JP2005171029A - Coating composition, method of forming film having optical catalytic function, and optical catalytic member - Google Patents

Coating composition, method of forming film having optical catalytic function, and optical catalytic member Download PDF

Info

Publication number
JP2005171029A
JP2005171029A JP2003410936A JP2003410936A JP2005171029A JP 2005171029 A JP2005171029 A JP 2005171029A JP 2003410936 A JP2003410936 A JP 2003410936A JP 2003410936 A JP2003410936 A JP 2003410936A JP 2005171029 A JP2005171029 A JP 2005171029A
Authority
JP
Japan
Prior art keywords
particles
parts
acid
mass
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410936A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mori
和彦 森
Keiichi Ota
圭一 大田
Masaya Miyazaki
雅矢 宮崎
Atsushige Fujii
淳成 藤井
Hidekazu Ono
英一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOKAI CHEMICAL IND CO Ltd
Nihon Parkerizing Co Ltd
AGC Inc
Dokai Chemical Industries Co Ltd
Original Assignee
DOKAI CHEMICAL IND CO Ltd
Asahi Glass Co Ltd
Nihon Parkerizing Co Ltd
Dokai Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOKAI CHEMICAL IND CO Ltd, Asahi Glass Co Ltd, Nihon Parkerizing Co Ltd, Dokai Chemical Industries Co Ltd filed Critical DOKAI CHEMICAL IND CO Ltd
Priority to JP2003410936A priority Critical patent/JP2005171029A/en
Priority to KR1020040103515A priority patent/KR20050056155A/en
Publication of JP2005171029A publication Critical patent/JP2005171029A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology that can realize a film having optical catalytic functioon which never has cracks and peeling due to shrinkage by drying even being made thick, that is, which can be made a thick film, and also, which is superior in adhesion and transparency, thereby, made high in optical catatytic activity. <P>SOLUTION: The coating composition contains optical catalytic particles, an organic alkali, an anionic dispersant, and hardenable platy particles, and it is characterised in that the optical catalytic particles are selected from titania and titanic acid; the organic alkali is selected from the group consisting of an alkanolamine, a tetraalkyl ammonium, oxazine, pyperidine, and choline; the anionic dispersant is selected from the group consisting of condensed phosphoric acid, phosphoric acid, hydroxycarboxylic acid, polyhydric carboxylic acid, polycarboxylic acid; the hardenable platy particles have SiO<SB>2</SB>as their main component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塗料組成物、特に光触媒機能(光触媒活性)を有する塗料組成物や、光触媒機能を有する膜の形成方法、及び光触媒機能を有する膜、例えば脱臭、窒素酸化物除去、汚れ防止、親水性、或いは抗菌性などの機能を奏する光触媒部材に関する。   The present invention relates to a coating composition, particularly a coating composition having a photocatalytic function (photocatalytic activity), a method for forming a film having a photocatalytic function, and a film having a photocatalytic function, such as deodorization, nitrogen oxide removal, stain prevention, hydrophilicity The present invention relates to a photocatalytic member that exhibits functions such as antibacterial properties or antibacterial properties.

有機系塗料に比べて耐熱性や耐摩耗性に優れているセラミック系塗料として、アルカリ金属ケイ酸塩系、リン酸塩系、シリカゾル系、金属酸化物系などの塗料が知られている。そして、これらの塗料は、従来より、耐熱性や耐摩耗性に優れている等のセラミック系塗料固有の特徴を持っているが、近年、セラミック皮膜に更に新しい機能を持たせる試みが金属酸化物系を中心になされている。   As ceramic-based paints that are superior in heat resistance and wear resistance compared to organic paints, paints such as alkali metal silicate, phosphate, silica sol, and metal oxide are known. These paints have characteristics inherent to ceramic paints such as excellent heat resistance and wear resistance, but in recent years, attempts have been made to add new functions to ceramic coatings. It is made mainly in the system.

中でも、酸化チタンは、優れた光触媒効果を付与することが可能であり、紫外線の照射により高い酸化力を発揮する。そして、光触媒活性の優れた酸化チタンを、金属、ガラス、セラミックなどの被塗物(基材)表面に設けることにより、汚れの付着防止、悪臭成分の分解、水質の浄化、防錆、抗菌、藻類の繁殖防止、難分解性廃棄物の分解などに有効であると言われている。   Among these, titanium oxide can impart an excellent photocatalytic effect, and exhibits high oxidizing power when irradiated with ultraviolet rays. And by providing titanium oxide with excellent photocatalytic activity on the surface of the object to be coated (base material) such as metal, glass, ceramic, etc., prevention of adhesion of dirt, decomposition of malodorous components, purification of water quality, rust prevention, antibacterial, It is said to be effective in preventing the growth of algae and decomposing difficult-to-decompose waste.

この為、酸化チタン皮膜を素材表面に形成することを目的とした各種の酸化チタン塗料や、その製造方法が提案されている。   For this reason, various titanium oxide paints for the purpose of forming a titanium oxide film on the surface of the material and methods for producing the same have been proposed.

酸化チタン皮膜の形成方法としては、チタンのアルコキシドを加水分解したものを塗布する方法のゾル−ゲル法が最も一般的である。   The most common method for forming a titanium oxide film is a sol-gel method in which a hydrolyzed titanium alkoxide is applied.

これに類する技術としては、例えば特開平4−83537号公報に示されるチタンアルコキシドにアミド、グリコールを添加する方法や、特開平7−100378号公報に示されるチタンアルコキシドにアルコールアミン類を添加する方法が知られている。   As a technique similar to this, for example, a method of adding an amide or glycol to a titanium alkoxide disclosed in JP-A-4-83537, or a method of adding an alcoholamine to a titanium alkoxide disclosed in JP-A-7-100388 It has been known.

これ等の他にも、特開平6−293519号公報に示される如く、水熱処理により結晶化させた酸化チタン微粒子をpH3以下の酸溶液で分散させて塗布する方法が知られている。   In addition to these, as disclosed in JP-A-6-293519, a method is known in which titanium oxide fine particles crystallized by hydrothermal treatment are dispersed in an acid solution having a pH of 3 or less and applied.

又、特開平9−71418号公報に示される如く、過酸化水素水と酸化チタンからなるゾル液およびその製造方法が知られている。   Also, as disclosed in JP-A-9-71418, a sol solution composed of hydrogen peroxide and titanium oxide and a method for producing the same are known.

更には、特許第3238349号公報に示される如く、オルソチタン酸およびチタン(IV)イオンから選ばれる一種とアナターゼ型結晶性粒子とを含む酸化チタンセラミック塗料が知られている。   Furthermore, as disclosed in Japanese Patent No. 3238349, a titanium oxide ceramic paint containing one kind selected from orthotitanic acid and titanium (IV) ions and anatase type crystalline particles is known.

しかしながら、上記提案の技術では、光触媒機能を有する膜の厚さを1μm以上とした場合、該膜が乾燥するに際して、乾燥の際の収縮応力によって、該膜に亀裂が入ったり、酷い場合には剥離が生じる恐れが強い。   However, in the proposed technique, when the thickness of the film having a photocatalytic function is 1 μm or more, when the film is dried, the film is cracked or severe due to shrinkage stress at the time of drying. There is a strong risk of peeling.

この為、従来では、光触媒機能を有する膜の厚さを1μm未満の薄膜にせざるを得ず、光触媒活性がそれだけ劣ったものとなる。   For this reason, conventionally, the thickness of the film having a photocatalytic function must be a thin film of less than 1 μm, and the photocatalytic activity is inferior.

このような問題点を解決する為、光触媒粒子と硬化性板状粒子とを含む塗料組成物が提案(特開2002−166175号公報)されている。
特開平4−83537号 特開平7−100378号 特開平6−293519号 特開平9−71418号 特許第3238349号 特開2002−166175号
In order to solve such problems, a coating composition containing photocatalyst particles and curable plate-like particles has been proposed (Japanese Patent Laid-Open No. 2002-166175).
JP-A-4-83537 JP-A-7-1000037 JP-A-6-293519 JP-A-9-71418 Japanese Patent No. 3238349 JP 2002-166175 A

しかしながら、特開2002−166175号公報提案の技術は、塗膜の透明性が不十分で、白色の不透明な膜になる問題点を有していることが判って来た。   However, it has been found that the technique proposed in Japanese Patent Laid-Open No. 2002-166175 has a problem that the transparency of the coating film is insufficient and a white opaque film is formed.

従って、本発明が解決しようとする課題は、光触媒機能を有する膜の厚さを厚くしても、乾燥収縮によって亀裂や剥離が起きることは無く、即ち、厚膜に出来るようになり、しかも該膜の密着性にも優れ、かつ、透明性にも優れ、光触媒活性がそれだけ高く奏されるようになる技術を提供することである。   Therefore, the problem to be solved by the present invention is that even if the thickness of the film having a photocatalytic function is increased, cracking or peeling does not occur due to drying shrinkage, that is, a thick film can be formed. It is to provide a technique that is excellent in film adhesion and excellent in transparency and that exhibits high photocatalytic activity.

ところで、本発明者らは、塩化チタン、硫酸チタン等の無機チタン塩水溶液を低温で加水分解して得たチタン酸やアナターゼ型などの二酸化チタンの分散溶液を調製し、この酸化チタンの水分散液にポリリン酸等のアニオン性分散剤と有機アルカリとを添加して中和した後、再分散して酸化チタンの高分散ゾルを得る一方、珪酸アルカリ水溶液に硫酸を混合してゲル化させた粒子を洗浄、水熱処理して生成したSiOを主成分とする硬化性板状粒子を調製し、この硬化性板状粒子を前記酸化チタンの分散ゾルに混合して光触媒コーティング剤を試作した。 By the way, the present inventors prepared a dispersion solution of titanium dioxide such as titanic acid or anatase type obtained by hydrolyzing an aqueous solution of an inorganic titanium salt such as titanium chloride or titanium sulfate at a low temperature. The solution was neutralized by adding an anionic dispersant such as polyphosphoric acid and an organic alkali, and then redispersed to obtain a highly dispersed sol of titanium oxide. On the other hand, sulfuric acid was mixed into an aqueous solution of alkali silicate and gelled. Curable plate-like particles containing SiO 2 as a main component produced by washing and hydrothermal treatment of the particles were prepared, and the curable plate-like particles were mixed with the titanium oxide dispersion sol to produce a photocatalyst coating agent.

