JP5441264B2 - Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate - Google Patents

Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate Download PDF

Info

Publication number
JP5441264B2
JP5441264B2 JP2010049247A JP2010049247A JP5441264B2 JP 5441264 B2 JP5441264 B2 JP 5441264B2 JP 2010049247 A JP2010049247 A JP 2010049247A JP 2010049247 A JP2010049247 A JP 2010049247A JP 5441264 B2 JP5441264 B2 JP 5441264B2
Authority
JP
Japan
Prior art keywords
sol
ammonium niobate
thin film
ammonium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010049247A
Other languages
Japanese (ja)
Other versions
JP2011190115A (en
Inventor
寛之 守屋
裕之 井筒
英和 上田
武利 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2010049247A priority Critical patent/JP5441264B2/en
Publication of JP2011190115A publication Critical patent/JP2011190115A/en
Application granted granted Critical
Publication of JP5441264B2 publication Critical patent/JP5441264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明はニオブ酸アンモニウムゾル及びその製造方法に関し、更にニオブ酸アンモニウムゾルを含有してなる薄膜形成用塗布液、及びこの薄膜形成用塗布液により形成された被膜を有する薄膜担持基材に関する。   The present invention relates to an ammonium niobate sol and a method for producing the same, and further relates to a coating solution for forming a thin film containing the ammonium niobate sol, and a thin film-supporting substrate having a coating formed by the coating solution for forming a thin film.

近年、セラミック原料、電子材料、表面処理剤等の分野で、高い屈折率及び誘電率を有する酸化ニオブに対する需要が高まっている。特に、オプトエレクトロニクス材料、半導体材料、表面保護剤、反射防止材、屈折率調整剤、触媒等の分野では、原料として粒子径が小さく、且つ均一な粒度分布を有するニオブ原料が要求され、とりわけ、表面被覆剤の分野に於いては、これら要件を具有すると共に基材と強固な接着性を有するニオブ原料が強く要請されている。   In recent years, there is an increasing demand for niobium oxide having a high refractive index and dielectric constant in the fields of ceramic raw materials, electronic materials, surface treatment agents, and the like. In particular, in the fields of optoelectronic materials, semiconductor materials, surface protective agents, antireflection materials, refractive index modifiers, catalysts, etc., niobium raw materials having a small particle diameter and a uniform particle size distribution are required as raw materials. In the field of surface coating agents, there is a strong demand for niobium raw materials having these requirements and having strong adhesion to the substrate.

透明薄膜における屈折率調整剤として、従来から酸化チタンが利用されている。しかし、酸化チタンは光触媒であるため、プラスチック等の有機高分子基材に利用するためには、シリカ等の不活性な物質で基材表面を被覆しなければならず、この被覆により屈折率が低下し透明性が低下すると云う問題がある。また、シリカ等で被覆してもこれにより光触媒の効果が完全になくなるわけではなく、依然として基材の耐久性低下、変色などの問題を有している。そこで、光触媒作用が無く、高屈折率等の特性を有するニオブの利用方法が検討されてきた。   Conventionally, titanium oxide has been used as a refractive index adjusting agent in a transparent thin film. However, since titanium oxide is a photocatalyst, in order to use it for an organic polymer substrate such as plastic, the surface of the substrate must be coated with an inert substance such as silica. There is a problem that the transparency is lowered. Moreover, even if it coat | covers with a silica etc., the effect of a photocatalyst is not lose | eliminated completely by this, and there still exists problems, such as a durable fall of a base material and discoloration. Thus, methods for utilizing niobium that have no photocatalytic action and have characteristics such as a high refractive index have been studied.

ニオブを含有する薄膜を作成する方法として、スパッタ法や蒸着法、湿式法等が知られている。このうち湿式法は、特殊な装置を必要とせず、簡便なため経済性に優れた方法である。湿式法では、一般にアルコキシドやゾルが使用されるが、アルコキシドは高価なだけでなく、ニオブのアルコキシドは非常に分解しやすく取り扱いが困難なため余り利用されない。   As a method for forming a thin film containing niobium, a sputtering method, a vapor deposition method, a wet method, and the like are known. Among these, the wet method is a method that does not require a special apparatus and is simple and excellent in economic efficiency. In the wet method, alkoxides and sols are generally used. Not only are alkoxides expensive, but niobium alkoxides are very rarely used because they are very easy to decompose and difficult to handle.

そこで近年ニオブゾルが注目されるようになり、各種のニオブゾル、例えば、過酸化水素を用いて作成したペルオキシニオブ酸ゾル(例えば、特許文献1、特許文献2)、pH変動にも安定なシュウ酸安定型あるいはクエン酸安定型酸化ニオブゾル(例えば、特許文献3、特許文献4)、さらにはニオブ化合物を電気分解によって製造したゾル(例えば、特許文献5)等が開発されている。ところで、従来よりニオブ酸や酸化ニオブの微粒子にはそれ自身自己結着性がないため、通常、高温で加熱しても透明で強固な膜は得難いことが知られている。これらニオブゾルにおいても微粒子に自己結着性がほとんど無いか有っても弱いため、ニオブからなる薄膜を作成するためには、必然的に基材に薄膜を密着させるためのバインダーを添加しなければならなかった(例えば、特許文献6、特許文献7)。バインダーを多く含有する膜は、ニオブ本来の特性である高屈折率、耐擦傷性、耐薬品性等がバインダー成分の混入によって阻害され、所望の性能を得難い。また、ゾルの安定化のために安定化剤を添加したゾルは、安定化剤のために用途が制限され、特に、シュウ酸やクエン酸などの有機物が薄膜中に残存すると、膜強度や耐久性の低下、着色等の問題を招来する。   Therefore, niobium sol has recently attracted attention, and various niobium sols, for example, peroxyniobic acid sols prepared using hydrogen peroxide (for example, Patent Documents 1 and 2), oxalic acid stability that is stable against pH fluctuations. Type or citric acid-stabilized niobium oxide sols (for example, Patent Document 3 and Patent Document 4), and sols produced by electrolysis of niobium compounds (for example, Patent Document 5) have been developed. By the way, it has been known that niobic acid and niobium oxide fine particles themselves have no self-binding property, and thus it is usually difficult to obtain a transparent and strong film even when heated at a high temperature. In these niobium sols, since the fine particles have little or no self-binding property, in order to make a thin film made of niobium, it is necessary to add a binder for adhering the thin film to the substrate. (For example, Patent Document 6 and Patent Document 7). In a film containing a large amount of binder, the high refractive index, scratch resistance, chemical resistance, and the like, which are inherent characteristics of niobium, are hindered by the mixing of binder components, and it is difficult to obtain desired performance. In addition, the use of a sol with a stabilizer added to stabilize the sol is limited due to the stabilizer, especially when organic substances such as oxalic acid and citric acid remain in the thin film. This causes problems such as deterioration in color and coloring.

特公平8-701号公報Japanese Patent Publication No. 8-701 特開2008-81378公報JP2008-81378 特開平8-143314号公報Japanese Unexamined Patent Publication No. 8-143314 特開2005-200235号公報JP 2005-200235 A 特開平5-222562公報Japanese Patent Laid-Open No. 5-222562 特開2008-114544号公報JP 2008-114544 JP 特開2008-115323号公報JP 2008-115323 A

そこで、本発明者らは、バインダーを全く使用することなく、あるいは使用しても少量で透明薄膜が得られるニオブのゾルについて鋭意検討する中で、ニオブ酸アンモニウムの微粒子に自己結着性があることを見出し、係る知見に基づき本発明を完成したものである。なお、自己結着性とはゾル単独で成膜した時、基材に対し強い密着性を有し、強固で耐久性のある薄膜を形成する性質を示すことをいう。   Therefore, the present inventors have been diligently studying a niobium sol that can obtain a transparent thin film with little or no use of a binder, and the ammonium niobate fine particles have self-binding properties. The present invention has been completed based on such findings. The self-binding property refers to a property of forming a strong and durable thin film having strong adhesion to the base material when the sol is formed alone.

本発明のニオブ酸アンモニウムゾルは、該ゾルを100℃で10時間乾燥させたときのアンモニアとニオブ酸が、NH3/Nb2O5(モル比)=0.5〜1.5の範囲であり、実質的に有機酸を含まないことを特徴とする。本発明において、実質的に有機酸を含まないとは、ニオブ酸アンモニウムゾル中のNb2O5に対して有機酸量がモル比で0.1以下であることを云う。前記モル比が0.1を上廻ると、自己結着性を喪失し、本発明の目的を達することができない。また、ニオブ酸アンモニウムコロイドの平均粒子径が100nm以下であり、且つニオブ酸アンモニウムゾル中のニオブがNb2O5として(以下、ニオブはNb2O5換算で表示する)5質量%時の光路長10mmにおける全光線透過率が50%以上であることを特徴とする。 In the ammonium niobate sol of the present invention, ammonia and niobic acid when the sol is dried at 100 ° C. for 10 hours is in a range of NH 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5, Is characterized by not containing an organic acid. In the present invention, “substantially free of organic acid” means that the amount of organic acid is 0.1 or less in terms of molar ratio to Nb 2 O 5 in the ammonium niobate sol. If the molar ratio exceeds 0.1, the self-binding property is lost and the object of the present invention cannot be achieved. The optical path when the average particle diameter of the ammonium niobate colloid is 100 nm or less and the niobium in the ammonium niobate sol is Nb 2 O 5 (hereinafter, niobium is expressed in terms of Nb 2 O 5 ) at 5% by mass. The total light transmittance at a length of 10 mm is 50% or more.

本発明のニオブ酸アンモニウムゾルの製造方法は、ニオブ化合物をフッ酸、またはフッ酸と硫酸の混酸に溶解させた水溶液とアンモニア水溶液とを、pHを8以上に維持しつつ混合、反応させて、ニオブ酸アンモニウムの微粒子を含有する分散液を得た後、ろ過洗浄することを特徴とする。   In the method for producing an ammonium niobate sol of the present invention, an aqueous solution in which a niobium compound is dissolved in hydrofluoric acid or a mixed acid of hydrofluoric acid and sulfuric acid and an aqueous ammonia solution are mixed and reacted while maintaining the pH at 8 or more, A dispersion liquid containing fine particles of ammonium niobate is obtained, followed by filtration and washing.

