JP5453200B2 - Molding apparatus and molding method - Google Patents

Molding apparatus and molding method Download PDF

Info

Publication number
JP5453200B2
JP5453200B2 JP2010181982A JP2010181982A JP5453200B2 JP 5453200 B2 JP5453200 B2 JP 5453200B2 JP 2010181982 A JP2010181982 A JP 2010181982A JP 2010181982 A JP2010181982 A JP 2010181982A JP 5453200 B2 JP5453200 B2 JP 5453200B2
Authority
JP
Japan
Prior art keywords
molding
temperature
preform
mold
molding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010181982A
Other languages
Japanese (ja)
Other versions
JP2012041213A (en
Inventor
信行 岩▲崎▼
徹也 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010181982A priority Critical patent/JP5453200B2/en
Priority to CN201110232389.9A priority patent/CN102371642B/en
Publication of JP2012041213A publication Critical patent/JP2012041213A/en
Application granted granted Critical
Publication of JP5453200B2 publication Critical patent/JP5453200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、プリフォームを加熱圧縮して成形し、得られる成形体を冷却固化する成形装置、及び成形方法に関する。   The present invention relates to a molding apparatus and a molding method for cooling and solidifying a molded body obtained by heating and compressing a preform.

例えばレンズは、ガラスなどの光学材料からなるプリフォームを加熱圧縮して所定のレンズ形状に成形し、得られる成形体を冷却固化して得られる。このような圧縮成形に用いられる成形装置において、成形体の肉厚に応じて型の成形面に温度分布を与えるようにしたものが知られている(例えば、特許文献1、2参照)。   For example, the lens is obtained by heating and compressing a preform made of an optical material such as glass to form a predetermined lens shape, and cooling and solidifying the obtained molded body. In such a molding apparatus used for compression molding, there is known one in which a temperature distribution is given to the molding surface of a mold in accordance with the thickness of the molded body (see, for example, Patent Documents 1 and 2).

特許文献1、2に記載された成形装置は、成形体を冷却する際に型の成形面に温度分布を与え、成形体の薄肉部表面の冷却速度に比べて厚肉部表面の冷却速度を速くしている。それにより、厚肉部におけるヒケの発生を防止して成形精度の向上を図っている。   The molding apparatus described in Patent Documents 1 and 2 gives a temperature distribution to the molding surface of the mold when cooling the molded body, and has a cooling rate on the surface of the thick part compared to the cooling rate on the surface of the thin part of the molded body. Fast. Thereby, the occurrence of sink marks in the thick part is prevented, and the molding accuracy is improved.

特開昭62−95210号公報JP 62-95210 A 特開昭63−159227号公報JP-A 63-159227

特許文献1、2は、いずれも、プリフォームを加熱圧縮して得られた成形体を冷却固化する際の型の成形面の温度分布を規定したものであるが、プリフォームを加熱圧縮する際の型の成形面の温度分布が成形精度に及ぼす影響は考慮されていない。   Patent Documents 1 and 2 both specify the temperature distribution of the molding surface of the mold when the molded body obtained by heating and compressing the preform is cooled and solidified, but when the preform is heated and compressed. The effect of the temperature distribution of the molding surface of the mold on the molding accuracy is not considered.

プリフォームは、加熱圧縮により、典型的には成形面間を放射状に展延される。その際、例えば光学用レンズ等の成形において成形面が複雑な形状である場合などに、プリフォームの外縁部と型の成形面とが加熱圧縮の初期に接触し、プリフォームの中央部よりも先に軟化して成形面に付着してしまうことで、プリフォームと成形面との間にエア溜まりが生じ、これが窪みとして成形体に残ることがある。   Preforms are typically spread radially between molding surfaces by heat compression. At that time, for example, when the molding surface is a complicated shape in molding of an optical lens or the like, the outer edge portion of the preform and the molding surface of the mold are in contact with each other at the initial stage of heat compression, and more than the center portion of the preform. By first softening and adhering to the molding surface, an air pool may be formed between the preform and the molding surface, which may remain as a dent in the molded body.

本発明は、上述した事情に鑑みなされたものであり、プリフォームの圧縮成形において、成形精度の向上を図ることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to improve molding accuracy in compression molding of a preform.

(1) プリフォームを間に挟んで圧縮する一対の型と、前記一対の型のうち少なくとも一方の型の温度を調節する温度調節手段と、を備え、前記温度調節手段は、該温度調節手段によって温度調節される型の成形面において前記プリフォームの軟化温度以上となる高温領域を、前記プリフォームの圧縮の進行に応じて、前記プリフォームの圧縮開始の際に前記プリフォームと接触する前記成形面の接触部を中心に外径側に向けて次第に拡大させる成形装置。
(2) 一対の型でプリフォームを加熱圧縮して成形する成形方法であって、前記一対の型のうち少なくとも一方の型の温度を調節し、温度調節される型の成形面において前記プリフォームの軟化温度以上となる高温領域を、前記プリフォームの圧縮の進行に応じて、前記プリフォームの圧縮開始の際に前記プリフォームと接触する前記成形面の接触部を中心に外径側に向けて次第に拡大させる成形方法。
(1) A pair of molds that are compressed with a preform interposed therebetween, and a temperature adjusting unit that adjusts the temperature of at least one of the pair of molds, wherein the temperature adjusting unit includes the temperature adjusting unit. The high temperature region which is equal to or higher than the softening temperature of the preform on the molding surface of the mold whose temperature is controlled by the contact with the preform at the start of compression of the preform according to the progress of compression of the preform A molding device that gradually expands toward the outer diameter side with the contact portion of the molding surface as the center.
(2) A molding method in which a preform is heated and compressed with a pair of molds, the temperature of at least one of the pair of molds is adjusted, and the preform is formed on the molding surface of the mold whose temperature is adjusted. A high-temperature region that is equal to or higher than the softening temperature of the preform is directed toward the outer diameter side with a contact portion of the molding surface in contact with the preform at the start of compression of the preform as the compression of the preform progresses. A molding method that gradually expands.

本発明によれば、プリフォームの圧縮成形において、成形精度を向上させることができる。   According to the present invention, molding accuracy can be improved in compression molding of a preform.