そして、この試作コーティング剤を乾燥膜厚が2〜3μmとなるようガラス板に塗付し、この後400℃で焼成し、光触媒膜の密着性、透明性、光触媒活性を調べた処、該膜は無色透明で、かつ、密着性に優れており、そしてこれまでに無い優れた光触媒活性を持つことが確認された。   Then, this prototype coating agent was applied to a glass plate so that the dry film thickness was 2 to 3 μm, and then baked at 400 ° C. to examine the adhesion, transparency, and photocatalytic activity of the photocatalytic film, Was colorless and transparent, excellent in adhesion, and was confirmed to have an excellent photocatalytic activity that has never been seen before.

上記知見を基にして本発明が達成されたものである。
すなわち、前記の課題は、光触媒粒子と、
有機アルカリと、
アニオン性分散剤と、
硬化性板状粒子
とを含むことを特徴とする塗料組成物によって解決される。
The present invention has been achieved based on the above findings.
That is, the problem is that the photocatalyst particles,
Organic alkali,
An anionic dispersant;
It is solved by a coating composition characterized by comprising curable plate-like particles.

又、上記の塗料組成物が塗布されてなることを特徴とする光触媒部材によって解決される。   Moreover, it solves with the photocatalyst member characterized by apply | coating said coating composition.

特に、上記の塗料組成物が乾燥膜厚は0.5〜50μmとなるよう塗布されてなることを特徴とする光触媒部材によって解決される。   In particular, it is solved by a photocatalyst member characterized in that the coating composition is applied so as to have a dry film thickness of 0.5 to 50 μm.

又、上記の塗料組成物を基材に塗布する塗布工程と、
前記塗布工程の後、塗膜中の有機アルカリを分解させる有機アルカリ分解工程
とを有することを特徴とする光触媒機能を有する膜の形成方法によって解決される。
Also, an application step of applying the above-mentioned coating composition to a substrate,
This is solved by a method for forming a film having a photocatalytic function, comprising an organic alkali decomposition step of decomposing an organic alkali in a coating film after the coating step.

特に、上記の塗料組成物を乾燥膜厚が0.5〜50μmとなるよう基材に塗布する塗布工程と、
前記塗布工程の後、塗膜中の有機アルカリを分解させる有機アルカリ分解工程
とを有することを特徴とする光触媒機能を有する膜の形成方法によって解決される。
In particular, an application step of applying the coating composition to a substrate so that the dry film thickness is 0.5 to 50 μm;
This is solved by a method for forming a film having a photocatalytic function, comprising an organic alkali decomposition step of decomposing an organic alkali in a coating film after the coating step.

又、上記の光触媒機能を有する膜の形成方法により形成されてなることを特徴とする光触媒部材によって解決される。   Moreover, it solves by the photocatalyst member formed by the formation method of the film | membrane which has said photocatalyst function.

本発明において、光触媒粒子としては各種のものを用いることが出来る。すなわち、バンドギャップ以上のエネルギーを有する波長の光が照射されると、光触媒機能を奏するものであれば良い。例えば、酸化チタン、チタン酸、酸化亜鉛、酸化タングステン、酸化鉄などの公知の金属化合物半導体を、単独で、又は二種以上を組み合わせて使用できる。中でも、酸化チタンやチタン酸が用いられた場合は好ましい。すなわち、オルトチタン酸やペルオキソチタン酸などのチタン酸が用いられた場合、或いはアナターゼ型二酸化チタン(メタチタン酸を含む)若しくは可視光型酸化チタン(窒素ドープ型や酸素欠陥型等の可視光応答性二酸化チタン)等の結晶性二酸化チタン、ルチル型、ブルッカイト型など光触媒活性を有する結晶性のものが用いられた場合、膜の透明性や光触媒活性がより向上していた。中でも、加熱焼成によって結晶性二酸化チタン光触媒となる無定型チタン酸(オルソチタン酸)や、結晶性を有するメタチタン酸またはアナターゼ型二酸化チタンが好ましい。そして、その二次粒子径が1〜300nmのものが好ましい。結晶性二酸化チタンを使用する場合は、その1次結晶径が1〜30nmのものが好ましい。本発明における二酸化チタンのコロイド粒子は、その粒径が特に限定されるものではなが、1nm〜500nmの粒径のものが好ましい。特に、3〜120nmのものが好ましい。   In the present invention, various kinds of photocatalyst particles can be used. That is, any material that exhibits a photocatalytic function when irradiated with light having a wavelength greater than the band gap is used. For example, known metal compound semiconductors such as titanium oxide, titanic acid, zinc oxide, tungsten oxide, and iron oxide can be used alone or in combination of two or more. Among these, it is preferable when titanium oxide or titanic acid is used. That is, when titanic acid such as orthotitanic acid and peroxotitanic acid is used, or anatase type titanium dioxide (including metatitanic acid) or visible light type titanium oxide (nitrogen doped type or oxygen defect type visible light responsiveness, etc. When crystalline titanium dioxide (such as titanium dioxide) or a crystalline material having photocatalytic activity such as rutile type or brookite type was used, the transparency and photocatalytic activity of the film were further improved. Of these, amorphous titanic acid (orthotitanic acid), which becomes a crystalline titanium dioxide photocatalyst by heating and baking, and metatitanic acid or anatase type titanium dioxide having crystallinity are preferable. And the thing with the secondary particle diameter of 1-300 nm is preferable. When crystalline titanium dioxide is used, the primary crystal diameter is preferably 1 to 30 nm. The colloidal particles of titanium dioxide in the present invention are not particularly limited in particle diameter, but those having a particle diameter of 1 nm to 500 nm are preferable. In particular, the one of 3 to 120 nm is preferable.

本発明で用いられるチタン酸は、例えば塩化チタン、オキシ塩化チタン、硫酸チタン、硫酸チタニル等の無機チタン化合物を水に溶解した溶液にアルカリを加えたり、アニオン交換膜やイオン交換樹脂による処理を加えてゾル溶液としたものを用いることが出来る。この場合、塩素、硫酸などの不純物イオンを除去した後、過酸化水素を加え、ペルオキソチタン酸溶液としたものでも良い。又、アルコキシドを原料として使用する場合、チタンアルコキシドを低温で加水分解することで好ましいチタン酸溶液を得ることが出来る。尚、加水分解を70℃以上の温度で行うことにより結晶性二酸化チタンが多く得られ、室温以下で加水分解を行うことにより無定型のオルソチタン酸を主として得ることが出来る。そして、これらの酸性ゾルを本発明の酸化チタンの原料として使用することが好ましいが、原料の酸性ゾル中に塩素イオン、硫酸イオン、硝酸イオンなど腐食性のアニオンが含まれる場合には、濾過洗浄、イオン交換、透析などの方法により出来るだけ除去しておくことが好ましい。最も好ましいチタン酸溶液の例としては、特許第3238349号に開示されている中性アモルファス酸化チタンゾルや、特開平9−71418号公報に開示されているペルオキソ酸化チタンゾルが挙げられる。   The titanic acid used in the present invention may be added with an alkali to a solution of an inorganic titanium compound such as titanium chloride, titanium oxychloride, titanium sulfate, titanyl sulfate in water, or treated with an anion exchange membrane or an ion exchange resin. A sol solution can be used. In this case, after removing impurity ions such as chlorine and sulfuric acid, hydrogen peroxide may be added to form a peroxotitanic acid solution. Moreover, when using an alkoxide as a raw material, a preferable titanic acid solution can be obtained by hydrolyzing a titanium alkoxide at low temperature. A large amount of crystalline titanium dioxide can be obtained by carrying out the hydrolysis at a temperature of 70 ° C. or higher, and amorphous orthotitanic acid can be mainly obtained by carrying out the hydrolysis at room temperature or lower. These acidic sols are preferably used as a raw material for the titanium oxide of the present invention. However, when the raw acidic sol contains corrosive anions such as chloride ions, sulfate ions, nitrate ions, it is filtered and washed. It is preferable to remove as much as possible by a method such as ion exchange or dialysis. Examples of the most preferable titanic acid solution include neutral amorphous titanium oxide sol disclosed in Japanese Patent No. 3238349 and peroxo titanium oxide sol disclosed in JP-A-9-71418.

本発明で用いられる二酸化チタンは、上記と同様の方法で得た原料溶液に加熱加水分解の操作を施したり、気化させたチタン化合物を高温で酸素と反応させる等の方法により得ることが出来る。可視光応答性二酸化チタンとしては、アナターゼ型二酸化チタンを300℃以上の温度でアンモニアと接触させたり、アンモニウム塩を含むチタン酸を焼成する等の方法によって得ることが出来る。   The titanium dioxide used in the present invention can be obtained by a method such as subjecting a raw material solution obtained by the same method as described above to heat hydrolysis or reacting a vaporized titanium compound with oxygen at a high temperature. Visible light-responsive titanium dioxide can be obtained by bringing anatase-type titanium dioxide into contact with ammonia at a temperature of 300 ° C. or higher, or baking titanic acid containing an ammonium salt.

尚、本発明の塗料組成物が塗布されて出来た塗膜において、二酸化チタン等の光触媒粒子が300〜3000mg/m程度あることが好ましい。これは、光触媒粒子が少な過ぎると、触媒活性効果が乏しくなるからである。尚、光触媒粒子が多くなることは、触媒活性効果の点からは問題ないものの、コスト面や塗膜の物理的強度の観点から3000mg/m以下を好ましい基準とした。 In addition, in the coating film formed by apply | coating the coating composition of this invention, it is preferable that photocatalyst particles, such as titanium dioxide, are about 300-3000 mg / m < 2 >. This is because if the amount of photocatalyst particles is too small, the catalytic activity effect becomes poor. The increase in photocatalyst particles is not problematic from the viewpoint of the catalytic activity effect, but is preferably 3000 mg / m 2 or less from the viewpoint of cost and physical strength of the coating film.

本発明の塗料組成物にはアニオン性分散剤が必須成分として用いられる。すなわち、アニオン性分散剤が用いられなかった場合、例えばチタン化合物粒子のような光触媒粒子の分散性が悪くなり、分散粒子径が過大となり、塗膜の密着性が低下する。従って、アニオン性分散剤は非常に需要な因子である。   An anionic dispersant is used as an essential component in the coating composition of the present invention. That is, when an anionic dispersant is not used, for example, the dispersibility of photocatalyst particles such as titanium compound particles deteriorates, the dispersed particle diameter becomes excessive, and the adhesion of the coating film decreases. Thus, anionic dispersants are a very demanding factor.