また本発明は、この製造方法において、上記分散液のNb2O5濃度が0.1〜1.0質量%であることを特徴とする。
更に本発明は、本発明のニオブ酸アンモニウムゾルを含有してなる薄膜形成用塗布液であることを特徴とする。特にこの塗布液が、ニオブ酸アンモニウムゾル中のNb2O5量に対して、固形分として1〜30質量%の範囲で有機高分子化合物またはシリカ化合物のうち1種以上を含有することを特徴とする。更に本発明は、薄膜形成用塗布液を基材表面に用いて形成された被膜を有する薄膜担持基材であることを特徴とする。
Further, the present invention is characterized in that, in this production method, the Nb 2 O 5 concentration of the dispersion is 0.1 to 1.0% by mass.
Furthermore, the present invention is a coating solution for forming a thin film comprising the ammonium niobate sol of the present invention. In particular, this coating solution contains one or more organic polymer compounds or silica compounds in the range of 1 to 30% by mass as the solid content with respect to the amount of Nb 2 O 5 in the ammonium niobate sol. And Furthermore, the present invention is characterized in that it is a thin film-supporting substrate having a film formed by using a coating solution for forming a thin film on the surface of the substrate.

本発明のニオブ酸アンモニウムゾルは、ゾルを構成するニオブ酸アンモニウムの微粒子それ自体が乾燥時に自己結着性を有するため、ゾル単独でまたは少量の有機高分子やシリカ等の助剤的成分と共に成膜することにより、基材に対し強い密着性を有し強固で耐久性のある薄膜、特に透明性に優れた薄膜を形成することができる。即ち、本発明ゾルによれば従来問題であったバインダー使用による膜強度、耐久性、屈折率、透明性などの低下を招来することがない。この薄膜形成機能の他、本発明のゾルは分散剤や安定化剤を使用する必要がないため触媒原料として大きな期待が寄せられる。更に本発明のニオブ酸アンモニウムゾルは、ニオブ化合物をフッ酸、またはフッ酸と硫酸の混酸に溶解し、アンモニア水溶液と反応させ、ろ過洗浄することにより製造され、均一で微細な粒子径を有するため安定性に優れている。また上記の通り、本発明ゾルは簡単な工程で製造できることから極めて安価である。
In the ammonium niobate sol of the present invention, since the ammonium niobate fine particles constituting the sol themselves have self-binding properties when dried, the sol alone or a small amount of an organic polymer and an auxiliary component such as silica are formed. By forming a film, it is possible to form a strong and durable thin film, particularly a thin film excellent in transparency, having strong adhesion to the substrate. That is, according to the sol of the present invention, the film strength, durability, refractive index, transparency and the like due to the use of the binder, which has been a conventional problem, are not reduced. In addition to this thin film forming function, the sol of the present invention is highly expected as a catalyst raw material because it is not necessary to use a dispersant or a stabilizer. Furthermore, the ammonium niobate sol of the present invention is produced by dissolving a niobium compound in hydrofluoric acid or a mixed acid of hydrofluoric acid and sulfuric acid, reacting with an aqueous ammonia solution, washing by filtration, and has a uniform and fine particle size. Excellent stability. Further, as described above, the sol of the present invention is extremely inexpensive because it can be produced by a simple process.

以下に、本発明のニオブ酸アンモニウムゾル及びその製造方法について説明する。
本発明のニオブ酸アンモニウムゾルは、無定形のニオブ酸アンモニウムの微粒子、即ちコロイド粒子が分散した水分散型ゾルであり、該ゾルを100℃で10時間乾燥させたときのアンモニアとニオブ酸がNH3/Nb2O5(モル比)=0.5〜1.5の範囲であることを特徴とする。本発明におけるニオブ酸アンモニウムは、いわゆる塩のようにイオン解離することなく、無定形のニオブ酸のコロイド粒子表面にアンモニアが強固に吸着した構造をしていると考えられる。従って、本来はアンモニアを分散安定剤とするニオブ酸ゾルと言うべきであるかも知れないが、本発明ではニオブ酸アンモニウムゾルと称する。その理由は、本発明のニオブ酸アンモニウムゾルを100℃で10時間以上の条件で十分に乾燥させて固体とした場合、アンモニアがニオブ酸に対してNH3/Nb2O5(モル比)=0.5〜1.5の範囲で残存し、アンモニアがニオブ酸微粒子と結合あるいは強固に吸着していると考えられるからである。
従って、本発明における前記モル比は、100℃で10時間乾燥した後の固体中に残存するアンモニアのことであり、溶液中に存在する遊離のアンモニアは含まない。この結合または吸着したアンモニアが本発明のゾルを高度に安定させるだけでなく、基材に対し強い密着性を有し強固で耐久性のある良質の膜を得るための重要な要素のひとつとなっている。例えば、本発明のゾルにアンモニアを添加して見かけ上NH3/Nb2O5(モル比)=0.5〜1.5の範囲を超えることがあっても、乾燥時にこの範囲内になれば同等の効果が得られる。しかしながら、乾燥後の状態で前記モル比が1.5を超える場合は、ゾル中のニオブ酸アンモニウムは無定形の微粒子ではなく塩のような構造になるため、高い密着性や高強度の膜は期待できない。一方、前記モル比が0.5を下回る場合は、粒子径が大きくなるため、沈降物の発生や膜の白濁化等不安定な性状を示す。
これらのことから、本発明のゾルにおいてNH3/Nb2O5(モル比)=0.5〜1.5は重要な要素であり、より好ましくはNH3/Nb2O5(モル比)=0.8〜1.2の範囲である。
Below, the ammonium niobate sol of this invention and its manufacturing method are demonstrated.
The ammonium niobate sol of the present invention is an amorphous ammonium niobate fine particle, that is, an aqueous dispersion sol in which colloidal particles are dispersed. When the sol is dried at 100 ° C. for 10 hours, ammonia and niobic acid are NH. 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5. The ammonium niobate in the present invention is considered to have a structure in which ammonia is firmly adsorbed on the surface of the colloidal particles of amorphous niobic acid without ion dissociation like so-called salt. Therefore, although it may be originally called a niobate sol using ammonia as a dispersion stabilizer, it is referred to as an ammonium niobate sol in the present invention. The reason is that when the ammonium niobate sol of the present invention is sufficiently dried at 100 ° C. for 10 hours or more to form a solid, ammonia is NH 3 / Nb 2 O 5 (molar ratio) = This is because it is considered that ammonia remains in the range of 0.5 to 1.5, and ammonia is bound to or strongly adsorbed to the niobic acid fine particles.
Therefore, the molar ratio in the present invention refers to the ammonia remaining in the solid after being dried at 100 ° C. for 10 hours, and does not include free ammonia present in the solution. This bound or adsorbed ammonia not only highly stabilizes the sol of the present invention, but is one of the important factors for obtaining a strong and durable high-quality film with strong adhesion to the substrate. ing. For example, even if ammonia is added to the sol of the present invention and apparently NH 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5 may be exceeded, the same effect can be obtained if it falls within this range during drying. Is obtained. However, when the molar ratio exceeds 1.5 in the dried state, ammonium niobate in the sol has a structure like a salt instead of amorphous fine particles, so a high adhesion and high strength film cannot be expected. . On the other hand, when the molar ratio is less than 0.5, the particle size is increased, and thus unstable properties such as generation of sediment and clouding of the film are exhibited.
From these facts, NH 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5 is an important factor in the sol of the present invention, and more preferably NH 3 / Nb 2 O 5 (molar ratio) = 0.8 to 1.2. Range.

本発明のニオブ酸アンモニウムゾル中のコロイド粒子の平均粒子径は100nm以下であり、且つニオブ酸アンモニウムゾル中のNb2O5が5質量%時の光路長10mmにおける全光線透過率が50%以上であることを同時に満たすことが望ましい。平均粒子径が100nmを超えると、たとえ全光線透過率が50%以上であっても、本発明のゾルの特徴である自己結着性が徐々に低下し、薄膜の耐擦傷性、耐摩耗性、平滑性が低下する。また、平均粒子径が100nm以下であっても、全光線透過率が50%未満になった場合は、ゾル中に沈殿物が発生したり、薄膜が白濁したり斑などが発生しやすくなる。また、上記各物性も相当程度に低下する。
一方、平均粒子径が3nmより小さい場合は、ゾルの安定性が低下するとともに、コロイド粒子としての形態を形成しているわけではなく塩のような構造をとるようになるため、薄膜の基材に対する密着性や強度が低下する。これらのことから、平均粒子径は5〜90 nm、より好ましくは10〜70 nm、且つ全光線透過率は70%以上であることがさらに好ましい。
The average particle diameter of the colloidal particles in the ammonium niobate sol of the present invention is 100 nm or less, and the total light transmittance at an optical path length of 10 mm when Nb 2 O 5 in the ammonium niobate sol is 5% by mass is 50% or more. It is desirable to satisfy that at the same time. When the average particle diameter exceeds 100 nm, even if the total light transmittance is 50% or more, the self-binding property that is a feature of the sol of the present invention gradually decreases, and the scratch resistance and abrasion resistance of the thin film. , The smoothness decreases. Even when the average particle diameter is 100 nm or less, when the total light transmittance is less than 50%, precipitates are generated in the sol, the thin film becomes cloudy or spots are likely to occur. In addition, the above physical properties are also considerably reduced.
On the other hand, when the average particle size is smaller than 3 nm, the stability of the sol is reduced and the colloidal particles are not formed, but a salt-like structure is formed. Adhesiveness and strength with respect to are reduced. For these reasons, it is more preferable that the average particle diameter is 5 to 90 nm, more preferably 10 to 70 nm, and the total light transmittance is 70% or more.

尚、本発明におけるゾルの平均粒子径は、電子顕微鏡などで測定することも可能であるが、散乱理論を利用した粒度分布計で容易に測定することができる。また、全光線透過率は濁度測定器などを用い測定でき、例えば日本電色工業(株)製の色度・濁度測定装置を例示することができる。   In addition, although the average particle diameter of the sol in this invention can also be measured with an electron microscope etc., it can be easily measured with the particle size distribution meter using a scattering theory. Further, the total light transmittance can be measured using a turbidity measuring device, for example, a chromaticity / turbidity measuring device manufactured by Nippon Denshoku Industries Co., Ltd. can be exemplified.

