JP3573574B2 - Method for producing metal material coated with titanium oxide - Google Patents

Method for producing metal material coated with titanium oxide Download PDF

Info

Publication number
JP3573574B2
JP3573574B2 JP17124596A JP17124596A JP3573574B2 JP 3573574 B2 JP3573574 B2 JP 3573574B2 JP 17124596 A JP17124596 A JP 17124596A JP 17124596 A JP17124596 A JP 17124596A JP 3573574 B2 JP3573574 B2 JP 3573574B2
Authority
JP
Japan
Prior art keywords
titanium oxide
film
metal material
titanium
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17124596A
Other languages
Japanese (ja)
Other versions
JPH1018083A (en
Inventor
和彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP17124596A priority Critical patent/JP3573574B2/en
Publication of JPH1018083A publication Critical patent/JPH1018083A/en
Application granted granted Critical
Publication of JP3573574B2 publication Critical patent/JP3573574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化チタン被覆金属材料の製造方法に関するものである。更に詳しく述べるならば、本発明は、ステンレス、アルミニウム、鉄、亜鉛めっき鋼、および銅、などの金属材料の表面に、陰極電解により光触媒機能を有する酸化チタン皮膜を形成する方法に関するものである。
【0002】
【従来の技術】
酸化チタンは、固体材料の表面に高い光触媒効果を付与させることが可能であり、例えば金属、ガラス、セラミックなどの素材表面に、光触媒効果を有する酸化チタン皮膜を形成させることにより、当該材料表面に付着汚れの分解、大気および水質の浄化、防錆、並びに細菌および藻類の繁殖防止、などの機能を付与し、これを各種用途に利用できることが知られている。
【0003】
このため、より良好な酸化チタン皮膜を素材表面に形成することを目的として、これまでに種々の酸化チタン被覆方法が提案されてきた。
【0004】
各種材料表面を酸化チタンにより被覆する方法としては、チタンのアルコキシドの加水分解生成物を塗布する方法、すなわちゾル−ゲル法が最も一般的であり、これに類する他の技術としては、例えば特開平4−83537号公報に示されるチタンアルコキシドにアミド、および/又はグリコールを添加し、その反応生成物を利用する方法、および特開平7−100378号公報に示されているように、チタンアルコキシドにアルコールアミン類を添加し、その反応生成物を塗料成分として用いる方法が開示されている。
【0005】
また、この他には、特開平6−293519号公報に記載されているように水熱処理により結晶化させた酸化チタン微粒子を分散剤を使用して水中に分散させ、これを塗布する方法、および結晶性酸化チタン粒子に、水ガラス、コロイダルシリカ、弗素系樹脂などのバインダーを混和し、これを固体材料表面に塗布する方法などが知られている。
【0006】
しかし、上記のゾル−ゲル法では、塗料の粘度や塗布条件によって形成される皮膜の厚さが変化し易く、皮膜の性能を高めるために厚膜化すると、乾燥の際の皮膜の収縮が大きいため皮膜と基体表面との間の密着性が低くなり、剥離し易くなるなどの問題点がある。また、ゾル−ゲル法では、原料に有機チタン化合物を使用するため原料が高価な点も問題であった。
【0007】
また、結晶成長させた酸化チタンをバインダーと混合して塗料を調製し、この塗料を基体表面上に塗布する方法では、得られる皮膜中の酸化チタン含有率が低いため、光触媒能が充分に発揮されないという問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、金属材料の表面に光触媒性を有する酸化チタン皮膜を形成する場合に、従来のゾル−ゲル法などが有する問題点を解決し、安価な無機チタン化合物を原料として使用し、形成される皮膜の厚さを1μm以上にしても、基体と皮膜との密着性が損なわれない光触媒性に優れた酸化チタン皮膜被覆金属材料の製造方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明者は、上記の技術的課題を解決する手段について鋭意検討した結果、皮膜成分である酸化チタンを構成するためのチタンを酸性の電解浴中に、コロイド状酸化チタン及び、必要によりさらに四価のチタンイオンを存在せしめ、あわせてこの浴に硝酸イオン、亜硝酸イオン等のような酸化窒素イオンおよびハロゲンを含む酸素酸イオンの少なくとも1種を酸化剤として共存させ、この電解浴中で導電性金属材料を陰極体とし、不溶性電極を陽極体として電解処理することにより浴中のチタンを酸化チタン及び必要によりさらに水酸化チタンとして陰極金属材料表面に電解析出させうることを見出した。
【0010】
また、本発明者は、前記電解析出により形成された酸化チタン皮膜は、80〜200℃程度の乾燥のみにより、良好な光触媒活性を有し、密着性に優れた二酸化チタン皮膜を形成し得ることを見出した。
【0012】
また同時に、本発明者は、前記と同様な酸化剤イオンを含む電解浴中に、4価のチタンイオンとコロイド状酸化チタンとの両者を含有させることにより、形成される酸化チタン皮膜の密着性がさらに向上することを見出した。
【0014】
また、本発明の酸化チタン被覆金属材料の製造方法(1)は、NOn - ,ClOn - ,BrOn - およびIOn - (nは1,2、または3を表す)からなる群より選択された少なくとも1種を含む酸化剤と、コロイド状酸化チタンとを含み、0.1〜5の範囲内にあるpH値を有する電解液中に、被処理金属材料からなる陰極体と、不溶性電極からなる陽極体とを配置し、これに電解処理を施して、前記金属材料表面上に、酸化チタンを含有する皮膜を形成し、この皮膜を乾燥または焼成することを特徴とするものである。
【0015】