分散剤としては、アニオン性分散剤以外のものも知られているが、本発明においては、アニオン性分散剤でなければならない。例えば、カチオン性分散剤が用いられた場合には、中性〜弱アルカリ性領域では酸化チタン粒子のような光触媒粒子は電荷が不安定になって凝集し易く、本発明が奏する効果が奏され無い。又、ノニオン性分散剤が用いられた場合には、酸化チタン粒子のような光触媒粒子に負電荷を与える効果がない為、分散剤を大量に使用しなければ分散効果が悪く、そうすると膜の物理的特性や触媒活性が低下する。従って、単に、分散剤が用いられれば良いと言うのでは無く、アニオン性分散剤が用いられなけれはならない。   As the dispersant, those other than the anionic dispersant are known, but in the present invention, they must be anionic dispersants. For example, when a cationic dispersant is used, in the neutral to weak alkaline region, the photocatalyst particles such as titanium oxide particles are likely to aggregate due to unstable charge, and the effect of the present invention is not achieved. . In addition, when a nonionic dispersant is used, there is no effect of giving a negative charge to the photocatalyst particles such as titanium oxide particles. Therefore, the dispersion effect is poor unless a large amount of the dispersant is used. Characteristics and catalytic activity are reduced. Therefore, it is not simply said that a dispersant should be used, and an anionic dispersant must be used.

アニオン性分散剤としては、水溶液中でアニオン性を示すピロリン酸、トリポリリン酸などの縮合リン酸、リン酸、乳酸、グリコール酸などのヒドロキシカルボン酸、グルコン酸、酒石酸などの多価カルボン酸、ポリカルボン酸やそれらを含むアンモニウム塩、アルカリ金属塩などの化合物の群の中から選ばれるものを好ましいものとして挙げることが出来る。その他の有機カルボン酸や硫酸エステル、リン酸エステル、有機スルホン酸など他のアニオン性分散剤も使用できる。又、中性でアニオン性を有する基を持つものであれば、両性界面活性剤もアニオン性分散剤として使用できる。尚、中でも好ましいものは、縮合リン酸、リン酸、ヒドロキシカルボン酸、多価カルボン酸およびポリカルボン酸の群の中から選ばれるものを含む分散剤である。   Anionic dispersants include polyphosphoric acids such as pyrophosphoric acid and tripolyphosphoric acid that exhibit anionic properties in aqueous solution, hydroxycarboxylic acids such as phosphoric acid, lactic acid and glycolic acid, polyvalent carboxylic acids such as gluconic acid and tartaric acid, poly Preferred are those selected from the group of compounds such as carboxylic acids, ammonium salts containing them, and alkali metal salts. Other anionic dispersants such as other organic carboxylic acids, sulfate esters, phosphate esters, and organic sulfonic acids can also be used. In addition, an amphoteric surfactant can be used as an anionic dispersant as long as it is neutral and has an anionic group. Of these, preferred are dispersants including those selected from the group consisting of condensed phosphoric acid, phosphoric acid, hydroxycarboxylic acid, polyvalent carboxylic acid and polycarboxylic acid.

尚、アニオン性分散剤の量は、光触媒粒子100質量部に対して、0.5〜50質量部であることが好ましい。すなわち、アニオン性分散剤の量が少ない場合には、光触媒粒子の分散が不安定となり、そして分散性効果が乏しく、分散粒子の径が大きくなって、塗膜の密着性が低下する傾向が有るからである。逆に、多くなり過ぎると、触媒活性や膜強度に悪影響を与える傾向が有る。従って、光触媒粒子100質量部に対して、アニオン性分散剤は0.5〜50質量部が好ましい。より好ましい範囲は、1〜40質量部、更には3〜20質量部である。   In addition, it is preferable that the quantity of an anionic dispersing agent is 0.5-50 mass parts with respect to 100 mass parts of photocatalyst particles. That is, when the amount of the anionic dispersant is small, the dispersion of the photocatalyst particles becomes unstable, and the dispersibility effect is poor, the diameter of the dispersed particles is increased, and the adhesion of the coating film tends to be lowered. Because. On the other hand, if the amount is too large, the catalytic activity and the film strength tend to be adversely affected. Accordingly, the anionic dispersant is preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the photocatalyst particles. A more preferable range is 1 to 40 parts by mass, and further 3 to 20 parts by mass.

本発明の塗料組成物には有機アルカリが必須成分として用いられる。これは、有機アルカリを用いなかった場合、pH値が小さくて、チタン化合物粒子のような光触媒粒子の分散が不十分なものとなるからである。そして、有機アルカリを用いることによって、チタン化合物粒子のような光触媒粒子の分散性が向上する。   An organic alkali is used as an essential component in the coating composition of the present invention. This is because when no organic alkali is used, the pH value is small, and the dispersion of photocatalyst particles such as titanium compound particles is insufficient. And the dispersibility of photocatalyst particles like a titanium compound particle improves by using an organic alkali.

尚、pH値を大きくするのであれば、有機アルカリではなく、無機アルカリを用いることも出来る。しかしながら、無機アルカリを用いた場合には、二酸化チタン粒子のような光触媒粒子が凝集し易く、分散性が低下してしまう。従って、単に、アルカリと言うだけで無く、有機アルカリでなければならない。   If the pH value is increased, an inorganic alkali can be used instead of an organic alkali. However, when an inorganic alkali is used, photocatalyst particles such as titanium dioxide particles tend to aggregate and dispersibility is lowered. Therefore, it must be organic alkali, not just alkali.

そして、有機アルカリとしては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン、テトラメチルアンモニウムなどのテトラアルキルアンモニウム、モルホリン等のオキサジン、ピペリジン及びコリンの群の中から選ばれるものを好ましいものとして挙げることが出来る。中でも、モノエタノールアミン、ジエタノールアミン、モルホリン、水酸化テトラメチルアンモニウムは好ましい。   The organic alkali is preferably selected from the group consisting of alkanolamines such as monoethanolamine, diethanolamine and triethanolamine, tetraalkylammonium such as tetramethylammonium, oxazine such as morpholine, piperidine and choline. I can list them. Of these, monoethanolamine, diethanolamine, morpholine, and tetramethylammonium hydroxide are preferable.

尚、有機アルカリの量は、光触媒粒子100質量部に対して、0.5〜100質量部であることが好ましい。すなわち、有機アルカリの量が少ない場合には、pH値が低くなり過ぎ、光触媒粒子の分散性効果が乏しいからである。逆に、多くなり過ぎると、pH値が高くなり過ぎて、腐食性が強くなる傾向が有る。従って、光触媒粒子100質量部に対して、有機アルカリは0.5〜100質量部が好ましい。より好ましい範囲は、2〜80質量部、更には4〜40質量部である。   In addition, it is preferable that the quantity of an organic alkali is 0.5-100 mass parts with respect to 100 mass parts of photocatalyst particles. That is, when the amount of organic alkali is small, the pH value becomes too low and the dispersibility effect of the photocatalyst particles is poor. On the other hand, if the amount is too large, the pH value tends to be too high and the corrosivity tends to become strong. Therefore, 0.5-100 mass parts of organic alkalis are preferable with respect to 100 mass parts of photocatalyst particles. A more preferable range is 2 to 80 parts by mass, and further 4 to 40 parts by mass.

又、アニオン性分散剤と有機アルカリとの割合(質量比)は、アニオン性分散剤:有機アルカリ=100:50〜500であることが好ましい。   Moreover, it is preferable that the ratio (mass ratio) of an anionic dispersing agent and an organic alkali is anionic dispersing agent: organic alkali = 100: 50-500.

本発明の塗料組成物には硬化性板状粒子が必須成分として用いられる。すなわち、硬化性板状粒子を用いることによって、膜厚を1μmを越える厚さ、例えば2〜50μmのものとすることが可能になる。尚、本発明において、硬化性板状粒子とは、凝集性のある板状粒子であって、単独で硬化性のあるものを言う。このようなものとして、例えばシリカ−X、シリカ−Y、マガジナイト、カネマイト等の層状ポリケイ酸を好ましいものとして挙げることが出来る。シリカ−Xとしては、特願平11−351182号(特開2001−136613号公報)に述べられた鱗片状シリカが例示される。その他にも、タルク、マイカ、ガラスフレーク等も挙げられるが、上述のようなSiOを主成分とする硬化性板状粒子が特に好ましい。尚、特開2001−136613号公報に示される如く、例えば水ガラス水溶液に硫酸を混合してゲル化させたシリカゲル粒子を洗浄した後、これを更に水熱処理することによって鱗片形状の一次粒子が凝集した粒子を形成させ、この凝集粒子を粉砕して得た硬化性板状粒子が最も好ましい。 In the coating composition of the present invention, curable plate-like particles are used as an essential component. That is, by using curable plate-like particles, the film thickness can exceed 1 μm, for example, 2 to 50 μm. In the present invention, the curable plate-like particle means a plate-like particle having a cohesive property and curable alone. As such, for example, layered polysilicic acid such as silica-X, silica-Y, magazinite, kanemite and the like can be mentioned as preferable ones. Examples of silica-X include scaly silica described in Japanese Patent Application No. 11-351182 (Japanese Patent Laid-Open No. 2001-136613). In addition, talc, mica, glass flakes and the like can be mentioned, but curable plate-like particles mainly composed of SiO 2 as described above are particularly preferable. Incidentally, as shown in JP-A-2001-136613, for example, after washing silica gel particles that have been gelled by mixing sulfuric acid with a water glass aqueous solution, the scaly primary particles are aggregated by further hydrothermal treatment. The curable plate-like particles obtained by forming the formed particles and pulverizing the aggregated particles are most preferable.

そして、上記硬化性板状粒子は、そのアスペクト比が10〜300のものが好ましい。特に、アスペクト比が20〜200のものが好ましい。これは、硬化性板状粒子のアスペクト比が小さくなり過ぎると、塗膜の密着性が低下し、逆に、大きくなり過ぎると、塗膜の透明性が低下する傾向が有るからによる。又、平均粒長径が2μm以下、特に0.1〜0.8μmの板状粒子が好ましい。   The curable plate-like particles preferably have an aspect ratio of 10 to 300. In particular, an aspect ratio of 20 to 200 is preferable. This is because when the aspect ratio of the curable plate-like particles is too small, the adhesion of the coating film is lowered, and conversely, when it is too large, the transparency of the coating film tends to be lowered. Further, plate-like particles having an average grain length of 2 μm or less, particularly 0.1 to 0.8 μm are preferable.