次に、本発明のニオブ酸アンモニウムゾルの製造方法について詳細に説明する。本発明に用いるニオブ原料としては、酸化ニオブあるいはニオブ酸が挙げられる。先ず、このニオブ原料をフッ酸単独、またはフッ酸と硫酸の混酸に溶解しニオブ溶解液を製造する。このニオブ溶解液をアンモニア水溶液と混合して反応させ、ニオブ酸アンモニウムの微粒子を含有する分散液を得る。このとき生成する副生塩やイオン性物質は、分散液をろ過洗浄することによって除去し、さらに、濃縮することによって本発明のニオブ酸アンモニウムゾルを得る。
ところで、ニオブ溶解液とアンモニア水溶液との混合反応で生成する水溶液は、ニオブ酸アンモニウムの微粒子を含有するゾルとは言い難い分散液であり(尚、組成等によりゾル様の状態を呈することもある)、ろ過洗浄後に得られる本発明のニオブ酸アンモニウムゾルと区別するために、以後この分散液を、ニオブ酸アンモニウムの微粒子を含有する分散液と云う。
Next, the production method of the ammonium niobate sol of the present invention will be described in detail. Examples of the niobium raw material used in the present invention include niobium oxide and niobic acid. First, the niobium raw material is dissolved in hydrofluoric acid alone or in a mixed acid of hydrofluoric acid and sulfuric acid to produce a niobium solution. This niobium solution is mixed with an aqueous ammonia solution and reacted to obtain a dispersion containing fine particles of ammonium niobate. By-product salts and ionic substances produced at this time are removed by filtering and washing the dispersion, and further concentrated to obtain the ammonium niobate sol of the present invention.
By the way, the aqueous solution produced by the mixing reaction of the niobium solution and the aqueous ammonia solution is a dispersion that is difficult to say a sol containing fine particles of ammonium niobate (note that it may exhibit a sol-like state depending on the composition and the like). In order to distinguish from the ammonium niobate sol of the present invention obtained after filtration and washing, this dispersion is hereinafter referred to as a dispersion containing fine particles of ammonium niobate.

ニオブ原料を溶解させる酸としては、フッ酸が最適であるが、硫酸を含有する混酸を用いても良い。用いる酸量は、ニオブ原料中のNb2O5に対しHF/Nb2O5(モル比)=6〜12、H2SO4/Nb2O5(モル比)=0〜6が好ましく、より好ましくはHF/ Nb2O5(モル比)=8〜10、H2SO4/Nb2O5(モル比)=0〜3であり、短時間に完全に溶解させるために必要に応じて加熱処理を行うこともできる。また、アンモニア水溶液に用いるアンモニアとしては、重炭酸アンモニウム、炭酸アンモニウム、アンモニアなどが適しているが、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物が含まれていても、後述する洗浄によりカチオンを十分除去することによって同様の効果を得ることができる。 As the acid for dissolving the niobium raw material, hydrofluoric acid is optimal, but a mixed acid containing sulfuric acid may be used. The amount of acid used is preferably HF / Nb 2 O 5 (molar ratio) = 6 to 12 and H 2 SO 4 / Nb 2 O 5 (molar ratio) = 0 to 6 with respect to Nb 2 O 5 in the niobium raw material, More preferably, HF / Nb 2 O 5 (molar ratio) = 8 to 10 and H 2 SO 4 / Nb 2 O 5 (molar ratio) = 0 to 3, as necessary for complete dissolution in a short time. The heat treatment can also be performed. As ammonia used in the aqueous ammonia solution, ammonium bicarbonate, ammonium carbonate, ammonia, and the like are suitable. However, even if alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are contained, cleaning described later is performed. A similar effect can be obtained by sufficiently removing cations.

ニオブ溶解液とアンモニア水溶液を反応させる時の温度は特に制限されないが、10〜90℃の範囲が好ましい。ニオブ溶解液のNb2O5濃度及びアンモニア水溶液の濃度も特に制限されないが、両者の反応後に得られるニオブ酸アンモニウムの微粒子を含有する分散液中のNb2O5濃度が0.1〜1.0質量%になるように設定するのが好ましく、さらに好ましくは0.2〜0.6質量%である。
分散液中のNb2O5濃度が0.1質量%を下回る場合は濃度が低過ぎ製造上経済的でなく、1.0質量%を上回る場合は平均粒子径が大きくなり過ぎ不安定で本発明の目的とするゾルを得ることが困難となる。また、両者を反応させる方法に関しては、ニオブ溶解液をアンモニア水溶液に添加する方法、あるいは、両者を同時に容器内に添加する方法のうちいずれでも良い。
肝要なることは、pHを常に8.0以上に保持した状態で両者を反応させることである。ニオブ溶解液にアンモニア水溶液を添加したり、反応液のpHが8.0未満になった場合、ニオブ酸アンモニウム微粒子中にフッ素が取り込まれたり、粒子径が増大するために、最終的に本発明の目的とするニオブ酸アンモニウムゾルを得ることができない。
The temperature at which the niobium solution and the aqueous ammonia solution are reacted is not particularly limited, but is preferably in the range of 10 to 90 ° C. The Nb 2 O 5 concentration of the niobium solution and the concentration of the aqueous ammonia solution are not particularly limited, but the Nb 2 O 5 concentration in the dispersion containing the ammonium niobate fine particles obtained after the reaction of both is 0.1 to 1.0% by mass. It is preferable to set it so that it is 0.2 to 0.6% by mass.
When the Nb 2 O 5 concentration in the dispersion is less than 0.1% by mass, the concentration is too low to be economical in production, and when it exceeds 1.0% by mass, the average particle size becomes too large and unstable, and the object of the present invention is It is difficult to obtain a sol to be used. Moreover, regarding the method of making both react, either the method of adding a niobium melt | dissolution solution to ammonia aqueous solution, or the method of adding both in a container simultaneously may be sufficient.
What is important is that the two are allowed to react while the pH is constantly maintained at 8.0 or higher. When an aqueous ammonia solution is added to the niobium solution, or when the pH of the reaction solution becomes less than 8.0, fluorine is taken into the ammonium niobate fine particles or the particle diameter increases, so the object of the present invention is finally achieved. An ammonium niobate sol cannot be obtained.

ニオブ溶解液とアンモニア水溶液の量比は、アンモニア水溶液のアンモニア量がニオブ溶解液の酸量に対して、当量比で1.0〜1.5の範囲が好ましい。当量比が1.5を超える場合、過剰のアンモニアによって一部に溶解性のニオブ酸塩が生成するため、後段のろ過洗浄に長時間を要するばかりでなく、設計通りの濃度のゾルが得られ難くなる。
ろ過洗浄後に得られる本発明のニオブ酸アンモニウムゾルについては、これを100℃10時間乾燥させた固体はNH3/Nb2O5(モル比)=0.5〜1.5の範囲内にある。これは、非溶解性、即ち、コロイド微粒子として存在し得るニオブ酸アンモニウムはNH3/Nb2O5(モル比)が上記範囲内にあることによる。付言すれば、このようなニオブ酸アンモニウムが特定組成、且つニオブ酸とアンモニウムが特異的結合形態を有したコロイド微粒子として存在するニオブ酸アンモニウムゾルは、本発明者らが初めて発見したものである。さて一方、前記当量比が1.0を下回ると、自ずと反応液のpHが8.0未満となり、本発明のニオブ酸アンモニウムゾルが得られ難くなる。即ち、未反応のニオブ成分が残存し、これが本発明のコロイド微粒子の安定性を阻害するばかりでなく、自己結着性が低下する。当量比の更に好ましい範囲は1.1〜1.3であり、中和反応終了時点でのpHは特に8.0〜9.0が望ましい。
The amount ratio between the niobium solution and the aqueous ammonia solution is preferably in the range of 1.0 to 1.5 in terms of an equivalent ratio of the ammonia amount of the aqueous ammonia solution to the acid amount of the niobium solution. When the equivalence ratio exceeds 1.5, a partly soluble niobate is formed by excess ammonia, so that not only a long time is required for the subsequent filtration and washing, but it becomes difficult to obtain a sol at the designed concentration. .
Regarding the ammonium niobate sol of the present invention obtained after filtration and washing, the solid dried at 100 ° C. for 10 hours is in the range of NH 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5. This is due to the fact that ammonium niobate that is insoluble, that is, present as colloidal fine particles, has NH 3 / Nb 2 O 5 (molar ratio) within the above range. In addition, the present inventors have discovered for the first time an ammonium niobate sol in which such ammonium niobate is present as colloidal fine particles having a specific composition and a specific binding form of niobic acid and ammonium. On the other hand, if the equivalent ratio is less than 1.0, the pH of the reaction solution is naturally less than 8.0, and it becomes difficult to obtain the ammonium niobate sol of the present invention. That is, an unreacted niobium component remains, which not only inhibits the stability of the colloidal fine particles of the present invention, but also reduces the self-binding property. The more preferable range of the equivalent ratio is 1.1 to 1.3, and the pH at the end of the neutralization reaction is particularly preferably 8.0 to 9.0.

このようにして得られたニオブ酸アンモニウムの微粒子を含有する分散液は、次いでろ過洗浄に供し、中和反応により生成したフッ化アンモニウムや硫酸アンモニウムなどの副生塩を除去する。残存する不純物のうちアルカリ金属、フッ化物イオン、硫酸イオンなどは、本発明のニオブ酸アンモニウムゾルの安定性阻害要因となり、また用途が制限されるため極力除去することが望ましい。
ろ過洗浄手段に関しては特に限定されないが、通常限外ろ過が最も簡便である。ろ液の電気伝導度が1.0mS/cm以下になるまで副生塩等不純物を除去することが好ましく、より好ましくは0.5mS/cm以下である。ろ過洗浄後の分散液は、コロイド微粒子が均一に分散されたゾルとしての外観を示し、ほぼ中性付近のpHを示す。用途により中性以上のpHが必要であるときは、ゾルの分散状態が損なわれない範囲でアルカリ剤を添加してpHを調整することができる。
アルカリ剤としてはアンモニアのほか、メチルアミン、ジエチルアミン、トリメチルアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシドなど1級〜4級のアミン類、メタノールアミン、エタノールアミン、プロパノールアミン等のアルカノールアミン類等が例示できる。アンモニアやアミン類の濃度や種類は特に限定されることなく、市販されているアンモニア水や各種のアミン類を直接あるいは水溶液として使用できる。また酸性にする必要がある場合は、グリコール酸、シュウ酸、リンゴ酸、クエン酸、酒石酸といったカルボン酸を添加することが可能であるが、有機酸の多量の添加はニオブ酸アンモニウムの自己結着性が阻害されるため望ましくない。
The dispersion containing the ammonium niobate fine particles thus obtained is then subjected to filtration and washing to remove by-product salts such as ammonium fluoride and ammonium sulfate produced by the neutralization reaction. Among the remaining impurities, alkali metals, fluoride ions, sulfate ions, and the like are factors that inhibit the stability of the ammonium niobate sol of the present invention, and the use is limited.
The filtration washing means is not particularly limited, but usually ultrafiltration is the simplest. It is preferable to remove impurities such as by-product salts until the electrical conductivity of the filtrate is 1.0 mS / cm or less, and more preferably 0.5 mS / cm or less. The dispersion after filtration and washing has an appearance as a sol in which colloidal fine particles are uniformly dispersed, and has a pH of about neutral. When a neutral or higher pH is required depending on the application, the pH can be adjusted by adding an alkaline agent within a range that does not impair the dispersion state of the sol.
Examples of the alkaline agent include ammonia, and primary to quaternary amines such as methylamine, diethylamine, trimethylamine, ethylenediamine, and tetramethylammonium hydroxide, and alkanolamines such as methanolamine, ethanolamine, and propanolamine. The concentrations and types of ammonia and amines are not particularly limited, and commercially available ammonia water and various amines can be used directly or as an aqueous solution. If it is necessary to make it acidic, carboxylic acids such as glycolic acid, oxalic acid, malic acid, citric acid, and tartaric acid can be added. Undesirable because sex is inhibited.