本発明の実施形態を説明するための、成形装置の一例を示す図。The figure which shows an example of the shaping | molding apparatus for describing embodiment of this invention. 図1の成形装置の一対の型及び温度調節手段を示す図。The figure which shows a pair of type | mold and temperature control means of the shaping | molding apparatus of FIG. 図2におけるIII−III線断面を示す図。The figure which shows the III-III line cross section in FIG. 図1の成形装置によってプリフォームを加熱圧縮して成形する工程を示す図。The figure which shows the process of heat-pressing and shape | molding a preform with the shaping | molding apparatus of FIG. 図1の成形装置によって成形体を冷却固化する工程を示す図。The figure which shows the process of cooling and solidifying a molded object with the shaping | molding apparatus of FIG. 図1の成形装置の変形例であって、その一対の型及び温度調節手段を示す図。It is a modification of the shaping | molding apparatus of FIG. 1, Comprising: The figure which shows a pair of type | mold and temperature control means. 図6の成形装置によってプリフォームを加熱圧縮して成形する工程を示す図。The figure which shows the process of heat-pressing and shape | molding a preform with the shaping | molding apparatus of FIG. 図6の成形装置によって成形体を冷却固化する工程を示す図。The figure which shows the process of cooling and solidifying a molded object with the shaping | molding apparatus of FIG.

図1は、成形装置の一例を示す。   FIG. 1 shows an example of a molding apparatus.

図1に示す成形装置は、ガラスや熱可塑性の透明樹脂などの光学材料からなるプリフォームを所定のレンズ形状に成形し、得られる成形体を冷却固化してレンズを得るものである。   The molding apparatus shown in FIG. 1 is to mold a preform made of an optical material such as glass or thermoplastic transparent resin into a predetermined lens shape, and cool and solidify the resulting molded body to obtain a lens.

成形装置1は、プリフォーム2を間に挟む一対の上型10及び下型11、並びに上型10及び下型11の周囲を囲む胴型17を含む成形型3と、上型10と下型11との間隔を拡縮する駆動手段4と、上型10及び下型11の温度を調節する温度調節手段5と、駆動手段4及び温度調節手段5の動作を制御する制御器6と、を備えている。   The molding apparatus 1 includes a pair of an upper mold 10 and a lower mold 11 that sandwich a preform 2 therebetween, and a molding mold 3 that includes a body mold 17 that surrounds the upper mold 10 and the lower mold 11, and an upper mold 10 and a lower mold. Drive means 4 that expands and contracts the space between the upper mold 10 and the lower mold 11, and a controller 6 that controls the operation of the drive means 4 and the temperature adjustment means 5. ing.

上型10及び下型11の対向面には、それぞれ成形面が設けられている。上型10の成形面12、及び下型11の成形面13は、プリフォーム2を成形して得るレンズの表裏の光学面の形状を反転した形状とされる。図示の例では、表側の光学面が凹曲面、裏側の光学面が凸曲面のレンズを得るものとして、上型10の成形面12は凸曲面、下型11の成形面13は凹曲面とされている。   Forming surfaces are provided on the opposing surfaces of the upper mold 10 and the lower mold 11, respectively. The molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 are formed by inverting the shapes of the optical surfaces on the front and back surfaces of the lens obtained by molding the preform 2. In the illustrated example, it is assumed that the front optical surface is a concave curved surface, and the back optical surface is a convex curved lens. The molding surface 12 of the upper mold 10 is a convex curved surface, and the molding surface 13 of the lower mold 11 is a concave curved surface. ing.

下型11及び胴型17は、基台7に載置されており、上型10は、駆動手段4により保持されている。駆動手段4は、例えばシリンダ・ピストン等が用いられ、上型10を上下動させる。それにより、上型10の成形面12と、下型11の成形面13との間隔が拡縮される。なお、上型10を上下動させるのに替えて、下型11を上下動させるようにしてもよいし、上型10及び下型11の両方を上下動させるようにしてもよい。   The lower mold 11 and the trunk mold 17 are placed on the base 7, and the upper mold 10 is held by the driving means 4. As the driving means 4, for example, a cylinder / piston is used, and the upper mold 10 is moved up and down. Thereby, the space | interval of the molding surface 12 of the upper mold | type 10 and the molding surface 13 of the lower mold | type 11 is expanded / contracted. Instead of moving the upper mold 10 up and down, the lower mold 11 may be moved up and down, or both the upper mold 10 and the lower mold 11 may be moved up and down.

温度調節手段5は、上型10及び下型11の両方の温度を調節し、詳細は後述するが、上型10の成形面12、及び下型11の成形面13に所望の温度分布を形成可能に構成されている。なお、上型10及び下型11のいずれか一方の温度を調節するものであってもよい。   The temperature adjusting means 5 adjusts the temperature of both the upper mold 10 and the lower mold 11 and forms a desired temperature distribution on the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 as will be described in detail later. It is configured to be possible. Note that the temperature of either the upper mold 10 or the lower mold 11 may be adjusted.

制御器6は、温度調節手段5を動作させて上型10及び下型11を加熱し、併せて駆動手段4を動作させて上型10を降下させる。それにより、上型10の成形面12と下型11の成形面13との間に挟まれたプリフォーム2が加熱圧縮され、上記のレンズ形状に成形される。そして、制御器6は、温度調節手段5を動作させて上型10及び下型11を冷却する。それにより、上記のレンズ形状に成形された成形体が冷却固化されレンズとなる。   The controller 6 operates the temperature adjusting means 5 to heat the upper mold 10 and the lower mold 11 and simultaneously operates the driving means 4 to lower the upper mold 10. Thereby, the preform 2 sandwiched between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 is heated and compressed to be molded into the lens shape described above. Then, the controller 6 operates the temperature adjusting means 5 to cool the upper mold 10 and the lower mold 11. Thereby, the molded body molded into the lens shape is cooled and solidified to form a lens.

図2及び図3は、温度調節手段5及びそれに付随する上型10及び下型11の構成を詳細に示す。   2 and 3 show in detail the structure of the temperature adjusting means 5 and the associated upper mold 10 and lower mold 11.