尚、硬化性板状粒子の量は、光触媒粒子100質量部に対して、0.5〜400質量部であることが好ましい。すなわち、硬化性板状粒子の量が少ない場合には、塗膜の密着性が低下する傾向が有り、厚膜化が図れ難いからである。逆に、多くなり過ぎると、塗膜の透明性が低下すると共に、膜における光触媒粒子が相対的に少なくなり、光触媒活性が乏しくなる傾向が有るからによる。従って、光触媒粒子100質量部に対して、硬化性板状粒子は0.5〜400質量部が好ましい。より好ましい範囲は、5〜200質量部、更には10〜150質量部である。   In addition, it is preferable that the quantity of a curable plate-shaped particle is 0.5-400 mass parts with respect to 100 mass parts of photocatalyst particles. That is, when the amount of the curable plate-like particles is small, the adhesion of the coating film tends to decrease, and it is difficult to increase the film thickness. On the contrary, if the amount is too large, the transparency of the coating film is lowered, and the photocatalytic particles in the film are relatively decreased, and the photocatalytic activity tends to be poor. Accordingly, the curable plate-like particle is preferably 0.5 to 400 parts by mass with respect to 100 parts by mass of the photocatalyst particles. A more preferable range is 5 to 200 parts by mass, and further 10 to 150 parts by mass.

上記塗料組成物が基材上に塗布され、光触媒機能を奏する膜が設けられる。   The said coating composition is apply | coated on a base material, and the film | membrane which shows a photocatalytic function is provided.

しかしながら、単に、上記塗料組成物を基材に塗布して乾燥されることで構成されたと言うだけでは無く、該塗膜に存在する有機アルカリ分を分解させたものであることが好ましい。例えば、塗布工程後に、200℃以上の高温(好ましくは600℃以下)に加熱(加熱焼成)するとか、波長が600nm以下の光(電磁波)を照射することによって有機アルカリ分の分解を行う。勿論、両者を併用しても良い。すなわち、有機アルカリ分を分解することによって、光触媒機能が一層向上するようになる。つまり、これらの後処理により塗膜中の二酸化チタン粒子の表面に吸着した有機アルカリが分解して塗膜が硬化し、同時に、微細な空隙を作り、光触媒粒子表面に水、ガス、有機物等が吸着し易くなり、より優れた光触媒活性や親水性を発現するようになると考えられるからである。   However, it is not only that the coating composition is simply formed by applying the coating composition on a substrate and drying, but it is preferable that the organic alkali component present in the coating film is decomposed. For example, after the coating step, the organic alkali component is decomposed by heating (heating and baking) to a high temperature of 200 ° C. or higher (preferably 600 ° C. or lower) or by irradiating light (electromagnetic wave) having a wavelength of 600 nm or lower. Of course, you may use both together. That is, by decomposing the organic alkali, the photocatalytic function is further improved. In other words, the organic alkali adsorbed on the surface of the titanium dioxide particles in the coating film is decomposed by these post-treatments and the coating film is cured, and at the same time, fine voids are formed, and water, gas, organic matter, etc. are formed on the surface of the photocatalyst particles. This is because it is considered that it will be easily adsorbed and will exhibit more excellent photocatalytic activity and hydrophilicity.

尚、本発明の塗料組成物の中性化に必要なアルカリ分として有機アルカリでは無く、水酸化ナトリウム等の無機アルカリを使用すると、二酸化チタン粒子のような光触媒粒子の表面に吸着したアルカリ分が除去できず、光触媒活性がそれだけ低下する。従って、上記のような後処理でアルカリ分を簡単に除去できることからも、本発明では有機アルカリを用いる。   In addition, when an inorganic alkali such as sodium hydroxide is used instead of an organic alkali as an alkali component necessary for neutralization of the coating composition of the present invention, the alkali component adsorbed on the surface of the photocatalyst particles such as titanium dioxide particles is reduced. It cannot be removed, and the photocatalytic activity decreases accordingly. Therefore, the organic alkali is used in the present invention because the alkali can be easily removed by the post-treatment as described above.

本発明の塗料組成物は、該組成物の液のpHが4〜10の範囲に有るものが好ましい。   The coating composition of the present invention preferably has a pH of the liquid of the composition in the range of 4 to 10.

又、金属のような基材に塗布する場合を考慮すると、すきま腐食発生防止の為、塩素イオン濃度が0〜20ppmのものであることが好ましい。   In consideration of the case where it is applied to a substrate such as metal, it is preferable that the chlorine ion concentration is 0 to 20 ppm in order to prevent crevice corrosion.

本発明の塗料組成物の溶媒としては、水が最も好ましい。次いで、エタノール、メタノール、プロパノール等の水と相溶性のある溶媒が好ましい。水の一部をアルコール、グリコール、ケトン等の水溶性溶剤に置き換えても良い。   As the solvent of the coating composition of the present invention, water is most preferable. Next, a solvent compatible with water, such as ethanol, methanol, propanol or the like is preferable. A part of the water may be replaced with a water-soluble solvent such as alcohol, glycol, or ketone.

本発明において、シリカゾルやアルキルトリメトキシシランなどのシラン誘導体などをバインダ成分として添加して、塗膜物性を改善させることも可能である。   In the present invention, the physical properties of the coating film can be improved by adding a silane derivative such as silica sol or alkyltrimethoxysilane as a binder component.

本発明の光触媒部材に使用される基材としては特に限定されないが、アルミニウム、ステンレス、めっき鋼等の金属、ポリカーボネート、塩ビ、ポリエチレンテレフタレート、アクリル等の樹脂、紙、木材、ガラス、セラミックスなどが挙げられる。   Although it does not specifically limit as a base material used for the photocatalyst member of this invention, Resins, such as metals, such as aluminum, stainless steel, and plating steel, polycarbonate, vinyl chloride, a polyethylene terephthalate, an acryl, paper, wood, glass, ceramics, etc. are mentioned. It is done.

本発明の光触媒部材は、本発明の塗料組成物を含む塗料を基材表面にスプレー、浸漬、ロールコート、スピンコート、ブレードコート、刷毛塗り等の方法により設け、乾燥させたものである。好ましくは、この後、加熱乾燥や電磁波照射などの方法により塗膜中の有機アルカリを分解させると共に塗膜を硬化させたものである。   The photocatalyst member of the present invention is obtained by providing a coating containing the coating composition of the present invention on the surface of a substrate by a method such as spraying, dipping, roll coating, spin coating, blade coating, brush coating, or the like, and drying it. Preferably, after that, the organic alkali in the coating film is decomposed and the coating film is cured by a method such as heat drying or electromagnetic wave irradiation.

上記のようにして形成された塗膜は、基材表面に平行に堆積して二酸化チタンなどの光触媒粒子が間に挟まれた多層構造を形成する。そして、板状粒子の表面には多くの水酸基を有する為、脱水乾燥の過程で隣接する板状粒子と化学結合し、多孔質で有りながら、強固で柔軟性の有る無機皮膜が形成され、亀裂や剥離のない厚膜が得られている。更に、上記のようにして形成された塗膜は、実質的に透明であることが好ましい。例えば、無色透明なガラスに塗布した場合のヘイズが10%未満、可視光線透過率が60%以上のものが好ましい。   The coating film formed as described above is deposited in parallel on the substrate surface to form a multilayer structure in which photocatalyst particles such as titanium dioxide are sandwiched therebetween. And since the surface of the plate-like particles has many hydroxyl groups, it is chemically bonded to the adjacent plate-like particles in the process of dehydration and drying, and a porous and strong inorganic flexible film is formed. A thick film with no peeling is obtained. Furthermore, the coating film formed as described above is preferably substantially transparent. For example, those having a haze of less than 10% and a visible light transmittance of 60% or more when applied to colorless and transparent glass are preferred.

本発明になる塗料組成物を塗布して形成された塗膜は、基材との密着性に優れており、しかも透明性も高く、優れた触媒活性が得られ、実用性の高い光触媒部材が得られる。例えば、脱臭、汚れ分解、抗菌などの各種目的に応用することができ、その実用的価値は極めて大きい。   The coating film formed by applying the coating composition according to the present invention has excellent adhesion to the base material, is highly transparent, has excellent catalytic activity, and has a highly practical photocatalytic member. can get. For example, it can be applied to various purposes such as deodorization, soil decomposition, and antibacterial, and its practical value is extremely large.

本発明の塗料組成物は、光触媒粒子と、有機アルカリと、アニオン性分散剤と、硬化性板状粒子とを含む。   The coating composition of the present invention contains photocatalyst particles, an organic alkali, an anionic dispersant, and curable plate-like particles.