本発明のニオブ酸アンモニウムゾルは、これをさらに加熱することにより一層安定にすることができる。加熱処理の方法は100℃以下で加熱しても、100℃以上で水熱処理してもよく、時間も1〜10時間程度で任意の条件で処理することができる。処理時間が長いほどニオブ酸アンモニウム微粒子の粒度の均一性が向上し、保存安定性や粘度安定性が向上するとともにニオブ酸の結晶化が進行することによって得られる透明薄膜の屈折率の向上が期待される。経済的な観点から、通常100〜150℃程度で3〜10時間程度処理して安定化することが望ましい。
尚、本発明のニオブ酸アンモニウムゾルは通常Nb2O5として3〜20質量%で製造されることが望ましい。3質量%未満は塗布液として利用するのに十分な濃度とはいい難く、製造上、輸送上も経済的でない。一方、20質量%を超えると粘度が高くなり、ハンドリング性が損なわれるため好ましくない。通常は7〜15質量%程度で製造、利用することが好ましい。
The ammonium niobate sol of the present invention can be further stabilized by further heating. The heat treatment method may be heating at 100 ° C. or lower, or hydrothermal treatment at 100 ° C. or higher, and the treatment may be performed under any conditions for about 1 to 10 hours. The longer the treatment time, the more uniform the particle size of the ammonium niobate fine particles, the better the storage stability and viscosity stability, and the higher the refractive index of the transparent thin film obtained by the progress of crystallization of niobic acid. Is done. From an economical point of view, it is usually desirable to stabilize by treating at about 100 to 150 ° C. for about 3 to 10 hours.
In addition, it is desirable that the ammonium niobate sol of the present invention is usually produced at 3 to 20% by mass as Nb 2 O 5 . If it is less than 3% by mass, it is difficult to say that the concentration is sufficient for use as a coating solution, and it is not economical in terms of production and transportation. On the other hand, if it exceeds 20% by mass, the viscosity becomes high and handling properties are impaired, which is not preferable. Usually, it is preferable to manufacture and use at about 7 to 15% by mass.

本発明のニオブ酸アンモニウムゾルはそれ自身で自己結着性を有するため、ガラス、タイル、アルミナ等のセラミクス、釉薬を施した表面などには直接強固に密着し、透明薄膜を形成することができ、さらに100℃程度で乾燥することによって鉛筆硬度9Hを超える硬い膜とすることができる。特にガラスやタイルには強い密着性を示し、バインダーを含有しないニオブ単独の硬い膜を形成させることができる。また、ゾル中のNb2O5に対して固形分として30質量%以下の有機高分子化合物やシリカ化合物等の添加剤を添加した塗布液は、アクリル、PET、ポリカーボネート、塩ビ等のプラスチック類、鉄やステンレス、アルミニウム等の金属への濡れ性を向上する。
このような本発明のニオブ酸アンモニウムゾルを薄膜形成用塗布液として用いて形成された被膜は、密着性の向上、膜のクラック防止、平滑性の向上による耐擦傷性の向上、外観上のムラの減少等の効果が期待できる。さらに、このような被膜の上に塗布される材料との密着性も向上するので膜の多層化に適している。これらの効果をもたらす有機高分子化合物としては、各種の水系樹脂エマルションやポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコールなどが例示でき、シリカ化合物としてはシリカゾル、シリコンアルコキシド、シランカップリング剤などが挙げられる。
これら添加剤の種類は、基材の種類や形状、熱処理温度、期待する膜の特性に応じて1種以上添加することができ、添加量も期待特性等に応じて決定すればよい。肝要なことはこれら添加剤の量が、ニオブ酸アンモニウムゾル中のNb2O5量に対して、固形分として30質量%以下であることである。これ以上の量を加えると、もはやニオブ酸の特性が阻害されるだけでなく、本発明のゾルが有する自己結着性の特性が発揮されなくなり、脆弱な膜となる。また、有機高分子化合物の含有量が増加すればそれだけ膜の耐久性も失われることになる。これらのことから、これら添加剤の量は20質量%以下とするのがより好ましい。下限に関しては、1質量%以上が必要である。1質量%未満では添加剤の効果を期待することができない。
Since the ammonium niobate sol of the present invention itself has self-binding properties, it can directly and firmly adhere to ceramics such as glass, tile, and alumina, and a glaze-coated surface, thereby forming a transparent thin film. Further, by drying at about 100 ° C., a hard film having a pencil hardness exceeding 9H can be obtained. In particular, glass and tile exhibit strong adhesion, and a hard film of niobium alone containing no binder can be formed. In addition, the coating liquid in which additives such as organic polymer compound and silica compound of 30% by mass or less as solid content with respect to Nb 2 O 5 in the sol are plastics such as acrylic, PET, polycarbonate, vinyl chloride, Improves wettability to metals such as iron, stainless steel, and aluminum.
A film formed using such an ammonium niobate sol of the present invention as a coating solution for thin film formation improves adhesion, prevents cracking of the film, improves scratch resistance by improving smoothness, and has uneven appearance. An effect such as reduction of Furthermore, since the adhesiveness with the material applied on such a film is also improved, it is suitable for multilayering of the film. Examples of the organic polymer compound that brings about these effects include various aqueous resin emulsions, polyvinyl alcohol, polyethylene oxide, polyethylene glycol, and the like, and examples of the silica compound include silica sol, silicon alkoxide, and silane coupling agent.
One or more types of these additives can be added according to the type and shape of the base material, the heat treatment temperature, and the expected film properties, and the addition amount may be determined according to the expected characteristics and the like. What is important is that the amount of these additives is 30% by mass or less as a solid content with respect to the amount of Nb 2 O 5 in the ammonium niobate sol. When an amount larger than this is added, the properties of niobic acid are no longer inhibited, and the self-binding properties of the sol of the present invention are not exhibited, resulting in a fragile film. Further, if the content of the organic polymer compound is increased, the durability of the film is lost accordingly. Therefore, the amount of these additives is more preferably 20% by mass or less. As for the lower limit, 1% by mass or more is necessary. If it is less than 1% by mass, the effect of the additive cannot be expected.

これら添加剤に加えて、界面活性剤や低級アルコールなどを造膜助剤として少量添加することは、膜の密着性や平滑性を向上させる点で好ましい。また、ニオブ酸アンモニウムが有する特性に加えて、抗菌性や導電性、光触媒活性等の特性を付与する目的で、Si、Ti、Sn、Zr、Ce、Ag、Cuなどの酸化物ゾル、アルコキシド、錯体などを混合して成膜することも可能であり、目的に応じて複合膜とすることも可能である。   In addition to these additives, it is preferable to add a small amount of a surfactant, a lower alcohol or the like as a film-forming aid in terms of improving the adhesion and smoothness of the film. In addition to the properties of ammonium niobate, in addition to the properties of antibacterial properties, conductivity, photocatalytic activity, etc., oxide sols such as Si, Ti, Sn, Zr, Ce, Ag, Cu, alkoxides, It is also possible to form a film by mixing a complex or the like, or to form a composite film depending on the purpose.

薄膜形成用塗布液を基材上に塗布してニオブ酸アンモニウムを含有する薄膜を形成させる方法は、刷毛塗り、スプレー塗布、スピンコート、ディップコート、ロールコート、グラビアコート、バーコートなど各種の公知の塗布方法が、基材の形状を考慮して選択できる。塗布液の乾燥は基材の種類によって異なるが、通常300℃以下で熱処理されることが好ましい。ただし、ガラスやセラミクスを基材とする場合は、密着性向上の点から高温処理が望ましく、完全にアンモニアが分解し、ニオブ酸の焼結により酸化ニオブが生成する500℃以上の加熱処理が望ましい。一方、基材がアクリル、PET、ポリカーボネート、塩化ビニルなどのプラスチック類の場合は、基材の耐熱性から熱処理温度は150℃以下となる。プラスチックや金属等の基材とニオブ酸アンモニウム薄膜との密着性が不足する場合は、基材とニオブ酸アンモニウム薄膜との間にその他の金属酸化物薄膜やシランカップリング剤からなる膜、樹脂膜などをプライマー層として設けることもできる。   There are various known methods for forming a thin film containing ammonium niobate by applying a coating solution for forming a thin film onto a substrate, such as brush coating, spray coating, spin coating, dip coating, roll coating, gravure coating, and bar coating. The coating method can be selected in consideration of the shape of the substrate. Although drying of a coating liquid changes with kinds of base material, it is preferable to heat-process normally at 300 degrees C or less. However, when glass or ceramics is used as a base material, high temperature treatment is desirable from the viewpoint of improving adhesion, and heat treatment at 500 ° C. or higher is desired, in which ammonia is completely decomposed and niobium oxide is generated by sintering of niobic acid. . On the other hand, when the substrate is a plastic such as acrylic, PET, polycarbonate, or vinyl chloride, the heat treatment temperature is 150 ° C. or less due to the heat resistance of the substrate. If the adhesion between the base material such as plastic or metal and the ammonium niobate thin film is insufficient, other metal oxide thin film or film made of silane coupling agent, resin film between the base material and ammonium niobate thin film Etc. can also be provided as a primer layer.

以下、本発明の詳細を実施例を挙げて説明するが、本発明はそれらの実施例によって限定されるものではない。尚、特に断らない限り%は全て質量%を示す。
本発明のニオブ酸アンモニウムゾルの物性は、以下の方法で測定した。
[平均粒子径の測定]
平均粒子径は動的光散乱粒度分布測定装置LB-500(株式会社堀場製作所製)を用いて測定した。
EXAMPLES Hereinafter, although an Example is given and the detail of this invention is demonstrated, this invention is not limited by those Examples. In addition, unless otherwise indicated, all% shows the mass%.
The physical properties of the ammonium niobate sol of the present invention were measured by the following methods.
[Measurement of average particle size]
The average particle size was measured using a dynamic light scattering particle size distribution analyzer LB-500 (manufactured by Horiba, Ltd.).