さらに、本発明の酸化チタン被覆金属材料の製造方法(2)は、NOn - ,ClOn - ,BrOn - およびIOn - (nは1,2、または3を表す)からなる群より選択された少なくとも1種を含む酸化剤と、Ti4+イオンと、コロイド状酸化チタンとを含み、0.1〜5の範囲内にあるpH値を有する電解液中に、被処理金属材料からなる陰極体と、不溶性電極からなる陽極体とを配置し、これに電解処理を施して、前記金属材料表面上に、水和酸化チタンおよび酸化チタンを含有する皮膜を形成し、この皮膜を乾燥または焼成することを特徴とするものである。
【0016】
前記本発明方法(2)において、電解浴中に含まれるTi4+イオン濃度の範囲は、好ましくは0.1〜50g/リットル、より好ましくは0.5〜20g/リットルである。
【0017】
前記4価チタンイオン濃度が0.1g/リットル未満では、十分な皮膜の厚さが得られないことがあり、またそれが50g/リットルを超えると電解液の持ち出し損失が多くなり不経済になることがある。
【0018】
【発明の実施の形態】
本発明方法(2)において、電解液に含まれるTi4+イオンは、硫酸チタン、オキシ硫酸チタン、四塩化チタン、オキシ塩化チタンなどの水溶性チタン塩を水中に溶解することにより形成されることが好ましい。
【0019】
また、水和酸化チタンを陰極電解により金属材料表面上に析出させるためには、電解液中にNO ,ClO ,BrO ,IO (nは1,2、または3を表す)例えばNO ,NO ,ClO,ClO ,BrO、およびIO からなる群より選択された少なくとも1種を含む酸化剤を含むことが必要である。
【0020】
これらの酸化剤イオンのうち、NO イオンが最も好ましく、次にNO イオンが好ましく、次にClO,ClO ,BrO、およびIO が好ましい。
【0021】
酸化イオンの好ましい濃度(合計濃度)の範囲は、0.1〜20g/リットルであり、より好ましい合計濃度範囲は0.2〜8g/リットルである。
【0022】
これらの酸化剤イオンは、これらの酸の形で電解液に添加されても良いが、硝酸ナトリウム、硝酸アンモニウム、亜塩素酸ナトリウムなどのようなアルカリ金属塩またはアンモニウム塩の形で電解液中に添加されることがより好ましい。
【0023】
酸化剤イオンの合計濃度が0.1g/リットル未満では、充分な皮膜付着量が得られず、また、一旦付着したとしても、水素ガスの発生のために金属材料表面から脱落しやすくなることがあり、またそれが20g/リットルを超えると、酸化剤イオンが生成した皮膜中に多く残るため金属材料の腐食が起きやすくなる。
【0024】
これらの酸化剤イオンの効果により、陰極体で構成する金属材料表面には、電解処理の進行とともにチタン化合物が皮膜となって析出する。析出するチタン化合物は、本発明方法(1)の場合、二酸化チタンであり、本発明方法(2)の場合には水和酸化チタンと二酸化チタンとの混合物である。
【0025】
また、本発明方法(1)及び(2)に使用する電解液のpH値は0.1〜5の範囲であることが必要で、好ましい範囲は0.5〜3.5である。電解液のpH値が0.1未満では、酸化剤イオン濃度が十分であっても陰極表面のpHが十分に上昇せず、チタン化合物の析出が困難になるため好ましくない。また、pH値が5を超えると、電解液中のチタンイオンまたはコロイド状チタン粒子が不安定となって沈降し易くなるため好ましくない。
【0026】
また、本発明方法(1)および(2)において使用される電解液に含まれるコロイド状酸化チタンは、粒径が1〜10-3μmの範囲内にある酸化チタンコロイド粒子を含むことが好ましく、より好ましい粒径は10-2〜10-1μmである。このコロイド状酸化チタンは結晶性酸化チタンのコロイドであることが好ましく、アナターゼ型酸化チタンのコロイドであることが最も好ましい。
【0027】
コロイド状酸化チタン粒子の粒径が1μmを超えるとコロイド粒子が沈降しやすく、皮膜と金属材料表面との密着性も低下することがあるため好ましくなく、また、それが10−3μm未満では、得られる皮膜の触媒活性が不十分になることがあるため好ましくない。
【0028】
本発明方法(1)および(2)において、電解液中に含まれるコロイド状酸化チタンの好ましい濃度は、3〜200g/リットルであり、より好ましい濃度は10〜100g/リットルである。
【0029】
これらのコロイド状酸化チタン溶液は、チタン塩溶液、好ましくは硫酸チタン、オキシ硫酸チタン、4塩化チタン、およびオキシ塩化チタン等のチタン塩溶液を原料とし、この水溶液を、必要に応じて、水酸化アルカリ溶液等で中和した後、50℃以上の温度で5分〜数時間加熱処理して調製し、これをそのまま使用してもよいが、これをさらにミクロフィルター等で濾過してコロイド粒子を再分散させたものを使用するか、又はこれに透析等による脱イオン処理を施して得られる、夾雑イオンを含まないコロイド状酸化チタンを使用することにより電解液中の不純物を減少させることができるのでより好ましい。
【0030】
本発明方法(1)及び(2)の各々において、電解処理は、被処理体を陰極とすることが必須であり、陽極としては、白金めっきを施されたチタン、又は白金族系酸化物で被覆されたDSE(商標、ペルメレック電極(株)製)のような不溶性電極を使用する。陽極として無処理のチタン材を使用すると、陽極表面が不動態化して電流が流れにくくなるため、このような陽極は好ましくない。
【0031】
電解処理における電流密度は、0.5〜50A/dmが好ましく、皮膜の物性向上のためにパルス通電する場合は、50A/dm以上でもさしつかえない。電解処理の通電時間は3〜180秒が好ましい。
【0032】
また、電解後、金属材料表面に形成された皮膜を水洗または湯洗したのち乾燥することが好ましい。
【0033】
本発明方法(1)および(2)においては、金属材料表面に形成された皮膜に対し、必ずしも焼成は必要なく、200℃未満の温度における乾燥のみで実用に供することができるが、乾燥後、200℃以上の温度で焼成することが好ましく、より好ましい焼成温度は200〜400℃である。
【0034】
本発明方法(1)及び(2)において乾燥、または焼成後の皮膜は二酸化チタンからなり、これはアナターゼ型二酸化チタンを主成分とするが、電解、および焼成の条件に応じて、アナターゼ型酸化チタンの他に、ルチル型酸化チタン、無定型酸化チタンも含まれることがある。
【0035】
【作用】
本発明の方法(1)及び(2)によって酸化チタン皮膜が得られる原理は、電解中に、電解浴中酸化剤イオンが陰極(金属材料)の表面において還元を受け、陰極界面近傍のpHが急激に上昇することにある。この現象は、本発明方法(1)及び(2)において特定された酸化剤イオンが陰極表面から電子を受け取ることにより、陰極界面近傍にOH- イオンが発生(またはH+ イオンを消費)するという特徴的な反応を生起することによる。
【0036】
これらの酸化剤イオンとともに電解浴中に、コロイド状酸化チタンとともにTi4+イオンが存在する場合(本発明方法(2))、陰極界面で発生したOH- イオンと浴中のTi4+イオンとが反応してチタンの水酸化物(水和酸化物)が沈澱析出する。
【0037】
また、浴中にコロイド状酸化チタンが存在する場合(本発明方法(1),(2))、酸化チタンコロイドはpH5未満ではほぼ安定であるが、pHが5より高く上昇すると電荷を失い、ゲル化、凝集析出するという特性を有し、前記のような陰極界面近傍におけるpHの上昇により陰極表面に析出する。
