JP5452645B2 - LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD - Google Patents

LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD Download PDF

Info

Publication number
JP5452645B2
JP5452645B2 JP2012052579A JP2012052579A JP5452645B2 JP 5452645 B2 JP5452645 B2 JP 5452645B2 JP 2012052579 A JP2012052579 A JP 2012052579A JP 2012052579 A JP2012052579 A JP 2012052579A JP 5452645 B2 JP5452645 B2 JP 5452645B2
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
light emitting
emitting device
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012052579A
Other languages
Japanese (ja)
Other versions
JP2013065812A (en
Inventor
卓生 村井
茂 内海
俊之 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012052579A priority Critical patent/JP5452645B2/en
Publication of JP2013065812A publication Critical patent/JP2013065812A/en
Application granted granted Critical
Publication of JP5452645B2 publication Critical patent/JP5452645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光装置及び発光装置の製造方法に関するものである。本発明は、特に、発光ダイオード(LED;Light・Emitting・Diode)等の半導体発光素子を光源とした発光装置に関するものである。   The present invention relates to a light emitting device and a method for manufacturing the light emitting device. In particular, the present invention relates to a light-emitting device using a semiconductor light-emitting element such as a light-emitting diode (LED; Light Emitting Diode) as a light source.

これまで、青色光や近紫外光を発する光源を備え、その光により励起されて他の波長の光を発する蛍光体を用いて、光源光を、白色光や光源光とは異なる色の光に変換する発光装置の提案が数多くなされている。光源に青色LEDを用いた先行技術として、例えば特許文献1,2に示されるものがある。   Up to now, a light source that emits blue light or near-ultraviolet light has been used, and a phosphor that is excited by the light and emits light of other wavelengths is used to change the light source light into light of a different color from white light or light source light. There have been many proposals of light emitting devices for conversion. As prior art using a blue LED as a light source, for example, there are those shown in Patent Documents 1 and 2.

特開2003−110146号公報JP 2003-110146 A 特表2011−501865号公報Special table 2011-501865 gazette

特許文献1の発光装置では、予め凹部を複数設け、凹部内にLEDを実装したLED基板と、蛍光部材を含む光学部材とを備える構成をとっており、LED基板の凹部間にできる凸部により光学部材を支持している。このような構造のLED基板は製造が容易ではないという課題がある。例えば、LED基板自体に凹部を設ける代わりに、LED基板の表面を平坦面とし、その表面に実装したLEDの周囲に別部品の凹部(リフレクタ)を設けることもできる。しかし、この場合、製造工程が増えたり、部品点数が増えたりすることによるコスト増という課題だけでなく、凹部とLED基板との間からの光漏れ対策、凹部の位置決め、固定方法といった技術的な課題が生じる。   The light emitting device of Patent Document 1 has a configuration in which a plurality of recesses are provided in advance, and an LED substrate in which LEDs are mounted in the recesses and an optical member including a fluorescent member are provided. The optical member is supported. There exists a subject that manufacture of the LED board of such a structure is not easy. For example, instead of providing a recess on the LED substrate itself, the surface of the LED substrate may be a flat surface, and a recess (reflector) as a separate part may be provided around the LED mounted on the surface. However, in this case, not only the problem of cost increase due to an increase in the manufacturing process or the number of parts, but also technical measures such as measures against light leakage from the recess and the LED substrate, positioning of the recess, and fixing method Challenges arise.

特許文献2の発光装置では、複数の青色LEDを実装した基板を、全体に蛍光体を混合した波長変換部材で覆うことにより、照明色を青色から他の色に変えている。この発光装置では、照明色の均一性を確保するために、LEDと波長変換部材との間の距離をある程度長くする必要がある。そのため、発光装置が厚くなり、装置内部での多重反射成分が多くなり、光損失が生じやすくなる。また、この発光装置では、消灯時に波長変換材料(蛍光体)の色がかなり目立つ。   In the light emitting device of Patent Document 2, the illumination color is changed from blue to another color by covering a substrate on which a plurality of blue LEDs are mounted with a wavelength conversion member in which phosphors are mixed as a whole. In this light emitting device, in order to ensure the uniformity of the illumination color, it is necessary to increase the distance between the LED and the wavelength conversion member to some extent. For this reason, the light emitting device becomes thick, the multiple reflection components inside the device increase, and light loss tends to occur. Further, in this light emitting device, the color of the wavelength conversion material (phosphor) is considerably noticeable when the light is turned off.

本発明は、例えば、発光装置において、製造が容易な構成で、基板と波長変換部材との間からの光漏れを抑制することを目的とする。   An object of the present invention is, for example, to suppress light leakage from between a substrate and a wavelength conversion member with a configuration that is easy to manufacture in a light emitting device.

本発明の一の態様に係る発光装置は、
光を発する発光素子と、
前記発光素子が実装された基板と、
前記発光素子から発せられる光の波長を変換する波長変換部材と、
軟性材料で形成され、前記基板と前記波長変換部材との間に設置される介在部材と、
前記介在部材の一端が前記波長変換部材に当接し、かつ、前記介在部材の他端が前記基板に当接するように、前記波長変換部材を前記基板に近づく方向に押圧して、前記基板に対する前記波長変換部材の位置を固定する固定部とを備える。
A light emitting device according to one embodiment of the present invention includes:
A light emitting element that emits light;
A substrate on which the light emitting element is mounted;
A wavelength conversion member that converts the wavelength of light emitted from the light emitting element;
An interposition member formed of a soft material and installed between the substrate and the wavelength conversion member;
The wavelength conversion member is pressed in a direction approaching the substrate so that one end of the interposition member is in contact with the wavelength conversion member and the other end of the interposition member is in contact with the substrate, A fixing portion for fixing the position of the wavelength conversion member.

本発明の一の態様では、発光装置において、軟性材料で形成された介在部材が、基板と波長変換部材との間に設置される。そして、介在部材の一端が波長変換部材に当接し、かつ、介在部材の他端が基板に当接するように、固定部が波長変換部材を基板に近づく方向に押圧して、基板に対する波長変換部材の位置を固定する。そのため、本発明の一の態様によれば、発光装置において、製造が容易な構成で、基板と波長変換部材との間からの光漏れを抑制することができる。   In one embodiment of the present invention, in the light-emitting device, an interposition member formed of a soft material is installed between the substrate and the wavelength conversion member. Then, the fixed portion presses the wavelength conversion member in a direction approaching the substrate so that one end of the interposition member contacts the wavelength conversion member and the other end of the interposition member contacts the substrate, and the wavelength conversion member with respect to the substrate The position of is fixed. Therefore, according to one aspect of the present invention, in the light emitting device, light leakage from between the substrate and the wavelength conversion member can be suppressed with a configuration that is easy to manufacture.

実施の形態1に係る発光ユニットの平面図。FIG. 3 is a plan view of the light emitting unit according to Embodiment 1. 実施の形態1に係る発光ユニットのA−A断面図。FIG. 3 is a cross-sectional view of the light emitting unit according to Embodiment 1 taken along line AA. 実施の形態1に係る発光ユニットの部分断面図。2 is a partial cross-sectional view of the light emitting unit according to Embodiment 1. FIG. 実施の形態1に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on Embodiment 1 to a light source substrate. 実施の形態1に係る発光ユニットの発光スペクトルの一例を示すグラフ。3 is a graph showing an example of an emission spectrum of the light emitting unit according to Embodiment 1. 実施の形態1の変形例に係る発光ユニットの平面図。FIG. 6 is a plan view of a light emitting unit according to a modification of the first embodiment. 実施の形態1の変形例に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on the modification of Embodiment 1 to a light source substrate. 実施の形態1の変形例に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on the modification of Embodiment 1 to a light source substrate. 実施の形態1の変形例に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on the modification of Embodiment 1 to a light source substrate. 実施の形態1の変形例に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on the modification of Embodiment 1 to a light source substrate. 実施の形態2に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on Embodiment 2 to a light source substrate. 実施の形態3に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on Embodiment 3 to a light source substrate. 実施の形態4に係る発光ユニットのA−A断面図。FIG. 6 is a cross-sectional view of the light emitting unit according to Embodiment 4 along AA. 実施の形態5の比較例に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on the comparative example of Embodiment 5 to a light source substrate. 実施の形態5に係る発光ユニットの波長変換部材を光源基板に取り付ける前の状態を示す図。The figure which shows the state before attaching the wavelength conversion member of the light emission unit which concerns on Embodiment 5 to a light source substrate. 実施の形態6に係る発光ユニットの部分断面図。FIG. 10 is a partial cross-sectional view of a light emitting unit according to Embodiment 6.

以下、本発明の実施の形態について、図を用いて説明する。なお、各実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」、「裏」といった方向は、説明の便宜上、そのように記しているだけであって、装置、器具、部品等の配置や向き等を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of each embodiment, the directions such as “up”, “down”, “left”, “right”, “front”, “back”, “front”, “back” are However, it is not intended to limit the arrangement or orientation of devices, instruments, parts, or the like.

実施の形態1.
図1は、本実施の形態に係る発光ユニット10(発光装置の一例)の平面図(発光方向から見た図)である。図2は、発光ユニット10のA−A断面図(長手方向に沿って見た図)である。
Embodiment 1 FIG.
FIG. 1 is a plan view (a view seen from the light emitting direction) of a light emitting unit 10 (an example of a light emitting device) according to the present embodiment. FIG. 2 is a cross-sectional view of the light emitting unit 10 taken along the line AA (viewed along the longitudinal direction).

発光ユニット10は、チップLED11(発光素子の一例)、光源基板12(基板の一例)、波長変換部材13、介在部材14、筐体15を備える。   The light emitting unit 10 includes a chip LED 11 (an example of a light emitting element), a light source substrate 12 (an example of a substrate), a wavelength conversion member 13, an interposition member 14, and a housing 15.

チップLED11は、青色光を発する。なお、チップLED11は、近紫外光等、青色以外の色の光を発するものであってもよい。また、チップLED11は、有機EL(エレクトロルミネッセンス)等、LED以外の発光素子であってもよい。   The chip LED 11 emits blue light. The chip LED 11 may emit light of a color other than blue, such as near ultraviolet light. The chip LED 11 may be a light emitting element other than an LED, such as an organic EL (electroluminescence).

光源基板12には、チップLED11が直線状に2列、1列につき4個ずつ(即ち、計8個)実装されている。なお、チップLED11の実装数は、発光ユニット10の用途等に応じて、1以上の任意の数に適宜変更することができる(即ち、8個でなくてもよい)。また、チップLED11の配置は、直線状に1列又は3列以上、リング状等、任意の配置とすることができる。   On the light source substrate 12, two rows of chip LEDs 11 are mounted in a straight line, four in each row (that is, eight in total). Note that the number of mounted chip LEDs 11 can be appropriately changed to an arbitrary number of 1 or more according to the use of the light emitting unit 10 or the like (that is, it may not be 8). Moreover, arrangement | positioning of chip LED11 can be made into arbitrary arrangement | positioning, such as 1 line or 3 lines or more, and a ring shape in a linear form.