光触媒粒子としては各種のものが用いられる。例えば、酸化チタン、チタン酸、酸化亜鉛、酸化タングステン、酸化鉄などの公知の金属化合物半導体を、単独で、又は二種以上を組み合わせて使用できる。中でも、酸化チタンやチタン酸が用いられる。すなわち、オルトチタン酸やペルオキソチタン酸などのチタン酸が用いられた場合、或いはアナターゼ型二酸化チタン(メタチタン酸を含む)若しくは可視光型酸化チタン(窒素ドープ型や酸素欠陥型等の可視光応答性二酸化チタン)等の結晶性二酸化チタン、ルチル型、ブルッカイト型など光触媒活性を有する結晶性のものが用いられた場合、膜の透明性や光触媒活性がより向上していた。中でも、加熱焼成によって結晶性二酸化チタン光触媒となる無定型チタン酸(オルソチタン酸)や、結晶性を有するメタチタン酸またはアナターゼ型二酸化チタンが好ましかった。チタン酸は、例えば塩化チタン、オキシ塩化チタン、硫酸チタン、硫酸チタニル等の無機チタン化合物を水に溶解した溶液にアルカリを加えたり、アニオン交換膜やイオン交換樹脂による処理を加えてゾル溶液としたものを用いることが出来る。この場合、塩素、硫酸などの不純物イオンを除去した後、過酸化水素を加え、ペルオキソチタン酸溶液としたものである。アルコキシドを原料として使用する場合、チタンアルコキシドを低温で加水分解したものである。尚、加水分解を70℃以上の温度で行うことにより結晶性二酸化チタンが多く得られる。室温以下で加水分解を行うことにより無定型のオルソチタン酸が主として得られる。そして、これらの酸性ゾルを本発明の酸化チタンの原料として使用する。尚、原料の酸性ゾル中に塩素イオン、硫酸イオン、硝酸イオンなど腐食性のアニオンが含まれる場合には、濾過洗浄、イオン交換、透析などの方法により出来るだけ除去しておく。好ましいチタン酸溶液の例としては、特許第3238349号に開示されている中性アモルファス酸化チタンゾルや、特開平9−71418号公報に開示されているペルオキソ酸化チタンゾルである。二酸化チタンは、同様の方法で得た原料溶液に加熱加水分解の操作を施したり、気化させたチタン化合物を高温で酸素と反応させる等の方法により得られる。可視光応答性二酸化チタンとしては、アナターゼ型二酸化チタンを300℃以上の温度でアンモニアと接触させたり、アンモニウム塩を含むチタン酸を焼成する等の方法によって得られる。二酸化チタンなどの光触媒粒子の量は、該塗料組成物が塗布されて出来た塗膜において、光触媒粒子が300〜3000mg/m(特に、500mg/m以上。2000mg/m以下。)となる量である。 Various kinds of photocatalyst particles are used. For example, known metal compound semiconductors such as titanium oxide, titanic acid, zinc oxide, tungsten oxide, and iron oxide can be used alone or in combination of two or more. Among these, titanium oxide and titanic acid are used. That is, when titanic acid such as orthotitanic acid and peroxotitanic acid is used, or anatase type titanium dioxide (including metatitanic acid) or visible light type titanium oxide (nitrogen doped type or oxygen defect type visible light responsiveness, etc. When crystalline titanium dioxide (such as titanium dioxide) or a crystalline material having photocatalytic activity such as rutile type or brookite type was used, the transparency and photocatalytic activity of the film were further improved. Among them, amorphous titanic acid (orthotitanic acid) that becomes a crystalline titanium dioxide photocatalyst by heating and baking, and crystalline metatitanic acid or anatase type titanium dioxide were preferred. For example, titanic acid is made into a sol solution by adding alkali to a solution obtained by dissolving an inorganic titanium compound such as titanium chloride, titanium oxychloride, titanium sulfate, titanyl sulfate in water, or by treatment with an anion exchange membrane or an ion exchange resin. Things can be used. In this case, after removing impurity ions such as chlorine and sulfuric acid, hydrogen peroxide is added to form a peroxotitanic acid solution. When alkoxide is used as a raw material, titanium alkoxide is hydrolyzed at low temperature. In addition, many crystalline titanium dioxides are obtained by performing a hydrolysis at the temperature of 70 degreeC or more. Amorphous orthotitanic acid is mainly obtained by hydrolysis at room temperature or lower. These acidic sols are used as a raw material for the titanium oxide of the present invention. In the case where a corrosive anion such as chloride ion, sulfate ion or nitrate ion is contained in the raw acid sol, it is removed as much as possible by methods such as filtration washing, ion exchange and dialysis. Examples of preferred titanic acid solutions are neutral amorphous titanium oxide sols disclosed in Japanese Patent No. 3238349 and peroxotitanium oxide sols disclosed in JP-A-9-71418. Titanium dioxide is obtained by a method such as subjecting a raw material solution obtained by the same method to heat hydrolysis or reacting a vaporized titanium compound with oxygen at a high temperature. Visible light-responsive titanium dioxide can be obtained by a method in which anatase-type titanium dioxide is brought into contact with ammonia at a temperature of 300 ° C. or higher, or titanic acid containing an ammonium salt is baked. The amount of the photocatalyst particles, such as titanium dioxide, in the coating film coating composition is made is coated photocatalyst particles 300~3000mg / m 2 (in particular, 500 mg / m 2 or more .2000mg / m 2 or less.) And Is the amount.

アニオン性分散剤としては各種のものが用いられる。例えば、水溶液中でアニオン性を示すピロリン酸、トリポリリン酸などの縮合リン酸、リン酸、乳酸、グリコール酸などのヒドロキシカルボン酸、グルコン酸、酒石酸などの多価カルボン酸、ポリカルボン酸やそれらを含むアンモニウム塩、アルカリ金属塩などの化合物の群の中から選ばれる。その他の有機カルボン酸や硫酸エステル、リン酸エステル、有機スルホン酸など他のアニオン性分散剤も使用できる。又、中性でアニオン性を有する基を持つものであれば、両性界面活性剤もアニオン性分散剤として使用できる。特に好ましいものは、縮合リン酸、リン酸、ヒドロキシカルボン酸、多価カルボン酸およびポリカルボン酸の群の中から選ばれるものを含む分散剤である。アニオン性分散剤の量は、光触媒粒子100質量部に対して、0.5〜50質量部(特に、1質量部以上、更には3質量部以上。そして、40質量部以下、更には20質量部以下。)である。   Various types of anionic dispersants are used. For example, condensed phosphoric acid such as pyrophosphoric acid and tripolyphosphoric acid that are anionic in aqueous solution, hydroxycarboxylic acid such as phosphoric acid, lactic acid and glycolic acid, polyvalent carboxylic acid such as gluconic acid and tartaric acid, polycarboxylic acid and the like It is selected from the group of compounds such as ammonium salts and alkali metal salts. Other anionic dispersants such as other organic carboxylic acids, sulfate esters, phosphate esters, and organic sulfonic acids can also be used. In addition, an amphoteric surfactant can be used as an anionic dispersant as long as it is neutral and has an anionic group. Particularly preferred are dispersants including those selected from the group of condensed phosphoric acid, phosphoric acid, hydroxycarboxylic acid, polyvalent carboxylic acid and polycarboxylic acid. The amount of the anionic dispersant is 0.5 to 50 parts by mass (particularly 1 part by mass or more, further 3 parts by mass or more, and 40 parts by mass or less, and further 20 parts by mass with respect to 100 parts by mass of the photocatalyst particles. Part or less.).

有機アルカリとしては各種のものが用いられる。例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン、テトラメチルアンモニウムなどのテトラアルキルアンモニウム、モルホリン等のオキサジン、ピペリジン及びコリンの群の中から選ばれるものを好ましいものとして挙げることが出来る。中でも、モノエタノールアミン、ジエタノールアミン、モルホリン、水酸化テトラメチルアンモニウムは好ましい。有機アルカリの量は、光触媒粒子100質量部に対して、0.5〜100質量部(特に、2質量部以上、更には4質量部以上。そして、80質量部以下、更には40質量部以下。)である。又、アニオン性分散剤と有機アルカリとの割合(質量比)は、アニオン性分散剤:有機アルカリ=100:50〜500である。   Various organic alkalis are used. For example, alkanolamines such as monoethanolamine, diethanolamine and triethanolamine, tetraalkylammonium such as tetramethylammonium, oxazines such as morpholine, piperidine and choline can be mentioned as preferred. Of these, monoethanolamine, diethanolamine, morpholine, and tetramethylammonium hydroxide are preferable. The amount of the organic alkali is 0.5 to 100 parts by mass with respect to 100 parts by mass of the photocatalyst particles (particularly 2 parts by mass or more, further 4 parts by mass or more. And 80 parts by mass or less, further 40 parts by mass or less. .) Moreover, the ratio (mass ratio) of an anionic dispersing agent and an organic alkali is anionic dispersing agent: organic alkali = 100: 50-500.

硬化性板状粒子としては各種のものが用いられる。例えば、シリカ−X、シリカ−Y、マガジナイト、カネマイト等の層状ポリケイ酸がある。シリカ−Xとしては、特願平11−351182号(特開2001−136613号公報)に述べられた鱗片状シリカが特に挙げられる。その他にも、タルク、マイカ、ガラスフレーク等も挙げられるが、SiOを主成分とする硬化性板状粒子が特に好ましい。特に、特開2001−136613号公報に示される如く、例えば水ガラス水溶液に硫酸を混合してゲル化させた粒子を洗浄した後、これを更に水熱処理することによって鱗片形状の一次粒子が凝集した粒子を形成させ、この凝集粒子を粉砕して得た硬化性板状粒子が最も好ましい。硬化性板状粒子は、そのアスペクト比が10〜300、特に、20〜200のものである。又、平均粒径が2μm以下、特に0.1〜0.8μmの板状粒子である。硬化性板状粒子の量は、光触媒粒子100質量部に対して、0.5〜400質量部(特に、5質量部以上、更には10質量部以上。そして、200質量部以下、更には150質量部以下)である。 Various kinds of curable plate-like particles are used. For example, there are layered polysilicic acids such as silica-X, silica-Y, magazinite, and kanemite. Examples of silica-X include scaly silica described in Japanese Patent Application No. 11-351182 (Japanese Patent Laid-Open No. 2001-136613). Besides, talc, mica, and glass flakes may be mentioned, curing the plate-like particles composed mainly of SiO 2 is particularly preferred. In particular, as shown in JP-A No. 2001-136613, for example, after washing particles that have been gelled by mixing sulfuric acid with a water glass aqueous solution, the primary particles of scales aggregated by further hydrothermal treatment. A curable plate-like particle obtained by forming particles and pulverizing the aggregated particles is most preferable. The curable plate-like particles have an aspect ratio of 10 to 300, particularly 20 to 200. Further, it is a plate-like particle having an average particle diameter of 2 μm or less, particularly 0.1 to 0.8 μm. The amount of the curable plate-like particles is 0.5 to 400 parts by mass (particularly 5 parts by mass or more, more preferably 10 parts by mass or more, and 200 parts by mass or less, and further 150 parts with respect to 100 parts by mass of the photocatalyst particles. Or less).

本発明の塗料組成物は、液のpHが4〜10(特に、4.5以上。そして、9.0以下)である。又、塩素イオン濃度が20ppm以下(0も含む。)である。塗料組成物の溶媒としては、水が特に用いられる。エタノール、メタノール、プロパノール等の水と相溶性のある溶媒も用いられる。尚、水の一部がアルコール、グリコール、ケトン等の水溶性溶剤に置き換えられ得る。   In the coating composition of the present invention, the pH of the liquid is 4 to 10 (particularly 4.5 or more and 9.0 or less). The chlorine ion concentration is 20 ppm or less (including 0). Water is particularly used as the solvent for the coating composition. Solvents that are compatible with water, such as ethanol, methanol, and propanol are also used. A part of the water can be replaced with a water-soluble solvent such as alcohol, glycol, or ketone.

本発明の塗料組成物は、シリカゾルやアルキルトリメトキシシランなどのシラン誘導体などをバインダ成分として含む場合も有る。   The coating composition of the present invention may contain a sol derivative such as silica sol or alkyltrimethoxysilane as a binder component.