【0038】
陰極金属材料表面で生ずる反応の例を下式(1)および(2)に示し、焼成による脱水反応を下記式(3)に示す。

Figure 0003573574
【0039】
生成した酸化チタン皮膜の性質がゾル−ゲル法など他の製造方法により得られるものに比較して優れている理由としては、本発明方法において、水酸化物が析出する際の陰極表面での過飽和度が非常に高いため極めて微細な粒子からなる皮膜が析出すること、および電解中に析出した皮膜から電気浸透作用により徐々に吸着水や不純物アニオン(SO 2− ,Cl等)が除去されるため、密度、および純度が高く、厚さの厚い皮膜が形成されることなどが考えられる。
【0040】
また、通電したクーロン量、電解時間に比例して上記反応がおこるため、薄膜から厚膜まで皮膜の厚さを正確に制御することができる。
【0041】
【実施例】
下記に本発明の製造方法の実施例を示し、本発明の内容を具体的に説明する。
【0042】
実施例1〜5および比較例1〜4
酸化チタン被覆金属板の作製
前処理:
被処理金属材料として、寸法100mm×50mmの、ステンレススチール(SUS304)板、鋼板(SPCC)、アルミニウム板(5052)、または銅板を使用し、これらを、電解処理前に、アルカリ性水系脱脂剤(FC−W1120:日本パーカライジング(株)製)の20g/リットル濃度溶液により、60℃×3分間の脱脂処理を施し、水洗した。
【0043】
電解液:
実施例1〜5および比較例1〜4の各々において使用された電解液の組成を表1に示す。電解液中の酸化剤イオンは、これらのナトリウム塩またはアンモニウム塩の溶解により生成させた。Ti4+イオンは、4塩化チタン水溶液(17%)により所定の濃度となるよう調製された。コロイド状酸化チタンは、硫酸チタン水溶液(30%)を水で希釈した液に、水酸化ナトリウム溶液を加えてpHを約1とし、この混合液を85℃で20分間加熱処理し、得られたコロイド溶液を拡散透析に供して夾雑イオンの多くを除去する方法により作製した。生成したコロイド状酸化チタンの濃度は約20%であり、そのpHは2.8であった。また、コロイド粒子の平均粒子径は70〜100nmであり、その結晶型はアナターゼ型であった。
【0044】
電解処理:
前処理された金属材料板は、60℃に保持された電解液を、金属材料板を陰極とし、白金めっきチタン板を陽極として下記の条件において電解処理し、形成された皮膜を10秒間ディップ水洗したのち120℃で5分間乾燥した。比較例2〜4においては、乾燥された皮膜に400℃で10分間焼成を施した。
(電解条件)
比較例1:電流密度 2A/dm2 、電解時間 30秒
実施例2、および比較例2:電流密度 10A/dm2 、電解時間 7秒
実施例1、実施例4、および比較例3:電流密度 0.5A/dm2 、電解時間 90秒
実施例3、実施例5、および比較例4:電流密度 4A/dm2 、電解時間 25秒
【0045】
皮膜の評価
作製された酸化チタン被覆金属材料板の、皮膜厚さを測定し、かつ、下記方法により皮膜の密着性および光触媒性について試験評価した。
試験結果を表2に示す。
皮膜密着性:
JIS K 5400 碁盤目試験法に従って、皮膜にカッターナイフで1mm角の碁盤目状のカットを施し、その上に、セロハン粘着テープ((株)ニチバン製)を貼付け、引き剥がして剥離された皮膜部分の面積を測定し、そのデータを下記基準により判定した。
Figure 0003573574
【0046】
光触媒性:
供試金属差材料板上の皮膜表面に試験油としてトリステアリン酸を塗布し、UVライト(15W)による紫外線を72時間照射し、塗布油の分解量(g/m)を紫外線照射前後の重量差から算出した。
【0047】
【表1】
Figure 0003573574
【0048】
【表2】
Figure 0003573574
【0049】
表1および表2が示すように、本発明の方法による実施例1〜5においては、十分な膜厚を有する酸化チタン皮膜が形成され、その密着性、および光触媒性はともに優れていた。
これに対し、本発明方法の範囲外の処理条件による比較例1〜4においては、比較例1〜3では、十分な厚さを有する皮膜が得られないためこの皮膜の光触媒性が不十分であり、また比較例4では、皮膜の密着性が不良であるという問題があった。
【0050】
【発明の効果】
本発明の方法により、密着性および光触媒性が良好で、十分な厚さを有する酸化チタン皮膜により金属材料を被覆することができる。
光触媒性に優れている酸化チタン皮膜は、汚れの付着防止、抗菌、防錆、並びに大気および水質浄化等の用途にも利用し得るものであるから、本発明方法の産業上の利用価値は高いものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a titanium oxide-coated metal material. More specifically, the present invention relates to a method for forming a titanium oxide film having a photocatalytic function on a surface of a metal material such as stainless steel, aluminum, iron, galvanized steel, and copper by cathodic electrolysis.
[0002]
[Prior art]
Titanium oxide can give a high photocatalytic effect to the surface of a solid material.For example, by forming a titanium oxide film having a photocatalytic effect on the surface of a material such as metal, glass, and ceramic, It is known that it has functions of decomposing adhered dirt, purifying air and water quality, preventing rust, and preventing the growth of bacteria and algae, and can be used for various purposes.
[0003]
For this reason, various titanium oxide coating methods have been proposed so far for the purpose of forming a better titanium oxide film on the material surface.
[0004]