波長変換部材13は、チップLED11から発せられる光の波長を変換する。本実施の形態において、波長変換部材13は、透光性板材16を有するとともに、チップLED11ごとに波長変換材料17を有する。波長変換材料17は、透光性板材16のチップLED11に対応する位置に取り付けられる。波長変換材料17は、青色光により励起されて黄色光を発する蛍光体を含んでおり、この蛍光体を用いて、対応するチップLED11から発せられる青色光を白色光に変換する。なお、波長変換材料17に含まれる蛍光体は、チップLED11から発せられる光と異なる波長の光を発するものであれば、チップLED11の発光色や、発光ユニット10の所望の照明色等に応じて、任意の蛍光体に適宜変更することができる。透光性板材16は、長方形状の平板であり、波長変換材料17からの白色光を透過して、発光ユニット10の外部に放射する。透光性板材16から放射される光が発光ユニット10の照明光となる。   The wavelength conversion member 13 converts the wavelength of light emitted from the chip LED 11. In the present embodiment, the wavelength conversion member 13 includes a translucent plate 16 and a wavelength conversion material 17 for each chip LED 11. The wavelength conversion material 17 is attached to a position corresponding to the chip LED 11 of the translucent plate 16. The wavelength conversion material 17 includes a phosphor that emits yellow light when excited by blue light, and converts the blue light emitted from the corresponding chip LED 11 into white light using the phosphor. In addition, if the fluorescent substance contained in the wavelength conversion material 17 emits light of a wavelength different from the light emitted from the chip LED 11, it corresponds to the emission color of the chip LED 11, the desired illumination color of the light emitting unit 10, and the like. Any phosphor can be appropriately changed. The translucent plate 16 is a rectangular flat plate that transmits white light from the wavelength conversion material 17 and radiates it to the outside of the light emitting unit 10. The light emitted from the translucent plate 16 becomes the illumination light of the light emitting unit 10.

介在部材14は、軟性材料(詳細については後述する)で形成されており、光源基板12と波長変換部材13との間に設置される。本実施の形態において、介在部材14は、チップLED11ごと(即ち、波長変換材料17ごと)に設けられ、対応するチップLED11(即ち、対応する波長変換材料17)を取り囲むように設置される。具体的には、介在部材14は、リング状に形成され、その内周面によってチップLED11を取り囲んでいる。この内周面(即ち、チップLED11を取り囲む面)は、反射率の高い材料で形成されており、チップLED11から発せられる光を反射する。即ち、本実施の形態では、介在部材14がリフレクタとしても機能する。   The interposition member 14 is formed of a soft material (details will be described later), and is disposed between the light source substrate 12 and the wavelength conversion member 13. In the present embodiment, the interposition member 14 is provided for each chip LED 11 (that is, for each wavelength conversion material 17) and is disposed so as to surround the corresponding chip LED 11 (that is, the corresponding wavelength conversion material 17). Specifically, the interposition member 14 is formed in a ring shape and surrounds the chip LED 11 with its inner peripheral surface. The inner peripheral surface (that is, the surface surrounding the chip LED 11) is made of a material having high reflectivity, and reflects light emitted from the chip LED 11. That is, in the present embodiment, the interposed member 14 also functions as a reflector.

本実施の形態では、介在部材14の内部に、波長変換材料17と同様の蛍光体が含まれている。即ち、介在部材14は、内部に、チップLED11から発せられる光と異なる波長の光を発する蛍光体を含んでいる。そのため、発光ユニット10における光源光の波長変換効率が向上する。なお、介在部材14の表面に、同様の蛍光体が含まれていてもよい。   In the present embodiment, the same phosphor as the wavelength conversion material 17 is included in the interposition member 14. That is, the interposition member 14 includes a phosphor that emits light having a wavelength different from that of the light emitted from the chip LED 11 therein. Therefore, the wavelength conversion efficiency of the light source light in the light emitting unit 10 is improved. In addition, the same fluorescent substance may be contained in the surface of the interposed member 14.

筐体15には、チップLED11が実装された光源基板12、波長変換部材13、介在部材14が収容される。筐体15は、爪状の固定部15aを波長変換部材13の透光性板材16の1辺につき1個ずつ(即ち、計4個)有している。なお、固定部15aの形状、配置、数は、適宜変更することができる。固定部15aは、介在部材14の一端14aが波長変換部材13に当接し、かつ、介在部材14の他端14bが光源基板12に当接するように、波長変換部材13を光源基板12に近づく方向に押圧して、光源基板12に対する波長変換部材13の位置を固定する。   The housing 15 accommodates the light source substrate 12 on which the chip LED 11 is mounted, the wavelength conversion member 13, and the interposition member 14. The casing 15 has one claw-shaped fixing portion 15a for each side of the translucent plate 16 of the wavelength conversion member 13 (that is, a total of four). In addition, the shape, arrangement | positioning, and number of the fixing | fixed part 15a can be changed suitably. The fixing portion 15a is configured such that the wavelength conversion member 13 approaches the light source substrate 12 so that one end 14a of the interposition member 14 contacts the wavelength conversion member 13 and the other end 14b of the interposition member 14 contacts the light source substrate 12. To fix the position of the wavelength conversion member 13 with respect to the light source substrate 12.

本実施の形態では、介在部材14の一端14aが波長変換部材13に固定されている。波長変換部材13は、光源基板12に対して着脱可能であり、光源基板12に取り付けられる際には、介在部材14とともに光源基板12に取り付けられ、筐体15の固定部15aによって固定される。このとき、筐体15の固定部15aにより波長変換部材13が押圧されることで介在部材14の他端14bが光源基板12に押し当てられる。これにより、光源基板12と波長変換部材13との間の隙間がなくなり、光源基板12と波長変換部材13との間からの光漏れを抑制(又は防止)することができる。波長変換部材13は、光源基板12から取り外される際には、例えば介在部材14や光源基板12等とともに筐体15から取り出された後、介在部材14とともに光源基板12から取り外される。   In the present embodiment, one end 14 a of the interposed member 14 is fixed to the wavelength conversion member 13. The wavelength conversion member 13 is detachable from the light source substrate 12. When the wavelength conversion member 13 is attached to the light source substrate 12, the wavelength conversion member 13 is attached to the light source substrate 12 together with the interposition member 14 and fixed by the fixing portion 15 a of the housing 15. At this time, the wavelength conversion member 13 is pressed by the fixing portion 15 a of the housing 15, whereby the other end 14 b of the interposed member 14 is pressed against the light source substrate 12. Thereby, there is no gap between the light source substrate 12 and the wavelength conversion member 13, and light leakage from between the light source substrate 12 and the wavelength conversion member 13 can be suppressed (or prevented). When the wavelength conversion member 13 is removed from the light source substrate 12, the wavelength conversion member 13 is removed from the housing 15 together with, for example, the interposed member 14 and the light source substrate 12, and then removed from the light source substrate 12 together with the interposed member 14.

上記のように、本実施の形態では、軟性材料で形成された介在部材14が、光源基板12と波長変換部材13との間に設置される。そして、介在部材14の一端14aが波長変換部材13に当接し、かつ、介在部材14の他端14bが光源基板12に当接するように、筐体15の固定部15aが波長変換部材13を光源基板12に近づく方向に押圧して、光源基板12に対する波長変換部材13の位置を固定する。そのため、本実施の形態によれば、発光ユニット10において、製造が容易な構成で、光源基板12と波長変換部材13との間からの光漏れを抑制することができる。   As described above, in the present embodiment, the interposition member 14 formed of a soft material is installed between the light source substrate 12 and the wavelength conversion member 13. Then, the fixing portion 15a of the housing 15 causes the wavelength conversion member 13 to be a light source so that one end 14a of the interposition member 14 contacts the wavelength conversion member 13 and the other end 14b of the interposition member 14 contacts the light source substrate 12. The position of the wavelength conversion member 13 relative to the light source substrate 12 is fixed by pressing in the direction approaching the substrate 12. Therefore, according to this Embodiment, in the light emission unit 10, the light leakage from between the light source board | substrate 12 and the wavelength conversion member 13 can be suppressed with a structure with easy manufacture.

図3は、発光ユニット10の部分断面図であり、具体的には、チップLED11及び光源基板12を示す図である。   FIG. 3 is a partial cross-sectional view of the light emitting unit 10, specifically showing the chip LED 11 and the light source substrate 12.

光源基板12は、ベース基板18上に導電路を形成し、導電路のうち、チップLED11の実装等で必要とされる導電部19の領域以外は高反射レジスト材20を塗布した構成となっている。ベース基板18には、ガラスエポキシ材、ガラスコンポジット材等が用いられる。なお、放熱性を高めるため、ベース基板18に金属材料等が用いられてもよい。導電部19は、銅等の薄いパタンとして作製され、その上に下地処理用の金属薄膜等を介して銀メッキや金メッキ処理が施されている。高反射レジスト材20は、アクリル、エポキシ、シリコーン系等の白色樹脂を用いて、厚みが略均一になるように形成されている。   The light source substrate 12 has a configuration in which a conductive path is formed on the base substrate 18 and a highly reflective resist material 20 is applied to the conductive path other than the region of the conductive portion 19 required for mounting the chip LED 11. Yes. A glass epoxy material, a glass composite material or the like is used for the base substrate 18. Note that a metal material or the like may be used for the base substrate 18 in order to improve heat dissipation. The conductive portion 19 is manufactured as a thin pattern of copper or the like, and is subjected to silver plating or gold plating treatment thereon via a metal thin film for base treatment. The highly reflective resist material 20 is formed using a white resin such as acrylic, epoxy, or silicone so that the thickness is substantially uniform.

発光ユニット10の発光源となるチップLED11は、予めパタン形成された導電部19に、ダイボンド材21を用いて固定される。なお、チップLED11は、導電部19に、はんだを用いて固定されてもよい。また、チップLED11は、他の導電部19に、ワイヤ22を用いて電気的に接続される。本実施の形態において、チップLED11は、440〜475nm(ナノメートル)付近に発光ピークを有する青色LEDである。チップLED11は、チップLED11からの光の取り出し量を増大させ、また、チップLED11を保護する目的で、シリコーン等の透明樹脂である封止樹脂23(透光性材料の一例)により覆われている。封止樹脂23は、シリコーン等の透明樹脂であり、光源基板12の上側から見ると略円形状に形成されている。   Chip LED11 used as the light emission source of the light emission unit 10 is fixed to the electroconductive part 19 previously patterned using the die-bonding material 21. FIG. Note that the chip LED 11 may be fixed to the conductive portion 19 using solder. Further, the chip LED 11 is electrically connected to another conductive portion 19 using a wire 22. In the present embodiment, the chip LED 11 is a blue LED having a light emission peak in the vicinity of 440 to 475 nm (nanometer). The chip LED 11 is covered with a sealing resin 23 (an example of a translucent material) that is a transparent resin such as silicone for the purpose of increasing the amount of light extracted from the chip LED 11 and protecting the chip LED 11. . The sealing resin 23 is a transparent resin such as silicone, and is formed in a substantially circular shape when viewed from above the light source substrate 12.

上記のように、本実施の形態では、光源基板12が、隣り合うチップLED11の封止樹脂23の間に、配光制御機能を有するリフレクタ(例えば、特許文献1の凹部)を備えておらず、構成が簡素である。そのため、低コストの発光ユニット10を提供することができる。しかも、ベース基板18に安価なガラスエポキシ材を用いれば、さらに低コストの発光ユニット10を提供することができる。   As described above, in the present embodiment, the light source substrate 12 does not include a reflector having a light distribution control function (for example, the concave portion of Patent Document 1) between the sealing resins 23 of the adjacent chip LEDs 11. The configuration is simple. Therefore, the low cost light emitting unit 10 can be provided. Moreover, if an inexpensive glass epoxy material is used for the base substrate 18, the light emitting unit 10 can be provided at a lower cost.

図4は、発光ユニット10の波長変換部材13を光源基板12に取り付ける前の状態を示す図である。   FIG. 4 is a diagram illustrating a state before the wavelength conversion member 13 of the light emitting unit 10 is attached to the light source substrate 12.

前述したように、波長変換部材13は、光源基板12に実装されたチップLED11の発光方向に配置され、チップLED11の放つ青色の光を他の波長領域の光に変換する。波長変換部材13は、透光性板材16のチップLED11に対向する側に波長変換材料17を備えている。波長変換材料17は、チップLED11の封止樹脂23の形状に合わせて、封止樹脂23の直径に等しいか、やや大きめの円形状に形成されている。波長変換部材13には、個々の波長変換材料17を囲むように介在部材14が取り付けられている。   As described above, the wavelength conversion member 13 is disposed in the light emitting direction of the chip LED 11 mounted on the light source substrate 12, and converts the blue light emitted from the chip LED 11 into light of another wavelength region. The wavelength conversion member 13 includes a wavelength conversion material 17 on the side of the translucent plate 16 that faces the chip LED 11. The wavelength conversion material 17 is formed in a circular shape that is equal to or slightly larger in diameter than the sealing resin 23 in accordance with the shape of the sealing resin 23 of the chip LED 11. An interposition member 14 is attached to the wavelength conversion member 13 so as to surround each wavelength conversion material 17.

