し、半導体と集光点とを相対的に移動させ、半導体の内部に加工領域を設けることにより、半導体ウェーハの中間品を形成するとともに、この中間品の表面を加工領域を境に剥離して半導体ウェーハを得る半導体ウェーハの製造方法であって、
加工ステージの回転ステージに半導体を搭載してその面取り部を回転ステージの回転軸に間隔をおいて接近させ、加工ステージの移動ステージを移動させて集光レンズの光軸を半導体の表面周縁部側に位置させ、半導体の内部に集光点を形成できるようレーザ照射手段の高さを調整し、集光点の線速度が一定になるよう回転ステージを回転させるとともに、レーザ照射手段からレーザ光線を照射し、加工ステージの移動ステージを移動させてレーザ光線を回転ステージが所定の回転角で回転する度に半導体の面取り部方向に所定のピッチで移動させ、回転ステージの回転軸と集光レンズの光軸との接近に応じ、回転ステージの回転数を抑制して集光点の線速度を低下させることにより、半導体の面取り部にレーザ光線を重点的に照射し、その後、集光レンズの光軸が半導体の面取り部を通過し、回転ステージの回転軸と集光レンズの光軸とが所定の近距離に達した場合に、レーザ照射手段の照射を停止して半導体ウェーハの中間品を形成することを特徴とする半導体ウェーハの製造方法。
A processing stage in which a rotary stage is supported by a moving stage and a laser irradiation means for irradiating a semiconductor mounted on the processing stage with a laser beam are provided, and the laser beam is applied to the surface of the semiconductor mounted on the rotating stage of the processing stage. Form an intermediate product of a semiconductor wafer by irradiating through a condenser lens to form a condensing point inside the semiconductor, moving the semiconductor and the condensing point relative to each other, and providing a processing region inside the semiconductor. And a method for manufacturing a semiconductor wafer by separating the surface of the intermediate product from the processing region to obtain a semiconductor wafer,
A semiconductor is mounted on the rotating stage of the processing stage, and the chamfered portion is moved closer to the rotating shaft of the rotating stage with a space between them, and the moving stage of the processing stage is moved so that the optical axis of the condenser lens is on the semiconductor surface peripheral side. The height of the laser irradiation means is adjusted so that the focal point can be formed inside the semiconductor, the rotary stage is rotated so that the linear velocity of the focal point is constant, and the laser beam is emitted from the laser irradiation means. Irradiate, move the moving stage of the processing stage, and move the laser beam at a predetermined pitch in the direction of the chamfered part of the semiconductor each time the rotary stage rotates at a predetermined rotation angle. In response to the approach to the optical axis, the rotational speed of the rotary stage is suppressed to reduce the linear velocity of the condensing point, so that the laser beam is focused on the chamfered portion of the semiconductor, , When the optical axis of the condenser lens passes through the chamfered portion of a semiconductor, the optical axis of the rotating shaft and the condenser lens of the rotary stage has reached a predetermined short distance, the semiconductor stop irradiation of the laser irradiation means A method for producing a semiconductor wafer, comprising forming an intermediate product of a wafer.
加工ステージの回転ステージに複数の半導体を配列して各半導体の面取り部を回転ステージの回転軸に間隔をおいて接近させる請求項1記載の半導体ウェーハの製造方法。 The method of manufacturing a semiconductor wafer according to claim 1 , wherein a plurality of semiconductors are arranged on a rotating stage of a processing stage, and a chamfered portion of each semiconductor is brought close to a rotating shaft of the rotating stage with an interval. 加工ステージの回転ステージに半導体と錘体とを配列し、これら半導体の面取り部と錘体の隅部とを回転ステージの回転軸に間隔をおいてそれぞれ接近させる請求項1記載の半導体ウェーハの製造方法。 2. The semiconductor wafer manufacturing method according to claim 1 , wherein a semiconductor and a weight are arranged on a rotating stage of the processing stage, and the chamfered portion of the semiconductor and the corner of the weight are respectively brought close to a rotating shaft of the rotating stage with an interval. Method. 半導体の表面周縁部側と面取り部との間を移動するレーザ光線のピッチ間隔を狭めることにより、半導体の面取り部にレーザ光線を重点的に照射する請求項1、2、又は3記載の半導体ウェーハの製造方法。 4. The semiconductor wafer according to claim 1, 2, or 3 , wherein the laser beam is preferentially irradiated to the chamfered portion of the semiconductor by narrowing a pitch interval of the laser beam moving between the peripheral surface side of the semiconductor and the chamfered portion. Manufacturing method. 半導体を搭載する加工ステージと、この加工ステージに搭載された半導体にレーザ光線を照射するレーザ照射手段と、これら加工ステージとレーザ照射手段とを制御する制御手段とを備え、
加工ステージに搭載された半導体の表面にレーザ光線を集光レンズを介し照射して半導体の内部に集光点を形成し、半導体と集光点とを相対的に移動させ、半導体の内部に加工領域を設けることにより、半導体ウェーハの中間品を形成するとともに、この中間品の表面を加工領域を境に剥離して半導体ウェーハを得る半導体ウェーハの製造装置であって、