[ゾルの全光線透過率の測定]
全光線透過率は色度・濁度測定器COH-300A(日本電色工業株式会社製)を用いて測定した。測定条件としては、Nb2O5=5.0%に調整したニオブ酸アンモニウムゾルを光路長10mmのガラスセルに入れて測定した。
[Measurement of total light transmittance of sol]
The total light transmittance was measured using a chromaticity / turbidity measuring device COH-300A (manufactured by Nippon Denshoku Industries Co., Ltd.). As measurement conditions, an ammonium niobate sol adjusted to Nb 2 O 5 = 5.0% was placed in a glass cell having an optical path length of 10 mm and measured.

(実施例1)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液480mLに溶解させ、イオン交換水を8.8L添加することによってNb2O5=0.54%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったフッ化ニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=1%)4.9Lに対し、反応液のpHが8.0を下回らないようにゆっくりと一定速度で約60分間かけて添加し、副生成塩を含有するpH8.3、Nb2O5含有量が0.35%のニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液はゾルの性状を示し、微粒子は均一に分散していた。次に、この分散液を限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.4mS/cm以下になるまでイオン交換水でろ過洗浄し、フッ化アンモニウム等を除去することによって、pH7.5のニオブ酸アンモニウムゾル600gを得た。得られたゾルの組成分析を行ったところ、Nb2O5含有量は8.0%、F=32ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=1.0であった。動的散乱法による平均粒子径は20nmであり、Nb2O5=5.0%での全光線透過率は75%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたニオブ酸アンモニウムゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 1)
Dissolve 50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) in 480 mL of 10% aqueous hydrofluoric acid solution, and add 8.8 L of ion-exchanged water to obtain an aqueous niobic fluoride solution of Nb 2 O 5 = 0.54%. Obtained. Slowly constant the pH of the reaction solution so that the pH of the reaction solution does not fall below 8.0 against 4.9 L of aqueous ammonia (NH 3 = 1%) adjusted to 30 ° C. The mixture was added at a rate of about 60 minutes to obtain a dispersion containing fine particles of ammonium niobate having a pH of 8.3 containing a by-product salt and an Nb 2 O 5 content of 0.35%. This dispersion showed sol properties, and the fine particles were uniformly dispersed. Next, this dispersion is filtered and washed with ion-exchanged water using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Corporation) until the electrical conductivity of the filtrate is 0.4 mS / cm or less. By removing ammonium fluoride and the like, 600 g of ammonium niobate sol having a pH of 7.5 was obtained. When the composition analysis of the obtained sol was performed, the Nb 2 O 5 content was 8.0% and F = 32 ppm, and the ammonia amount after drying this sol at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 1.0. The average particle diameter determined by the dynamic scattering method was 20 nm, and the total light transmittance at Nb 2 O 5 = 5.0% was 75%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained ammonium niobate sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to form a thin film-supporting substrate Got.

(実施例2)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液380mLに溶解させ、イオン交換水を6.5L添加することによってNb2O5=0.72%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったフッ化ニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=1.5%)2.6Lに対し、反応液のpHが8.0を下回らないようにゆっくりと一定速度で約60分間かけて添加し、副生成塩を含有するpH8.5、Nb2O5含有量が0.52%のニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液は白濁しており、また、この微粒子は凝集しやすく沈降性を示した。次に、この分散液を限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.4mS/cm以下になるまでイオン交換水でろ過洗浄し、フッ化アンモニウム等を除去することによって、pH7.5のニオブ酸アンモニウムゾル500gを得た。得られたゾルの組成分析を行ったところ、Nb2O5含有量は10.0%、F=27ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=1.0であった。動的散乱法による平均粒子径は90nmであり、Nb2O5=5.0%での全光線透過率は55%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたニオブ酸アンモニウムゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 2)
50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) is dissolved in 380 mL of 10% hydrofluoric acid aqueous solution, and 6.5 L of ion-exchanged water is added to obtain an aqueous solution of niobic fluoride of Nb 2 O 5 = 0.72%. Obtained. Slowly constant the pH of the reaction solution so that the pH of the reaction solution does not fall below 8.0 against 2.6L of aqueous ammonia (NH 3 = 1.5%) adjusted to 30 ° C. The mixture was added at a rate of about 60 minutes to obtain a dispersion containing fine particles of ammonium niobate having a pH of 8.5 containing a by-product salt and an Nb 2 O 5 content of 0.52%. The dispersion was cloudy, and the fine particles easily aggregated and exhibited sedimentation properties. Next, this dispersion is filtered and washed with ion-exchanged water using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Corporation) until the electrical conductivity of the filtrate is 0.4 mS / cm or less. Then, by removing ammonium fluoride and the like, 500 g of ammonium niobate sol having a pH of 7.5 was obtained. When the composition analysis of the obtained sol was performed, the Nb 2 O 5 content was 10.0% and F = 27 ppm. The amount of ammonia after the sol was dried at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 1.0. The average particle diameter by dynamic scattering was 90 nm, and the total light transmittance was 55% when Nb 2 O 5 = 5.0%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained ammonium niobate sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to form a thin film-supporting substrate Got.

(実施例3)
実施例1で得られたNb2O5含有量が8.0%のニオブ酸アンモニウムゾル500gにアンモニア水(NH3=18%)7mLを添加し、140℃で6時間の水熱処理を行い粒成長させた。さらに限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.2mS/cm以下になるまでイオン交換水でろ過洗浄することによって、pH8.0のニオブ酸アンモニウムゾル320gを得た。得られたゾルの組成分析を行ったところ、Nb2O5含有量は12.0%、F=19ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=0.9であった。動的散乱法による平均粒子径は30nmであり、Nb2O5=5.0%時の全光線透過率は70%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたニオブ酸アンモニウムゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥させた後、500℃で5分間の加熱処理を行い、薄膜担持基材を得た。表1に示すように水熱処理により薄膜の屈折率が実施例1より向上した。
(Example 3)
7 mL of aqueous ammonia (NH 3 = 18%) was added to 500 g of ammonium niobate sol having an Nb 2 O 5 content of 8.0% obtained in Example 1, and subjected to hydrothermal treatment at 140 ° C. for 6 hours to grow grains. It was. Further, by using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Co., Ltd.), the filtrate is washed with ion-exchanged water until the electric conductivity of the filtrate becomes 0.2 mS / cm or less, thereby obtaining a pH of 8. 320 g of 0 ammonium niobate sol was obtained. When the composition analysis of the obtained sol was performed, the Nb 2 O 5 content was 12.0% and F = 19 ppm. The amount of ammonia after the sol was dried at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 0.9. The average particle diameter by dynamic scattering was 30 nm, and the total light transmittance was 70% when Nb 2 O 5 = 5.0%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained ammonium niobate sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, dried at 100 ° C. for 10 minutes, and then at 500 ° C. A heat treatment for 5 minutes was performed to obtain a thin film-supporting substrate. As shown in Table 1, the refractive index of the thin film was improved from that of Example 1 by hydrothermal treatment.

(実施例4)
中和反応に用いるアルカリ水溶液をアンモニア水と水酸化ナトリウム水溶液の混合液(NH3=0.5%、NaOH=1.2%)にした以外は実施例1と同様にして、pH8.0のニオブ酸アンモニウムゾル700gを得た。得られたニオブ酸アンモニウムゾルの組成分析を行ったところ、Nb2O5含有量は7.0%、Na/Nb2O5(モル比)=0.2、F=8ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=0.7であった。動的散乱法による平均粒子径は30nmであり、Nb2O5=5.0%時の全光線透過率は65%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたニオブ酸アンモニウムゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 4)
The ammonium niobate sol having a pH of 8.0 was obtained in the same manner as in Example 1 except that the aqueous alkaline solution used for the neutralization reaction was a mixed solution of aqueous ammonia and aqueous sodium hydroxide (NH 3 = 0.5%, NaOH = 1.2%). 700 g was obtained. Composition analysis of the obtained ammonium niobate sol showed that the Nb 2 O 5 content was 7.0%, Na / Nb 2 O 5 (molar ratio) = 0.2, and F = 8 ppm. The amount of ammonia after drying for hours was NH 3 / Nb 2 O 5 (molar ratio) = 0.7. The average particle diameter by dynamic scattering was 30 nm, and the total light transmittance was 65% when Nb 2 O 5 = 5.0%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained ammonium niobate sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to form a thin film-supporting substrate Got.

(実施例5)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液480mLに溶解させ、イオン交換水を8.8L添加することによってNb2O5=0.54%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったフッ化ニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=1%)6.1Lに対し、反応液のpHが8.0を下回らないようにゆっくりと一定速度で約60分間かけて添加し、副生成塩を含有するpH9.5、Nb2O5含有量が0.32%のニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液はゾルの性状を示し、微粒子は均一に分散していた。次に、この分散液を限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.2mS/cm以下になるまでイオン交換水でろ過洗浄し、フッ化アンモニウム等を除去することによってpH9.0のニオブ酸アンモニウムゾル450gを得た。得られたニオブ酸アンモニウムゾルの組成分析を行ったところ、Nb2O5含有量は8.0%、F=8ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=1.3であった。動的散乱法による平均粒子径は10nmであり、Nb2O5=5.0%時の全光線透過率は95%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたニオブ酸アンモニウムゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 5)
Dissolve 50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) in 480 mL of 10% aqueous hydrofluoric acid solution, and add 8.8 L of ion-exchanged water to obtain an aqueous niobic fluoride solution of Nb 2 O 5 = 0.54%. Obtained. Slowly constant the pH of the reaction solution so that the pH of the reaction solution does not fall below 8.0 against 6.1 L of aqueous ammonia (NH 3 = 1%) adjusted to 30 ° C. The mixture was added at a rate of about 60 minutes to obtain a dispersion containing fine particles of ammonium niobate having a pH of 9.5 containing a by-product salt and an Nb 2 O 5 content of 0.32%. This dispersion showed sol properties, and the fine particles were uniformly dispersed. Next, this dispersion is filtered and washed with ion-exchanged water using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Corporation) until the electrical conductivity of the filtrate is 0.2 mS / cm or less. Then, 450 g of ammonium niobate sol having a pH of 9.0 was obtained by removing ammonium fluoride and the like. Composition analysis of the obtained ammonium niobate sol showed Nb 2 O 5 content of 8.0% and F = 8 ppm, and the amount of ammonia after drying this sol at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (molar ratio) = 1.3. The average particle diameter determined by the dynamic scattering method was 10 nm, and the total light transmittance was 95% when Nb 2 O 5 = 5.0%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained ammonium niobate sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to form a thin film-supporting substrate Got.