本発明の光触媒機能を有する膜の形成方法は、上記塗料組成物を基材に塗布する方法である。特に、乾燥膜厚が0.5〜50μm(特に、1μm以上、更には1.5μm以上、より更には2μm以上。そして、40μm以下、更には30μm以下。)となるよう塗布する方法である。塗布方法としては、スプレー、浸漬、ロールコート、スピンコート、ブレードコート、刷毛塗り等の方法が採用される。そして、塗布した後、塗膜中の有機アルカリを分解させる有機アルカリ分解工程を有する。有機アルカリ分解工程は、例えば加熱工程である。より具体的に説明すると、200℃以上の高温(好ましくは600℃以下)に加熱(加熱焼成)する工程である。或いは、光照射工程である。より具体的に説明すると、波長が600nm以下の光(電磁波)を照射する工程である。すなわち、塗膜に存する有機アルカリ分を分解することによって、塗膜中の二酸化チタン粒子の表面に吸着した有機アルカリが分解して塗膜が硬化し、同時に、微細な空隙が作られ、光触媒粒子表面に水、ガス、有機物等が吸着し易くなる。   The method for forming a film having a photocatalytic function of the present invention is a method of applying the coating composition to a substrate. In particular, it is a method of coating so that the dry film thickness is 0.5 to 50 μm (particularly 1 μm or more, further 1.5 μm or more, more preferably 2 μm or more, and 40 μm or less, further 30 μm or less). As a coating method, methods such as spraying, dipping, roll coating, spin coating, blade coating, and brush coating are employed. And after apply | coating, it has the organic alkali decomposition process which decomposes | disassembles the organic alkali in a coating film. The organic alkali decomposition step is, for example, a heating step. More specifically, it is a step of heating (heating and baking) to a high temperature of 200 ° C. or higher (preferably 600 ° C. or lower). Or it is a light irradiation process. More specifically, it is a step of irradiating light (electromagnetic wave) having a wavelength of 600 nm or less. That is, by decomposing the organic alkali content in the coating film, the organic alkali adsorbed on the surface of the titanium dioxide particles in the coating film is decomposed and the coating film is cured, and at the same time, fine voids are created, photocatalyst particles Water, gas, organic matter and the like are easily adsorbed on the surface.

本発明の光触媒部材に使用される基材としては特に限定されないが、アルミニウム、ステンレス、めっき鋼等の金属、ポリカーボネート、塩ビ、PET、アクリル等の樹脂、紙、木材、ガラス、セラミックスなどが用いられる。   Although it does not specifically limit as a base material used for the photocatalyst member of this invention, Resins, such as metals, such as aluminum, stainless steel, and plated steel, polycarbonate, vinyl chloride, PET, and acrylic, paper, wood, glass, ceramics, etc. are used. .

本発明の光触媒部材は、上記の塗料組成物が基材上に塗布されて出来たものである。特に、上記の光触媒機能を有する膜の形成方法により基材上に塗布されて出来たものである。乾燥後の膜厚は0.5〜50μm(特に、1μm以上、更には1.5μm以上、より更には2μm以上。そして、40μm以下、更には30μm以下。)である。   The photocatalyst member of the present invention is obtained by applying the coating composition on a substrate. In particular, it is formed on a substrate by the above-described method for forming a film having a photocatalytic function. The film thickness after drying is 0.5 to 50 μm (particularly 1 μm or more, further 1.5 μm or more, more preferably 2 μm or more, and 40 μm or less, further 30 μm or less).

以下、本発明について、具体的実施例を挙げて説明する。但し、本発明は実施例によって何ら制約されるものではない。   Hereinafter, the present invention will be described with specific examples. However, this invention is not restrict | limited at all by an Example.

以下の材料を使用した。
[光触媒粒子]
以下の2種類(A,B)のうち何れかの分散ゾルを使用した。
(A)チタン酸

実施例1〜5、実施例7、及び比較例1〜8では、チタン酸ゾルとして、以下の方法により調製したものを使用した。
東邦チタニウム(株)製塩化チタン水溶液(Ti:15〜16%)を水で希釈し、イオン交換膜により脱イオン処理してオキシ塩化チタン水溶液としたものを70〜85℃で加熱加水分解し、生成したpH1〜2の二酸化チタンゾルを精製して使用した。透過型電子顕微鏡による二酸化チタンの結晶粒子径は0.002〜0.01μmであった。酸化チタンゾル粒子の濃度は、乾燥重量で5.0%であった。
実施例10では、オキシ塩化チタン水溶液にアンモニアを加えて生成したオルトチタン酸の沈殿を水洗し、これを過酸化水素水に溶解して2%ペルオキソチタン酸溶液としたものを使用した。
(B)二酸化チタン

実施例6,8,9、及び比較例9では、石原産業(株)製の二酸化チタン粉体粒子:ST−01(結晶粒子径:0.007μm、アナターゼ型)を水に分散させた5%分散液を使用した。
The following materials were used.
[Photocatalyst particles]
Either of the following two types (A, B) was used.
(A) Titanic acid

In Examples 1-5, Example 7, and Comparative Examples 1-8, what was prepared with the following method was used as a titanate sol.
A titanium chloride aqueous solution (Ti: 15-16%) manufactured by Toho Titanium Co., Ltd. was diluted with water, deionized with an ion exchange membrane to obtain a titanium oxychloride aqueous solution, and heated and hydrolyzed at 70 to 85 ° C. The resulting titanium dioxide sol having a pH of 1-2 was purified and used. The crystal particle diameter of titanium dioxide measured by a transmission electron microscope was 0.002 to 0.01 μm. The concentration of the titanium oxide sol particles was 5.0% by dry weight.
In Example 10, a precipitate of orthotitanic acid generated by adding ammonia to a titanium oxychloride aqueous solution was washed with water, and this was dissolved in hydrogen peroxide to obtain a 2% peroxotitanic acid solution.
(B) Titanium dioxide

In Examples 6, 8, 9 and Comparative Example 9, 5% in which titanium dioxide powder particles: ST-01 (crystal particle diameter: 0.007 μm, anatase type) manufactured by Ishihara Sangyo Co., Ltd. was dispersed in water. A dispersion was used.

[分散剤]
アニオン性分散剤として、グルコン酸、グリコール酸、乳酸、ポリリン酸、ピロリン酸ナトリウム、及びトリポリリン酸の中から選択して使用した。
カチオン性分散剤として、塩化ベンザルコニウムを使用した。
尚、これ等の薬品は和光純薬(株)製の試薬1級品である。
[Dispersant]
The anionic dispersant was selected from gluconic acid, glycolic acid, lactic acid, polyphosphoric acid, sodium pyrophosphate, and tripolyphosphoric acid.
Benzalkonium chloride was used as the cationic dispersant.
These chemicals are grade 1 reagents manufactured by Wako Pure Chemical Industries, Ltd.

[アルカリ成分]
有機アルカリとしてモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、ピペリジン、及びコリンの中から選択して使用した。
無機アルカリとして水酸化ナトリウム又は水酸化カリウムを用いた。
尚、これ等の薬品は試薬1級品または相当品である。
[Alkali component]
The organic alkali was selected from monoethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, and choline.
Sodium hydroxide or potassium hydroxide was used as the inorganic alkali.
These chemicals are reagent grade 1 products or equivalent products.

[硬化性粒子]
実施例1〜10、及び比較例1〜6では、板状粒子として洞海化学工業(株)製サンラブリーLFS−050(アスペクト比:50)を使用した。
比較例7〜9では、球状粒子として日産化学(株)製シリカゾル:スノーテックスOを使用した。
[Curable particle]
In Examples 1 to 10 and Comparative Examples 1 to 6, Sunlably LFS-050 (aspect ratio: 50) manufactured by Dokai Chemical Industries, Ltd. was used as the plate-like particles.
In Comparative Examples 7 to 9, silica sol: Snowtex O manufactured by Nissan Chemical Co., Ltd. was used as spherical particles.

[実施例1]
光触媒粒子を100質量部含む水分散ゾルに、4.3質量部のモノエタノールアミン、5.7質量部のポリリン酸、14.3質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 1]
A water-dispersed sol containing 100 parts by mass of photocatalyst particles was mixed and stirred with 4.3 parts by mass of monoethanolamine, 5.7 parts by mass of polyphosphoric acid, and 14.3 parts by mass of plate-like curable particles, and titanium oxide. A coating solution was prepared.

[実施例2]
光触媒粒子を100質量部含む水分散ゾルに、5.0質量部のテトラメチルアンモニウム、14.3質量部のグリコール酸、35.7質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 2]
Mixing and stirring 5.0 parts by weight of tetramethylammonium, 14.3 parts by weight of glycolic acid, and 35.7 parts by weight of plate-like curable particles in an aqueous dispersion sol containing 100 parts by weight of photocatalyst particles, titanium oxide A coating solution was prepared.

[実施例3]
光触媒粒子を100質量部含む水分散ゾルに、14.3質量部のコリン、28.6質量部のポリリン酸、57.1質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 3]
An aqueous dispersion sol containing 100 parts by mass of photocatalyst particles is mixed and stirred with 14.3 parts by mass of choline, 28.6 parts by mass of polyphosphoric acid, and 57.1 parts by mass of plate-like curable particles, and a titanium oxide coating solution. Was made.

[実施例4]
光触媒粒子を100質量部含む水分散ゾルに、13.3質量部のジエタノールアミン、10.0質量部のグルコン酸、250.0質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 4]
13.3 parts by mass of diethanolamine, 10.0 parts by mass of gluconic acid, 250.0 parts by mass of plate-like curable particles are mixed and stirred in an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles, and a titanium oxide coating solution Was made.

[実施例5]
光触媒粒子を100質量部含む水分散ゾルに、4.2質量部のモノエタノールアミン、1.7質量部のグリコール酸、125.0質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 5]
Mixing and stirring 4.2 parts by weight of monoethanolamine, 1.7 parts by weight of glycolic acid, and 125.0 parts by weight of plate-like curable particles in an aqueous dispersion sol containing 100 parts by weight of photocatalyst particles, titanium oxide A coating solution was prepared.

[実施例6]
光触媒粒子を100質量部含む水分散ゾルに、14.3質量部のモルホリン、7.1質量部の乳酸、3.6質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 6]
In an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles, 14.3 parts by mass of morpholine, 7.1 parts by mass of lactic acid, 3.6 parts by mass of plate-like curable particles are mixed and stirred, and a titanium oxide coating solution is added. Produced.