加工ステージは、半導体を搭載する回転ステージと、この回転ステージを支持して移動可能な移動ステージとを含み、回転ステージに半導体を搭載してその面取り部を回転ステージの回転軸に間隔をおいて接近させ、
制御手段は、加工ステージの移動ステージを移動させて集光レンズの光軸を回転ステージに搭載された半導体の表面周縁部側あるいは面取り部付近に位置させ、半導体の内部に集光点を形成できるようレーザ照射手段の高さを調整する機能と、集光点の線速度が一定になるよう回転ステージの回転数を制御して回転させ、レーザ照射手段からレーザ光線を照射するとともに、加工ステージの移動ステージを移動させてレーザ光線を回転ステージが所定の回転角で回転する度に半導体の面取り部方向あるいは表面周縁部側に移動させる機能と、回転ステージの回転軸と集光レンズの光軸とが所定の距離に達した場合にレーザ照射手段の照射を停止する機能とを実現することを特徴とする半導体ウェーハの製造装置。
A processing stage for mounting a semiconductor; a laser irradiation means for irradiating a semiconductor mounted on the processing stage with a laser beam; and a control means for controlling the processing stage and the laser irradiation means.
The surface of the semiconductor mounted on the processing stage is irradiated with a laser beam through a condenser lens to form a condensing point inside the semiconductor, and the semiconductor and the condensing point are moved relative to each other to process the semiconductor. A semiconductor wafer manufacturing apparatus for forming a semiconductor wafer intermediate product by providing a region, and peeling the surface of the intermediate product from the processing region to obtain a semiconductor wafer,
The processing stage includes a rotary stage on which a semiconductor is mounted and a movable stage that can move while supporting the rotary stage. The semiconductor is mounted on the rotary stage, and the chamfered portion is spaced from the rotation axis of the rotary stage. Approach
The control means can move the moving stage of the processing stage so that the optical axis of the condensing lens is located on the surface peripheral edge side or near the chamfered portion of the semiconductor mounted on the rotary stage, thereby forming a condensing point inside the semiconductor. The function of adjusting the height of the laser irradiation means and the rotation speed of the rotary stage are controlled so that the linear velocity of the condensing point is constant , the laser irradiation means is irradiated with the laser beam, and the processing stage The function of moving the moving stage to move the laser beam toward the chamfered portion of the semiconductor or the surface peripheral edge each time the rotating stage rotates at a predetermined rotation angle, and the rotation axis of the rotating stage and the optical axis of the condenser lens And a function of stopping the irradiation of the laser irradiation means when the distance reaches a predetermined distance.
レーザ照射手段は、半導体の表面と集光レンズとの間に介在するレーザ光線用の収差増強ガラスと、集光レンズ及び収差増強ガラスを保持する上下動可能な焦点位置調整手段とを含んでなる請求項5記載の半導体ウェーハの製造装置。 The laser irradiating means includes an aberration-enhancing glass for laser light interposed between the semiconductor surface and the condensing lens, and a vertically movable focus position adjusting means for holding the condensing lens and the aberration-enhancing glass. The semiconductor wafer manufacturing apparatus according to claim 5 . 制御手段は、回転ステージの回転軸と集光レンズの光軸との接近に応じて集光点の線速度を低下させ、半導体の表面周縁部側と面取り部との間を移動するレーザ光線のピッチ間隔を狭めることにより、半導体の面取り部にレーザ光線を重点的に照射する機能を実現する請求項5又は6記載の半導体ウェーハの製造装置。 The control means reduces the linear velocity of the condensing point in accordance with the approach between the rotation axis of the rotary stage and the optical axis of the condensing lens, and the laser beam moving between the chamfered portion and the peripheral surface of the semiconductor surface. The semiconductor wafer manufacturing apparatus according to claim 5 or 6 , wherein a function of intensively irradiating the chamfered portion of the semiconductor with a laser beam is realized by narrowing the pitch interval.
JP2009143816A 2009-06-17 2009-06-17 Method and apparatus for manufacturing semiconductor wafer Active JP5456382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143816A JP5456382B2 (en) 2009-06-17 2009-06-17 Method and apparatus for manufacturing semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143816A JP5456382B2 (en) 2009-06-17 2009-06-17 Method and apparatus for manufacturing semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2011003624A JP2011003624A (en) 2011-01-06
JP5456382B2 true JP5456382B2 (en) 2014-03-26