温度調節手段5は、上型10及び下型11の温度を上昇させる加熱手段と、上型10及び下型11の温度を降下させる冷却手段と、上型及び下型の温度を検出する温度センサ22とを含んでいる。加熱手段にはヒータが用いられ、ヒータ20は、上型10及び下型11にそれぞれ設けられる。冷却手段には低温のガスが用いられ、上型10及び下型11には、ガスを流通させるガス流通孔15がそれぞれ形成される。また、温度センサ22は、上型10及び下型11にそれぞれ設けられる。なお、冷却手段は、低温のガスを上型10及び下型11に流通させるものに限らず、低温の油などの流体を上型10及び下型11に流通させるものであってもよい。また、加熱手段も、ヒータに限らず、高温のガスや油などの流体を上型10及び下型11に流通させるものであってもよい。加熱手段と冷却手段とを個別に設けることで、加熱と冷却とを複合して行うことができ、上型10及び下型11の温度調節を、より細かにかつ容易に行うことができる。   The temperature adjusting means 5 includes a heating means for raising the temperatures of the upper mold 10 and the lower mold 11, a cooling means for lowering the temperatures of the upper mold 10 and the lower mold 11, and a temperature sensor for detecting the temperatures of the upper mold and the lower mold. 22 is included. A heater is used as the heating means, and the heater 20 is provided in each of the upper mold 10 and the lower mold 11. A low-temperature gas is used for the cooling means, and the upper mold 10 and the lower mold 11 are formed with gas flow holes 15 through which the gas flows. Further, the temperature sensor 22 is provided in each of the upper mold 10 and the lower mold 11. The cooling means is not limited to circulating low-temperature gas through the upper mold 10 and the lower mold 11, but may be a system for circulating fluid such as low-temperature oil through the upper mold 10 and the lower mold 11. Further, the heating means is not limited to the heater, and fluid such as high-temperature gas or oil may be circulated through the upper mold 10 and the lower mold 11. By separately providing the heating means and the cooling means, heating and cooling can be performed in combination, and the temperature adjustment of the upper mold 10 and the lower mold 11 can be performed more finely and easily.

上型10には、複数のヒータ収容孔14及び複数のガス流通孔15が形成されており、また、複数の温度センサ22が埋設されている。これらのヒータ収容孔14及びガス流通孔15並びに温度センサ22は、成形面12に沿って分散して配置されている。図3も参照して、複数のヒータ収容孔14は、成形面12の中央部を中心とした同心円状に複数の列をなして配置されている。複数のガス流通孔15もまた、成形面12の中央部を中心とした同心円状に複数の列をなして配置されている。ヒータ収容孔14の列と、ガス流通孔15の列とは交互に配置されている。そして、複数の温度センサ22は、成形面12の中央部を中心とした同心円状に複数の列をなし、温度センサ22の列は、隣り合うヒータ収容孔14とガス流通孔15の列との間に配置されている   The upper mold 10 is formed with a plurality of heater accommodating holes 14 and a plurality of gas flow holes 15, and a plurality of temperature sensors 22 are embedded therein. The heater housing holes 14, the gas flow holes 15, and the temperature sensor 22 are arranged along the molding surface 12. Referring also to FIG. 3, the plurality of heater housing holes 14 are arranged in a plurality of rows concentrically around the central portion of the molding surface 12. The plurality of gas flow holes 15 are also arranged in a plurality of rows concentrically around the central portion of the molding surface 12. The rows of heater accommodating holes 14 and the rows of gas flow holes 15 are alternately arranged. The plurality of temperature sensors 22 form a plurality of rows concentrically centering on the central portion of the molding surface 12, and the row of the temperature sensors 22 includes the heater receiving holes 14 and the rows of the gas flow holes 15. Placed between

各ヒータ収容孔14には、ヒータ20が挿入され、各ガス流通孔15には、ブローノズル21が挿入される。各ヒータ20には、図示しない電源から独立に電力が供給され、各ブローノズル21には、図示しないポンプから独立に低温のガスが供給される。また、各温度センサ22は、成形面12の近傍で上型10の内部の温度を検出する。各ヒータ20への電力の供給、及び各ブローノズル21への低温のガスの供給は、各温度センサ22で検出された上型10の各部の温度に基づいて、制御器6によって制御される。それにより、上型10の成形面12には、所望の温度分布が形成される。   A heater 20 is inserted into each heater housing hole 14, and a blow nozzle 21 is inserted into each gas flow hole 15. Electric power is supplied to each heater 20 independently from a power source (not shown), and low temperature gas is supplied to each blow nozzle 21 independently from a pump (not shown). Each temperature sensor 22 detects the temperature inside the upper mold 10 in the vicinity of the molding surface 12. Supply of electric power to each heater 20 and supply of low-temperature gas to each blow nozzle 21 are controlled by the controller 6 based on the temperature of each part of the upper mold 10 detected by each temperature sensor 22. Thereby, a desired temperature distribution is formed on the molding surface 12 of the upper mold 10.

同様に、下型11にも、複数のヒータ収容孔14及び複数のガス流通孔15が形成されており、また、複数の温度センサ22が埋設されている。これらのヒータ収容孔14及びガス流通孔15並びに温度センサ22は、成形面13に沿って分散して配置されている。複数のヒータ収容孔14は、成形面13の中央部を中心とした同心円状に複数の列をなして配置されている。複数のガス流通孔15もまた、成形面13の中央部を中心とした同心円状に複数の列をなして配置されている。ヒータ収容孔14の列と、ガス流通孔15の列とは交互に配置されている。そして、複数の温度センサ22は、成形面13の中央部を中心とした同心円状に複数の列をなし、温度センサ22の列は、隣り合うヒータ収容孔14とガス流通孔15の列との間に配置されている。   Similarly, the lower mold 11 is also formed with a plurality of heater housing holes 14 and a plurality of gas flow holes 15, and a plurality of temperature sensors 22 are embedded therein. The heater housing hole 14, the gas flow hole 15, and the temperature sensor 22 are distributed along the molding surface 13. The plurality of heater housing holes 14 are arranged in a plurality of rows concentrically around the central portion of the molding surface 13. The plurality of gas flow holes 15 are also arranged in a plurality of rows concentrically around the central portion of the molding surface 13. The rows of heater accommodating holes 14 and the rows of gas flow holes 15 are alternately arranged. The plurality of temperature sensors 22 form a plurality of rows concentrically with the central portion of the molding surface 13 as the center, and the rows of the temperature sensors 22 are formed by the adjacent heater accommodation holes 14 and the rows of the gas flow holes 15. Arranged between.

各ヒータ収容孔14には、ヒータ20が埋設され、各ガス流通孔15には、ブローノズル21が挿入される。各ヒータ20には、図示しない電源から独立に電力が供給され、各ブローノズル21には、図示しないポンプから独立に低温のガスが供給される。また、各温度センサ22は、成形面13の近傍で下型11の内部の温度を検出する。各ヒータ20への電力の供給、及び各ブローノズル21への低温のガスの供給は、各温度センサ22で検出された下型11の各部の温度に基づいて、制御器6によって制御される。それにより、下型11の成形面13には、所望の温度分布が形成される。   A heater 20 is embedded in each heater accommodation hole 14, and a blow nozzle 21 is inserted in each gas circulation hole 15. Electric power is supplied to each heater 20 independently from a power source (not shown), and low temperature gas is supplied to each blow nozzle 21 independently from a pump (not shown). Each temperature sensor 22 detects the temperature inside the lower mold 11 in the vicinity of the molding surface 13. Supply of electric power to each heater 20 and supply of low-temperature gas to each blow nozzle 21 are controlled by the controller 6 based on the temperature of each part of the lower mold 11 detected by each temperature sensor 22. Thereby, a desired temperature distribution is formed on the molding surface 13 of the lower mold 11.