As a method of coating the surface of various materials with titanium oxide, a method of applying a hydrolysis product of an alkoxide of titanium, that is, a sol-gel method, is the most common. A method in which an amide and / or a glycol is added to a titanium alkoxide disclosed in Japanese Patent Application Laid-Open No. 4-83537 and the reaction product is used, and an alcohol is added to the titanium alkoxide as disclosed in JP-A-7-100378. A method is disclosed in which an amine is added and the reaction product is used as a paint component.
[0005]
In addition, as described in JP-A-6-293519, a method of dispersing titanium oxide fine particles crystallized by hydrothermal treatment in water using a dispersant and applying the same, and A method is known in which a binder such as water glass, colloidal silica, or a fluororesin is mixed with crystalline titanium oxide particles, and the mixture is applied to the surface of a solid material.
[0006]
However, in the above-mentioned sol-gel method, the thickness of the film formed tends to change depending on the viscosity of the paint and the application conditions, and when the film is thickened to enhance the performance of the film, the film shrinks greatly during drying. Therefore, there is a problem that the adhesion between the film and the substrate surface is lowered, and the film is easily peeled off. Also, the sol-gel method has a problem that the raw material is expensive because an organic titanium compound is used as the raw material.
[0007]
In the method of preparing a paint by mixing crystal-grown titanium oxide with a binder and applying the paint on the substrate surface, the titanium oxide content in the obtained film is low, so that the photocatalytic ability is sufficiently exhibited. There was a problem that would not be.
[0008]
[Problems to be solved by the invention]
The present invention solves the problems of the conventional sol-gel method and the like when forming a titanium oxide film having photocatalytic properties on the surface of a metal material, and is formed by using an inexpensive inorganic titanium compound as a raw material. It is an object of the present invention to provide a method for producing a metal material coated with a titanium oxide film having excellent photocatalytic properties, in which the adhesion between the substrate and the film is not impaired even if the thickness of the film is 1 μm or more.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on the means for solving the above technical problems, the present inventor has found that titanium for forming titanium oxide as a film component is placed in an acidic electrolytic bath in the form of colloidal titanium oxide and, if necessary, four times more. In this bath, at least one of nitric oxide ions such as nitrate ions and nitrite ions and oxyacid ions containing halogen coexist as an oxidizing agent. It has been found that the titanium in the bath can be electrolytically deposited on the surface of the cathode metal material as titanium oxide and, if necessary, as titanium hydroxide by performing an electrolytic treatment using an insoluble metal material as a cathode body and an insoluble electrode as an anode body.