(実施例6)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液300mLと10%硫酸水溶液550mLの混合溶液に溶解させ、イオン交換水を8.4L添加することによってNb2O5=0.54%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=1%)5.4Lに対し、反応液のpHが8.0を下回らないようにゆっくりと一定速度で約60分間かけて添加し、副生成塩を含有するpH8.2、Nb2O5含有量が0.34%のニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液はゾルの性状を示し、微粒子は均一に分散していた。次に、この分散液を限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.4mS/cm以下になるまでイオン交換水でろ過洗浄し、フッ化アンモニウム等を除去することによって、pH7.5のニオブ酸アンモニウムゾル700gを得た。得られたゾルの組成分析を行ったところ、Nb2O5含有量は7.0%、F=26ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=1.0であった。動的散乱法による平均粒子径は20nmであり、Nb2O5=5.0%での全光線透過率は75%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたニオブ酸アンモニウムゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 6)
By dissolving 50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) in a mixed solution of 300 mL of 10% hydrofluoric acid aqueous solution and 550 mL of 10% sulfuric acid aqueous solution and adding 8.4 L of ion-exchanged water, Nb 2 O 5 = A 0.54% aqueous solution of niobic fluoride was obtained. Compared to 5.4 L of aqueous niobic acid solution adjusted to 30 ° C and ammonia water adjusted to 30 ° C (NH 3 = 1%), slowly and at a constant rate so that the pH of the reaction solution does not fall below 8.0. The mixture was added over about 60 minutes to obtain a dispersion containing fine particles of ammonium niobate having a pH of 8.2 containing a by-product salt and an Nb 2 O 5 content of 0.34%. This dispersion showed sol properties, and the fine particles were uniformly dispersed. Next, this dispersion is filtered and washed with ion-exchanged water using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Corporation) until the electrical conductivity of the filtrate is 0.4 mS / cm or less. Then, 700 g of ammonium niobate sol having a pH of 7.5 was obtained by removing ammonium fluoride and the like. The composition analysis of the obtained sol revealed that the Nb 2 O 5 content was 7.0% and F = 26 ppm, and the ammonia amount after the sol was dried at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 1.0. The average particle diameter determined by the dynamic scattering method was 20 nm, and the total light transmittance at Nb 2 O 5 = 5.0% was 75%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained ammonium niobate sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to form a thin film-supporting substrate Got.

(実施例7)
実施例1で得られたNb2O5含有量が8.0%のニオブ酸アンモニウムゾル500gに、ポリビニルアルコール(PVA)(日本合成化学(株)製ゴーセノールGH-17)2gを溶解し塗布液を得た。このときのPVAの添加量は、ニオブ酸アンモニウムゾル中のNb2O5に対して5%であり、塗布液中のPVA含有量は0.4%である。
得られた塗布液をイオン交換水でNb2O5=5.0%に希釈した後、市販のPETフィルム上にバーコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 7)
In 500 g of ammonium niobate sol having a Nb 2 O 5 content of 8.0% obtained in Example 1, 2 g of polyvinyl alcohol (PVA) (GOHSENOL GH-17 manufactured by Nippon Synthetic Chemical Co., Ltd.) was dissolved to obtain a coating solution. It was. The amount of PVA added at this time is 5% with respect to Nb 2 O 5 in the ammonium niobate sol, and the PVA content in the coating solution is 0.4%.
The obtained coating solution was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, bar-coated on a commercially available PET film, and dried at 100 ° C. for 10 minutes to obtain a thin film supporting substrate.

(実施例8)
実施例1で得られたNb2O5含有量が8.0%のニオブ酸アンモニウムゾル500gに、ポリエチレングリコール(PEG)(日本油脂(株)製PEG#4000)2gおよびシリカゾル(旭電化工業(株)製アデライトAT-20Q)20gを混合し塗布液を得た。このときのPEGおよびシリカゾルの全固形分はニオブ酸アンモニウムゾル中のNb2O5に対して15%であり、塗布液中のPEG含有量は0.4%、SiO2含有量は0.8%である。
得られた塗布液をイオン交換水でNb2O5=5.0%に希釈した後、市販のPETフィルム上にバーコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Example 8)
To 500 g of ammonium niobate sol having an Nb 2 O 5 content of 8.0% obtained in Example 1, 2 g of polyethylene glycol (PEG) (PEG # 4000 manufactured by Nippon Oil & Fats Co., Ltd.) and silica sol (Asahi Denka Kogyo Co., Ltd.) Adelite AT-20Q (20 g) was mixed to obtain a coating solution. The total solid content of PEG and silica sol at this time is 15% with respect to Nb 2 O 5 in the ammonium niobate sol, the PEG content in the coating solution is 0.4%, and the SiO 2 content is 0.8%.
The obtained coating solution was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, bar-coated on a commercially available PET film, and dried at 100 ° C. for 10 minutes to obtain a thin film supporting substrate.

(比較例1)
実施例1で得られたNb2O5含有量が8.0%のニオブ酸アンモニウムゾル100gに1%フッ化水素酸水溶液を36mL添加し、限外ろ過装置を用いてろ液の電気伝導度が0.2mS/cm以下になるまでイオン交換水で洗浄することによってゾル中のアンモニア成分を除去したところ、濁度が高く粘性の高いゾルが得られた。得られたゾルの組成分析を行ったところ、Nb2O5含有量は5.0%、F=40ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=0.4であった。動的散乱法による平均粒子径は200nmであり、Nb2O5=5.0%時の全光線透過率は20%であった。また、室温保存1ヶ月後には沈殿の発生が見られた。
得られたニオブ酸アンモニウムゾル(Nb2O5=5.0%)をそのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Comparative Example 1)
36 mL of 1% hydrofluoric acid aqueous solution was added to 100 g of ammonium niobate sol having an Nb 2 O 5 content of 8.0% obtained in Example 1, and the electrical conductivity of the filtrate was 0.2 mS using an ultrafiltration device. When the ammonia component in the sol was removed by washing with ion-exchanged water until it became less than / cm, a sol with high turbidity and high viscosity was obtained. When the composition analysis of the obtained sol was performed, the Nb 2 O 5 content was 5.0% and F = 40 ppm. The amount of ammonia after the sol was dried at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 0.4. The average particle diameter determined by the dynamic scattering method was 200 nm, and the total light transmittance when Nb 2 O 5 = 5.0% was 20%. In addition, precipitation was observed after 1 month of storage at room temperature.
The obtained ammonium niobate sol (Nb 2 O 5 = 5.0%) was directly used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to obtain a thin film-supporting substrate.

(比較例2)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液480mLに溶解させ、イオン交換水を9.9L添加することによってNb2O5=0.48%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったフッ化ニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=1%)3.8Lにゆっくりと一定速度で約60分間かけて添加し、pH6.5、Nb2O5含有量が0.35%であるニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液は白濁しており、また、この微粒子は凝集しやすく沈降性を示した。次に、この分散液を限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.4mS/cm以下になるまでイオン交換水でろ過洗浄し、フッ化アンモニウム等を除去したが、均一に分散したゾル状態になることはなく、pH7.0のニオブ酸アンモニウムの沈降性スラリー500gが得られた。得られたスラリーの組成分析を行ったところ、Nb2O5含有量は8.0%、F=900ppmであり、このスラリーを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=0.9であった。ろ液の電気伝導度から判断したろ過洗浄の強さが実施例1と同様にもかかわらず、多くのフッ素がゾル中に残留した。動的散乱法による平均粒子径は120nmであり、Nb2O5=5.0%時の全光線透過率が40%だったことより、フッ素を粒子内に取り込んだニオブ酸アンモニウムの凝集体が生成していると考えられた。ゾルが得られなかった原因は、pHを8以上に保持しつつ混合、反応させなかったことによるものである。
得られたスラリー(Nb2O5=5.0%)をそのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Comparative Example 2)
Dissolve 50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) in 480 mL of 10% aqueous hydrofluoric acid solution, and add 9.9 L of ion-exchanged water to obtain an aqueous solution of niobic fluoride of Nb 2 O 5 = 0.48%. Obtained. Add the niobic fluoride aqueous solution adjusted to 30 ° C to ammonia water (NH 3 = 1%) adjusted to 30 ° C slowly at a constant rate over about 60 minutes, pH 6.5 A dispersion containing ammonium niobate fine particles having an Nb 2 O 5 content of 0.35% was obtained. The dispersion was cloudy, and the fine particles easily aggregated and exhibited sedimentation properties. Next, this dispersion is filtered and washed with ion-exchanged water using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Corporation) until the electrical conductivity of the filtrate is 0.4 mS / cm or less. Then, ammonium fluoride and the like were removed, but a uniformly dispersed sol state was not obtained, and 500 g of ammonium niobate sedimentary slurry having a pH of 7.0 was obtained. When the composition analysis of the obtained slurry was performed, the Nb 2 O 5 content was 8.0% and F = 900 ppm, and the ammonia amount after drying this slurry at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5. (Molar ratio) = 0.9. Although the strength of the filtration washing judged from the electrical conductivity of the filtrate was the same as in Example 1, much fluorine remained in the sol. The average particle diameter measured by a dynamic scattering method is 120nm, Nb 2 O 5 = 5.0 % total light transmittance when it than it was 40%, fluorine aggregates of ammonium niobate produces captured within the particles It was thought that The reason why the sol was not obtained is that the mixture was not mixed and reacted while maintaining the pH at 8 or more.
The obtained slurry (Nb 2 O 5 = 5.0%) was directly used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to obtain a thin film supporting substrate.