図4は、成形装置1によってプリフォーム2を加熱圧縮して成形する工程を示す。図には、各工程での上型10の成形面12の温度分布を併せて示している。   FIG. 4 shows a process in which the preform 2 is heated and compressed by the molding apparatus 1. The figure also shows the temperature distribution of the molding surface 12 of the upper mold 10 in each step.

下型11の成形面13にプリフォーム2が載置される。下型11の成形面13は凹曲面であり、プリフォーム2は下型11の成形面13の中央部に位置する。そして、上型10が降下され、プリフォーム2は上型10の成形面12と下型11の成形面13との間に挟まれる。上型10の成形面12は、その中央部でプリフォーム2に接触し、また、下型11の成形面13も、その中央部でプリフォーム2に接触している。上型10の成形面12は、その中央部が、プリフォームの軟化温度(ガラス転移点)Tg以上の高温領域とされる。同様に、下型11の成形面13もまた、その中央部が、プリフォームの軟化温度Tg以上の高温領域とされる。(FIG.4A)   The preform 2 is placed on the molding surface 13 of the lower mold 11. The molding surface 13 of the lower mold 11 is a concave curved surface, and the preform 2 is located at the center of the molding surface 13 of the lower mold 11. Then, the upper mold 10 is lowered, and the preform 2 is sandwiched between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11. The molding surface 12 of the upper mold 10 is in contact with the preform 2 at its center, and the molding surface 13 of the lower mold 11 is also in contact with the preform 2 at its center. The central surface of the molding surface 12 of the upper mold 10 is a high temperature region that is equal to or higher than the softening temperature (glass transition point) Tg of the preform. Similarly, the molding surface 13 of the lower mold 11 also has a central portion in a high temperature region equal to or higher than the softening temperature Tg of the preform. (FIG. 4A)

上型10が降下され、上型10の成形面12と下型11の成形面13との間でプリフォーム2が加熱圧縮される。プリフォーム2は、加熱圧縮により、上型10の成形面12と下型11の成形面13との間で放射状に展延される。プリフォーム2の圧縮の進行に応じ、上型10の成形面12の高温領域は、その中央部を中心として外径側に向けて次第に拡大される。かかる温度分布の変化は、温度調整手段5によって形成され、例えば、同心円状に複数の列をなして上型10に設けられた複数のヒータ20(図2参照)への電力の供給を、成形面12の略中央部に最も近い列から外径側の列へと順に開始することで形成できる。また、上型10に設けられた複数のヒータ20の全てに電力を供給しつつ、同心円状に複数の列をなして上型10に設けられた複数のガス流通孔15(図2参照)への低温のガスの供給を、成形面12の略中央部に最も近い列から外径側の例へと順に停止することでも形成できる。それによれば、上型10の各部の昇温に要する時間を短縮することができる。同様にして、下型11の成形面13の高温領域もまた、プリフォーム2の圧縮の進行に応じ、その中央部を中心として外径側に向けて次第に拡大される。プリフォーム2は、その中央部が外縁部に先んじて軟化し、中央部から外縁部に向けて次第に両成形面12、13に付着する。それにより、プリフォーム2と両成形面12、13との間にエア溜まりが生じることが防止される。(FIG.4B)   The upper mold 10 is lowered, and the preform 2 is heated and compressed between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11. The preform 2 is spread radially between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 by heat compression. As the compression of the preform 2 progresses, the high temperature region of the molding surface 12 of the upper mold 10 is gradually expanded toward the outer diameter side with the center portion as the center. Such a change in temperature distribution is formed by the temperature adjusting means 5. For example, the supply of electric power to a plurality of heaters 20 (see FIG. 2) provided in the upper mold 10 in a plurality of concentric rows is formed. It can be formed by starting in sequence from the row closest to the substantially central portion of the surface 12 to the row on the outer diameter side. Further, while supplying electric power to all of the plurality of heaters 20 provided in the upper mold 10, a plurality of concentric circles are formed in a plurality of rows to the plurality of gas flow holes 15 provided in the upper mold 10 (see FIG. 2). The low-temperature gas supply can also be stopped by sequentially stopping from the row closest to the substantially central portion of the molding surface 12 to the example on the outer diameter side. According to this, it is possible to shorten the time required for raising the temperature of each part of the upper mold 10. Similarly, the high temperature region of the molding surface 13 of the lower mold 11 is also gradually enlarged toward the outer diameter side with the center portion as the center as the compression of the preform 2 proceeds. The center portion of the preform 2 is softened prior to the outer edge portion, and gradually adheres to the molding surfaces 12 and 13 from the center portion toward the outer edge portion. Thereby, it is possible to prevent air from being accumulated between the preform 2 and the molding surfaces 12 and 13. (FIG. 4B)

上型10及び下型11並びに胴型17で囲まれるキャビティの全体にプリフォーム2が行き渡り、プリフォーム2の加熱圧縮による成形が完了すると、上型10の降下が停止される。その状態で、上型10の成形面12及び下型11の成形面13は、その全体が高温領域となっている。(FIG.4C)   When the preform 2 is spread over the entire cavity surrounded by the upper mold 10, the lower mold 11, and the body mold 17, and the molding of the preform 2 by heating and compression is completed, the lowering of the upper mold 10 is stopped. In that state, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 are entirely in a high temperature region. (FIG. 4C)