[0010]
Further, the present inventor has found that the titanium oxide film formed by the electrolytic deposition has good photocatalytic activity and can form a titanium dioxide film excellent in adhesion only by drying at about 80 to 200 ° C. I found that.
[0012]
At the same time, the present inventor has proposed that the titanium oxide film formed by containing both tetravalent titanium ions and colloidal titanium oxide in an electrolytic bath containing the same oxidizing agent ions as described above. Was further improved.
[0014]
A method of manufacturing a titanium oxide-coated metal material of the present invention (1) is, NO n -, ClO n - , BrO n - and IO n - (n represents 1, 2 or 3) selected from the group consisting of A cathode body made of a metal material to be treated, in an electrolyte containing a oxidizing agent containing at least one selected from the group and colloidal titanium oxide, and having a pH value in the range of 0.1 to 5; And an electrolytic treatment of the anode body, and a film containing titanium oxide is formed on the surface of the metal material, and the film is dried or fired.
[0015]
Furthermore, the manufacturing method of the titanium oxide-coated metal material of the present invention (2) is, NO n -, ClO n - , BrO n - and IO n - (n represents 1, 2 or 3) selected from the group consisting of A metal material to be treated in an electrolyte having a pH value in the range of 0.1 to 5, comprising an oxidizing agent containing at least one of the above, an Ti 4+ ion, and a colloidal titanium oxide. A cathode body and an anode body composed of an insoluble electrode are arranged and subjected to an electrolytic treatment to form a film containing hydrated titanium oxide and titanium oxide on the surface of the metal material, and the film is dried or dried. It is characterized by firing.
[0016]
In the method (2) of the present invention, the range of the concentration of Ti 4+ ions contained in the electrolytic bath is preferably 0.1 to 50 g / liter, more preferably 0.5 to 20 g / liter.
[0017]
If the tetravalent titanium ion concentration is less than 0.1 g / l, a sufficient film thickness may not be obtained, and if it exceeds 50 g / l, the loss of taking out the electrolytic solution increases, which is uneconomical. Sometimes.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method (2) of the present invention, the Ti 4+ ions contained in the electrolytic solution are formed by dissolving a water-soluble titanium salt such as titanium sulfate, titanium oxysulfate, titanium tetrachloride, and titanium oxychloride in water. Is preferred.
[0019]
Further, the hydrated titanium oxide in order to deposit on the metal material surface by cathodic electrolysis, NO n in the electrolyte -, ClO n -, BrO n -, IO n - a (n is 1, 2 or 3, For example, it is necessary to include an oxidizing agent containing at least one selected from the group consisting of NO 3 , NO 2 , ClO , ClO 2 , BrO , and IO 3 .
[0020]
Of these oxidant ions, NO 3 ions are most preferred, then NO 2 ions, and then ClO , ClO 2 , BrO , and IO 3 .
[0021]
A preferable range of the concentration (total concentration) of the oxide ions is 0.1 to 20 g / liter, and a more preferable range of the total concentration is 0.2 to 8 g / liter.
[0022]
These oxidant ions may be added to the electrolyte in the form of these acids, but may be added to the electrolyte in the form of an alkali metal salt such as sodium nitrate, ammonium nitrate, sodium chlorite or an ammonium salt. More preferably, it is performed.
[0023]
If the total concentration of the oxidizing agent ions is less than 0.1 g / liter, a sufficient amount of the coating film cannot be obtained, and even if the oxidizing agent ion once adheres, it may easily fall off the metal material surface due to generation of hydrogen gas. If it exceeds 20 g / liter, a large amount of oxidizing agent ions remain in the formed film, so that corrosion of the metal material is likely to occur.
[0024]
Due to the effect of these oxidant ions, the titanium compound is deposited as a film on the surface of the metal material constituting the cathode body as the electrolytic treatment proceeds. The precipitated titanium compound is titanium dioxide in the case of the method (1) of the present invention, and is a mixture of hydrated titanium oxide and titanium dioxide in the case of the method (2) of the present invention.
[0025]
Further, the pH value of the electrolytic solution used in the methods (1) and (2) of the present invention needs to be in a range of 0.1 to 5, and a preferable range is 0.5 to 3.5. If the pH value of the electrolytic solution is less than 0.1, the pH of the cathode surface does not sufficiently increase even if the oxidizing agent ion concentration is sufficient, and it becomes difficult to deposit the titanium compound. On the other hand, when the pH value exceeds 5, the titanium ions or colloidal titanium particles in the electrolytic solution become unstable and are likely to settle, which is not preferable.