透光性板材16は、例えば、アクリル、PET(ポリエチレンテレフタレート)、ポリカーボネート、シリコーン、ガラス等の材料で形成されている。波長変換材料17は、青色光によって励起され、他の波長領域の光(例えば、黄色)を発する蛍光体を、ベースバインド材料(透明樹脂等)に混合したものからなる。波長変換材料17は、透光性板材16に塗布、印刷、噴霧、あるいは、予めシート状に形成したものを貼り付ける等して構成される。例えば、波長変換材料17に黄色光を発する蛍光体を用いるのであれば、蛍光体の混合量を調整することで、チップLED11の青色光と一部波長変換された黄色光との合成により略白色の光が得られる。   The translucent plate 16 is made of a material such as acrylic, PET (polyethylene terephthalate), polycarbonate, silicone, glass, or the like. The wavelength conversion material 17 is made of a phosphor that is excited by blue light and emits light in other wavelength regions (for example, yellow) mixed with a base binding material (transparent resin or the like). The wavelength conversion material 17 is configured by coating, printing, spraying, or pasting a previously formed sheet shape on the translucent plate 16. For example, if a phosphor that emits yellow light is used as the wavelength conversion material 17, the amount of phosphor mixed is adjusted so that the blue light of the chip LED 11 and the partially converted yellow light are substantially white. Of light.

なお、透光性板材16は、表面がブラスト加工やシボ加工等により粗面として形成されていてもよい。また、透光性板材16は、光拡散材料が混入されて、それ自体が拡散機能を有するようなものであってもよい。いずれの場合にも、特に消灯時の波長変換材料17の色付きを緩和させる(波長変換材料17の色を低彩度に変換する)ことができる。また、波長変換材料17を離散配置する場合には、それによる色コントラストを抑えることができる。本実施の形態では、蛍光体を効率よく利用し、また、消灯時の蛍光体による色つきを目立たなくする目的で、波長変換材料17をチップLED11の位置に合わせて離散的に配置しているが、透光性板材16と波長変換材料17とを一体成形してもよい。   Note that the surface of the translucent plate 16 may be formed as a rough surface by blasting or embossing. Further, the light-transmitting plate 16 may be such that a light diffusing material is mixed therein and itself has a diffusing function. In any case, the coloring of the wavelength conversion material 17 at the time of extinguishing can be alleviated (the color of the wavelength conversion material 17 can be converted to low saturation). Moreover, when the wavelength conversion material 17 is discretely arranged, the color contrast by it can be suppressed. In the present embodiment, the wavelength conversion material 17 is discretely arranged in accordance with the position of the chip LED 11 in order to efficiently use the phosphor and to make the coloring due to the phosphor at the time of extinction inconspicuous. However, the translucent plate 16 and the wavelength conversion material 17 may be integrally formed.

図5は、発光ユニット10の発光スペクトルの一例を示すグラフである。   FIG. 5 is a graph showing an example of the emission spectrum of the light emitting unit 10.

図5において、点線は、チップLED11から放射されて封止樹脂23を透過する青色光のスペクトルを示す。実線は、その青色光の一部が波長変換部材13の波長変換材料17で吸収され、蛍光体を励起して黄色光(波長変換光)に変換され、この黄色光と、波長変換部材13に吸収されなかった青色光とが混合して得られる略白色の発光ユニット10の照明光(ユニット放射光)のスペクトルを示す。前述したように、蛍光体としては、発光ユニット10の所望の光質(色温度、色度、演色性等)に応じて、黄色以外(例えば、緑色や赤色等、あるいは、複数種を混合したもの)の蛍光体を用いることができる。例えば、黄色であればYAG(イットリウム・アルミニウム・ガーネット)蛍光体、緑〜橙色ならシリケート蛍光体、赤色なら窒化物蛍光体等を用いることができる。   In FIG. 5, the dotted line indicates the spectrum of blue light emitted from the chip LED 11 and transmitted through the sealing resin 23. In the solid line, part of the blue light is absorbed by the wavelength conversion material 17 of the wavelength conversion member 13, excites the phosphor and is converted into yellow light (wavelength conversion light). The spectrum of the illumination light (unit radiated light) of the substantially white light-emitting unit 10 obtained by mixing with blue light that has not been absorbed is shown. As described above, as the phosphor, depending on the desired light quality (color temperature, chromaticity, color rendering, etc.) of the light emitting unit 10, other than yellow (for example, green, red, etc.) or a plurality of types are mixed. Fluorescent material) can be used. For example, a YAG (yttrium, aluminum, garnet) phosphor can be used for yellow, a silicate phosphor for green to orange, and a nitride phosphor for red.

波長変換部材13に設けられる介在部材14は、波長変換部材13を光源基板12に安定配置させる役割を持つが、本実施の形態では、それと同時に発光ユニット10の発光性能を高く維持させることができるものである。   The interposition member 14 provided in the wavelength conversion member 13 has a role of stably arranging the wavelength conversion member 13 on the light source substrate 12. In the present embodiment, the light emission performance of the light emitting unit 10 can be maintained high at the same time. Is.

一般的には、特許文献2の発光装置のように、複数の青色LED光源の発光方向に光源間の仕切りを設けずに波長変換部材を配置する構成でも波長変換自体は可能であるが、個々の光源と波長変換部材との間の空間(体積)が広くなり、その分その領域での多重光反射損失が大きくなってしまう。   In general, the wavelength conversion itself is possible even in a configuration in which the wavelength conversion member is arranged without providing a partition between the light sources in the light emission direction of a plurality of blue LED light sources as in the light emitting device of Patent Document 2, The space (volume) between the light source and the wavelength conversion member becomes wider, and the multiple light reflection loss in that region increases accordingly.

そのため、本実施の形態では、少なくとも介在部材14の表面を、高反射性の樹脂材料を用いて構成し、各々の波長変換材料17の周囲を覆うように構成した。これにより、光源基板12と波長変換部材13とを組み合わせたときに、介在部材14がリフレクタとしても機能するため、各チップLED11の光を効率よく波長変換材料17の表面に照射させることができる。よって、光源基板12と波長変換部材13との間での光損失を抑えて高い発光効率を実現できる。   Therefore, in the present embodiment, at least the surface of the interposition member 14 is configured using a highly reflective resin material so as to cover the periphery of each wavelength conversion material 17. Thereby, when the light source substrate 12 and the wavelength conversion member 13 are combined, the interposition member 14 also functions as a reflector, so that the light of each chip LED 11 can be efficiently irradiated onto the surface of the wavelength conversion material 17. Therefore, high light emission efficiency can be realized while suppressing light loss between the light source substrate 12 and the wavelength conversion member 13.

また、本実施の形態では、波長変換材料17が介在部材14の内側(介在部材14で囲まれた領域)のみに備えられているので、特許文献2の発光装置のように波長変換部材の全体に蛍光体を含む構成に対して、相対的に低コストの装置が実現可能となる。また、本実施の形態では、介在部材14の反射率によらず、LED光源部(封止樹脂23)に接するような距離に波長変換部材13の波長変換材料17を配置させることができるので、構造面では薄型の発光ユニット10を提供することができる。   In the present embodiment, since the wavelength conversion material 17 is provided only on the inner side of the interposition member 14 (region surrounded by the interposition member 14), the entire wavelength conversion member as in the light emitting device of Patent Document 2. Therefore, a relatively low cost apparatus can be realized with respect to the configuration including the phosphor. In the present embodiment, the wavelength conversion material 17 of the wavelength conversion member 13 can be disposed at a distance that contacts the LED light source part (sealing resin 23) regardless of the reflectance of the interposition member 14. In terms of structure, the thin light emitting unit 10 can be provided.

例えば、本実施の形態において、介在部材14の代わりに、光源基板12上に別途成形した硬性樹脂の反射枠を設け、その上部に波長変換部材13を配置したとする。この場合、反射枠を光源基板12側に固定するための部品が必要となるため、本実施の形態に比べて、部品数が増えるという課題が生じる。また、反射枠を光源基板12に取り付ける際の位置精度や、反射枠と光源基板12との間に隙間ができないようにするためのしくみ等、技術的な課題も生じる。一方、本実施の形態によれば、介在部材14を軟性材料で構成しているため、そのような課題は生じない。   For example, in the present embodiment, it is assumed that instead of the interposition member 14, a reflection frame made of a hard resin separately formed on the light source substrate 12 is provided, and the wavelength conversion member 13 is disposed thereon. In this case, since a component for fixing the reflection frame to the light source substrate 12 side is required, there arises a problem that the number of components is increased as compared with the present embodiment. In addition, technical problems such as positional accuracy when the reflection frame is attached to the light source substrate 12 and a mechanism for preventing a gap from being formed between the reflection frame and the light source substrate 12 arise. On the other hand, according to this Embodiment, since the interposition member 14 is comprised with the soft material, such a subject does not arise.

介在部材14を硬性樹脂で形成すると、光源基板12上に介在部材14を配置した際に一部が光源基板12から浮き上がってしまい、その箇所からチップLED11の光が漏れることが考えられる。一方、本実施の形態のように、介在部材14を軟性樹脂で形成すれば、光源基板12上に介在部材14を配置する際に、筐体15の固定部15aによって外部からわずかな圧力を加えるだけで、光源基板12に触れる介在部材14の他端14b(先端)が変形して光源基板12に密着することになる。そのため、光源基板12の表面と介在部材14との間に隙間(光の抜け口)ができることなく、チップLED11の光を効率よく波長変換材料17に放射させることができ、光漏れが要因となって起こる発光ユニット10の色むらは生じない。   If the interposition member 14 is formed of a hard resin, when the interposition member 14 is disposed on the light source substrate 12, a part of the interposition member 14 may be lifted from the light source substrate 12, and light from the chip LED 11 may leak from that portion. On the other hand, if the interposed member 14 is formed of a soft resin as in the present embodiment, a slight pressure is applied from the outside by the fixing portion 15a of the housing 15 when the interposed member 14 is disposed on the light source substrate 12. As a result, the other end 14 b (tip) of the interposition member 14 that touches the light source substrate 12 is deformed and comes into close contact with the light source substrate 12. Therefore, there is no gap (light exit) between the surface of the light source substrate 12 and the interposition member 14, and the light of the chip LED 11 can be efficiently radiated to the wavelength conversion material 17, which causes light leakage. Thus, the uneven color of the light emitting unit 10 does not occur.

ここで、チップLED11の高さは数十〜数百μm(マイクロメートル)程度であり、それを覆う封止樹脂23の高さ(光源基板12から封止樹脂23の頂点までの高さ)は数mm(ミリメートル)程度と低くすることができる。即ち、封止樹脂23は、薄く形成することができる。また、波長変換部材13の波長変換材料17の厚みが数百μm程度でも所望の色変換効果が得られる。したがって、介在部材14の高さが、例えば2mm程度としても、発光ユニット10の厚みをかなり薄くすることができる。   Here, the height of the chip LED 11 is about several tens to several hundreds of micrometers (micrometers), and the height of the sealing resin 23 covering it (the height from the light source substrate 12 to the top of the sealing resin 23) is It can be as low as several millimeters (millimeters). That is, the sealing resin 23 can be formed thin. Moreover, even if the thickness of the wavelength conversion material 17 of the wavelength conversion member 13 is about several hundred μm, a desired color conversion effect can be obtained. Therefore, even if the height of the interposition member 14 is about 2 mm, for example, the thickness of the light emitting unit 10 can be considerably reduced.