(比較例3)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液480mLに溶解させ、イオン交換水を2.5L添加することによってNb2O5=1.6%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったフッ化ニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=3%)1.6Lに対し、反応液のpHが8.0を下回らないようにゆっくりと一定速度で約60分間かけて添加し、副生成塩を含有するpH8.3、Nb2O5含有量が1.1%のニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液は白濁しており、また、この微粒子は凝集しやすく沈降性を示した。次に、限外ろ過装(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が0.4mS/cm以下になるまでイオン交換水でろ過洗浄し、フッ化アンモニウム等を除去したが、均一に分散したゾル状態になることはなく、pH8.5のニオブ酸アンモニウムの沈降性スラリー400gが得られた。得られたスラリーの組成分析を行ったところNb2O5含有量は12.0%、F=30ppmであり、このスラリーを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=1.0であった。動的散乱法による平均粒子径は280nmであり、Nb2O5=5.0%時の全光線透過率は5%であった。ゾルが得られなかった原因は、反応後のNb2O5含有量が1.0%を超え、平均粒子径が100nm以上となったことによるものである。従って、反応後のNb2O5含有量は重要な管理ファクターである。
得られたスラリーをイオン交換水でNb2O5=5.0%に希釈し十分に分散させた後そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。
(Comparative Example 3)
Dissolve 50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) in 480 mL of 10% aqueous hydrofluoric acid solution, and add 2.5 L of ion-exchanged water to obtain an aqueous solution of niobic fluoride of Nb 2 O 5 = 1.6%. Obtained. Slowly constant the pH of the reaction solution so that the pH of the reaction solution does not fall below 8.0 against 1.6 L of aqueous ammonia (NH 3 = 3%) adjusted to 30 ° C. The mixture was added at a rate of about 60 minutes to obtain a dispersion containing fine particles of ammonium niobate having a pH of 8.3 containing a by-product salt and a Nb 2 O 5 content of 1.1%. The dispersion was cloudy, and the fine particles easily aggregated and exhibited sedimentation properties. Next, using an ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Co., Ltd.), the filtrate is filtered and washed with ion-exchanged water until the electric conductivity of the filtrate is 0.4 mS / cm or less. Although ammonium and the like were removed, a uniformly dispersed sol state was not obtained, and 400 g of ammonium niobate sedimentary slurry having a pH of 8.5 was obtained. The composition analysis of the resulting slurry revealed that the Nb 2 O 5 content was 12.0% and F = 30 ppm. The ammonia amount after drying this slurry at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 ( Molar ratio) = 1.0. The average particle diameter determined by the dynamic scattering method was 280 nm, and the total light transmittance was 5% when Nb 2 O 5 = 5.0%. The reason why the sol was not obtained is that the Nb 2 O 5 content after the reaction exceeded 1.0% and the average particle size became 100 nm or more. Therefore, the Nb 2 O 5 content after the reaction is an important management factor.
The obtained slurry was diluted with ion-exchanged water to Nb 2 O 5 = 5.0% and sufficiently dispersed, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to form a thin film supporting substrate. The material was obtained.

(比較例4)
五酸化ニオブ(多木化学(株)製)50gを10%フッ化水素酸水溶液480mLに溶解させ、イオン交換水を8.8L添加することによってNb2O5=0.54%のフッ化ニオブ酸水溶液を得た。30℃に温度調整を行ったフッ化ニオブ酸水溶液を30℃に温度調整を行ったアンモニア水(NH3=1%)6.8Lに対し、反応液のpHが8.0を下回らないようにゆっくりと一定速度で約60分間かけて添加し、副生成塩を含有するpH9.5、Nb2O5含有量が0.31%のニオブ酸アンモニウムの微粒子を含有する分散液を得た。この分散液をエバポレーターを用いてNb2O5=5.0%まで濃縮しようとしたところ、白濁、増粘しゾルを得ることができなかった。得られた増粘液の組成分析を行ったところNb2O5含有量は1.5%、F=12000ppmであり、この増粘液を100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=4.2であった。動的散乱法による平均粒子径は300nmであり、Nb2O5=1.5%時の全光線透過率は5%であった。
得られた増粘液をイオン交換水でNb2O5=1.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥したところ均一な薄膜を形成することができなかった。
(Comparative Example 4)
Dissolve 50 g of niobium pentoxide (manufactured by Taki Chemical Co., Ltd.) in 480 mL of 10% aqueous hydrofluoric acid solution, and add 8.8 L of ion-exchanged water to obtain an aqueous niobic fluoride solution of Nb 2 O 5 = 0.54%. Obtained. Slowly constant the pH of the reaction solution so that the pH of the reaction solution does not fall below 8.0 against 6.8 L of aqueous ammonia (NH 3 = 1%) adjusted to 30 ° C. The mixture was added at a rate of about 60 minutes to obtain a dispersion containing fine particles of ammonium niobate having a pH of 9.5 containing a by-product salt and an Nb 2 O 5 content of 0.31%. When this dispersion was concentrated to Nb 2 O 5 = 5.0% using an evaporator, it became cloudy and thickened and a sol could not be obtained. Composition analysis of the resulting thickened liquid revealed that the Nb 2 O 5 content was 1.5% and F = 12000 ppm, and the ammonia amount after drying this thickened liquid at 100 ° C. for 10 hours was NH 3 / Nb 2 O. 5 (molar ratio) = 4.2. The average particle diameter by dynamic scattering was 300 nm, and the total light transmittance was 5% when Nb 2 O 5 = 1.5%.
The resulting thickening solution is diluted with ion-exchanged water to Nb 2 O 5 = 1.0%, then used directly as a coating solution, spin-coated on a slide glass, and dried at 100 ° C for 10 minutes to form a uniform thin film I could not.

(比較例5)
本願出願人が先に出願した特許文献4(特開2005-200235号公報)の実施例2に基づき、シュウ酸/Nb2O5(モル比)=0.15、クエン酸/Nb2O5(モル比)=0.35を含有するpH4.5の酸性型の酸化ニオブゾルを得た。得られた酸化ニオブゾルにアンモニア水をpH8.5になるまで添加し、アルカリ型の酸化ニオブゾルを得た。得られたゾルの組成分析を行ったところ、Nb2O5含有量は10.0%、F=30ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=0.6であった。動的散乱法による平均粒子径は15nmであり、Nb2O5=5.0%時の全光線透過率は90%であった。
得られた酸化ニオブゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。しかし、表1に示したように、この有機酸を含有したゾルは自己結着性を示さなかった。
(Comparative Example 5)
Based on Example 2 of Patent Document 4 (Japanese Patent Laid-Open No. 2005-200235) previously filed by the present applicant, oxalic acid / Nb 2 O 5 (molar ratio) = 0.15, citric acid / Nb 2 O 5 (molar) An acidic niobium oxide sol with a pH of 4.5 containing a ratio) = 0.35 was obtained. Ammonia water was added to the obtained niobium oxide sol until the pH reached 8.5 to obtain an alkaline niobium oxide sol. When the composition analysis of the obtained sol was performed, the Nb 2 O 5 content was 10.0% and F = 30 ppm. The amount of ammonia after the sol was dried at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 0.6. The average particle diameter determined by the dynamic scattering method was 15 nm, and the total light transmittance was 90% when Nb 2 O 5 = 5.0%.
The obtained niobium oxide sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, then used as a coating solution, spin-coated on a slide glass, and dried at 100 ° C. for 10 minutes to obtain a thin film supporting substrate. It was. However, as shown in Table 1, this organic acid-containing sol did not exhibit self-binding properties.

(比較例6)
実施例1で得られたNb2O5含有量が8.0%のニオブ酸アンモニウムゾル500gに、25%水酸化テトラメチルアンモニウムを22g、イオン交換水を500g添加し、減圧下における加熱処理によってアンモニアを除去すると共に500gまで濃縮を行うことによって、水酸化テトラメチルアンモニウムで安定化したニオブゾルを得た。得られたゾルの組成分析を行ったところ、Nb2O5含有量は8.0%、F=32ppmであり、このゾルを100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=0.3であった。動的散乱法による平均粒子径は15nmであり、Nb2O5=5.0%での全光線透過率は85%であった。このゾルは長期にわたり安定であり、室温保存1ヶ月後においても、平均粒子径、透過率、pH及び粘度の変化は確認されなかった。
得られたゾルをイオン交換水でNb2O5=5.0%に希釈した後、そのままスライドガラスにスピンコートし、100℃で10分間乾燥することによって薄膜担持基材を得た。しかし、表1に示したように、アンモニアに代えて水酸化テトラメチルアンモニウムで安定化したこのゾルは自己結着性をほとんど示さなかった。
(Comparative Example 6)
To 500 g of ammonium niobate sol having an Nb 2 O 5 content of 8.0% obtained in Example 1, 22 g of 25% tetramethylammonium hydroxide and 500 g of ion-exchanged water were added, and ammonia was added by heat treatment under reduced pressure. The niobium sol stabilized with tetramethylammonium hydroxide was obtained by removing and concentrating to 500 g. When the composition analysis of the obtained sol was performed, the Nb 2 O 5 content was 8.0% and F = 32 ppm, and the ammonia amount after drying this sol at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5 (Molar ratio) = 0.3. The average particle size determined by the dynamic scattering method was 15 nm, and the total light transmittance was 85% when Nb 2 O 5 = 5.0%. This sol was stable over a long period of time, and no change in average particle size, transmittance, pH and viscosity was confirmed even after 1 month storage at room temperature.
The obtained sol was diluted with ion-exchanged water to Nb 2 O 5 = 5.0%, spin-coated on a slide glass as it was, and dried at 100 ° C. for 10 minutes to obtain a thin film supporting substrate. However, as shown in Table 1, this sol stabilized with tetramethylammonium hydroxide instead of ammonia showed almost no self-binding property.

(比較例7)
実施例1で得られたニオブ酸アンモニウムの微粒子の分散液を限外ろ過装置(マイクローザUF:型式SLP-1053;旭化成(株)製)を用いてろ液の電気伝導度が1.0mS/cm以下になるまでイオン交換水でろ過洗浄した後、分散液にアンモニアをNH3/Nb2O5(モル比)=2.0添加することによって一部のニオブ酸アンモニウム微粒子を溶解させた。さらに同様の限外ろ過装置を用いてろ液の電気伝導度が0.2mS/cm以下になるまでイオン交換水でろ過洗浄することによって、溶解したニオブ酸アンモニウム塩をろ液として得た。得られたニオブ酸アンモニウム水溶液をエバポレーターを用いて濃縮した。得られた水溶液の組成分析を行ったところ、Nb2O5含有量は5.0%、F=150ppmであり、この水溶液を100℃10時間乾燥させた後のアンモニア量はNH3/Nb2O5(モル比)=1.8であった。動的散乱法による平均粒子径は測定することができず、Nb2O5=5.0%での全光線透過率は95%であった。
得られたニオブ酸アンモニウム水溶液をそのまま塗布液として用い、スライドガラスにスピンコートし、100℃で10分間乾燥したところ均一な薄膜を形成することができなかった。
(Comparative Example 7)
Using the ultrafiltration device (Microza UF: Model SLP-1053; manufactured by Asahi Kasei Co., Ltd.) for the dispersion of ammonium niobate fine particles obtained in Example 1, the electrical conductivity of the filtrate is 1.0 mS / cm or less. After filtering and washing with ion-exchanged water until it became, a part of ammonium niobate fine particles were dissolved by adding ammonia to the dispersion with NH 3 / Nb 2 O 5 (molar ratio) = 2.0. Further, by using a similar ultrafiltration device to filter and wash with ion exchange water until the electrical conductivity of the filtrate was 0.2 mS / cm or less, a dissolved ammonium niobate salt was obtained as a filtrate. The obtained aqueous ammonium niobate solution was concentrated using an evaporator. When the composition analysis of the obtained aqueous solution was performed, the Nb 2 O 5 content was 5.0% and F = 150 ppm, and the ammonia amount after drying this aqueous solution at 100 ° C. for 10 hours was NH 3 / Nb 2 O 5. (Molar ratio) = 1.8. The average particle diameter by the dynamic scattering method could not be measured, and the total light transmittance at Nb 2 O 5 = 5.0% was 95%.
The obtained ammonium niobate aqueous solution was directly used as a coating solution, spin-coated on a slide glass and dried at 100 ° C. for 10 minutes, and a uniform thin film could not be formed.