[実施例7]
光触媒粒子を100質量部含む水分散ゾルに、42.1質量部のトリエタノールアミン、21.0質量部のリン酸、52.6質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 7]
42.1 parts by mass of triethanolamine, 21.0 parts by mass of phosphoric acid, and 52.6 parts by mass of plate-like curable particles are mixed and stirred in an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles, and titanium oxide is mixed. A coating solution was prepared.

[実施例8]
光触媒粒子を100質量部含む水分散ゾルに、5.7質量部のテトラメチルアンモニウム、25.0質量部のグリコール酸、57.1質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 8]
5.7 parts by mass of tetramethylammonium, 25.0 parts by mass of glycolic acid, and 57.1 parts by mass of plate-like curable particles were mixed and stirred in an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles, and titanium oxide. A coating solution was prepared.

[実施例9]
光触媒粒子を100質量部含む水分散ゾルに、2.9質量部のモルホリン、17.9質量部のリン酸、1.4質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 9]
A water-dispersed sol containing 100 parts by mass of photocatalyst particles is mixed and stirred with 2.9 parts by mass of morpholine, 17.9 parts by mass of phosphoric acid, and 1.4 parts by mass of plate-like curable particles. Was made.

[実施例10]
光触媒粒子を100質量部含む水分散ゾルに、7.1質量部のピペリジン、4.3質量部のグリコール酸、39.3質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Example 10]
A water-dispersed sol containing 100 parts by mass of photocatalyst particles is mixed and stirred with 7.1 parts by mass of piperidine, 4.3 parts by mass of glycolic acid, and 39.3 parts by mass of plate-like curable particles, and a titanium oxide coating solution. Was made.

[比較例1]
光触媒粒子を100質量部含む水分散ゾルに、4.3質量部のモノエタノールアミン、5.7質量部のポリリン酸、14.3質量部の球状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 1]
An aqueous dispersion sol containing 100 parts by mass of photocatalyst particles is mixed and stirred with 4.3 parts by mass of monoethanolamine, 5.7 parts by mass of polyphosphoric acid, and 14.3 parts by mass of spherical curable particles, and coated with titanium oxide. A liquid was prepared.

[比較例2]
光触媒粒子を100質量部含む水分散ゾルに、4.3質量部の水酸化ナトリウム、5.7質量部のポリリン酸、14.3質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 2]
A water-dispersed sol containing 100 parts by mass of photocatalyst particles was mixed and stirred with 4.3 parts by mass of sodium hydroxide, 5.7 parts by mass of polyphosphoric acid, and 14.3 parts by mass of plate-like curable particles, and titanium oxide. A coating solution was prepared.

[比較例3]
光触媒粒子を100質量部含む水分散ゾルに、4.3質量部のモノエタノールアミン、5.7質量部の塩化ベンザルコニウム(カチオン分散剤)、14.3質量部の板状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 3]
In an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles, 4.3 parts by mass of monoethanolamine, 5.7 parts by mass of benzalkonium chloride (cationic dispersant), and 14.3 parts by mass of plate-like curable particles. Mixing and stirring were performed to prepare a titanium oxide coating solution.

[比較例4]
光触媒粒子を100質量部含む水分散ゾルに、5.7質量部のポリリン酸、14.3質量部の球状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 4]
5.7 parts by mass of polyphosphoric acid and 14.3 parts by mass of spherical curable particles were mixed and stirred in an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles to prepare a titanium oxide coating solution.

[比較例5]
光触媒粒子を100質量部含む水分散ゾルに、4.3質量部のモノエタノールアミン、14.3質量部の球状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 5]
A water-dispersed sol containing 100 parts by mass of photocatalyst particles was mixed and stirred with 4.3 parts by mass of monoethanolamine and 14.3 parts by mass of spherical curable particles to prepare a titanium oxide coating solution.

[比較例6]
光触媒粒子を100質量部含む水分散ゾルに、4.3質量部のモノエタノールアミン、5.7質量部のポリリン酸を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 6]
A water-dispersed sol containing 100 parts by mass of photocatalyst particles was mixed with 4.3 parts by mass of monoethanolamine and 5.7 parts by mass of polyphosphoric acid to prepare a titanium oxide coating solution.

[比較例7]
光触媒粒子を100質量部含む水分散ゾルに、8.6質量部の水酸化ナトリウム、21.4質量部のポリリン酸、35.7質量部の球状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 7]
8.6 parts by weight of sodium hydroxide, 21.4 parts by weight of polyphosphoric acid, 35.7 parts by weight of spherical curable particles are mixed and stirred in an aqueous dispersion sol containing 100 parts by weight of photocatalyst particles, and coated with titanium oxide. A liquid was prepared.

[比較例8]
光触媒粒子を100質量部含む水分散ゾルに、8.3質量部の水酸化カリウム、0.3質量部の乳酸、250.0質量部の球状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 8]
8.3 parts by mass of potassium hydroxide, 0.3 parts by mass of lactic acid, and 250.0 parts by mass of spherical curable particles are mixed and stirred in an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles, and a titanium oxide coating solution Was made.

[比較例9]
光触媒粒子を100質量部含む水分散ゾルに55.6質量部の球状硬化性粒子を混合・攪拌し、酸化チタンコーティング液を作製した。
[Comparative Example 9]
55.6 parts by mass of spherical curable particles were mixed and stirred in an aqueous dispersion sol containing 100 parts by mass of photocatalyst particles to prepare a titanium oxide coating solution.

[特性]
上記各例のコーティング液を基板にバーコーターで膜厚が2.5μmとなるように塗布した。基板としては、SiOプライマーコートを施したアクリル樹脂塗装アルミニウム合金とガラス板とを用いた。尚、透明性の評価にはガラス板を使用した。
そして、実施例1〜6、実施例10、比較例1〜7、及び比較例9のものは、300℃で10分間の加熱乾燥を行った。
実施例7〜9、及び比較例8のものは、波長360nm、強度2mW/cmの紫外線を24時間照射した。
[Characteristic]
The coating solutions of the above examples were applied to the substrate with a bar coater so that the film thickness was 2.5 μm. As the substrate, an acrylic resin-coated aluminum alloy coated with SiO 2 primer and a glass plate were used. A glass plate was used for evaluation of transparency.
And the thing of Examples 1-6, Example 10, Comparative Examples 1-7, and Comparative Example 9 performed the heat drying for 10 minutes at 300 degreeC.
Examples 7 to 9 and Comparative Example 8 were irradiated with ultraviolet rays having a wavelength of 360 nm and an intensity of 2 mW / cm 2 for 24 hours.

このようにして得られた塗膜の性能について、以下の試験法および評価基準により評価したので、その結果を下記の表−1に示す。   Since the performance of the coating film thus obtained was evaluated by the following test methods and evaluation criteria, the results are shown in Table 1 below.

[透明性]
○:ガラス試験片の可視光線透過率が70%以上であるもの
△:ガラス試験片の可視光線透過率が40%以上、70%未満のもの
×:ガラス試験片の可視光線透過率が40%未満のもの
[密着性]
JIS−K5400碁盤目テープ法塗膜付着性試験に準じて塗膜の密着性を判定した。
○:塗膜の剥離が認められ無いもの
△:塗膜の一部剥離が認められるもの
×:塗膜の全部が剥離したもの
[光触媒活性]

100×100mmのアルミ試験片を3Lのパイレックスガラス容器内に設置し、密閉してアセトアルデヒドガスを濃度が300ppmとなるよう注入した。20Wブラックライトで紫外線を3時間照射し、照射後のアルデヒド濃度をガス検知管で測定して除去率を算出し、光触媒による分解性を測定した。
[transparency]
○: Visible light transmittance of glass test piece is 70% or more Δ: Visible light transmittance of glass test piece is 40% or more and less than 70% ×: Visible light transmittance of glass test piece is 40% Less than [Adhesion]
The adhesion of the coating film was determined according to the JIS-K5400 cross-cut tape method coating film adhesion test.
○: No peeling of coating film is observed Δ: Partial peeling of coating film is recognized ×: All coating film is peeled [Photocatalytic activity]

A 100 × 100 mm aluminum test piece was placed in a 3 L Pyrex glass container, sealed, and acetaldehyde gas was injected to a concentration of 300 ppm. Ultraviolet rays were irradiated for 3 hours with a 20 W black light, the aldehyde concentration after irradiation was measured with a gas detector tube, the removal rate was calculated, and the decomposability by the photocatalyst was measured.

表−1
透明性 密着性 アセトアルデヒド除去率(%)
実施例1 ○ ○ 95
実施例2 ○ ○ 92
実施例3 ○ ○ 92
実施例4 ○ ○ 94
実施例5 ○ ○ 91
実施例6 ○ ○ 94
実施例7 ○ ○ 89
実施例8 ○ ○ 90
実施例9 ○ ○ 94
実施例10 ○ ○ 92
比較例1 △ × 75
比較例2 × △ 78
比較例3 △ × 78
比較例4 △ × 70
比較例5 △ × 72
比較例6 △ × 76
比較例7 △ × 55
比較例8 △ × 65
比較例9 △ △ 70

特許出願人 日本パーカライジング株式会社
旭硝子株式会社
洞海化学工業株式会社
代 理 人 宇 高 克 己
Table-1
Transparency Adhesion Acetaldehyde removal rate (%)
Example 1 ○ ○ 95
Example 2 ○ ○ 92
Example 3 ○ ○ 92
Example 4 ○ ○ 94
Example 5 ○ ○ 91
Example 6 ○ ○ 94
Example 7 ○ ○ 89
Example 8 ○ ○ 90
Example 9 ○ ○ 94
Example 10 ○ ○ 92
Comparative Example 1 Δ × 75
Comparative Example 2 × △ 78
Comparative Example 3 Δ × 78
Comparative Example 4 Δ × 70
Comparative Example 5 Δ × 72
Comparative Example 6 Δ × 76
Comparative Example 7 Δ × 55
Comparative Example 8 Δ × 65
Comparative Example 9 △ △ 70

Patent Applicant Nippon Parkerizing Co., Ltd.
Asahi Glass Co., Ltd.
Dokai Chemical Industry Co., Ltd.
Representative Katsumi Udaka

Claims (11)