以上の工程において、上型10の成形面12及び下型11の成形面13の各々の高温領域は、成形面間の距離が小さい程に高温となる温度分布とされる。成形面間の距離が小さいところ程、そこにおけるプリフォーム2の肉厚も小さく、冷めやすい。そこで、両成形面12、13の各々の高温領域の温度分布を、成形面間の距離が小さい程に高温となる温度分布とすることで、プリフォーム2の軟化された部分を略均一な温度とし、歪が生じるのを抑制して成形精度を高めることができる。図示の例では、上型10の成形面12は凸曲面、下型11の成形面13は凹曲面とされており、成形面間の距離は、中央部ほど小さくなっている。そこで、両成形面12、13の各々の高温領域の温度分布は、中央部ほど高温となる温度分布となる。かかる温度分布は、温度調整手段5によって形成される。特に、レンズ形状は、典型的には回転対象であるので、同心円状に複数の列をなして上型10及び下型11にそれぞれ設けられた複数のヒータ20及び複数のガス流通孔15により、容易に形成できる。   In the above process, the high temperature regions of the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 have a temperature distribution that becomes higher as the distance between the molding surfaces is smaller. The smaller the distance between the molding surfaces, the smaller the thickness of the preform 2 there, and the easier it is to cool. Accordingly, the temperature distribution in the high temperature region of each of the molding surfaces 12 and 13 is a temperature distribution that becomes higher as the distance between the molding surfaces becomes smaller, so that the softened portion of the preform 2 has a substantially uniform temperature. Thus, distortion can be suppressed and molding accuracy can be increased. In the illustrated example, the molding surface 12 of the upper mold 10 is a convex curved surface, and the molding surface 13 of the lower mold 11 is a concave curved surface, and the distance between the molding surfaces is smaller at the center. Therefore, the temperature distribution in the high temperature region of each of the molding surfaces 12 and 13 is a temperature distribution that becomes higher at the center. Such a temperature distribution is formed by the temperature adjusting means 5. In particular, since the lens shape is typically an object to be rotated, a plurality of heaters 20 and a plurality of gas flow holes 15 respectively provided in the upper mold 10 and the lower mold 11 in a plurality of concentric circles are provided. Can be easily formed.

図5は、成形装置1によって成形体を冷却固化する工程を示す。図には、成形体を冷却固化する工程での上型10の成形面12の温度分布を併せて示している。   FIG. 5 shows a process of cooling and solidifying the molded body by the molding apparatus 1. The drawing also shows the temperature distribution of the molding surface 12 of the upper mold 10 in the process of cooling and solidifying the molded body.

プリフォーム2が上述した成形工程を経て所定のレンズ形状に成形されてなる成形体8を、上型10の成形面12と下型11の成形面13との間に挟んだ状態で冷却して固化させる。その際、上型10の成形面12及び下型11の成形面13は、成形面間の距離が大きい程に低温となる温度分布とされる。成形面間の距離が大きいところ程、そこにおける成形体8の肉厚も大きく、冷めにくい。そこで、両成形面12、13の各々の温度分布を、成形面間の距離が大きい程に低温となる温度分布とすることで、成形体8を、全体にわたって略均一な速度で冷却させることができ、成形体8に局所的なヒケが生じるのを抑制して成形精度を高めることができる。図示の例では、上型10の成形面12は凸曲面、下型11の成形面13は凹曲面とされており、成形面間の距離は、外縁部ほど大きくなっている。そこで、両成形面12、13の各々の温度分布は、外縁部ほど低温となる温度分布となる。かかる温度分布は、温度調整手段5によって形成される。特に、レンズ形状は、典型的には回転対象であるので、同心円状に複数の列をなして上型10及び下型11にそれぞれ設けられた複数のヒータ20及び複数のガス流通孔15(図2参照)により、容易に形成できる。また、かかる温度分布によって、成形体8の冷却効率の向上も図れる。   The preform 2 formed by molding the preform 2 into a predetermined lens shape through the molding process described above is cooled in a state of being sandwiched between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11. Solidify. At that time, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 have temperature distributions such that the lower the distance between the molding surfaces, the lower the temperature. The greater the distance between the molding surfaces, the greater the thickness of the molded body 8 there, and the more difficult it is to cool. Accordingly, the temperature distribution of each of the molding surfaces 12 and 13 is set to a temperature distribution that becomes lower as the distance between the molding surfaces becomes larger, so that the molded body 8 can be cooled at a substantially uniform speed throughout. It is possible to suppress the formation of local sink marks in the molded body 8 and to increase the molding accuracy. In the illustrated example, the molding surface 12 of the upper mold 10 is a convex curved surface, and the molding surface 13 of the lower mold 11 is a concave curved surface, and the distance between the molding surfaces increases toward the outer edge. Therefore, the temperature distribution of each of the molding surfaces 12 and 13 is a temperature distribution that becomes lower at the outer edge portion. Such a temperature distribution is formed by the temperature adjusting means 5. In particular, since the lens shape is typically an object to be rotated, a plurality of heaters 20 and a plurality of gas flow holes 15 (see FIG. 2)). Further, the cooling efficiency of the molded body 8 can be improved by such temperature distribution.

図6は、成形装置1の変形例を示す。なお、上述した成形装置1と共通する要素には共通の符号を付することにより、説明を省略し、又は簡略する。   FIG. 6 shows a modification of the molding apparatus 1. In addition, description is abbreviate | omitted or simplified by attaching | subjecting a common code | symbol to the element which is common in the shaping | molding apparatus 1 mentioned above.

図6に示す成形装置101は、プリフォーム2を成形して、表裏の光学面がいずれも凸曲面のレンズを得るものである。よって、上型10の成形面12及び下型11の成形面13は、いずれも凹曲面とされている。   A molding apparatus 101 shown in FIG. 6 molds the preform 2 to obtain a lens having both convex and concave optical surfaces. Therefore, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 are both concave curved surfaces.

図7は、成形装置101によってプリフォーム2を加熱圧縮して成形する工程を示す。図には、各工程での上型10の成形面12の温度分布を併せて示している。   FIG. 7 shows a process of molding the preform 2 by heating and compression by the molding apparatus 101. The figure also shows the temperature distribution of the molding surface 12 of the upper mold 10 in each step.

下型11の成形面13にプリフォーム2が載置される。下型11の成形面13は凹曲面であり、プリフォーム2は下型11の成形面13の中央部に位置する。そして、上型10が降下され、プリフォーム2は上型10の成形面12と下型11の成形面13との間に挟まれる。上型10の成形面12は、その中央部でプリフォーム2に接触し、また、下型11の成形面13も、その中央部でプリフォーム2に接触している。上型10の成形面12は、その中央部が、プリフォーム2の軟化温度(ガラス転移点)Tg以上の高温領域とされる。同様に、下型11の成形面13もまた、その中央部が、プリフォーム2の軟化温度Tg以上の高温領域とされる。(FIG.7A)   The preform 2 is placed on the molding surface 13 of the lower mold 11. The molding surface 13 of the lower mold 11 is a concave curved surface, and the preform 2 is located at the center of the molding surface 13 of the lower mold 11. Then, the upper mold 10 is lowered, and the preform 2 is sandwiched between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11. The molding surface 12 of the upper mold 10 is in contact with the preform 2 at its center, and the molding surface 13 of the lower mold 11 is also in contact with the preform 2 at its center. The molding surface 12 of the upper mold 10 has a central portion in a high temperature region equal to or higher than the softening temperature (glass transition point) Tg of the preform 2. Similarly, the molding surface 13 of the lower mold 11 also has a central portion in a high temperature region equal to or higher than the softening temperature Tg of the preform 2. (FIG. 7A)