図6は、本実施の形態の変形例に係る発光ユニット10の平面図である。   FIG. 6 is a plan view of the light emitting unit 10 according to a modification of the present embodiment.

図1に示した発光ユニット10と比べると、図6に示した発光ユニット10では、波長変換部材13が2つに分かれている。それぞれの波長変換部材13は、チップLED11の列に対応し、透光性板材16を有するとともに、チップLED11ごとに波長変換材料17を有する。筐体15は、それぞれの波長変換部材13に対して固定部15aを4個有している。   Compared with the light emitting unit 10 shown in FIG. 1, the wavelength conversion member 13 is divided into two in the light emitting unit 10 shown in FIG. Each wavelength conversion member 13 corresponds to a row of chip LEDs 11, has a translucent plate 16, and has a wavelength conversion material 17 for each chip LED 11. The casing 15 has four fixing portions 15 a for each wavelength conversion member 13.

なお、本実施の形態及びその変形例では、波長変換部材13を固定するための固定部15aを筐体15に設けているが、固定部を筐体15以外の箇所に設けてもよい。例えば、固定部を光源基板12や波長変換部材13自体に設けてもよい。固定部は、光源基板12と波長変換部材13との隙間をなくし、かつ、発光ユニット10の発光効率の極端な低下を招くようなものでなければよい。   In the present embodiment and its modification, the fixing portion 15 a for fixing the wavelength conversion member 13 is provided in the housing 15, but the fixing portion may be provided in a place other than the housing 15. For example, the fixing portion may be provided on the light source substrate 12 or the wavelength conversion member 13 itself. The fixing part is not required to eliminate the gap between the light source substrate 12 and the wavelength conversion member 13 and to cause an extreme decrease in the light emission efficiency of the light emitting unit 10.

本実施の形態では、筐体15の固定部15aで波長変換部材13にやや圧力を加えて波長変換部材13を固定するため、介在部材14を軟性材料とすることで、介在部材14で波長変換部材13や光源基板12の反りを吸収すると同時に、光源基板12と波長変換部材13との隙間をなくして光源基板12と波長変換部材13と介在部材14とを一体化させることができる。そのため、波長変換部材13の極端な上下位置変動を極力防ぐことができ、安定した光質の照明光を得ることができる。また、チップLED11から放射される光が隙間から抜け出るようなことがなく、チップLED11の光を効率よく波長変換材料17に照射でき、高発光効率の発光ユニット10が得られる。   In the present embodiment, since the wavelength conversion member 13 is fixed by applying a slight pressure to the wavelength conversion member 13 at the fixing portion 15a of the housing 15, the interposition member 14 is made of a soft material, so that the wavelength conversion is performed by the interposition member 14. While absorbing the warp of the member 13 and the light source substrate 12, the light source substrate 12, the wavelength conversion member 13, and the interposition member 14 can be integrated by eliminating the gap between the light source substrate 12 and the wavelength conversion member 13. Therefore, extreme fluctuations in the vertical position of the wavelength conversion member 13 can be prevented as much as possible, and stable light quality illumination light can be obtained. Further, the light emitted from the chip LED 11 does not escape from the gap, and the light of the chip LED 11 can be efficiently applied to the wavelength conversion material 17, and the light emitting unit 10 with high light emission efficiency can be obtained.

なお、本実施の形態において、介在部材14の他端14bを、接着剤等を介して光源基板12に接着することも可能であるが、接着しなければ、介在部材14とともに波長変換部材13を取り外し可能となる。よって、光源基板12は変更せず、構成(形状、大きさ、波長変換材料17の態様、特に蛍光体の含有率や種類等)の異なる波長変換部材13のみを交換して多様な光色の照明光を選択的に得られるようにしてもよい。   In the present embodiment, the other end 14b of the interposition member 14 can be bonded to the light source substrate 12 via an adhesive or the like, but if not bonded, the wavelength conversion member 13 is attached together with the interposition member 14. Detachable. Therefore, the light source substrate 12 is not changed, and only the wavelength conversion member 13 having a different configuration (shape, size, aspect of the wavelength conversion material 17, particularly the content rate and type of the phosphor, etc.) is exchanged to obtain various light colors. The illumination light may be selectively obtained.

以下、介在部材14に用いる軟性材料について説明する。   Hereinafter, the soft material used for the interposed member 14 will be described.

前述したように、介在部材14を、波長変換部材13や光源基板12の反りを吸収し、光源基板12との間に隙間ができないように取り付け可能とする材料としては、例えば、使用温度領域において、エラストマー状の弾性率を持つ樹脂が好ましい。適した弾性率は、介在部材14の形状や波長変換部材13の剛性により異なるが、例えば、弾性率が1000MPa(メガパスカル)以下であれば、通常の基板の反りを吸収できるとともに、基板との隙間をなくした固定が可能となる。また、チップLED11から発せられた光が介在部材14の材料に吸収されることによる損失の減少や、波長変換材料17が形成されていない領域への光漏洩量の減少のため、チップLED11の発光波長領域における介在部材14の材料の拡散反射率は、70%以上であることが好ましい。   As described above, the material that makes it possible to attach the interposition member 14 so as to absorb the warp of the wavelength conversion member 13 and the light source substrate 12 so that there is no gap between the light source substrate 12 and the like, for example, in the operating temperature range A resin having an elastomeric elastic modulus is preferable. The appropriate elastic modulus varies depending on the shape of the interposition member 14 and the rigidity of the wavelength conversion member 13, but, for example, if the elastic modulus is 1000 MPa (megapascal) or less, it can absorb the warp of the normal substrate and Fixing without gaps is possible. Further, the light emitted from the chip LED 11 is used to reduce the loss due to the light emitted from the chip LED 11 being absorbed by the material of the interposition member 14 and the amount of light leakage to the region where the wavelength conversion material 17 is not formed. The diffuse reflectance of the material of the interposed member 14 in the wavelength region is preferably 70% or more.

具体的には、介在部材14に用いる軟性材料としては、ウレタンゴム、シリコーンゴム、フッ素ゴム、ブタジエンゴム、アクリルゴム、ブチルゴム、ニトリルゴム等のエラストマー、合成ゴム等の軟性樹脂を用いることができる。また、これらの軟性樹脂を発泡させることにより、弾性率を調整してもよい。なお、反射率を向上させるため、これらの軟性樹脂に、酸化チタン、炭酸カルシウム、タルク、クレー、マグネシア、シリカ等の白色フィラーを含めることが好ましい。   Specifically, as the soft material used for the interposition member 14, a soft resin such as urethane rubber, silicone rubber, fluorine rubber, butadiene rubber, acrylic rubber, butyl rubber, nitrile rubber, or synthetic resin can be used. Further, the elastic modulus may be adjusted by foaming these soft resins. In order to improve the reflectance, it is preferable to include a white filler such as titanium oxide, calcium carbonate, talc, clay, magnesia, or silica in these soft resins.

以下、発光ユニット10(特に、介在部材14)の製造方法について説明する。   Hereinafter, a method for manufacturing the light emitting unit 10 (particularly, the interposed member 14) will be described.

例えば、介在部材14を構成する軟性樹脂を各種の印刷方法で波長変換部材13上に形成することにより、介在部材14を波長変換部材13に固定することが可能である。適用できる印刷方法としては、フレキソ印刷、凹版印刷、オフセット印刷、孔版印刷等が挙げられる。また、例えば、介在部材14を構成する軟性樹脂シートを所定の形状に打ち抜き、接着剤を介して波長変換部材13上に配置することにより、介在部材14を波長変換部材13に固定することも可能である。また、例えば、介在部材14を構成する軟性樹脂をインサート成型により波長変換部材13上に形成することにより、介在部材14を波長変換部材13に固定することも可能である。   For example, it is possible to fix the interposition member 14 to the wavelength conversion member 13 by forming the soft resin constituting the interposition member 14 on the wavelength conversion member 13 by various printing methods. Applicable printing methods include flexographic printing, intaglio printing, offset printing, stencil printing, and the like. Further, for example, it is possible to fix the interposition member 14 to the wavelength conversion member 13 by punching a flexible resin sheet constituting the interposition member 14 into a predetermined shape and disposing it on the wavelength conversion member 13 via an adhesive. It is. Further, for example, it is possible to fix the interposed member 14 to the wavelength converting member 13 by forming a flexible resin constituting the interposed member 14 on the wavelength converting member 13 by insert molding.

波長変換材料17と封止樹脂23(又はチップLED11)との間の距離を一定に保ち、均一な光量を得るため、また、介在部材14のリフレクタとしての反射機能を効率よく発揮させるためには、波長変換部材13に固定される介在部材14同士の形状のばらつきを抑制する必要がある。そのためには、特に、凹版印刷による軟性樹脂の形成、軟性樹脂シートを打ち抜いたものの配置、インサート成型による軟性樹脂の形成により、介在部材14を波長変換部材13に固定することが好ましい。   In order to keep the distance between the wavelength conversion material 17 and the sealing resin 23 (or the chip LED 11) constant, to obtain a uniform amount of light, and to efficiently exhibit the reflection function of the interposed member 14 as a reflector. In addition, it is necessary to suppress variation in the shape of the interposition members 14 fixed to the wavelength conversion member 13. For this purpose, it is particularly preferable to fix the interposition member 14 to the wavelength conversion member 13 by forming a soft resin by intaglio printing, disposing a punched soft resin sheet, or forming a soft resin by insert molding.

以下、凹版印刷による波長変換部材13上への軟性樹脂の形成方法を具体的に述べる。   Hereinafter, a method for forming a flexible resin on the wavelength conversion member 13 by intaglio printing will be specifically described.

まず、介在部材14の形状を凹型に形成した型に、紫外線硬化型軟性樹脂を配置する。次に、その上に透光性板材16を配置し、ローラー等の押し付け冶具により、波長変換部材13と型の間にある余分な紫外線硬化型軟性樹脂を押し出す。その後、紫外線を照射して軟性樹脂を硬化させ、介在部材14が一体化された波長変換部材13として取り外す。これにより、形状精度が高く、波長変換部材13とチップLED11との間の距離を一定に保つことのできる介在部材14を形成することができる。本方法では、型から取り外せる形状の介在部材14を形成することができる。例えば、図4に示したもの以外にも、図7に示すような形状の介在部材14を形成することができる。図7の例では、介在部材14の内周面が平坦になっており、また、介在部材14の一端14a側の幅(径方向における内周と外周との間の長さ)が他端14b側の幅より大きくなっている。即ち、介在部材14の開口領域が光源基板12側から波長変換部材13側に向かって狭くなっている。   First, an ultraviolet curable soft resin is placed in a mold in which the shape of the interposition member 14 is formed in a concave shape. Next, the translucent plate 16 is disposed thereon, and an extra ultraviolet curable soft resin between the wavelength conversion member 13 and the mold is extruded by a pressing tool such as a roller. Thereafter, the soft resin is cured by irradiating with ultraviolet rays, and the interposing member 14 is removed as the integrated wavelength conversion member 13. Thereby, the interposition member 14 with high shape accuracy and capable of keeping the distance between the wavelength conversion member 13 and the chip LED 11 constant can be formed. In this method, the interposition member 14 having a shape that can be removed from the mold can be formed. For example, in addition to the one shown in FIG. 4, the interposition member 14 having a shape as shown in FIG. 7 can be formed. In the example of FIG. 7, the inner peripheral surface of the interposition member 14 is flat, and the width on the one end 14a side of the interposition member 14 (the length between the inner periphery and the outer periphery in the radial direction) is the other end 14b. It is larger than the width of the side. That is, the opening area of the interposition member 14 is narrowed from the light source substrate 12 side toward the wavelength conversion member 13 side.