光触媒粒子と、
有機アルカリと、
アニオン性分散剤と、
硬化性板状粒子
とを含むことを特徴とする塗料組成物。
Photocatalyst particles,
Organic alkali,
An anionic dispersant;
A coating composition comprising curable plate-like particles.
光触媒粒子が、酸化チタン及びチタン酸の群の中から選ばれるものを含む粒子であることを特徴とする請求項1の塗料組成物。   2. The coating composition according to claim 1, wherein the photocatalyst particles are particles containing one selected from the group consisting of titanium oxide and titanic acid. 有機アルカリが、アルカノールアミン、テトラアルキルアンモニウム、オキサジン、ピペリジン及びコリンの群の中から選ばれるものを含むアルカリであることを特徴とする請求項1又は請求項2の塗料組成物。   The coating composition according to claim 1 or 2, wherein the organic alkali is an alkali containing one selected from the group of alkanolamine, tetraalkylammonium, oxazine, piperidine and choline. アニオン性分散剤が、縮合リン酸、リン酸、ヒドロキシカルボン酸、多価カルボン酸およびポリカルボン酸の群の中から選ばれるものを含む分散剤であることを特徴とする請求項1〜請求項3いずれかの塗料組成物。   The anionic dispersant is a dispersant containing one selected from the group of condensed phosphoric acid, phosphoric acid, hydroxycarboxylic acid, polyvalent carboxylic acid and polycarboxylic acid. 3. Any one of the coating compositions. 硬化性板状粒子は、SiOを主成分とするもので、そのアスペクト比が10〜300のものであることを特徴とする請求項1〜請求項4いずれかの塗料組成物。 5. The coating composition according to claim 1, wherein the curable plate-like particles are composed mainly of SiO 2 and have an aspect ratio of 10 to 300. 6. 100質量部の光触媒粒子に対して、有機アルカリが0.5〜100質量部、アニオン性分散剤が0.5〜50質量部、硬化性板状粒子が0.5〜400質量部の割合で含まれることを特徴とする請求項1〜請求項5いずれかの塗料組成物。   The organic alkali is 0.5 to 100 parts by weight, the anionic dispersant is 0.5 to 50 parts by weight, and the curable plate-like particles are 0.5 to 400 parts by weight with respect to 100 parts by weight of the photocatalyst particles. The coating composition according to claim 1, which is contained. 請求項1〜6いずれかに記載の塗料組成物を基材に塗布する塗布工程と、
前記塗布工程の後、塗膜中の有機アルカリを分解させる有機アルカリ分解工程
とを有することを特徴とする光触媒機能を有する膜の形成方法。
An application step of applying the coating composition according to claim 1 to a substrate;
A method for forming a film having a photocatalytic function, comprising: an organic alkali decomposition step of decomposing an organic alkali in a coating film after the coating step.
有機アルカリ分解工程が加熱による工程であることを特徴とする請求項7の光触媒機能を有する膜の形成方法。   8. The method for forming a film having a photocatalytic function according to claim 7, wherein the organic alkali decomposition step is a step by heating. 有機アルカリ分解工程が光照射による工程であることを特徴とする請求項7又は請求項8の光触媒機能を有する膜の形成方法。   The method for forming a film having a photocatalytic function according to claim 7 or 8, wherein the organic alkali decomposition step is a step by light irradiation. 請求項1〜6いずれかに記載の塗料組成物が塗布されてなることを特徴とする光触媒部材。   A photocatalyst member comprising the coating composition according to claim 1 applied thereto. 請求項7〜9いずれかに記載の光触媒機能を有する膜の形成方法により形成されてなることを特徴とする光触媒部材。
A photocatalytic member formed by the method for forming a film having a photocatalytic function according to any one of claims 7 to 9.
JP2003410936A 2003-12-09 2003-12-09 Coating composition, method of forming film having optical catalytic function, and optical catalytic member Pending JP2005171029A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003410936A JP2005171029A (en) 2003-12-09 2003-12-09 Coating composition, method of forming film having optical catalytic function, and optical catalytic member
KR1020040103515A KR20050056155A (en) 2003-12-09 2004-12-09 Coating composition, method for preparation of film having photocatalyst function, and photocatalyst member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410936A JP2005171029A (en) 2003-12-09 2003-12-09 Coating composition, method of forming film having optical catalytic function, and optical catalytic member

Publications (1)

Publication Number Publication Date
JP2005171029A true JP2005171029A (en) 2005-06-30

Family

ID=34731874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410936A Pending JP2005171029A (en) 2003-12-09 2003-12-09 Coating composition, method of forming film having optical catalytic function, and optical catalytic member

Country Status (2)

Country Link
JP (1) JP2005171029A (en)
KR (1) KR20050056155A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320839A (en) * 2006-06-05 2007-12-13 Taki Chem Co Ltd Alkali-type titanium oxide sol and method for producing the same
JP2009056348A (en) * 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd Photocatalyst dispersion
JP2009521613A (en) * 2005-12-21 2009-06-04 ミリケン・アンド・カンパニー Dough having photocatalyst component and activated carbon component, and production method
JP2010050094A (en) * 2008-08-12 2010-03-04 Boeing Co:The Durable transparent electrode on polymer substrate
JP2010150434A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Method for manufacturing weatherproof and foulingproof emulsion coating material and coated film thereof
JP2010274142A (en) * 2009-04-30 2010-12-09 Shin-Etsu Chemical Co Ltd Dispersion of photocatalyst particles, and method of producing the same
JP2014024041A (en) * 2012-07-30 2014-02-06 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE
WO2016067823A1 (en) * 2014-10-28 2016-05-06 Toto株式会社 Photocatalyst composite particles and method for producing same
JP2016083659A (en) * 2014-10-28 2016-05-19 Toto株式会社 Photocatalyst composite particle and method for producing the same
JP2020001014A (en) * 2018-06-29 2020-01-09 地方独立行政法人東京都立産業技術研究センター Method of producing laminated structure having photocatalysis
CN112119123A (en) * 2018-03-06 2020-12-22 瀚森公司 Catalyst system for curing phenolic resole resins
CN113527970A (en) * 2021-08-17 2021-10-22 河南润南漆业有限公司 Indoor formaldehyde-removing coating and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130837A1 (en) * 2015-02-11 2016-08-18 Allied Bioscience, Inc. Anti-microbial coating and method to form same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521613A (en) * 2005-12-21 2009-06-04 ミリケン・アンド・カンパニー Dough having photocatalyst component and activated carbon component, and production method
JP2007320839A (en) * 2006-06-05 2007-12-13 Taki Chem Co Ltd Alkali-type titanium oxide sol and method for producing the same
JP4606385B2 (en) * 2006-06-05 2011-01-05 多木化学株式会社 Method for producing alkali-type titanium oxide sol
JP2009056348A (en) * 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd Photocatalyst dispersion
JP2010050094A (en) * 2008-08-12 2010-03-04 Boeing Co:The Durable transparent electrode on polymer substrate
JP2010150434A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Method for manufacturing weatherproof and foulingproof emulsion coating material and coated film thereof
JP2010274142A (en) * 2009-04-30 2010-12-09 Shin-Etsu Chemical Co Ltd Dispersion of photocatalyst particles, and method of producing the same
JP2014024041A (en) * 2012-07-30 2014-02-06 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE
WO2016067823A1 (en) * 2014-10-28 2016-05-06 Toto株式会社 Photocatalyst composite particles and method for producing same
JP2016083659A (en) * 2014-10-28 2016-05-19 Toto株式会社 Photocatalyst composite particle and method for producing the same
US10173199B2 (en) * 2014-10-28 2019-01-08 Toto Ltd. Photocatalyst composite particles and method for producing same
CN112119123A (en) * 2018-03-06 2020-12-22 瀚森公司 Catalyst system for curing phenolic resole resins
US20200399416A1 (en) * 2018-03-06 2020-12-24 Hexion Specialty Chemicals (Mumbai) Pvt. Ltd. Catalyst system for curing phenolic resole resins
CN112119123B (en) * 2018-03-06 2023-10-24 巴克莱特英国控股有限公司 Catalyst system for curing phenolic resole resins
JP2020001014A (en) * 2018-06-29 2020-01-09 地方独立行政法人東京都立産業技術研究センター Method of producing laminated structure having photocatalysis
JP6992980B2 (en) 2018-06-29 2022-01-13 地方独立行政法人東京都立産業技術研究センター Method for manufacturing a laminated structure having a photocatalytic action
CN113527970A (en) * 2021-08-17 2021-10-22 河南润南漆业有限公司 Indoor formaldehyde-removing coating and preparation method thereof

Also Published As

Publication number Publication date
KR20050056155A (en) 2005-06-14

Similar Documents

Publication Publication Date Title
KR100562173B1 (en) Titanium oxide colloidal sol and process for the preparation thereof
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
KR100485955B1 (en) Titanium dioxide ceramic paint and methods of producing same
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
JP2005171029A (en) Coating composition, method of forming film having optical catalytic function, and optical catalytic member
JP2002146283A (en) Photocatalytic coating fluid containing titanium oxide and its manufacturing method and titanium oxide photocatalytic structure
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP4287695B2 (en) Photocatalyst
JP4079780B2 (en) Inorganic film forming coating agent and inorganic film forming method using the coating agent
KR101048340B1 (en) Transparent film forming composition
JPH10114870A (en) Titanium oxide ceramic coating material excellent in hydrophilicity, photocatalytic properties and transparency, and its production
JP2007167833A (en) Nano photocatalyst sol and its application
JP3542234B2 (en) Method for coating metal material with titanium oxide
JPH1018083A (en) Production of metal material coated with titanium oxide
KR20230156624A (en) Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function
JP3385243B2 (en) Method for producing titanium oxide sol
JP2001081357A (en) Titanium oxide coating liquid and formation of titanium oxide coating film
JP4571793B2 (en) Aqueous photocatalyst coating solution
JP5255552B2 (en) Hydrophilic coating composition, method for preparing hydrophilic coating composition, hydrophilic coating layer and building material
DE10235803A1 (en) Substrate used as self-cleaning substrate for protecting objects in medicine and where hygiene is important comprises photocatalytic layer comprising photocatalytically active titanium dioxide and matrix material
JP4608042B2 (en) Coating agent for forming inorganic film, method for producing the same, and method for forming the inorganic film
Ramadhani et al. Improving method of TiO2-Fe2O3 composite materials for self-cleaning glass preparation
JP4090030B2 (en) Photocatalyst-coated metal plate excellent in stain resistance and coating film adhesion and method for producing the same
CN113735456A (en) Method for preparing titanium-based nano self-cleaning film by taking titanium tetrachloride as titanium source