上型10が降下され、上型10の成形面12と下型11の成形面13との間でプリフォーム2が加熱圧縮される。プリフォーム2は、加熱圧縮により、上型10の成形面12と下型11の成形面13との間で放射状に展延される。プリフォーム2の圧縮の進行に応じ、上型10の成形面12の高温領域は、その中央部を中心として外径側に向けて次第に拡大される。下型11の成形面13の高温領域もまた、プリフォーム2の圧縮の進行に応じ、その中央部を中心として外径側に向けて次第に拡大される。プリフォーム2は、その中央部が外縁部に先んじて軟化し、中央部から外縁部に向けて次第に両成形面12、13に付着する。(FIG.7B)   The upper mold 10 is lowered, and the preform 2 is heated and compressed between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11. The preform 2 is spread radially between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 by heat compression. As the compression of the preform 2 progresses, the high temperature region of the molding surface 12 of the upper mold 10 is gradually expanded toward the outer diameter side with the center portion as the center. The high temperature region of the molding surface 13 of the lower mold 11 is also gradually enlarged toward the outer diameter side with the center portion as the center as the compression of the preform 2 proceeds. The center portion of the preform 2 is softened prior to the outer edge portion, and gradually adheres to the molding surfaces 12 and 13 from the center portion toward the outer edge portion. (FIG. 7B)

上型10及び下型11並びに胴型17で囲まれるキャビティの全体にプリフォーム2が行き渡り、プリフォーム2の加熱圧縮による成形が完了すると、上型10の降下が停止される。その状態で、上型10の成形面12及び下型11の成形面13は、その全体が高温領域となっている。(FIG.7C)   When the preform 2 is spread over the entire cavity surrounded by the upper mold 10, the lower mold 11, and the body mold 17, and the molding of the preform 2 by heating and compression is completed, the lowering of the upper mold 10 is stopped. In that state, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 are entirely in a high temperature region. (FIG. 7C)

以上の工程において、上型10の成形面12及び下型11の成形面13の各々の高温領域は、成形面間の距離が小さい程に高温となる温度分布とされる。図示の例では、上型10の成形面12及び下型11の成形面13は、いずれも凹曲面とされており、成形面間の距離は、外縁部ほど小さくなっている。そこで、両成形面12、13の各々の高温領域の温度分布は、外縁部ほど高温となる温度分布となる。   In the above process, the high temperature regions of the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 have a temperature distribution that becomes higher as the distance between the molding surfaces is smaller. In the illustrated example, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 are both concave curved surfaces, and the distance between the molding surfaces is smaller toward the outer edge portion. Therefore, the temperature distribution in the high temperature region of each of the molding surfaces 12 and 13 is a temperature distribution that becomes higher at the outer edge portion.

図8は、成形装置101によって成形体8を冷却固化する工程を示す。図には、成形体8を冷却固化する工程での上型10の成形面12の温度分布を併せて示している。   FIG. 8 shows a process of cooling and solidifying the molded body 8 by the molding apparatus 101. In the figure, the temperature distribution of the molding surface 12 of the upper mold 10 in the process of cooling and solidifying the molded body 8 is also shown.

成形体8を、上型10の成形面12と下型11の成形面13との間に挟んだ状態で冷却して固化させる。その際、上型10の成形面12及び下型11の成形面13は、成形面間の距離が大きい程に低温となる温度分布とされる。図示の例では、上型10の成形面12及び下型11の成形面13は、いずれも凹曲面とされており、成形面間の距離は、中央部ほど大きくなっている。そこで、両成形面12、13の各々の温度分布は、中央部ほど低温となる温度分布となる。   The molded body 8 is cooled and solidified while being sandwiched between the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11. At that time, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 have temperature distributions such that the lower the distance between the molding surfaces, the lower the temperature. In the illustrated example, the molding surface 12 of the upper mold 10 and the molding surface 13 of the lower mold 11 are both concave curved surfaces, and the distance between the molding surfaces increases toward the center. Therefore, the temperature distribution of each of the molding surfaces 12 and 13 is a temperature distribution that becomes lower at the center.

上述した例は、いずれもプリフォームを成形してレンズを得るものであるが、本発明は、レンズに限らず、プリフォームを種々の形状の成形体に成形するものに適用可能である。   The above-described examples are all obtained by molding a preform to obtain a lens. However, the present invention is not limited to a lens, and can be applied to molding a preform into molded bodies having various shapes.

以上説明したように、本明細書には、プリフォームを間に挟んで圧縮する一対の型と、前記一対の型のうち少なくとも一方の型の温度を調節する温度調節手段と、を備え、前記温度調節手段は、該温度調節手段によって温度調節される型の成形面において前記プリフォームの軟化温度以上となる高温領域を、前記プリフォームの圧縮の進行に応じて、前記プリフォームの圧縮開始の際に前記プリフォームと接触する前記成形面の接触部を中心に外径側に向けて次第に拡大させる成形装置が開示されている。   As described above, the present specification includes a pair of molds that compress with a preform interposed therebetween, and a temperature adjusting unit that adjusts the temperature of at least one of the pair of molds, The temperature adjusting means is configured to start the compression of the preform in accordance with the progress of the compression of the preform in a high temperature region that is equal to or higher than the softening temperature of the preform on the molding surface of the mold whose temperature is adjusted by the temperature adjusting means. A molding apparatus is disclosed that gradually expands toward the outer diameter side with the contact portion of the molding surface in contact with the preform at the center.

また、本明細書に開示された成形装置は、前記温度調節手段が、前記高温領域の温度分布を、前記一対の型の成形面間の距離が小さい程に高温となる温度分布とする。   Further, in the molding apparatus disclosed in the present specification, the temperature adjusting means sets the temperature distribution in the high temperature region to a temperature distribution that becomes higher as the distance between the molding surfaces of the pair of molds becomes smaller.

また、本明細書に開示された成形装置は、前記温度調節手段が、該温度調節手段によって温度調節される型に設けられた複数の加熱手段を含み、前記複数の加熱手段は、前記温度調節手段によって温度調節される前記型の前記成形面の前記接触部を中心とした同心円状に複数の列をなして配置されている。   Further, in the molding apparatus disclosed in the present specification, the temperature adjusting means includes a plurality of heating means provided in a mold whose temperature is adjusted by the temperature adjusting means, and the plurality of heating means includes the temperature adjusting means. A plurality of rows are arranged concentrically around the contact portion of the molding surface of the mold whose temperature is controlled by means.