[0026]
Further, the colloidal titanium oxide contained in the electrolytic solution used in the methods (1) and (2) of the present invention preferably contains colloidal titanium oxide particles having a particle size in the range of 1 to 10 −3 μm. The more preferred particle size is 10 -2 to 10 -1 µm. This colloidal titanium oxide is preferably a colloid of crystalline titanium oxide, most preferably a colloid of anatase type titanium oxide.
[0027]
If the particle size of the colloidal titanium oxide particles exceeds 1 μm, the colloidal particles are likely to settle, and the adhesion between the film and the metal material surface may be unfavorably reduced. If it is less than 10 −3 μm, This is not preferred because the catalytic activity of the resulting film may be insufficient.
[0028]
In the methods (1) and (2) of the present invention, the preferable concentration of the colloidal titanium oxide contained in the electrolytic solution is 3 to 200 g / liter, and the more preferable concentration is 10 to 100 g / liter.
[0029]
These colloidal titanium oxide solutions are prepared from a titanium salt solution, preferably a titanium salt solution such as titanium sulfate, titanium oxysulfate, titanium tetrachloride, and titanium oxychloride. After neutralization with an alkali solution or the like, the mixture is heat-treated at a temperature of 50 ° C. or higher for 5 minutes to several hours, and may be used as it is. Impurities in the electrolyte can be reduced by using a redispersed one or by using a colloidal titanium oxide containing no contaminating ions obtained by subjecting it to a deionization treatment such as dialysis. It is more preferable.
[0030]
In each of the methods (1) and (2) of the present invention, it is essential for the electrolytic treatment that the object to be treated is a cathode, and the anode is made of platinum-plated titanium or a platinum group oxide. An insoluble electrode such as a coated DSE (trademark, manufactured by Permelec Electrode Co., Ltd.) is used. If an untreated titanium material is used as the anode, the anode surface is passivated and it becomes difficult for an electric current to flow, and thus such an anode is not preferable.
[0031]
The current density in the electrolytic treatment is preferably 0.5 to 50 A / dm 2 , and when applying a pulse current for improving the physical properties of the film, even a current density of 50 A / dm 2 or more may be used. The energization time of the electrolytic treatment is preferably 3 to 180 seconds.
[0032]
Further, after the electrolysis, it is preferable that the film formed on the surface of the metal material be washed with water or hot water and then dried.
[0033]
In the methods (1) and (2) of the present invention, the film formed on the surface of the metal material does not necessarily need to be fired, and can be put to practical use only by drying at a temperature of less than 200 ° C. It is preferable to fire at a temperature of 200 ° C. or higher, and a more preferable firing temperature is 200 to 400 ° C.
[0034]
In the methods (1) and (2) of the present invention, the film after drying or calcination is made of titanium dioxide, which is mainly composed of anatase type titanium dioxide. In addition to titanium, rutile-type titanium oxide and amorphous titanium oxide may be included.
[0035]
[Action]
The principle that a titanium oxide film is obtained by the methods (1) and (2) of the present invention is that during the electrolysis, the oxidizing agent ions in the electrolytic bath are reduced on the surface of the cathode (metal material), and the pH near the cathode interface is reduced. Is to rise sharply. This phenomenon is caused by the fact that the oxidizing agent ions specified in the methods (1) and (2) of the present invention receive electrons from the cathode surface, thereby generating OH ions (or consuming H + ions) near the cathode interface. By producing a characteristic response.
[0036]
When Ti 4+ ions are present together with colloidal titanium oxide in the electrolytic bath together with these oxidizing agent ions (the method (2) of the present invention), OH ions generated at the cathode interface and Ti 4+ ions in the bath are Reacts to precipitate and precipitate a hydroxide (hydrated oxide) of titanium.
[0037]
When the colloidal titanium oxide is present in the bath (the methods (1) and (2) of the present invention), the titanium oxide colloid is almost stable below pH 5, but loses its charge when the pH rises above 5, It has the property of gelling and aggregating and depositing, and deposits on the cathode surface due to the increase in pH near the cathode interface as described above.
[0038]
Examples of the reaction occurring on the surface of the cathode metal material are shown in the following formulas (1) and (2), and the dehydration reaction by firing is shown in the following formula (3).
Figure 0003573574
[0039]
The reason that the properties of the generated titanium oxide film are superior to those obtained by other production methods such as the sol-gel method is that, in the method of the present invention, supersaturation on the cathode surface when hydroxide is deposited The degree of deposition is extremely high, so that a film composed of extremely fine particles is deposited, and the water deposited and impurity anions (SO 4 2− , Cl −, etc.) are gradually removed from the film deposited during electrolysis by electroosmosis. Therefore, it is conceivable that a thick film having high density and high purity is formed.
[0040]
In addition, since the above reaction occurs in proportion to the amount of coulombs supplied and the electrolysis time, the thickness of the film from a thin film to a thick film can be accurately controlled.
[0041]
【Example】
Examples of the production method of the present invention will be shown below, and the contents of the present invention will be specifically described.
[0042]
Examples 1 to 5 and Comparative Examples 1 to 4
Pretreatment for preparation of titanium oxide coated metal plate:
As a metal material to be treated, a stainless steel (SUS304) plate, a steel plate (SPCC), an aluminum plate (5052), or a copper plate having a size of 100 mm × 50 mm is used, and these are treated with an alkaline aqueous degreasing agent (FC) before the electrolytic treatment. -W1120: Degreasing treatment at 60 ° C. for 3 minutes with a 20 g / liter concentration solution of Nippon Parkerizing Co., Ltd., followed by washing with water.