反射率を向上させるため、白色フィラーを含む軟性樹脂を用いる場合には、内部まで所定の紫外線を照射することが困難となる場合もある。その場合には、湿気硬化を併用できる紫外線硬化型軟性樹脂を用いれば、高反射性を持った軟性樹脂であっても、その内部まで硬化を進展させることができる。そのため、外寸の大きな介在部材14も形成できることになり、封止樹脂23より高さのある介在部材14を成形することも容易となる。   When a soft resin containing a white filler is used to improve the reflectivity, it may be difficult to irradiate predetermined ultraviolet rays to the inside. In that case, if an ultraviolet curable soft resin that can be used in combination with moisture curing is used, even a soft resin having high reflectivity can be cured to the inside thereof. Therefore, the interposition member 14 having a large outer dimension can be formed, and the interposition member 14 having a height higher than that of the sealing resin 23 can be easily formed.

また、型からの取り外し(脱型)を容易にし、かつ、完全に波長変換部材13に軟性樹脂を転写するためには、紫外線が透過する素材からなる型を用いることが好ましい。この場合、型を介して紫外光を照射することにより、容易に脱型できるとともに、完全に軟性樹脂を転写することが容易になり、安定した形状の介在部材14を形成することができる。さらに、完全に軟性樹脂を転写するためには、例えば、型にポリカーボネートを用い、波長変換部材13の透光性板材16にPETを用いる、といったように軟性樹脂の型に対する密着力と軟性樹脂の透光性板材16に対する密着力とに十分な差をつけることが好ましい。   In order to facilitate removal from the mold (demolding) and to completely transfer the soft resin to the wavelength conversion member 13, it is preferable to use a mold made of a material that transmits ultraviolet rays. In this case, it is possible to easily remove the mold by irradiating ultraviolet light through the mold, and it becomes easy to completely transfer the soft resin, and the interposition member 14 having a stable shape can be formed. Further, in order to completely transfer the soft resin, for example, polycarbonate is used for the mold, and PET is used for the light-transmitting plate 16 of the wavelength conversion member 13. It is preferable to make a sufficient difference in the adhesion to the translucent plate 16.

以下、軟性樹脂シートを打ち抜いたものの波長変換部材13上への配置方法を具体的に述べる。   Hereinafter, a method for arranging the punched flexible resin sheet on the wavelength conversion member 13 will be specifically described.

軟性樹脂シートの打ち抜きは、トムソン刃、金型で行うことができる。あるいは、レーザー加工により、軟性樹脂シートをテーパ状に打ち抜くことも可能である。こういった手法により、軟性樹脂シートに1個もしくは複数個の打ち抜き加工を行い、波長変換部材13に接着剤や粘着剤を介して貼り付ける。接着剤や粘着剤は、予め打ち抜き前の軟性樹脂シートに形成しておくと、生産性が向上する。また、複数の波長変換部材13が一体となったシートに、打ち抜いた軟性樹脂シートを貼り付けた後、所定の形状に切り出し、介在部材14が一体化された波長変換部材13とすると、生産性が向上する。軟性樹脂シートの材料は、前述したエラストマー、合成ゴム等でよい。接着剤や粘着剤は、軟性樹脂シートと波長変換部材13との密着力を確保できるものを適宜選択すればよい。   The flexible resin sheet can be punched with a Thomson blade or a mold. Alternatively, the flexible resin sheet can be punched out by laser processing. By such a technique, one or a plurality of punching processes are performed on the flexible resin sheet, and the flexible resin sheet is attached to the wavelength conversion member 13 via an adhesive or an adhesive. If the adhesive or the pressure-sensitive adhesive is previously formed on the soft resin sheet before punching, productivity is improved. Further, when the punched flexible resin sheet is attached to a sheet in which a plurality of wavelength conversion members 13 are integrated, the product is cut into a predetermined shape and the wavelength conversion member 13 in which the interposition member 14 is integrated is productivity. Will improve. The material of the flexible resin sheet may be the aforementioned elastomer or synthetic rubber. The adhesive and the pressure-sensitive adhesive may be appropriately selected as long as the adhesive force between the flexible resin sheet and the wavelength conversion member 13 can be secured.

上記のように、本方法では、チップLED11と波長変換部材13との間に所定の形状の空間が形成されるように、軟性材料を打ち抜いて当該所定の形状の部分を除去することにより、介在部材14を形成する。本方法を用いると、前述した凹版印刷による軟性樹脂の形成方法では実現が難しい、図8や図9に示すような形状の介在部材14を形成することができる。図8及び図9の例では、介在部材14の一端14a側の幅(径方向における内周と外周との間の長さ)が他端14b側の幅より小さくなっている。即ち、介在部材14の開口領域が光源基板12側から波長変換部材13側に向かって広くなっている。図8の例では、介在部材14の一端14aが波長変換部材13の透光性板材16に固定されているが、図9の例では、介在部材14の一端14aが波長変換部材13の波長変換材料17に固定されている。即ち、介在部材14が波長変換材料17の上に形成されている。図8及び図9の例では、介在部材14の形状が、光源基板12側からの青色光を波長変換材料17側に制御しやすいものとなっているため、介在部材14をリフレクタとしてみたときに望ましい形状である。よって、本方法を用いることで、さらに発光効率のよい安価で薄型の発光ユニット10を提供することができる。   As described above, in this method, the soft material is punched to remove a portion having the predetermined shape so that a space having a predetermined shape is formed between the chip LED 11 and the wavelength conversion member 13. The member 14 is formed. When this method is used, it is possible to form the interposition member 14 having a shape as shown in FIGS. 8 and 9, which is difficult to realize by the above-described method of forming a soft resin by intaglio printing. In the example of FIGS. 8 and 9, the width of the interposed member 14 on the one end 14 a side (the length between the inner periphery and the outer periphery in the radial direction) is smaller than the width on the other end 14 b side. That is, the opening area of the interposition member 14 is widened from the light source substrate 12 side toward the wavelength conversion member 13 side. In the example of FIG. 8, one end 14 a of the interposition member 14 is fixed to the light-transmitting plate 16 of the wavelength conversion member 13, but in the example of FIG. 9, the one end 14 a of the interposition member 14 is the wavelength conversion of the wavelength conversion member 13. It is fixed to the material 17. That is, the interposition member 14 is formed on the wavelength conversion material 17. In the example of FIGS. 8 and 9, the shape of the interposed member 14 is such that the blue light from the light source substrate 12 side can be easily controlled to the wavelength conversion material 17 side, so that the interposed member 14 is viewed as a reflector. Desirable shape. Therefore, by using this method, it is possible to provide an inexpensive and thin light-emitting unit 10 with higher luminous efficiency.

以下、インサート成型による波長変換部材13上への軟性樹脂の形成方法を具体的に述べる。   Hereinafter, a method for forming a flexible resin on the wavelength conversion member 13 by insert molding will be specifically described.

成型材料としては、前述したエラストマー、合成ゴムのうち、架橋できるゴム、熱可塑性樹脂、シリコーン樹脂等を用いることができる。波長変換部材13の波長変換材料17が形成されていない領域にランナー、ゲートを形成することにより、インサート成型により、高さが一定の介在部材14を形成することができる。   As the molding material, it is possible to use a crosslinkable rubber, a thermoplastic resin, a silicone resin, or the like among the above-described elastomers and synthetic rubbers. By forming runners and gates in the region where the wavelength conversion material 17 of the wavelength conversion member 13 is not formed, the interposed member 14 having a constant height can be formed by insert molding.

その他、製造方法は問わないが、例えば、図10に示すような形状の介在部材14を形成することもできる。図10の例では、透光性板材16と介在部材14の支柱24とが同一材料で一体成形されており、介在部材14の表面部分のみが軟性樹脂で形成されている。このような構成でも、前述した他の構成と同様に、光源基板12と介在部材14との間に隙間ができないため、高い発光効率を得ることができる。   In addition, although a manufacturing method is not ask | required, the interposed member 14 of a shape as shown in FIG. 10 can also be formed, for example. In the example of FIG. 10, the translucent plate 16 and the support 24 of the interposition member 14 are integrally formed of the same material, and only the surface portion of the interposition member 14 is formed of a soft resin. Even in such a configuration, as in the other configurations described above, a gap cannot be formed between the light source substrate 12 and the interposition member 14, and thus high light emission efficiency can be obtained.

前述したように、介在部材14の材料の中に蛍光体を混合したり、介在部材14の内側表面(内周面)に、蛍光体を混合した透光性樹脂を塗布したりして、介在部材14に波長変換機能を持たせてもよい。チップLED11から封止樹脂23を通して介在部材14を照射する1次青色光が少なからず存在するが、介在部材14に波長変換機能を持たせることにより、その1次青色光を直接波長変換することができる。そのため、波長変換の効率が上がり、さらには波長変換材料17と介在部材14とで囲まれる領域で生じる色むら(例えば、チップLED11の青色光と蛍光体の黄色光とのコントラスト)が低減される。介在部材14に用いる蛍光体としては、透光性板材16を通る放射光の均一性を高めるため、波長変換材料17に用いる蛍光体と同じものを用いることが望ましい。   As described above, a phosphor is mixed in the material of the intervening member 14, or a translucent resin mixed with a phosphor is applied to the inner surface (inner peripheral surface) of the intervening member 14 to intervene. The member 14 may have a wavelength conversion function. There is a considerable amount of primary blue light that irradiates the interposition member 14 from the chip LED 11 through the sealing resin 23. However, by providing the interposition member 14 with a wavelength conversion function, it is possible to directly convert the wavelength of the primary blue light. it can. Therefore, the efficiency of wavelength conversion is increased, and color unevenness (for example, the contrast between the blue light of the chip LED 11 and the yellow light of the phosphor) generated in the region surrounded by the wavelength conversion material 17 and the interposition member 14 is reduced. . As the phosphor used for the interposing member 14, it is desirable to use the same phosphor as that used for the wavelength conversion material 17 in order to improve the uniformity of the radiated light passing through the translucent plate 16.

以上説明したように、本実施の形態において、発光ユニット10は、チップLED11の実装箇所の周辺に凹部を持たない簡素な構成の光源基板12と、その上部に配設される波長変換部材13とを備える。波長変換部材13は、光源基板12上の個々のチップLED11の封止樹脂23に対応する位置に離散的に設けた波長変換材料17を有する。波長変換部材13には、その波長変換材料17を囲むとともに、光源基板12上の個々のチップLED11の封止樹脂23を囲む、軟性材料からなる高反射性の介在部材14が設けられる。光源基板12と介在部材14とは、隙間なく接触するように組み合わされる。これにより、光源基板12を低コストで製造できるとともに、波長変換部材13を、封止樹脂23と同程度の厚みを持つ介在部材14を介して、光源基板12に容易かつ装着性よく取り付けることができ、その際に、波長変換部材13と光源基板12との間から光漏れがないようにすることができる。そのため、発光効率が高く、薄型で安価な発光ユニット10を提供できる。   As described above, in the present embodiment, the light emitting unit 10 includes the light source substrate 12 having a simple configuration that does not have a recess around the mounting location of the chip LED 11, and the wavelength conversion member 13 disposed on the light source substrate 12. Is provided. The wavelength conversion member 13 includes wavelength conversion materials 17 that are discretely provided at positions corresponding to the sealing resin 23 of each chip LED 11 on the light source substrate 12. The wavelength converting member 13 is provided with a highly reflective intervening member 14 made of a soft material surrounding the wavelength converting material 17 and surrounding the sealing resin 23 of each chip LED 11 on the light source substrate 12. The light source substrate 12 and the interposition member 14 are combined so as to be in contact with no gap. Accordingly, the light source substrate 12 can be manufactured at low cost, and the wavelength conversion member 13 can be easily and easily attached to the light source substrate 12 via the interposition member 14 having the same thickness as the sealing resin 23. In this case, it is possible to prevent light leakage from between the wavelength conversion member 13 and the light source substrate 12. Therefore, it is possible to provide a light-emitting unit 10 that has high luminous efficiency, is thin, and is inexpensive.

実施の形態2.
本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 2. FIG.
In the present embodiment, differences from the first embodiment will be mainly described.