Family

ID=43561380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143816A Active JP5456382B2 (en) 2009-06-17 2009-06-17 Method and apparatus for manufacturing semiconductor wafer

Country Status (1)

Country Link
JP (1) JP5456382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562029B2 (en) 2023-01-16 2024-10-04 株式会社アマダ Laser Processing Equipment

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614739B2 (en) * 2010-02-18 2014-10-29 国立大学法人埼玉大学 Substrate internal processing apparatus and substrate internal processing method
CN103380482B (en) * 2011-02-10 2016-05-25 信越聚合物株式会社 Single crystallization base plate manufacture method and inner upgrading layer form single crystals parts
JP5875122B2 (en) * 2011-02-10 2016-03-02 信越ポリマー株式会社 Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP6004339B2 (en) * 2011-02-10 2016-10-05 信越ポリマー株式会社 Internal stress layer forming single crystal member and single crystal substrate manufacturing method
US20130312460A1 (en) * 2011-02-10 2013-11-28 National University Corporation Saitama University Manufacturing method of single crystal substrate and manufacturing method of internal modified layer-forming single crystal member
JP5950269B2 (en) * 2011-02-10 2016-07-13 国立大学法人埼玉大学 Substrate processing method and substrate
JP5839538B2 (en) * 2011-03-17 2016-01-06 リンテック株式会社 Manufacturing method of thin semiconductor device
JP5843393B2 (en) * 2012-02-01 2016-01-13 信越ポリマー株式会社 Single crystal substrate manufacturing method, single crystal substrate, and internal modified layer forming single crystal member manufacturing method
JP6032789B2 (en) * 2012-02-01 2016-11-30 信越ポリマー株式会社 Method for manufacturing single crystal processed member and method for manufacturing single crystal substrate
JP6044919B2 (en) * 2012-02-01 2016-12-14 信越ポリマー株式会社 Substrate processing method
JP6265522B2 (en) * 2013-02-28 2018-01-24 国立大学法人埼玉大学 Method for manufacturing surface three-dimensional structural member
TWI618131B (en) * 2013-08-30 2018-03-11 半導體能源研究所股份有限公司 Device for forming separation starting point, stack manufacturing apparatus, and method for forming separation starting point
CN104260214B (en) * 2014-06-04 2016-11-16 北京石晶光电科技股份有限公司济源分公司 High-precision wavelength plate wafer processing technology
JP6669594B2 (en) * 2016-06-02 2020-03-18 株式会社ディスコ Wafer generation method
CN110785833A (en) * 2017-06-19 2020-02-11 罗姆股份有限公司 Method for manufacturing semiconductor device and wafer bonding structure
JP6943388B2 (en) * 2017-10-06 2021-09-29 国立大学法人埼玉大学 Substrate manufacturing method
JP7121941B2 (en) * 2018-03-09 2022-08-19 国立大学法人埼玉大学 Substrate manufacturing method
CN113809208B (en) * 2021-09-18 2023-06-16 苏州芯聚半导体有限公司 Laser peeling device and laser peeling method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3096943B2 (en) * 1992-12-07 2000-10-10 鋼鈑工業株式会社 Laser polishing method and apparatus for diamond and diamond product using the same
JP3935188B2 (en) * 2000-09-13 2007-06-20 浜松ホトニクス株式会社 Laser processing equipment
JP2005277136A (en) * 2004-03-25 2005-10-06 Sharp Corp Method and apparatus of manufacturing substrate
JP2005294325A (en) * 2004-03-31 2005-10-20 Sharp Corp Method and apparatus for manufacturing substrate
JP2006142556A (en) * 2004-11-17 2006-06-08 Sharp Corp Substrate manufacturing apparatus and substrate manufacturing method
JP5011939B2 (en) * 2006-10-13 2012-08-29 パルステック工業株式会社 Laser fine processing equipment
JP5398332B2 (en) * 2009-04-16 2014-01-29 信越ポリマー株式会社 Method and apparatus for manufacturing semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562029B2 (en) 2023-01-16 2024-10-04 株式会社アマダ Laser Processing Equipment

Also Published As

Publication number Publication date
JP2011003624A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5456382B2 (en) Method and apparatus for manufacturing semiconductor wafer
JP5398332B2 (en) Method and apparatus for manufacturing semiconductor wafer
JP6486240B2 (en) Wafer processing method
JP6486239B2 (en) Wafer processing method
JP6478821B2 (en) Wafer generation method
JP5162163B2 (en) Wafer laser processing method
JP5614739B2 (en) Substrate internal processing apparatus and substrate internal processing method
JP4110219B2 (en) Laser dicing equipment
US7754582B2 (en) Laser processing method
TW201736071A (en) Wafer producing method
TW201735143A (en) SiC wafer producing method
JP2017028072A (en) Wafer thinning method
JP2016207702A (en) Thin plate separation method
JP5090897B2 (en) Wafer dividing method
JP5686551B2 (en) Wafer processing method
JP2013089714A (en) Chip formation method
JP2012156168A (en) Division method
KR20120094845A (en) Semiconductor device manufacturing method and laser machining apparatus
TWI831794B (en) Workpiece separation device and workpiece separation method
JP2011147953A (en) Laser machining device
JP6721439B2 (en) Laser processing equipment
JP5615107B2 (en) Split method
JP2011108709A (en) Method of processing wafer
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof
JP2011151090A (en) Cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250