[0043]
Electrolyte:
Table 1 shows the compositions of the electrolyte solutions used in Examples 1 to 5 and Comparative Examples 1 to 4. Oxidant ions in the electrolyte were generated by dissolution of these sodium or ammonium salts. Ti 4+ ions were prepared to have a predetermined concentration with an aqueous solution of titanium tetrachloride (17%). Colloidal titanium oxide was obtained by adding a sodium hydroxide solution to a solution obtained by diluting an aqueous solution of titanium sulfate (30%) with water to adjust the pH to about 1, and subjecting this mixture to heat treatment at 85 ° C. for 20 minutes. The colloid solution was prepared by a method of subjecting the colloid solution to diffusion dialysis to remove most of the contaminating ions. The concentration of the formed colloidal titanium oxide was about 20%, and its pH was 2.8. The average particle size of the colloid particles was 70 to 100 nm, and the crystal type was anatase type.
[0044]
Electrolysis treatment:
The pretreated metal material plate is subjected to electrolytic treatment using an electrolytic solution maintained at 60 ° C. under the following conditions using the metal material plate as a cathode and a platinum-plated titanium plate as an anode, and dip-washing the formed film for 10 seconds. After that, it was dried at 120 ° C. for 5 minutes. In Comparative Examples 2 to 4, the dried film was baked at 400 ° C. for 10 minutes.
(Electrolysis conditions)
Comparative Example 1: Current density 2 A / dm 2 , electrolysis time 30 seconds Example 2 and Comparative Example 2: Current density 10 A / dm 2 , electrolysis time 7 seconds Example 1, Example 4, and Comparative Example 3: Current density 0.5 A / dm 2 , electrolysis time 90 seconds Example 3, Example 5, and Comparative Example 4: Current density 4 A / dm 2 , electrolysis time 25 seconds
Evaluation of Film The film thickness of the prepared titanium oxide-coated metal material plate was measured, and the adhesion and photocatalytic property of the film were evaluated by the following methods.
Table 2 shows the test results.
Film adhesion:
According to JIS K 5400 grid test method, a 1 mm square cross cut is made on the film with a cutter knife, and a cellophane adhesive tape (manufactured by Nichiban Co., Ltd.) is adhered on the cut, and the film is peeled off and peeled off. Was measured, and the data was determined according to the following criteria.
Figure 0003573574
[0046]
Photocatalytic:
Applying tristearate as the test oil film surface on the test metal differences material plate, the ultraviolet by UV light (15W) was irradiated for 72 hours, the decomposition amount of the coating oil (g / m 2) of before and after the ultraviolet irradiation It was calculated from the weight difference.
[0047]
[Table 1]
Figure 0003573574
[0048]
[Table 2]
Figure 0003573574
[0049]
As shown in Tables 1 and 2, in Examples 1 to 5 according to the method of the present invention, a titanium oxide film having a sufficient film thickness was formed, and both the adhesion and the photocatalytic property were excellent.
In contrast, in Comparative Examples 1 to 4 under processing conditions outside the range of the method of the present invention, in Comparative Examples 1 to 3, a film having a sufficient thickness was not obtained, and thus the photocatalytic property of this film was insufficient. In Comparative Example 4, there was a problem that the adhesion of the film was poor.
[0050]
【The invention's effect】
According to the method of the present invention, a metal material can be coated with a titanium oxide film having good adhesion and photocatalytic properties and having a sufficient thickness.
Since the titanium oxide film having excellent photocatalytic properties can be used for applications such as prevention of dirt adhesion, antibacterial action, rust prevention, and air and water purification, the method of the present invention has high industrial utility value. Things.

Claims (2)

NOn - ,ClOn - ,BrOn - およびIOn - (nは1,2、または3を表す)からなる群より選択された少なくとも1種を含む酸化剤と、コロイド状酸化チタンとを含み、0.1〜5の範囲内にあるpH値を有する電解液中に、被処理金属材料からなる陰極体と、不溶性電極からなる陽極体とを配置し、これに電解処理を施して、前記金属材料表面に酸化チタン含有皮膜を形成し、この皮膜を、乾燥または焼成することを特徴とする酸化チタン被覆金属材料の製造方法。 NO n -, ClO n -, BrO n - and IO n - (n is 1, 2 or 3 representing,) comprising an oxidizing agent containing at least one selected from the group consisting of, a colloidal titanium oxide In an electrolytic solution having a pH value in the range of 0.1 to 5, a cathode body made of a metal material to be treated and an anode body made of an insoluble electrode are arranged, and subjected to electrolytic treatment, A method for producing a titanium oxide-coated metal material, comprising forming a titanium oxide-containing film on the surface of a metal material, and drying or firing the film. NOn - ,ClOn - ,BrOn - およびIOn - (nは1,2、または3を表す)からなる群より選択された少なくとも1種を含む酸化剤と、Ti4+イオンと、コロイド状酸化チタンとを含み、0.1〜5の範囲内にあるpH値を有する電解液中に、被処理金属材料からなる陰極体とし、不溶性電極からなる陽極体とを配置し、これに電解処理を施して、前記金属材料表面上に水和酸化チタンおよび酸化チタンを含有する皮膜を形成し、この皮膜を、乾燥または焼成することを特徴とする酸化チタン被覆金属材料の製造方法。 NO n -, ClO n -, BrO n - and IO n - (n is 1, 2 or 3 representing,) an oxidizing agent containing at least one selected from the group consisting of a Ti 4+ ions, colloids And a cathode body made of a metal material to be treated and an anode body made of an insoluble electrode are placed in an electrolyte containing a titanium oxide and having a pH value in the range of 0.1 to 5. A method for producing a titanium oxide-coated metal material, comprising performing a treatment to form a film containing hydrated titanium oxide and titanium oxide on the surface of the metal material, and drying or firing the film.