(薄膜担持基材の評価)
上記実施例、比較例で作成した薄膜担持基材は以下の方法によって評価を行った。
[屈折率の測定]
薄膜担持基材の屈折率は薄膜測定装置F-20(FILMETRICS社製)を用いて測定した。
(Evaluation of thin film substrate)
The thin film-supporting substrates prepared in the above examples and comparative examples were evaluated by the following methods.
[Measurement of refractive index]
The refractive index of the thin film supporting substrate was measured using a thin film measuring apparatus F-20 (manufactured by FILMETRICS).

[自己結着性(膜強度)の評価]
薄膜担持基材に400g/cm2の荷重をかけた#0000スチールウールの50回反復スクラッチにより評価し、傷がまったく発生しないものを◎、僅かに傷が発生する場合を○、ひどく傷が発生する場合を△、膜が消失したものを×とした。
[Evaluation of self-binding properties (film strength)]
Evaluated by repeated scratching of # 0000 steel wool with a load of 400 g / cm 2 applied to the thin film substrate, ◎ for scratches that do not occur at all, ◎ for slight scratches, severely scratches The case where the film was removed was indicated by Δ, and the case where the film disappeared was indicated by x.

[透明性の評価]
薄膜担持基材を色度・濁度測定器COH-300A(日本電色工業株式会社製)を用いて測定し、全光線透過率が90%以上を○、90%未満を×とした。
その結果を表1に示した。
[Evaluation of transparency]
The thin film-supported substrate was measured using a chromaticity / turbidity measuring device COH-300A (manufactured by Nippon Denshoku Industries Co., Ltd.).
The results are shown in Table 1.

Figure 0005441264
*;Nb2O5=1.5%時の全光線透過率
Figure 0005441264
*: Total light transmittance when Nb 2 O 5 = 1.5%

Claims (9)

100℃で10時間乾燥させたときのアンモニアとニオブ酸が、NH3/Nb2O5(モル比)=0.5〜1.5の範囲で、実質的に有機酸を含まないニオブ酸アンモニウムゾル。 Ammonium niobate sol containing ammonia and niobic acid when dried at 100 ° C. for 10 hours in a range of NH 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5 and substantially free of organic acid. ニオブ酸アンモニウムコロイドの平均粒子径が100nm以下であり、且つニオブ酸アンモニウムゾル中のNb2O5が5質量%時の光路長10mmにおける全光線透過率が50%以上である請求項1記載のニオブ酸アンモニウムゾル。 2. The total light transmittance at an optical path length of 10 mm when the average particle diameter of the ammonium niobate colloid is 100 nm or less and Nb 2 O 5 in the ammonium niobate sol is 5 mass% is 50% or more. Ammonium niobate sol. 下記の工程によって製造される請求項1または2記載のニオブ酸アンモニウムゾルの製造方法。
(1)フッ酸、またはフッ酸と硫酸の混酸にニオブ化合物を溶解させた水溶液と、アンモニア水溶液とを、pHを8以上に維持しつつ混合、反応させてニオブ酸アンモニウムの微粒子を含有する分散液を得る工程。
(2)(1)の分散液をろ過洗浄する工程。
The manufacturing method of the ammonium niobate sol of Claim 1 or 2 manufactured by the following process.
(1) Dispersion containing ammonium niobate fine particles by mixing and reacting an aqueous solution in which a niobium compound is dissolved in hydrofluoric acid or a mixed acid of hydrofluoric acid and sulfuric acid and an aqueous ammonia solution while maintaining the pH at 8 or more. A step of obtaining a liquid.
(2) A step of filtering and washing the dispersion liquid of (1).
分散液のNb2O5濃度が0.1〜1.0質量%である請求項3記載のニオブ酸アンモニウムゾルの製造方法。 The method for producing an ammonium niobate sol according to claim 3, wherein the Nb 2 O 5 concentration of the dispersion is 0.1 to 1.0 mass%. 請求項3または4に記載の製造方法により得られたニオブ酸アンモニウムゾルを100〜150℃で3〜10時間水熱処理することを特徴とするニオブ酸アンモニウムゾルの製造方法。 A method for producing an ammonium niobate sol, wherein the ammonium niobate sol obtained by the production method according to claim 3 or 4 is hydrothermally treated at 100 to 150 ° C for 3 to 10 hours. 請求項1または2記載のニオブ酸アンモニウムゾルを含有してなる薄膜形成用塗布液。 A coating solution for forming a thin film comprising the ammonium niobate sol according to claim 1 or 2. ニオブ酸アンモニウムゾル中のNb2O5量に対して、有機高分子化合物またはシリカ化合物のうち1種以上を固形分として1〜30質量%の範囲で含有する請求項6記載の薄膜形成用塗布液。 The coating for forming a thin film according to claim 6, wherein the amount of Nb 2 O 5 in the ammonium niobate sol contains at least one of an organic polymer compound and a silica compound in a range of 1 to 30% by mass as a solid content. liquid. 基材表面に請求項6または7記載の薄膜形成用塗布液を用いて形成された被膜を有する薄膜担持基材。 A thin film-supporting substrate having a film formed on the surface of the substrate using the coating liquid for forming a thin film according to claim 6 or 7. 基材又は基材の表面がセラミクスである請求項8記載の薄膜担持基材。 The thin film-supporting substrate according to claim 8, wherein the substrate or the surface of the substrate is ceramics.
JP2010049247A 2009-03-12 2010-03-05 Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate Active JP5441264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049247A JP5441264B2 (en) 2009-03-12 2010-03-05 Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009060135 2009-03-12
JP2009060135 2009-03-12
JP2010032329 2010-02-17
JP2010032329 2010-02-17
JP2010049247A JP5441264B2 (en) 2009-03-12 2010-03-05 Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate

Publications (2)

Publication Number Publication Date
JP2011190115A JP2011190115A (en) 2011-09-29
JP5441264B2 true JP5441264B2 (en) 2014-03-12

Family

ID=44795431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049247A Active JP5441264B2 (en) 2009-03-12 2010-03-05 Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate

Country Status (1)

Country Link
JP (1) JP5441264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161550A1 (en) 2020-02-14 2021-08-19 三井金属鉱業株式会社 Niobic acid aqueous solution
JP2022145520A (en) * 2021-03-18 2022-10-04 多木化学株式会社 Lithium-phosphate stabilized niobate sol

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156876B2 (en) * 2013-10-24 2017-07-05 多木化学株式会社 Method for producing niobate sol
JP6920045B2 (en) * 2016-10-20 2021-08-18 Dowaエレクトロニクス株式会社 Lithium secondary battery electrode material manufacturing method, lithium secondary battery manufacturing method
JP6774158B2 (en) * 2016-12-27 2020-10-21 多木化学株式会社 Alkali metal stable niobate sol
JP6864422B2 (en) * 2017-02-13 2021-04-28 多木化学株式会社 Niobium acid powder
JPWO2021025144A1 (en) * 2019-08-08 2021-02-11
WO2021246111A1 (en) * 2020-06-04 2021-12-09 三井金属鉱業株式会社 Niobate compound and niobium-containing slurry
CN111943523B (en) * 2020-08-24 2022-08-09 上海第二工业大学 Niobium pentoxide electrochromic film, hydrothermal synthesis method and application thereof
CN117480122A (en) * 2021-04-28 2024-01-30 三井金属矿业株式会社 Lithium niobate solution and method for producing same
WO2023013288A1 (en) * 2021-08-04 2023-02-09 三井金属鉱業株式会社 Niobate-dispersed aqueous solution, and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207717A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline tin oxide and its preparation
JPH01257129A (en) * 1988-04-04 1989-10-13 Taki Chem Co Ltd Electrically conductive material
JPH11322307A (en) * 1998-05-15 1999-11-24 Konica Chemical Corp Modified inorganic oxide sol and its production
JP3980523B2 (en) * 2003-06-02 2007-09-26 多木化学株式会社 Alkali-stable tin oxide sol and method for producing the same
JP5432430B2 (en) * 2006-11-07 2014-03-05 日揮触媒化成株式会社 Coating liquid for forming transparent film and substrate with transparent film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161550A1 (en) 2020-02-14 2021-08-19 三井金属鉱業株式会社 Niobic acid aqueous solution
JP2022145520A (en) * 2021-03-18 2022-10-04 多木化学株式会社 Lithium-phosphate stabilized niobate sol
JP7161276B2 (en) 2021-03-18 2022-10-26 多木化学株式会社 Lithium-phosphate stable niobate sol

Also Published As

Publication number Publication date
JP2011190115A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5441264B2 (en) Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate
CN101815675B (en) Metal oxide composite sol, coating composition, and optical member
EP2188226B1 (en) Method and fluid compositions for producing optically clear photocatalytic coatings
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
KR102466600B1 (en) Dispersion of titanium oxide particles in organic solvent and method for producing the same
JP5126783B2 (en) Method for producing rutile type titanium oxide fine particles
EP1760120B1 (en) Inorganic coating composition, hydrophilic coating and agricultural film
KR102537747B1 (en) Method for producing an organic solvent dispersion of titanium oxide particles
US7090823B1 (en) Method for preparing a gel containing nanometer titanium dioxide powders for visible light photocatalysis
KR20100014685A (en) Agent for the production of anti-corrosion layers on metal surfaces
TW201034958A (en) Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP2018104242A (en) Stable type niobate sol with alkali metal
JP2000281344A (en) Modified stannic oxide-zirconium oxide combined sol and its production
Ohya et al. Preparation and characterization of titania thin films from aqueous solutions
JP2541269B2 (en) Method of manufacturing oxide thin film
JP2008284242A (en) Deodorizing and antibacterial composition and its manufacturing method
JP5051978B2 (en) Method for manufacturing titanic acid film coated resin substrate
JP5622386B2 (en) Sol comprising dispersoids of Zr-O-based particles and method for producing the same
JP2009227500A (en) Transparent titanium oxide organosol, coating composition with the same blended, optical base material
JP3573574B2 (en) Method for producing metal material coated with titanium oxide
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
JP2003112923A (en) Reformed titanium oxide particle
JP3694900B2 (en) Method for producing silica-based coating
KR20090003140A (en) Process for preparing zirconia sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5441264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250