図11は、本実施の形態に係る発光ユニット10の波長変換部材13を光源基板12に取り付ける前の状態を示す図である。   FIG. 11 is a diagram illustrating a state before the wavelength conversion member 13 of the light emitting unit 10 according to the present embodiment is attached to the light source substrate 12.

本実施の形態では、介在部材14が、波長変換部材13に固定される一端14a側の第1部分14cと、光源基板12に固定される他端14b側の第2部分14dとで構成される。その他の構成については、実施の形態1と同様である。   In the present embodiment, the interposed member 14 includes a first portion 14 c on the one end 14 a side fixed to the wavelength conversion member 13 and a second portion 14 d on the other end 14 b side fixed to the light source substrate 12. . Other configurations are the same as those in the first embodiment.

波長変換部材13は、光源基板12に対して着脱可能であり、光源基板12に取り付けられる際には、介在部材14の第1部分14cとともに光源基板12に取り付けられ、筐体15の固定部15a(図11には示していないが、実施の形態1と同様)によって固定される。このとき、筐体15の固定部15aにより波長変換部材13が押圧されることで、介在部材14の第1部分14cの先端14eと第2部分14dの先端14eとが密着する。即ち、筐体15の固定部15aにより波長変換部材13が押圧されることで、介在部材14の第1部分14cが第2部分14dに押し当てられる。これにより、光源基板12と波長変換部材13との間の隙間がなくなり、光源基板12と波長変換部材13との間からの光漏れを抑制(又は防止)することができる。波長変換部材13は、光源基板12から取り外される際には、例えば介在部材14や光源基板12等とともに筐体15から取り出された後、介在部材14の第1部分14cとともに光源基板12から取り外される。   The wavelength conversion member 13 can be attached to and detached from the light source substrate 12. When the wavelength conversion member 13 is attached to the light source substrate 12, the wavelength conversion member 13 is attached to the light source substrate 12 together with the first portion 14 c of the interposition member 14. (Although not shown in FIG. 11, the same as in the first embodiment). At this time, when the wavelength conversion member 13 is pressed by the fixing portion 15a of the housing 15, the tip 14e of the first portion 14c and the tip 14e of the second portion 14d of the interposition member 14 are in close contact with each other. That is, when the wavelength conversion member 13 is pressed by the fixing portion 15a of the housing 15, the first portion 14c of the interposition member 14 is pressed against the second portion 14d. Thereby, there is no gap between the light source substrate 12 and the wavelength conversion member 13, and light leakage from between the light source substrate 12 and the wavelength conversion member 13 can be suppressed (or prevented). When the wavelength conversion member 13 is removed from the light source substrate 12, the wavelength conversion member 13 is removed from the light source substrate 12 together with the first portion 14c of the interposition member 14, for example, after being removed from the housing 15 together with the interposition member 14, the light source substrate 12, and the like. .

本実施の形態では、光源基板12側にも軟性材料で形成された介在部材14(第2部分14d)が設けられているため、実施の形態1に比べて、光源基板12と波長変換部材13との間の隙間をより確実になくすことができる。   In the present embodiment, the light source substrate 12 and the wavelength conversion member 13 are compared with the first embodiment because the interposed member 14 (second portion 14d) formed of a soft material is also provided on the light source substrate 12 side. The gap between the two can be eliminated more reliably.

図11において、光源基板12の封止樹脂23の周辺には、介在部材14の第1部分14cの先端14eが連続する形状(ここでは、円筒形)・寸法に合わせて円形リング状に形成された介在部材14の第2部分14dが設けられている。介在部材14の第2部分14dは、介在部材14の第1部分14cと同様に、前述したエラストマー、合成ゴム等の軟性樹脂からなり、介在部材14の第1部分14cを受け止める。介在部材14の第2部分14dは、実施の形態1における介在部材14の形成方法と同様の方法で光源基板12上に形成することができる。   11, in the periphery of the sealing resin 23 of the light source substrate 12, a tip 14e of the first portion 14c of the interposition member 14 is formed in a circular ring shape in accordance with a continuous shape (here, a cylindrical shape) and dimensions. A second portion 14d of the interposed member 14 is provided. Similarly to the first portion 14c of the interposed member 14, the second portion 14d of the interposed member 14 is made of the above-described soft resin such as elastomer or synthetic rubber, and receives the first portion 14c of the interposed member 14. The second portion 14d of the interposition member 14 can be formed on the light source substrate 12 by the same method as the formation method of the interposition member 14 in the first embodiment.

以上説明したように、本実施の形態では、互いに柔軟性のある介在部材14の第1部分14cと第2部分14dとを広い面積で密着させることにより、光源基板12と波長変換部材13との間からの光漏れを確実になくすことができ、発光効率の高い発光ユニット10を提供することができる。   As described above, in the present embodiment, the first portion 14c and the second portion 14d of the flexible interposing member 14 are brought into close contact with each other over a wide area, whereby the light source substrate 12 and the wavelength conversion member 13 are connected. Light leakage from the space can be reliably eliminated, and the light emitting unit 10 having high light emission efficiency can be provided.

実施の形態3.
本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 3 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.

図12は、本実施の形態に係る発光ユニット10の波長変換部材13を光源基板12に取り付ける前の状態を示す図である。   FIG. 12 is a diagram illustrating a state before the wavelength conversion member 13 of the light emitting unit 10 according to the present embodiment is attached to the light source substrate 12.

本実施の形態では、チップLED11を覆う封止樹脂23の波長変換部材13に対向する面23aが平坦になっている。その他の構成については、実施の形態1と同様である。   In the present embodiment, the surface 23a facing the wavelength conversion member 13 of the sealing resin 23 covering the chip LED 11 is flat. Other configurations are the same as those in the first embodiment.

実施の形態1では、図4に示したように、封止樹脂23が楕円形状であるが、これと波長変換部材13とを組み合わせたとき、波長変換材料17の表面と封止樹脂23の表面との間に空気層が生じる場合がある。この空気層の周辺では、空気層(屈折率は1.0)と、それを囲む材料(封止樹脂23及び波長変換材料17のバインド樹脂の屈折率は1.4〜1.6程度)との間に屈折率差が生じるため、界面での光の透過反射則に従い、光多重反射による光損失が大きくなる場合がある。これに対し、本実施の形態では、封止樹脂23の少なくとも最上面を平坦に形成しているため、波長変換材料17の表面と封止樹脂23の表面とが略全体の領域で接触する。そのため、界面での屈折率差を小さくすることができ、光損失が低減される。即ち、本実施の形態によれば、空気層の領域を減らすことで、高い発光効率を得ることができる。   In Embodiment 1, as shown in FIG. 4, the sealing resin 23 has an elliptical shape, but when this is combined with the wavelength conversion member 13, the surface of the wavelength conversion material 17 and the surface of the sealing resin 23 There may be an air layer between the two. Around the air layer, the air layer (refractive index is 1.0) and the surrounding material (the refractive index of the binding resin of the sealing resin 23 and the wavelength conversion material 17 is about 1.4 to 1.6) Therefore, there is a case where the optical loss due to the multiple reflection of light increases in accordance with the light transmission / reflection law at the interface. In contrast, in the present embodiment, since at least the uppermost surface of the sealing resin 23 is formed flat, the surface of the wavelength conversion material 17 and the surface of the sealing resin 23 are in contact with each other in substantially the entire region. Therefore, the refractive index difference at the interface can be reduced, and light loss is reduced. That is, according to the present embodiment, high luminous efficiency can be obtained by reducing the area of the air layer.

実施の形態4.
本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 4 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.

図13は、本実施の形態に係る発光ユニット10のA−A断面図である。   FIG. 13 is a cross-sectional view of the light emitting unit 10 according to the present embodiment, taken along the line AA.

本実施の形態では、チップLED11を覆う封止樹脂23と波長変換部材13と介在部材14との間に形成される空間に透光性樹脂25が充填されている。その他の構成については、実施の形態1と同様である。   In the present embodiment, a translucent resin 25 is filled in a space formed between the sealing resin 23 covering the chip LED 11, the wavelength conversion member 13, and the interposition member 14. Other configurations are the same as those in the first embodiment.

本実施の形態では、光源基板12と介在部材14との間にできる空気層に透光性樹脂25(例えば、封止樹脂23と同じ材料、又は、同質の材料で屈折率も同程度のものを用いる)が充填されている。そのため、実施の形態3と同様に、界面での屈折率差を小さくすることができ、光損失が低減される。即ち、本実施の形態によれば、空気層の領域を減らすことで、高い発光効率を得ることができる。   In the present embodiment, the air layer formed between the light source substrate 12 and the interposition member 14 has a light-transmitting resin 25 (for example, the same material as the sealing resin 23 or the same material and having the same refractive index). Is used). Therefore, as in the third embodiment, the difference in refractive index at the interface can be reduced, and the optical loss is reduced. That is, according to the present embodiment, high luminous efficiency can be obtained by reducing the area of the air layer.

例えば、波長変換部材13が光源基板12より下側にくるように向きを調整して、波長変換部材13と介在部材14とでできる空間に透光性樹脂25を注入し、その上から光源基板12を設置する方法で、上記のような構成を実現することができる。その際、溢れ出る樹脂があっても、それは光源の存在しない介在部材14の外側に出て行くので光質には影響しない。注入する樹脂としては、熱硬化性樹脂を用いてもよいし、室温である程度硬化するゲル状の樹脂を用いてもよい。   For example, the orientation is adjusted so that the wavelength conversion member 13 is located below the light source substrate 12, and the translucent resin 25 is injected into the space formed by the wavelength conversion member 13 and the interposition member 14, and the light source substrate is formed thereon. The above-described configuration can be realized by the method of installing 12. At this time, even if there is an overflowing resin, it goes out of the intervening member 14 where there is no light source, so it does not affect the light quality. As the resin to be injected, a thermosetting resin may be used, or a gel-like resin that cures to some extent at room temperature may be used.

実施の形態5.
本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 5 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.

実施の形態1において、介在部材14は、透光性板材16に波長変換材料17が取り付けられた波長変換部材13の上に形成されている。介在部材14は、図4等に示したように透光性板材16の上に形成されてもよいし、図9に示したように波長変換材料17の上に形成されてもよい。介在部材14が透光性板材16の上に形成される場合、波長変換材料17は、介在部材14の形成前に透光性板材16に取り付けられてもよいし、介在部材14の形成後に透光性板材16に取り付けられてもよい。波長変換材料17が介在部材14の形成後に取り付けられるのであれば、その方法によっては波長変換材料17の厚みの均一性が損なわれないように注意が必要な場合がある。   In the first embodiment, the interposition member 14 is formed on the wavelength conversion member 13 in which the wavelength conversion material 17 is attached to the translucent plate 16. The interposition member 14 may be formed on the translucent plate 16 as shown in FIG. 4 or the like, or may be formed on the wavelength conversion material 17 as shown in FIG. When the interposition member 14 is formed on the translucent plate 16, the wavelength conversion material 17 may be attached to the translucent plate 16 before the interposition member 14 is formed, or after the interposition member 14 is formed. It may be attached to the light plate 16. If the wavelength conversion material 17 is attached after the interposition member 14 is formed, care may be required so that the thickness uniformity of the wavelength conversion material 17 is not impaired depending on the method.

図14は、本実施の形態の比較例に係る発光ユニット10の波長変換部材13を光源基板12に取り付ける前の状態を示す図である。   FIG. 14 is a diagram illustrating a state before the wavelength conversion member 13 of the light emitting unit 10 according to the comparative example of the present embodiment is attached to the light source substrate 12.