JP17124596A 1996-07-01 1996-07-01 Method for producing metal material coated with titanium oxide Expired - Lifetime JP3573574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17124596A JP3573574B2 (en) 1996-07-01 1996-07-01 Method for producing metal material coated with titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17124596A JP3573574B2 (en) 1996-07-01 1996-07-01 Method for producing metal material coated with titanium oxide

Publications (2)

Publication Number Publication Date
JPH1018083A JPH1018083A (en) 1998-01-20
JP3573574B2 true JP3573574B2 (en) 2004-10-06

Family

ID=15919746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17124596A Expired - Lifetime JP3573574B2 (en) 1996-07-01 1996-07-01 Method for producing metal material coated with titanium oxide

Country Status (1)

Country Link
JP (1) JP3573574B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296263A (en) * 2000-02-07 2001-10-26 Japan Organo Co Ltd Conductivity meter, conductivity measuring electrode and manufacturing method thereof
AU2887401A (en) 2000-02-07 2001-08-20 Organo Corporation Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
KR100697354B1 (en) 2001-12-04 2007-03-20 신닛뽄세이테쯔 카부시키카이샤 Metal material coated with metal oxide and/or metal hydroxide coating film and method for production thereof
AU2003302815A1 (en) 2002-11-25 2004-06-30 Toyo Seikan Kaisha, Ltd. Surface-treated metallic material, method of surface treating therefor and resin-coated metallic material, metal can and can lid
EP1548157A1 (en) * 2003-12-22 2005-06-29 Henkel KGaA Corrosion-protection by electrochemical deposition of metal oxide layers on metal substrates
JP4492224B2 (en) * 2004-06-22 2010-06-30 東洋製罐株式会社 Surface-treated metal material, surface treatment method thereof, and resin-coated metal material
WO2006136333A2 (en) * 2005-06-22 2006-12-28 Henkel Kommanditgessellschaft Auf Aktien ELECTRODEPOSITION MATERIAL, PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2
EP2198076B1 (en) * 2007-10-03 2016-03-16 Accentus Medical Limited Method of manufacturing metal with biocidal properties
JP2009256790A (en) * 2008-03-19 2009-11-05 Tam Network Kk Coating method of titanium oxide
JP5710316B2 (en) * 2011-03-01 2015-04-30 日本パーカライジング株式会社 Method for producing hard particles with surface treatment film and hard particles with surface treatment film

Also Published As

Publication number Publication date
JPH1018083A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
US5759251A (en) Titanium dioxide ceramic paint and methods of producing same
KR100562173B1 (en) Titanium oxide colloidal sol and process for the preparation thereof
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP3573574B2 (en) Method for producing metal material coated with titanium oxide
DE1571721A1 (en) Electrode coated with a platinum metal oxide and method of using the electrode
KR20100014685A (en) Agent for the production of anti-corrosion layers on metal surfaces
JP2011190115A (en) Ammonium niobate sol, method for producing the same, coating liquid for forming thin film and thin film-supporting substrate
JP2007515556A (en) Corrosion protection by electrochemical deposition of metal oxide layers on metal substrates
JP3218021B2 (en) Method of forming titanium anodic oxide film for photocatalyst
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JPH08217443A (en) Electrolytic solution for making zinc oxide film
JP3238349B2 (en) Titanium oxide ceramic paint excellent in hydrophilicity, photocatalytic property and translucency and method for producing the same
JP3542234B2 (en) Method for coating metal material with titanium oxide
US20080248195A1 (en) Method for the Production of Iridium Oxide Coatings
JPH09221324A (en) Titanium dioxide ceramic coating material and its production
JP2005171029A (en) Coating composition, method of forming film having optical catalytic function, and optical catalytic member
JPS5928637B2 (en) Method of forming a protective film on the surface of magnesium material
JP2001081357A (en) Titanium oxide coating liquid and formation of titanium oxide coating film
JP3385243B2 (en) Method for producing titanium oxide sol
CN115895407B (en) Preparation method of high-performance water-based paint
JP4173928B2 (en) Method of forming ceramic composite coating by anodic spark discharge
JP2016193801A (en) Method for producing titanium oxide sol doped with niobium and/or tantalum
CN115895408B (en) Water-based paint composition
CN117779152B (en) Photocatalysis nano composite coating and preparation method and application thereof
CN115821282A (en) Inorganic additive for paint and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6