また、本明細書に開示された成形装置は、前記温度調節手段が、該温度調節手段によって温度調節される前記成形型に設けられた複数の冷却手段を更に含み、前記複数の冷却手段は、前記温度調節手段によって温度調節される前記型の前記成形面の前記接触部を中心とした同心円状に複数の列をなして配置されている。   Further, the molding apparatus disclosed in the present specification further includes a plurality of cooling means provided in the mold in which the temperature adjusting means is temperature-controlled by the temperature adjusting means, and the plurality of cooling means includes: A plurality of rows are arranged concentrically around the contact portion of the molding surface of the mold whose temperature is adjusted by the temperature adjusting means.

また、本明細書に開示された成形装置は、前記温度調節手段が、該温度調節手段によって温度調節される前記型の前記成形面の温度分布を、前記一対の型の成形面間の距離が大きい程に低温となる温度分布として、前記プリフォームが成形されてなる成形体を冷却固化する。   Further, in the molding apparatus disclosed in the present specification, the temperature adjusting means indicates the temperature distribution of the molding surface of the mold whose temperature is adjusted by the temperature adjusting means, and the distance between the molding surfaces of the pair of molds is determined. The molded body formed by molding the preform is cooled and solidified as the temperature distribution becomes lower as the temperature increases.

また、本明細書に開示された成形装置は、光学材料からなるプリフォームを所定のレンズ形状に成形する。   Further, the molding apparatus disclosed in this specification forms a preform made of an optical material into a predetermined lens shape.

また、本明細書には、一対の型でプリフォームを加熱圧縮して成形する成形方法であって、前記一対の型のうち少なくとも一方の型の温度を調節し、温度調節される型の成形面において前記プリフォームの軟化温度以上となる高温領域を、前記プリフォームの圧縮の進行に応じて、前記プリフォームの圧縮開始の際に前記プリフォームと接触する前記成形面の接触部を中心に外径側に向けて次第に拡大させる成形方法が開示されている。   The present specification also provides a molding method in which a preform is heated and compressed with a pair of molds, and the temperature of the mold is adjusted by adjusting the temperature of at least one of the pair of molds. A high-temperature region that is equal to or higher than the softening temperature of the preform on the surface, centering on a contact portion of the molding surface that comes into contact with the preform at the start of compression of the preform as the compression of the preform progresses. A molding method that gradually expands toward the outer diameter side is disclosed.

また、本明細書に開示された成形方法は、前記高温領域の温度分布を、前記一対の型の成形面間の距離が小さい程に高温となる温度分布とする。   Further, in the molding method disclosed in the present specification, the temperature distribution in the high temperature region is set to a temperature distribution that becomes higher as the distance between the molding surfaces of the pair of molds becomes smaller.

また、本明細書に開示された成形方法は、温度調節される前記型の前記成形面の温度分布を、前記一対の型の成形面間の距離が大きい程に低温となる温度分布として、前記プリフォームが成形されてなる成形体を冷却固化する。   Further, in the molding method disclosed in the present specification, the temperature distribution of the molding surface of the mold whose temperature is adjusted is set as the temperature distribution that becomes lower as the distance between the molding surfaces of the pair of molds becomes larger. The molded body formed by molding the preform is cooled and solidified.

また、本明細書に開示された成形方法は、光学材料からなるプリフォームを所定のレンズ形状に成形する。   Further, the molding method disclosed in this specification forms a preform made of an optical material into a predetermined lens shape.

1 成形装置
2 プリフォーム
3 成形型
4 駆動手段
5 温度調節手段
6 制御器
7 基台
8 成形体
10 上型
11 下型
12 成形面
13 成形面
14 ヒータ収容孔
15 ガス流通孔
16 センサ収容孔
17 胴型
20 ヒータ
21 ブローノズル
22 温度センサ
DESCRIPTION OF SYMBOLS 1 Molding device 2 Preform 3 Mold 4 Driving means 5 Temperature adjusting means 6 Controller 7 Base 8 Molded body 10 Upper mold 11 Lower mold 12 Molding surface 13 Molding surface 14 Heater accommodating hole 15 Gas flow hole 16 Sensor accommodating hole 17 Body 20 Heater 21 Blow nozzle 22 Temperature sensor

Claims (10)