波長変換材料17を介在部材14の形成後にポッティング等により透光性板材16に膜状に形成する場合、図14に示すように、波長変換材料17と介在部材14の一端14aとの境目付近で波長変換材料17の厚みが増した部分30ができる可能性がある。極端な場合には、それが発光ユニット10の光特性に影響を与え、色むらや輝度むら等が生じるおそれがある。   When the wavelength conversion material 17 is formed in a film shape on the translucent plate 16 by potting after the formation of the interposition member 14, as shown in FIG. 14, near the boundary between the wavelength conversion material 17 and one end 14a of the interposition member 14. There is a possibility that a portion 30 in which the thickness of the wavelength conversion material 17 is increased is formed. In an extreme case, it affects the light characteristics of the light emitting unit 10 and may cause uneven color, uneven brightness, and the like.

図15は、本実施の形態に係る発光ユニット10の波長変換部材13を光源基板12に取り付ける前の状態を示す図である。   FIG. 15 is a diagram illustrating a state before the wavelength conversion member 13 of the light emitting unit 10 according to the present embodiment is attached to the light source substrate 12.

本実施の形態において、波長変換部材13は、図15に示すように、透光性板材16を有するとともに、チップLED11ごとに波長変換材料17と壁部材31とを有する。透光性板材16及び波長変換材料17については、実施の形態1と同様である。壁部材31は、波長変換材料17を取り囲むように透光性板材16に取り付けられる。介在部材14は、その一端14aが波長変換部材13の壁部材31に固定されている。   In the present embodiment, as shown in FIG. 15, the wavelength conversion member 13 includes a translucent plate 16, and includes a wavelength conversion material 17 and a wall member 31 for each chip LED 11. The translucent plate 16 and the wavelength conversion material 17 are the same as those in the first embodiment. The wall member 31 is attached to the translucent plate 16 so as to surround the wavelength conversion material 17. One end 14 a of the interposed member 14 is fixed to the wall member 31 of the wavelength conversion member 13.

壁部材31は、予め目的とする波長変換材料17の厚みに近い厚み(波長変換材料17の厚みと同じか、やや厚いものが望ましい)となるように透光性板材16に形成する。その後、壁部材31により囲まれる空間に、蛍光体を含む液状樹脂(例えば、シリコーン樹脂やエポキシ変性シリコーン樹脂といった熱硬化性樹脂に蛍光体を混合したもの)を注入して(流し込んで)レベリングした上で、この液状樹脂を硬化させる。これにより、透光性板材16の上の壁部材31により囲まれる空間内に波長変換材料17を形成する。波長変換材料17の形成後、介在部材14を壁部材31に重ねて形成する。この介在部材14は、チップLED11を覆う封止樹脂23の厚み以上の厚みを持っているものとする。   The wall member 31 is previously formed on the translucent plate 16 so as to have a thickness close to the thickness of the target wavelength conversion material 17 (preferably the same as or slightly thicker than the wavelength conversion material 17). Thereafter, a liquid resin containing a phosphor (for example, a mixture of a phosphor with a thermosetting resin such as a silicone resin or an epoxy-modified silicone resin) is injected into (injected into) the space surrounded by the wall member 31 and leveled. Above, the liquid resin is cured. Thereby, the wavelength conversion material 17 is formed in the space surrounded by the wall member 31 on the translucent plate 16. After the wavelength conversion material 17 is formed, the interposition member 14 is formed so as to overlap the wall member 31. The interposition member 14 has a thickness equal to or greater than the thickness of the sealing resin 23 that covers the chip LED 11.

本実施の形態では、上記のような手順で波長変換材料17や介在部材14を形成するため、蛍光体を含む液状樹脂(硬化前の波長変換材料17)が、レベリング時に介在部材14の内周面を這い上がること(図14参照)がない。よって、波長変換材料17の厚みを容易かつ確実に均一化でき、色むら(色温度ばらつき)や輝度むら等の発生を抑制することができる。   In the present embodiment, since the wavelength conversion material 17 and the interposition member 14 are formed by the procedure as described above, the liquid resin containing the phosphor (the wavelength conversion material 17 before curing) is used as the inner periphery of the interposition member 14 during leveling. There is no scooping up of the surface (see FIG. 14). Therefore, the thickness of the wavelength conversion material 17 can be made uniform easily and reliably, and the occurrence of color unevenness (color temperature variation), brightness unevenness, and the like can be suppressed.

壁部材31は、介在部材14、透光性板材16、波長変換材料17のいずれかと同じ材料で形成されてもよいし、いずれとも異なる材料で形成されてもよいが、透光性板材16と略同じ熱膨張率を持つ材料で形成されることが望ましい。壁部材31の材料を透光性板材16と同程度の熱膨張率を持つ材料とすれば、蛍光体を含む液状樹脂(硬化前の波長変換材料17)を硬化させる際に材料の反りを抑制することができるため、より厚みの均一な波長変換材料17の層(膜)が得られ、より確実に色むら(色温度ばらつき)や輝度むら等の発生を抑制することができる。また、壁部材31の材料として、例えばシリカ等の白色顔料が含まれるシリコーン樹脂やウレタン樹脂等の軟性樹脂を用いれば、介在部材14を光源基板12に当接させる際に、介在部材14(リクレクタ)の高さのばらつきを吸収させることができ、介在部材14の外部への光漏れを抑制する効果も得られる。さらには、光源基板12や波長変換部材13の反りを抑制できるという利点もある。   The wall member 31 may be formed of the same material as any of the intervening member 14, the translucent plate material 16, and the wavelength conversion material 17, or may be formed of a material different from any of them, It is desirable to form with materials having substantially the same coefficient of thermal expansion. If the material of the wall member 31 is a material having a thermal expansion coefficient comparable to that of the translucent plate 16, the material warpage is suppressed when the liquid resin containing the phosphor (the wavelength conversion material 17 before curing) is cured. Therefore, a layer (film) of the wavelength conversion material 17 having a more uniform thickness can be obtained, and the occurrence of color unevenness (color temperature variation), brightness unevenness, and the like can be more reliably suppressed. In addition, when a soft resin such as a silicone resin or a urethane resin containing a white pigment such as silica is used as the material of the wall member 31, the interposition member 14 (rejector) is brought into contact with the light source substrate 12. ) Can be absorbed, and the effect of suppressing light leakage to the outside of the interposed member 14 can also be obtained. Furthermore, there is an advantage that warpage of the light source substrate 12 and the wavelength conversion member 13 can be suppressed.

壁部材31は、例えば、透光性板材16の波長変換材料17を配置する領域の周囲にシート状の樹脂(予め成型した薄い樹脂)を接着することにより形成する。あるいは、例えば、透光性板材16の波長変換材料17を配置する領域の周囲に樹脂をスクリーン印刷することにより形成する。このような方法で壁部材31を形成することにより、壁部材31の厚みをむらなく略一定に保つことができるため、介在部材14と光源基板12とを合わせたときの高さの違いによる光漏れ、光むら、色むら等をなくすことができる。壁部材31をスクリーン印刷により形成する場合、波長変換材料17を同時にスクリーン印刷により形成してもよく、この場合、壁部材31と波長変換材料17との厚みを均一にすることが容易となる。   The wall member 31 is formed, for example, by adhering sheet-like resin (preliminarily molded thin resin) around a region where the wavelength conversion material 17 of the translucent plate 16 is disposed. Alternatively, for example, it is formed by screen-printing a resin around a region where the wavelength conversion material 17 of the translucent plate 16 is disposed. By forming the wall member 31 by such a method, the thickness of the wall member 31 can be kept substantially constant, so that the light due to the difference in height when the interposition member 14 and the light source substrate 12 are combined. Leakage, light unevenness, color unevenness and the like can be eliminated. When the wall member 31 is formed by screen printing, the wavelength conversion material 17 may be simultaneously formed by screen printing. In this case, it is easy to make the thickness of the wall member 31 and the wavelength conversion material 17 uniform.

実施の形態6.
本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 6 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.

図16は、本実施の形態に係る発光ユニット10の部分断面図である。   FIG. 16 is a partial cross-sectional view of the light emitting unit 10 according to the present embodiment.

実施の形態1では、チップLED11が透明な封止樹脂23により覆われているが、本実施の形態では、図16に示すように、チップLED11が蛍光体含有樹脂23bにより覆われている。蛍光体含有樹脂23bは、波長変換材料17に含まれる蛍光体とは異なる種類の蛍光体を含む材料である。   In the first embodiment, the chip LED 11 is covered with the transparent sealing resin 23. In the present embodiment, as shown in FIG. 16, the chip LED 11 is covered with the phosphor-containing resin 23b. The phosphor-containing resin 23 b is a material that includes a different type of phosphor from the phosphor contained in the wavelength conversion material 17.

蛍光体含有樹脂23bに含まれる蛍光体としては、任意の蛍光体を用いることができる。例えば、チップLED11が青色光を発し、蛍光体含有樹脂23bが、この青色光により励起されて黄色光を発する蛍光体(例えば、YAG蛍光体やシリケート蛍光体)を含むとすると、チップLED11及び蛍光体含有樹脂23bからなる発光部は略白色の光を呈することとなる。このような構成の発光部に対して、青〜黄色発光成分の少なくとも一波長領域により励起される赤色発光成分を含む蛍光体(例えば、窒化物蛍光体)を波長変換材料17に適用すると、発光ユニット10の照明光の演色性が向上する。   Arbitrary fluorescent substance can be used as fluorescent substance contained in fluorescent substance containing resin 23b. For example, if the chip LED 11 emits blue light and the phosphor-containing resin 23b includes a phosphor that emits yellow light when excited by the blue light (for example, a YAG phosphor or a silicate phosphor), the chip LED 11 and the fluorescence The light emitting part made of the body-containing resin 23b exhibits substantially white light. When a phosphor (for example, a nitride phosphor) containing a red light-emitting component excited by at least one wavelength region of blue to yellow light-emitting components is applied to the wavelength conversion material 17 for the light-emitting portion having such a configuration, light emission occurs. The color rendering property of the illumination light of the unit 10 is improved.

このように、発光部の蛍光体含有樹脂23bと波長変換部材13の波長変換材料17とに、互いに異なる光特性(励起、吸収、発光スペクトル等)を持つ蛍光体を適用することで、発光ユニット10の照明光を所望の光に変換することができる。例えば、波長変換材料17の蛍光体として蛍光体含有樹脂23bの蛍光体より赤み(長波長成分)の強いものを用いれば、昼光色、昼白色、白色といった比較的高色温度の発光部の光色を、温白色、電球色といった低色温度の光色に変換できる。また、必要に応じて波長変換部材13を交換(着脱)することで、簡単に光色を変更することができる。即ち、本実施の形態によれば、発光ユニット10を照明装置として用いる場合に、その演出効果により用途展開の幅を広げることができる。   In this way, by applying phosphors having different light characteristics (excitation, absorption, emission spectrum, etc.) to the phosphor-containing resin 23b of the light-emitting portion and the wavelength conversion material 17 of the wavelength conversion member 13, a light-emitting unit is obtained. Ten illumination lights can be converted into desired light. For example, if the phosphor of the wavelength conversion material 17 is a substance having a redness (long wavelength component) stronger than that of the phosphor of the phosphor-containing resin 23b, the light color of the light emitting part having a relatively high color temperature such as daylight color, daylight white, and white. Can be converted into a light color with a low color temperature such as warm white or light bulb color. Further, the light color can be easily changed by replacing (detaching) the wavelength conversion member 13 as necessary. That is, according to the present embodiment, when the light emitting unit 10 is used as a lighting device, the range of application development can be widened due to the effect.

以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, you may implement in combination of 2 or more among these embodiment. Alternatively, one of these embodiments may be partially implemented. Alternatively, two or more of these embodiments may be partially combined. In addition, this invention is not limited to these embodiment, A various change is possible as needed.

10 発光ユニット、11 チップLED、12 光源基板、13 波長変換部材、14 介在部材、14a 一端、14b 他端、14c 第1部分、14d 第2部分、14e 先端、15 筐体、15a 固定部、16 透光性板材、17 波長変換材料、18 ベース基板、19 導電部、20 高反射レジスト材、21 ダイボンド材、22 ワイヤ、23 封止樹脂、23a 面、23b 蛍光体含有樹脂、24 支柱、25 透光性樹脂、30 厚みが増した部分、31 壁部材。   DESCRIPTION OF SYMBOLS 10 Light emitting unit, 11 chip LED, 12 Light source board, 13 Wavelength conversion member, 14 Interposition member, 14a One end, 14b Other end, 14c 1st part, 14d 2nd part, 14e Tip, 15 Case, 15a Fixing part, 16 Translucent plate material, 17 wavelength conversion material, 18 base substrate, 19 conductive portion, 20 highly reflective resist material, 21 die bond material, 22 wire, 23 sealing resin, 23a surface, 23b phosphor-containing resin, 24 struts, 25 transparent Photoresin, 30 thickened part, 31 wall member.

Claims (14)

光を発する発光素子と、
前記発光素子が実装された基板と、
前記発光素子から発せられる光の波長を変換する波長変換部材と、
軟性材料で形成され、前記発光素子を取り囲むように前記基板と前記波長変換部材との間に設置される介在部材と、
前記介在部材の一端が前記波長変換部材に当接し、かつ、前記介在部材の他端が前記基板に当接するように、前記波長変換部材を前記基板に近づく方向に押圧して、前記基板に対する前記波長変換部材の位置を固定する固定部と
を備えることを特徴とする発光装置。
A light emitting element that emits light;
A substrate on which the light emitting element is mounted;
A wavelength conversion member that converts the wavelength of light emitted from the light emitting element;
An intermediate member formed of a soft material and installed between the substrate and the wavelength conversion member so as to surround the light emitting element ;
The wavelength conversion member is pressed in a direction approaching the substrate so that one end of the interposition member is in contact with the wavelength conversion member and the other end of the interposition member is in contact with the substrate, A light emitting device comprising: a fixing portion that fixes a position of the wavelength conversion member.
前記介在部材は、前記発光素子を取り囲む面が前記発光素子から発せられる光を反射することを特徴とする請求項1の発光装置。 The interposed member, prior SL-emitting device according to claim 1 in which the surface surrounding the light-emitting element is characterized by reflecting the light emitted from the light emitting element. 前記介在部材は、前記一端が前記波長変換部材に固定され、前記固定部により前記波長変換部材が押圧されることで前記他端が前記基板に押し当てられることを特徴とする請求項1又は2の発光装置。   3. The interposition member, wherein the one end is fixed to the wavelength conversion member, and the other end is pressed against the substrate by pressing the wavelength conversion member by the fixing portion. Light-emitting device. 前記介在部材は、前記波長変換部材に固定される前記一端側の第1部分と前記基板に固定される前記他端側の第2部分とで構成され、前記固定部により前記波長変換部材が押圧されることで前記第1部分が前記第2部分に押し当てられることを特徴とする請求項1又は2の発光装置。   The interposition member includes a first portion on the one end side fixed to the wavelength conversion member and a second portion on the other end side fixed to the substrate, and the wavelength conversion member is pressed by the fixing portion. The light emitting device according to claim 1, wherein the first portion is pressed against the second portion. 前記発光装置は、前記発光素子を複数備え、
前記波長変換部材は、光を透過する透光性板材を有するとともに、前記発光素子ごとに、前記透光性板材の前記発光素子に対応する位置に取り付けられ、前記発光素子から発せられる光により励起されて異なる波長の光を発する蛍光体を含む波長変換材料を有し、
前記介在部材は、前記波長変換材料ごとに、前記波長変換材料を取り囲むように設置されることを特徴とする請求項1から4のいずれかの発光装置。
The light emitting device includes a plurality of the light emitting elements,
The wavelength conversion member has a light-transmitting plate material that transmits light, and is attached to each light-emitting element at a position corresponding to the light-emitting element of the light-transmitting plate material, and is excited by light emitted from the light-emitting element. A wavelength converting material comprising a phosphor that emits light of different wavelengths,
5. The light emitting device according to claim 1, wherein the interposition member is installed so as to surround the wavelength conversion material for each of the wavelength conversion materials.
前記介在部材は、内部と表面との少なくともいずれかに、前記発光素子から発せられる光により励起されて異なる波長の光を発する蛍光体を含むことを特徴とする請求項1から5のいずれかの発光装置。   The said interposition member contains the fluorescent substance which emits the light of a different wavelength by being excited by the light emitted from the said light emitting element in at least any one of the inside and the surface. Light emitting device. 前記発光素子は、光を透過する透光性材料によって前記基板に封止され、前記透光性材料の前記波長変換部材に対向する面が平坦であることを特徴とする請求項1から6のいずれかの発光装置。   The light-emitting element is sealed on the substrate by a light-transmitting material that transmits light, and a surface of the light-transmitting material that faces the wavelength conversion member is flat. Any light emitting device. 前記発光素子は、光を透過する透光性材料によって前記基板に封止され、前記透光性材料と前記波長変換部材と前記介在部材との間に形成される空間に透光性樹脂が充填されていることを特徴とする請求項1から6のいずれかの発光装置。   The light emitting element is sealed to the substrate by a light transmissive material that transmits light, and a space formed between the light transmissive material, the wavelength conversion member, and the interposition member is filled with a light transmissive resin. The light emitting device according to claim 1, wherein the light emitting device is a light emitting device. 前記発光素子と前記波長変換部材との間に所定の形状の空間が形成されるように、前記軟性材料を打ち抜いて前記所定の形状の部分を除去することにより、前記介在部材を形成することを特徴とする請求項1から8のいずれかの発光装置の製造方法。   Forming the interposition member by punching out the flexible material and removing the portion of the predetermined shape so that a space of a predetermined shape is formed between the light emitting element and the wavelength conversion member. The method for manufacturing a light emitting device according to claim 1, 前記波長変換部材は、光を透過する透光性板材と、前記透光性板材の前記発光素子に対応する位置に取り付けられ、前記発光素子から発せられる光により励起されて異なる波長の光を発する蛍光体を含む波長変換材料と、前記波長変換材料を取り囲むように前記透光性板材に取り付けられる壁部材とを有し、
前記介在部材は、前記一端が前記壁部材に固定されることを特徴とする請求項1から4のいずれかの発光装置。
The wavelength conversion member is attached to a light-transmitting plate material that transmits light and a position corresponding to the light-emitting element of the light-transmitting plate material, and is excited by light emitted from the light-emitting element to emit light of different wavelengths. A wavelength conversion material including a phosphor, and a wall member attached to the translucent plate so as to surround the wavelength conversion material,
The light emitting device according to claim 1, wherein the one end of the interposition member is fixed to the wall member.
前記壁部材は、前記透光性板材と同じ熱膨張率を持つ材料で形成されていることを特徴とする請求項10の発光装置。 It said wall member, the light emitting apparatus according to claim 10, characterized in that it is formed of a material having the translucent plate and the same thermal expansion coefficient. 前記透光性板材に前記壁部材を取り付けた後、前記壁部材により囲まれる空間に、前記蛍光体を含む液状樹脂を注入し、注入した液状樹脂を硬化させることにより、前記波長変換材料を形成し、
前記波長変換材料を形成した後、前記介在部材を前記壁部材に重ねて形成することを特徴とする請求項10又は11の発光装置の製造方法。
After the wall member is attached to the translucent plate, the wavelength conversion material is formed by injecting a liquid resin containing the phosphor into a space surrounded by the wall member and curing the injected liquid resin. And
The method of manufacturing a light emitting device according to claim 10 or 11, wherein after the wavelength converting material is formed, the interposition member is overlaid on the wall member.
前記透光性板材にシート状の樹脂を接着し、又は、前記透光性板材に樹脂をスクリーン印刷することにより、前記壁部材を形成することを特徴とする請求項10又は11の発光装置の製造方法。   The light emitting device according to claim 10 or 11, wherein the wall member is formed by adhering a sheet-like resin to the translucent plate material or screen-printing the resin on the translucent plate material. Production method. 前記波長変換部材は、前記発光素子から発せられる光により励起されて異なる波長の光を発する蛍光体を含み、
前記発光素子は、前記蛍光体と異なる種類の蛍光体を含む材料によって覆われていることを特徴とする請求項1から4のいずれかの発光装置。
The wavelength conversion member includes a phosphor that emits light of different wavelengths when excited by light emitted from the light emitting element,
5. The light emitting device according to claim 1, wherein the light emitting element is covered with a material containing a phosphor of a different type from the phosphor.
JP2012052579A 2011-09-02 2012-03-09 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD Active JP5452645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052579A JP5452645B2 (en) 2011-09-02 2012-03-09 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011191183 2011-09-02
JP2011191183 2011-09-02
JP2012052579A JP5452645B2 (en) 2011-09-02 2012-03-09 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2013065812A JP2013065812A (en) 2013-04-11
JP5452645B2 true JP5452645B2 (en) 2014-03-26

Family

ID=48189024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052579A Active JP5452645B2 (en) 2011-09-02 2012-03-09 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5452645B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937241B1 (en) 2013-11-13 2019-01-11 나노코 테크놀로지스 리미티드 LED Cap Containing Quantum Dot Phosphors
JP2015115480A (en) * 2013-12-12 2015-06-22 株式会社エルム Light-emitting device and manufacturing method thereof
KR102166715B1 (en) 2014-04-02 2020-10-19 삼성디스플레이 주식회사 Light source unit, and method for manufacturing the same, and backlight assembly including the same
DE102014106074A1 (en) 2014-04-30 2015-11-19 Osram Opto Semiconductors Gmbh Lighting device and method for producing a lighting device
JP6500255B2 (en) 2015-10-15 2019-04-17 豊田合成株式会社 Method of manufacturing light emitting device
JP2017098158A (en) * 2015-11-26 2017-06-01 株式会社エムスポーラ Light control device, lamp, lighting fixture and plant cultivation device using the lighting fixture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677540A (en) * 1992-08-24 1994-03-18 Sanyo Electric Co Ltd Optical semiconductor device
JP4349032B2 (en) * 2003-08-05 2009-10-21 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2006269079A (en) * 2005-03-22 2006-10-05 Hitachi Lighting Ltd Light source module, liquid crystal display device and manufacturing method for light source module
JP5529516B2 (en) * 2009-12-14 2014-06-25 株式会社朝日ラバー LIGHTING DEVICE AND LIGHTING COLOR CHANGE METHOD FOR LIGHTING DEVICE

Also Published As

Publication number Publication date
JP2013065812A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP7125636B2 (en) light emitting device
JP5452645B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR101111256B1 (en) LED leadframe package, LED package using the same, and method of fabricating the LED package
TW201830101A (en) Light emitting device
JP5077130B2 (en) Lighting device
WO2011016433A1 (en) Method for manufacturing led light emitting device
JP2009071254A (en) Light-emitting device
EP2743999B1 (en) Light emitting device package including phosphor film, and method of manufacturing the same.
US20150021640A1 (en) Light-emitting device
JP5543386B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
US20190355783A1 (en) Led module
WO2009028611A1 (en) Light-emitting device
JP2017191875A (en) Light emitting module
KR101701738B1 (en) Fabricaing method of led module
JP2021170632A (en) Light-emitting device and surface light-emitting light source
KR101288918B1 (en) Manufacturing method of light emitting device having wavelenth-converting layer and light emitting device produced by the same
JP2009076494A (en) Light emitting device
KR20130103080A (en) Led illumination apparatus
JP2007042679A (en) Light emitting diode device
JP2012009696A (en) Light emitting device and led illuminating equipment
TW201829649A (en) Method for manufacturing a light emitting diode device and the light emitting diode device so manufactured
KR20130124632A (en) Led illuminating apparatus and method for fabricating wavelength conversion member used for the apparatus
JP6399783B2 (en) LED light emitting device and manufacturing method thereof
KR101701746B1 (en) Led lighting device
KR101005628B1 (en) A LED Package and A Manufacturing Method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250