プリフォームを間に挟んで圧縮する一対の型と、
前記一対の型のうち少なくとも一方の型の温度を調節する温度調節手段と、
を備え、
前記温度調節手段は、該温度調節手段によって温度調節される型の成形面において前記プリフォームの軟化温度以上となる高温領域を、前記プリフォームの圧縮の進行に応じて、前記プリフォームの圧縮開始の際に前記プリフォームと接触する前記成形面の接触部を中心に外径側に向けて次第に拡大させる成形装置。
A pair of molds that compress with a preform in between;
Temperature adjusting means for adjusting the temperature of at least one of the pair of molds;
With
The temperature adjusting means starts the compression of the preform in accordance with the progress of the compression of the preform in a high temperature region that is equal to or higher than the softening temperature of the preform on the molding surface of the mold whose temperature is adjusted by the temperature adjusting means. A molding apparatus that gradually expands toward the outer diameter side with the contact portion of the molding surface in contact with the preform at the center.
請求項1に記載の成形装置であって、
前記温度調節手段は、前記高温領域の温度分布を、前記一対の型の成形面間の距離が小さい程に高温となる温度分布とする成形装置。
The molding apparatus according to claim 1,
The said temperature control means is a shaping | molding apparatus which makes temperature distribution of the said high temperature area | region the temperature distribution which becomes high temperature, so that the distance between the molding surfaces of a pair of said mold | die is small.
請求項1又は請求項2に記載の成形装置であって、
前記温度調節手段は、該温度調節手段によって温度調節される型に設けられた複数の加熱手段を含み、
前記複数の加熱手段は、前記温度調節手段によって温度調節される前記型の前記成形面の前記接触部を中心とした同心円状に複数の列をなして配置されている成形装置。
The molding apparatus according to claim 1 or 2,
The temperature adjusting means includes a plurality of heating means provided in a mold whose temperature is adjusted by the temperature adjusting means,
The molding apparatus in which the plurality of heating means are arranged in a plurality of rows concentrically around the contact portion of the molding surface of the mold whose temperature is adjusted by the temperature adjusting means.
請求項3に記載の成形装置であって、
前記温度調節手段は、該温度調節手段によって温度調節される前記成形型に設けられた複数の冷却手段をさらに含み、
前記複数の冷却手段は、前記温度調節手段によって温度調節される前記型の前記成形面の前記接触部を中心とした同心円状に複数の列をなして配置されている成形装置。
The molding apparatus according to claim 3,
The temperature adjusting means further includes a plurality of cooling means provided in the mold that is temperature-controlled by the temperature adjusting means,
The molding device in which the plurality of cooling means are arranged in a plurality of rows concentrically around the contact portion of the molding surface of the mold whose temperature is adjusted by the temperature adjusting means.
請求項1〜4のいずれか一項に記載の成形装置であって、
前記温度調節手段が、該温度調節手段によって温度調節される前記型の前記成形面の温度分布を、前記一対の型の成形面間の距離が大きい程に低温となる温度分布として、前記プリフォームが成形されてなる成形体を冷却固化する成形装置。
It is a shaping | molding apparatus as described in any one of Claims 1-4,
The preform is a temperature distribution in which the temperature adjusting means adjusts the temperature distribution of the molding surface of the mold, the temperature of which is adjusted by the temperature adjusting means, as the temperature distribution becomes lower as the distance between the molding surfaces of the pair of molds increases. A molding device that cools and solidifies a molded body formed by molding.
請求項1〜5のいずれか一項に記載の成形装置であって、
光学材料からなるプリフォームを所定のレンズ形状に成形する成形装置。
It is a shaping | molding apparatus as described in any one of Claims 1-5,
A molding apparatus for molding a preform made of an optical material into a predetermined lens shape.
一対の型でプリフォームを加熱圧縮して成形する成形方法であって、
前記一対の型のうち少なくとも一方の型の温度を調節し、温度調節される型の成形面において前記プリフォームの軟化温度以上となる高温領域を、前記プリフォームの圧縮の進行に応じて、前記プリフォームの圧縮開始の際に前記プリフォームと接触する前記成形面の接触部を中心に外径側に向けて次第に拡大させる成形方法。
A molding method in which a preform is heated and compressed with a pair of molds,
By adjusting the temperature of at least one of the pair of molds, a high temperature region that is equal to or higher than the softening temperature of the preform on the molding surface of the mold to be temperature-adjusted, according to the progress of compression of the preform, A molding method that gradually expands toward the outer diameter side with the contact portion of the molding surface in contact with the preform at the start of compression of the preform.
請求項7に記載の成形方法であって、
前記高温領域の温度分布を、前記一対の型の成形面間の距離が小さい程に高温となる温度分布とする成形方法。
The molding method according to claim 7,
A molding method in which the temperature distribution in the high temperature region is set to a temperature distribution that becomes higher as the distance between the molding surfaces of the pair of molds is smaller.
請求項8に記載の成形方法であって、
温度調節される前記型の前記成形面の温度分布を、前記一対の型の成形面間の距離が大きい程に低温となる温度分布として、前記プリフォームが成形されてなる成形体を冷却固化する成形方法。
The molding method according to claim 8,
The temperature distribution of the molding surface of the mold whose temperature is adjusted is set to a temperature distribution that becomes lower as the distance between the molding surfaces of the pair of molds becomes larger, and the molded body formed by molding the preform is cooled and solidified. Molding method.
請求項7〜9のいずれか一項に記載の成形方法であって、
光学材料からなるプリフォームを所定のレンズ形状に成形する成形方法。
It is the shaping | molding method as described in any one of Claims 7-9,
A molding method for molding a preform made of an optical material into a predetermined lens shape.
JP2010181982A 2010-08-16 2010-08-16 Molding apparatus and molding method Expired - Fee Related JP5453200B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010181982A JP5453200B2 (en) 2010-08-16 2010-08-16 Molding apparatus and molding method
CN201110232389.9A CN102371642B (en) 2010-08-16 2011-08-15 Building mortion and manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181982A JP5453200B2 (en) 2010-08-16 2010-08-16 Molding apparatus and molding method

Publications (2)

Publication Number Publication Date
JP2012041213A JP2012041213A (en) 2012-03-01
JP5453200B2 true JP5453200B2 (en) 2014-03-26

Family

ID=45791153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181982A Expired - Fee Related JP5453200B2 (en) 2010-08-16 2010-08-16 Molding apparatus and molding method

Country Status (2)

Country Link
JP (1) JP5453200B2 (en)
CN (1) CN102371642B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357121A (en) * 1991-05-30 1992-12-10 Matsushita Electric Ind Co Ltd Molding optical element and molding device therefor
CN2703635Y (en) * 2004-03-08 2005-06-08 株式会社名机制作所 Forming mould for CD substrate
US7488170B2 (en) * 2004-04-09 2009-02-10 Konica Minolta Opto, Inc. Metallic mold for optical element and optical element
JP2007131501A (en) * 2005-11-14 2007-05-31 Asahi Glass Co Ltd Method for molding optical element and molding device
JP2008069019A (en) * 2006-09-12 2008-03-27 Toshiba Mach Co Ltd Optical element molding apparatus

Also Published As

Publication number Publication date
JP2012041213A (en) 2012-03-01
CN102371642A (en) 2012-03-14
CN102371642B (en) 2015-09-30

Similar Documents

Publication Publication Date Title
US9259866B2 (en) Lens forming apparatus
JP2010013349A (en) Heating process and apparatus of molding glass
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JP5453200B2 (en) Molding apparatus and molding method
JP2008230025A (en) Plastic lens molding method
TWI388415B (en) Molding method for an optical element and optical element molding apparatus
JP2006282472A (en) Glass lens molding apparatus and method for molding glass lens
JP2007186392A (en) Method of molding thermoplastic base material
US20170001897A1 (en) Optical element manufacturing apparatus
JP5809945B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP2002172628A (en) Manufacturing method and device for rubber product
JP2008083190A (en) Method for molding optical element
JP2004231477A (en) Method and apparatus for molding optical element
JP6653135B2 (en) Method and apparatus for manufacturing optical element
JP2004345880A (en) Production method for lens having ball casing
JP2007076945A (en) Method and apparatus for molding glass lens
JP2008055712A (en) Transfer method
JP2006168034A (en) Press molding method and thermoplastic resin molded product
JP5412674B2 (en) Optical element molding method and optical element molding apparatus
JP2012180252A (en) Method for producing optical element, mold set for molding the optical element, and apparatus for producing the optical element
JP4347629B2 (en) Glass element molding equipment
JP2009274237A (en) Transfer method and device
JP5374974B2 (en) Molding equipment
JP2005067980A (en) Molding device of optical element and molding method of optical element
JP2006124193A (en) Method for shaping optical element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5453200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees