KR20230156624A - Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function - Google Patents

Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function Download PDF

Info

Publication number
KR20230156624A
KR20230156624A KR1020220097027A KR20220097027A KR20230156624A KR 20230156624 A KR20230156624 A KR 20230156624A KR 1020220097027 A KR1020220097027 A KR 1020220097027A KR 20220097027 A KR20220097027 A KR 20220097027A KR 20230156624 A KR20230156624 A KR 20230156624A
Authority
KR
South Korea
Prior art keywords
titanium
copper
alkoxide
photocatalyst
mixing
Prior art date
Application number
KR1020220097027A
Other languages
Korean (ko)
Inventor
정상훈
김대승
민승천
신길훈
Original Assignee
주식회사 에스필코리아
(주)퓨리테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스필코리아, (주)퓨리테크 filed Critical 주식회사 에스필코리아
Priority to KR1020220097027A priority Critical patent/KR20230156624A/en
Publication of KR20230156624A publication Critical patent/KR20230156624A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Abstract

본 발명은 항균 기능이 강화된 하이브리드형 광촉매코팅제로서, anatase 구조를 가진 TiO2 광촉매 입자를 생성하여 해당 TiO2 광촉매 입자를 둘러싸고 해당 입자의 표면에 Ti-Cu 화합물을 다공성 캡슐형태로 석출시킨 구조를 갖춤으로써, 항균력, 살균력 증강 효과와 동시에 내화학성, 내오염성 및 바인더 손상방지 효과를 얻을 수 있는 광촉매코팅제에 관한 것이다.
또한, 이에 더하여 별도로 Ti-Si-Zr 킬레이트화합물과 반응성 실리콘 화합물의 부분가수분해물을 제조하여 이 둘을 서로 혼합한 상태에서 수열합성 반응을 유도하여 종래에 존재하지 않는 광촉매코팅제를 제공하는 것이다,
본 발명의 하이브리드 광촉매코팅제를 이용하여 항균/살균력을 배가함으로써 실내공간의 세균, 바이러스 번식 방지 효과가 존재하고, 플라스틱 및 페인트면을 비롯한 유기 고분자 소재에 코팅가능하며 코팅막의 내구성이 우수한 효과가 존재한다.
또한, 내오염성이 우수하여 촉매독으로 인한 산화능 저하 방지 및 청결한 도막 표면 유지가 가능하며, 아나타아제(anatase) 구조를 유지하면서 항균금속성분을 안정적으로 함유하며 광촉매 산화능에 영향을 미치지 않으면서 흡착능과 내화학성을 향상시킬 수 있다.
추가적으로, 제조 공정이 종래기술에 비해 상대적으로 저온에서 이루어짐으로써 공업적으로 생산성이 우수하며, 그간의 광촉매코팅제의 적용 한계를 크게 확대할 수 있다는 장점이 존재한다.
The present invention is a hybrid photocatalyst coating with enhanced antibacterial function, which creates TiO2 photocatalyst particles with an anatase structure, surrounds the TiO2 photocatalyst particles, and deposits Ti-Cu compounds in the form of porous capsules on the surface of the particles. It relates to a photocatalytic coating agent that can achieve antibacterial and sterilizing effects while simultaneously providing chemical resistance, contamination resistance, and binder damage prevention effects.
In addition, in addition to this, a partial hydrolyzate of a Ti-Si-Zr chelate compound and a reactive silicon compound is separately prepared and a hydrothermal synthesis reaction is induced by mixing the two to provide a photocatalyst coating agent that does not exist previously.
By doubling the antibacterial/sterilizing power using the hybrid photocatalytic coating of the present invention, there is an effect of preventing the propagation of bacteria and viruses in indoor spaces, and it can be coated on organic polymer materials including plastic and painted surfaces, and the durability of the coating film is excellent. .
In addition, it has excellent fouling resistance, preventing a decrease in oxidation ability due to catalyst poison and maintaining a clean coating surface. It maintains the anatase structure, stably contains antibacterial metal components, and has an adsorption capacity without affecting the photocatalyst oxidation ability. and chemical resistance can be improved.
Additionally, since the manufacturing process is carried out at a relatively low temperature compared to the prior art, industrial productivity is excellent, and there is an advantage in that the application limit of the photocatalytic coating agent so far can be greatly expanded.

Description

항균 기능이 강화된 하이브리드형 광촉매코팅제의 제조방법 {Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function}{Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function}

본 발명은 항균 기능이 강화된 하이브리드형 광촉매코팅제로서, 화학공정상 중간 단계인 광촉매의 중간체(수산화물), 바인더중간체(Ti-Si-Zr 킬레이트화합물, 실란부분가수분해물)을 각각 제조하고 이를 소정의 비율로 혼합하여 수열합성 공정을 통하여 완성체(티타늄산화물, 금속산화물, 실리콘폴리머)를 생성하며, anatase 구조를 가진 TiO2 광촉매 입자를 생성하여 해당 TiO2 광촉매 입자를 둘러싸고 해당 입자의 표면에 Ti-Cu 화합물을 다공성 캡슐형태로 석출시킨 구조를 갖춤으로써, 항균력, 살균력 증강 효과와 동시에 내화학성, 내오염성 및 바인더 손상방지 효과를 얻을 수 있는 광촉매코팅제에 관한 것이다.The present invention is a hybrid photocatalyst coating with enhanced antibacterial function, which manufactures a photocatalyst intermediate (hydroxide) and a binder intermediate (Ti-Si-Zr chelate compound, silane partial hydrolyzate), which are intermediate steps in the chemical process, respectively, and prepares them in a predetermined manner. By mixing in proportions, the finished product (titanium oxide, metal oxide, silicon polymer) is created through a hydrothermal synthesis process, and TiO2 photocatalyst particles with an anatase structure are created to surround the TiO2 photocatalyst particles and form a Ti-Cu compound on the surface of the particles. It relates to a photocatalyst coating that has a structure in which the is precipitated in the form of a porous capsule, and thus has the effect of enhancing antibacterial and sterilizing properties while simultaneously providing chemical resistance, contamination resistance, and binder damage prevention effects.

또한, 이에 더하여 별도로 Ti-Si-Zr 킬레이트화합물과 반응성 실리콘 화합물의 부분가수분해물을 제조하여 이 둘을 서로 혼합한 상태에서 수열합성 반응을 유도하여 종래에 존재하지 않는 광촉매코팅제를 제공하는 것이다.In addition, in addition to this, a partial hydrolyzate of a Ti-Si-Zr chelate compound and a reactive silicon compound are separately prepared and a hydrothermal synthesis reaction is induced by mixing the two to provide a photocatalyst coating agent that does not exist in the past.

종래의 광촉매코팅제는 주로 광촉매입자와 바인더 그리고 용매의 3대 주성분으로 이루어지는 것이 일반적이다.Conventional photocatalytic coating agents are generally composed of three main components: photocatalyst particles, binder, and solvent.

그러나, 이러한 종래 광촉매코팅제를 구성하는 광촉매의 주원료는 이산화티타늄 등 무기물질이고 이러한 무기물질의 화학적 특징으로 인하여 가질 수 밖에 없는 강한 산화력으로 해당 무기물질 주변의 바인더 성분 또는 피도물의 표면을 손상시키는 문제점이 존재하였으며, 최종적으로 광촉매코팅 이후 코팅막 자체가 변색되거나 파열되는 등 심각한 손상으로 해당 코팅이 본래의 기능을 발휘할 수 없게 되는 문제점이 존재하였다.However, the main raw materials of the photocatalysts that make up these conventional photocatalytic coatings are inorganic materials such as titanium dioxide, and due to the chemical characteristics of these inorganic materials, there is a problem of damaging the binder component or the surface of the object to be coated due to the strong oxidizing power that the inorganic materials inevitably have. Ultimately, there was a problem in which the coating could not perform its original function due to serious damage such as discoloration or rupture of the coating film itself after photocatalytic coating.

이를 극복하고자, 광촉매용 바인더를 주로 무기물질의 혼합체로 만들었으나 이 경우 코팅을 실시하는 피코팅체인 고분자소재인 플라스틱, 페인트면 등에 접착력이 약해 적용이 어려운 한계가 존재하였고, 기존 광촉매코팅제는 플라스틱이나 금속류에 직접코팅하기 곤란하여 하도코팅 후 광촉매코팅을 수행하거나, 코팅제 자체에 유기바인더를 혼합하여 사용할 수 밖에 없는 한계가 존재하였다.To overcome this, the binder for photocatalyst was mainly made of a mixture of inorganic materials, but in this case, there was a limitation that it was difficult to apply due to weak adhesion to plastic and painted surfaces, which are polymer materials that are coated, and existing photocatalyst coatings were made of plastic or Because it was difficult to directly coat metals, there was a limitation in that photocatalyst coating was performed after base coating, or an organic binder was mixed with the coating agent itself.

최근 유무기물질을 함께 이용하는 하이브리드 바인더를 사용하나, 해당 하이브리드 바인더를 적용함에 한계가 있고, 전술한 광촉매의 화학적 특징으로 인해 가지는 산화력으로 도막 자체의 내구성 문제가 발생하는 것을 막을 수 없는 한계가 존재하였다.Recently, a hybrid binder that uses both organic and inorganic materials has been used, but there are limits to the application of the hybrid binder, and there is a limit to preventing problems with the durability of the coating film itself from occurring due to the oxidation power due to the chemical characteristics of the photocatalyst described above. .

따라서, 화학적 특징으로 인한 강한 산화력을 가지는 광촉매 물질을 제어할 수 있는 구조를 포함하면서, 유기/무기물질의 혼합체를 가져 안정적인 바인더의 역할을 수행가능한 구성을 포함한 하이브리드형 광촉매코팅제 기술의 개발이 절실한 상황이다.Therefore, there is an urgent need to develop a hybrid photocatalyst coating technology that includes a structure that can control photocatalyst materials with strong oxidation power due to their chemical characteristics and a composition that can play the role of a stable binder with a mixture of organic/inorganic materials. am.

대한민국 등록특허공보 제10-1757568호Republic of Korea Patent Publication No. 10-1757568

종래 일상 생활 공간에서의 악취 가스나 박테리아 등의 미생물을 제거할 수 있는 기술적 방법은 여러 가지가 있으며, 열을 가하지 않으며 특별한 반응 장치를 사용하지 않고 기존 시설물이나 장식물 그리고 벽면 등에 간단히 코팅 처리하여 공기정화, 항균 그리고 오염방지 등의 효과를 얻을 수 있는 광촉매 코팅 기술이 일반적으로 적용되고 있다. There are many technical methods to remove microorganisms such as odorous gases and bacteria in everyday living spaces. Air purification is achieved by simply coating existing facilities, decorations, and walls without applying heat or using a special reaction device. Photocatalyst coating technology, which can achieve antibacterial and anti-pollution effects, is commonly applied.

광촉매 특성상 미량의 난분해성 유기화합물에 대한 산화제거 능에 대한 독보성은 있으나 단순한 기존 광촉매 물질만으로는 다양한 환경 조건하에서 다양한 제거 대상물에 대한 반응 효율이 상당히 낮은 문제점이 존재하는 상태이다. 먼저 악취가스의 경우 무기계, 유기계 또는 산성, 알카리성 등 다양한 종류의 물질 들로 분류할 수 있으나 일반적으로는 여러 종류의 가스가 혼합된 상태로 존재하게 된다. 기존의 중화법이나 흡착법만으로는 한계가 존재하며, 박테리아, 바이러스 및 곰팡이류 등의 미생물 제거 또는 발생 방지 기술적 측면에서도 기존의 유기계 항균제나 소독제들을 사용하는 것도 상당부분 한계가 존재한다. 따라서, 전술한 박테리아, 바이러스 및 곰팡이의 환경과 인체에 대한 유해성을 고려할 때 조속한 대체방법이 강구되어야 하는 실정이다. Due to the nature of the photocatalyst, it is unique in its ability to oxidize and remove trace amounts of non-decomposable organic compounds, but there is a problem that the reaction efficiency for various removal targets under various environmental conditions is quite low with simple existing photocatalyst materials. First, odorous gases can be classified into various types of substances, such as inorganic, organic, acidic, or alkaline, but generally exist as a mixture of various types of gases. There are limitations to existing neutralization or adsorption methods alone, and there are also significant limitations to using existing organic antibacterial agents or disinfectants in terms of technology for removing or preventing the development of microorganisms such as bacteria, viruses, and molds. Therefore, considering the harmfulness of the above-mentioned bacteria, viruses, and molds to the environment and the human body, an alternative method must be devised as soon as possible.

본 발명은 전술한 문제점을 해결하기 위하여, 구리함유 티타늄수산화물 수분산체, Ti-Si-Zr 알콕시드 킬레이트화물 및 실란 부분가수분해물을 포함하되, 상기 구리함유 티타늄수산화물 수분산체는 티타늄금속염을 중화하여 수득된 티타늄산화물과 티타늄-구리복합물을 첨가하여 초음파분산처리한 분산체이며, 상기 Ti-Si-Zr 알콕시드 킬레이트화물은 티타늄알콕시드, 실리콘알콕시드, 지르코늄알콕시드 및 킬레이트화제를 포함하며, 상기 실란 부분가수분해물은 트리알콕시실란을 포함하는 것을 특징으로 하는 항균 기능이 강화된 하이브리드형 광촉매코팅제를 제공할 수 있다.In order to solve the above-described problems, the present invention includes an aqueous dispersion of copper-containing titanium hydroxide, a Ti-Si-Zr alkoxide chelate, and a silane partial hydrolyzate, wherein the aqueous dispersion of titanium hydroxide containing copper is obtained by neutralizing titanium metal salt. It is a dispersion obtained by ultrasonic dispersion treatment by adding titanium oxide and titanium-copper complex, and the Ti-Si-Zr alkoxide chelate contains titanium alkoxide, silicon alkoxide, zirconium alkoxide, and a chelating agent, and the silane. The partially hydrolyzed product can provide a hybrid photocatalyst coating with enhanced antibacterial function, characterized by containing trialkoxysilane.

보다 구체적으로, 상기 구리함유 티타늄수산화물 수분산체는 티타늄-구리복합물이 티타늄산화물 대비 10~20% 포함되며, 상기 티타늄-구리복합물내에는 CuO가 TiO2 대비 20% 미만으로 혼합되어 교반될 수 있다.More specifically, the copper-containing titanium hydroxide aqueous dispersion contains 10 to 20% of titanium-copper complex compared to titanium oxide, and the titanium-copper complex may contain CuO in an amount of less than 20% compared to TiO2 and stirred.

이 경우, 상기 Ti-Si-Zr 알콕시드 킬레이트화물은 SiO2가 TiO2의 1배 내지 2배 포함되며, ZrO2가 TiO2와 SiO2를 합한 것의 0.5배 내지 2배 포함하여 혼합된 Ti, Si, Zr 알콕시드를 포함하며, 상기 혼합된 Ti, Si, Zr 알콕시드와 무게비 1:1이 되도록 킬레이트화제를 첨가하여 생성되는 것이 바람직하다.In this case, the Ti-Si-Zr alkoxide chelate is a mixed Ti, Si, and Zr alkoxide containing 1 to 2 times of SiO2 as TiO2 and 0.5 to 2 times of ZrO2 as the sum of TiO2 and SiO2. It is preferably produced by adding a chelating agent to a weight ratio of 1:1 with the mixed Ti, Si, and Zr alkoxides.

또한, 상기 실란 부분가수분해물은 pH 2 내지 5에서 가수분해되며, 섭씨 60도 이하의 온도를 유지하며 생성될 수 있다.In addition, the silane partial hydrolyzate is hydrolyzed at pH 2 to 5 and can be produced while maintaining a temperature of 60 degrees Celsius or less.

추가적으로, 상기 실란 부분가수분해물은 포함된 알콕시실란 1mol당 가수되는 물의 비율이 0.1mol 내지 0.5mol이 가수되는 것이 바람직하며, 이 경우 가수분해과정에서 생성되는 반응생성물 알코올을 감압증류하여 제거할 수 있다.Additionally, the silane partially hydrolyzed product preferably has a water ratio of 0.1 mol to 0.5 mol per 1 mol of alkoxysilane. In this case, the reaction product alcohol generated during the hydrolysis process can be removed by distillation under reduced pressure. .

상기 하이브리드형 광촉매코팅제는 용매와 계면활성제를 더 포함하며, 상기 용매는 물 또는 물과 유기 용매의 혼합물이 사용되며, 상기 유기 용매는 알코올 화합물, 케톤 화합물, 에테르 화합물, 에스테르 화합물, 방향족 화합물 및 아미드 화합물 중 적어도 어느 하나 이상을 포함하고, 상기 계면활성제는 비이온계 계면활성제인 것이 바람직하다.The hybrid photocatalytic coating further includes a solvent and a surfactant. The solvent is water or a mixture of water and an organic solvent, and the organic solvent includes an alcohol compound, a ketone compound, an ether compound, an ester compound, an aromatic compound, and an amide. It is preferable that at least one of the compounds is included, and the surfactant is a nonionic surfactant.

또한, 전술한 광촉매코팅제 자체 뿐만 아니라 해당 광촉매코팅제를 제조하는 방법 역시 제공될 수 있다.In addition, not only the photocatalyst coating agent itself described above but also a method for producing the photocatalyst coating agent may be provided.

구체적으로, 구리함유 티타늄수산화물 수분산체, Ti-Si-Zr 알콕시드 킬레이트화물, 실란 부분가수분해물을 구리함유 티타늄수산화물 수분산체의 고형물 : Ti-Si-Zr 알콕시드 킬레이트화물의 고형분 : 실란 부분가수분해물의 고형분을 1 : 0.5~1.0 : 0.2~0.5 비율로 혼합 후 섭씨 120℃ 이상에서 6시간 이상 유지 후 상온 냉각하여 광촉매코팅제를 생성하는 코팅제 생성단계 및 상기 코팅제 생성단계 이후 생성된 코팅제에 용매 및 계면활성제를 혼합하는 혼합단계를 포함하는 항균 기능이 강화된 하이브리드형 광촉매코팅제의 제조방법이 제공될 수 있다.Specifically, the copper-containing titanium hydroxide aqueous dispersion, Ti-Si-Zr alkoxide chelate, and silane partial hydrolyzate are mixed. Solid content of copper-containing titanium hydroxide aqueous dispersion: Solid content of Ti-Si-Zr alkoxide chelate: Silane partial hydrolyzate. A coating agent production step of mixing solids in a ratio of 1:0.5-1.0:0.2-0.5, maintaining the mixture at 120°C or higher for more than 6 hours, and then cooling to room temperature to produce a photocatalytic coating, and solvent and interface in the coating agent produced after the coating agent production step. A method for manufacturing a hybrid photocatalyst coating with enhanced antibacterial function including a mixing step of mixing activators can be provided.

이 경우, 상기 생성단계에 사용되는 구리함유 티타늄수산화물 수분산체는 티타늄금속염을 중화하여 침전물을 수득하는 티타늄수산화물 수득단계, 티타늄금속염과 구리금속염을 각각 혼합하고 교반을 수행하여 티타늄-구리 복합물을 제조하는 티타늄-구리 복합물 제조단계 및 상기 제조된 티타늄-구리 복합물을 상기 티타늄수산화물에 첨가하고 2시간 교반한 후 24시간 안정화시키며, 초음파 분산처리로 콜로이드화하여 구리함유 티타늄수산화물 수분산체를 생성하는 구리함유 티타늄수산화물 수분산체 생성단계를 포함하여 생성되는 것이 바람직하다.In this case, the copper-containing titanium hydroxide aqueous dispersion used in the above production step is a titanium hydroxide obtaining step of neutralizing the titanium metal salt to obtain a precipitate, mixing titanium metal salt and copper metal salt and stirring to prepare a titanium-copper complex. Titanium-copper composite manufacturing step and adding the prepared titanium-copper composite to the titanium hydroxide, stirring for 2 hours, stabilizing for 24 hours, and colloidizing by ultrasonic dispersion treatment to produce an aqueous dispersion of copper-containing titanium hydroxide. It is preferable that it is produced including a step of producing a hydroxide water dispersion.

또한, 상기 생성단계의 킬레이트화물은 티타늄알콕시드, 실리콘알콕시드 및 지르코늄알콕시드를 혼합하는 알콕시드 혼합단계, 상기 알콕시드 혼합단계를 거쳐 혼합된 알콕시드에 킬레이트화제를 혼합하는 혼합체 생성단계 및 상기 혼합체를 섭씨 70℃에서 12시간 교반하는 킬레이트화물 생성단계를 포함하여 생성되는 것이 바람직하다.In addition, the chelated product in the production step includes an alkoxide mixing step of mixing titanium alkoxide, silicon alkoxide, and zirconium alkoxide, a mixture production step of mixing a chelating agent with the alkoxide mixed through the alkoxide mixing step, and the above. It is preferable that the mixture be produced by including a chelate production step of stirring the mixture at 70°C for 12 hours.

본 발명의 하이브리드 광촉매코팅제를 이용하여 항균/살균력을 배가함으로써 실내공간의 세균, 바이러스 번식 방지 효과가 존재하고, 플라스틱 및 페인트면을 비롯한 유기 고분자 소재에 코팅가능하며 코팅막의 내구성이 우수한 효과가 존재한다.By doubling the antibacterial/sterilizing power using the hybrid photocatalytic coating of the present invention, there is an effect of preventing the propagation of bacteria and viruses in indoor spaces, and it can be coated on organic polymer materials including plastic and painted surfaces, and the durability of the coating film is excellent. .

또한, 내오염성이 우수하여 촉매독으로 인한 산화능 저하 방지 및 청결한 도막 표면 유지가 가능하며, 아나타아제(anatase) 구조를 유지하면서 항균금속성분을 안정적으로 함유하며 광촉매 산화능에 영향을 미치지 않으면서 흡착능과 내화학성을 향상시킬 수 있다.In addition, it has excellent fouling resistance, preventing a decrease in oxidation ability due to catalyst poison and maintaining a clean coating surface. It maintains the anatase structure, stably contains antibacterial metal components, and has an adsorption capacity without affecting the photocatalyst oxidation ability. and chemical resistance can be improved.

추가적으로, 제조 공정이 종래기술에 비해 상대적으로 저온에서 이루어짐으로써 공업적으로 생산성이 우수하며, 그간의 광촉매코팅제의 적용 한계를 크게 확대할 수 있다는 장점이 존재한다.Additionally, since the manufacturing process is carried out at a relatively low temperature compared to the prior art, industrial productivity is excellent, and there is an advantage in that the application limit of the photocatalytic coating agent so far can be greatly expanded.

본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다"등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terms used in this application are only used to describe specific examples. Therefore, for example, a singular expression includes a plural expression, unless the context clearly requires it to be singular. In addition, terms such as “comprise” or “comprise” used in the present application are used to clearly indicate the presence of features, steps, functions, components, or combinations thereof described in the specification, and are used to clearly indicate the presence of other features. It should be noted that it is not used to preliminarily rule out the existence of any elements, steps, functions, components, or combinations thereof.

한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다.Meanwhile, unless otherwise defined, all terms used in this specification should be viewed as having the same meaning as generally understood by those skilled in the art to which the present invention pertains. Therefore, unless clearly defined in this specification, specific terms should not be interpreted in an overly idealistic or formal sense.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement it. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein.

본 발명의 광촉매 산화 반응이란 밴드갭 에너지(band gap energy) 이상의 빛 에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 정공에 의해 생성되는 수산화 라디칼(·OH)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 반응을 의미한다.The photocatalytic oxidation reaction of the present invention refers to the generation of electrons and holes when light energy greater than the band gap energy is irradiated to the photocatalyst, and the strong oxidation power of the hydroxyl radical (·OH) generated by the hole is adsorbed to the surface of the photocatalyst. It refers to a reaction in which organic matter in the gas or liquid phase is decomposed.

즉, 광촉매는 빛 에너지를 흡수함으로써 촉매활성을 나타나게 되는 데, 이때 발생하는 강력한 산화력으로 환경오염물질을 산화 분해하는 것이다.In other words, the photocatalyst exhibits catalytic activity by absorbing light energy, and the strong oxidizing power generated at this time oxidizes and decomposes environmental pollutants.

종래 일상 생활 공간에서의 악취 가스나 박테리아 등의 미생물을 제거할 수 있는 기술적 방법은 여러 가지가 있으며, 열을 가하지 않으며 특별한 반응 장치를 사용하지 않고 기존 시설물이나 장식물 그리고 벽면 등에 간단히 코팅 처리하여 공기정화, 항균 그리고 오염방지 등의 효과를 얻을 수 있는 광촉매 코팅 기술이 일반적으로 적용되고 있다. There are many technical methods to remove microorganisms such as odorous gases and bacteria in everyday living spaces. Air purification is achieved by simply coating existing facilities, decorations, and walls without applying heat or using a special reaction device. Photocatalyst coating technology, which can achieve antibacterial and anti-pollution effects, is commonly applied.

광촉매 특성상 미량의 난분해성 유기화합물에 대한 산화제거 능에 대한 독보성은 있으나 단순한 기존 광촉매 물질만으로는 다양한 환경 조건하에서 다양한 제거 대상물에 대한 반응 효율이 상당히 낮은 문제점이 존재하는 상태이다. 먼저 악취가스의 경우 무기계, 유기계 또는 산성, 알카리성 등 다양한 종류의 물질 들로 분류할 수 있으나 일반적으로는 여러 종류의 가스가 혼합된 상태로 존재하게 된다. 기존의 중화법이나 흡착법만으로는 한계가 존재하며, 박테리아, 바이러스 및 곰팡이류 등의 미생물 제거 또는 발생 방지 기술적 측면에서도 기존의 유기계 항균제나 소독제들을 사용하는 것도 상당부분 한계가 존재한다. 따라서, 전술한 박테리아, 바이러스 및 곰팡이의 환경과 인체에 대한 유해성을 고려할 때 조속한 대체방법이 강구되어야 하는 실정이다. Due to the nature of the photocatalyst, it is unique in its ability to oxidize and remove trace amounts of non-decomposable organic compounds, but there is a problem that the reaction efficiency for various removal targets under various environmental conditions is quite low with simple existing photocatalyst materials. First, odorous gases can be classified into various types of substances, such as inorganic, organic, acidic, or alkaline, but generally exist as a mixture of various types of gases. There are limitations to existing neutralization or adsorption methods alone, and there are also significant limitations to using existing organic antibacterial agents or disinfectants in terms of technology for removing or preventing the development of microorganisms such as bacteria, viruses, and molds. Therefore, considering the harmfulness of the above-mentioned bacteria, viruses, and molds to the environment and the human body, an alternative method must be devised as soon as possible.

본 발명에서는 난분해성 유해가스를 용이하게 제거할 수 있고 동시에 유해성 미생물을 강력하게 억제 또는 사멸시킬 수 있는 광촉매코팅제 및 해당 광촉매코팅제의 제조방법에 관한 내용을 기술한다. The present invention describes a photocatalytic coating agent that can easily remove non-decomposable harmful gases and at the same time strongly inhibit or kill harmful microorganisms and a method of manufacturing the photocatalytic coating agent.

특히 종래 곽총매코팅제에 비해 살균/항균 효과가 강화되고 플라스틱이나 도장면 등 고분자 표면에도 용이하게 코팅되면서 강력한 광촉매의 산화 반응이 이루어지고 내마모성도 우수하여 코팅막의 내구성이 우수한 광촉매 코팅제에 관한 것이다. In particular, it relates to a photocatalytic coating agent that has an enhanced sterilizing/antibacterial effect compared to the conventional Kwak Chongmae coating agent and is easily coated on polymer surfaces such as plastics and painted surfaces, enabling a strong photocatalytic oxidation reaction and excellent wear resistance, resulting in excellent durability of the coating film.

이러한 광촉매코팅제는 본 발명에서는 구리성분을 함유하고 무기산화물 입자와 화학적 결합을 유도하여 보다 광촉매 활성도가 높고, 항균성이 증강됨과 동시에 광촉매물질인 구리함유 아나타제(anatase) 입자를 보호하고 오염을 방지하여 광산화 반응이 용이하게 일어나고 촉매독에 의한 산화효율성이 저하하는 것을 방지할 수 있는 무기산화물을 표면부위에 결합시켜 결과적으로 내화학성과 내마모성이 우수한 광촉매코팅제를 제조하는 것이 가능하다.In the present invention, this photocatalytic coating agent contains a copper component and induces chemical bonding with inorganic oxide particles, resulting in higher photocatalytic activity and enhanced antibacterial properties. At the same time, it protects copper-containing anatase particles, which are photocatalyst materials, and prevents contamination by photooxidation. It is possible to manufacture a photocatalyst coating agent with excellent chemical resistance and wear resistance by combining an inorganic oxide, which facilitates the reaction and prevents the oxidation efficiency from being reduced by catalyst poisons, to the surface area.

광촉매를 활용하여 오염요소를 효과적으로 제거할 수 있는 기술적 방법은 대표적으로 응용 산화법을 들 수 있다. 특히 촉매 산화법은 악취 가스를 신속하게 흡착, 흡수하고 이를 용이 하게 산화분해 할 수 있어야 하며, 악취가스는 대부분 다량의 수분을 포함하는 경우가 많으므로 고온에서 촉매산화를 유도하게되면 다량의 수분으로 인해 촉매를 가열하는데 드는 에너지 소모량이 많게되므로 비교적 저온에서 효과적으로 악취성분을 제거할 수 있어야 한다.A representative technical method that can effectively remove contaminants using photocatalysts is the applied oxidation method. In particular, the catalytic oxidation method must be able to quickly adsorb and absorb odorous gases and easily oxidize and decompose them. Since odorous gases often contain a large amount of moisture, when catalytic oxidation is induced at high temperature, the large amount of moisture causes Since the energy consumption required to heat the catalyst is large, it must be possible to effectively remove odor components at relatively low temperatures.

취기성분의 종류로는 질소산화물(NOx), 황산화물(SOx), 아세트알데히드, 포름알데히드 등의 알데히드류, 황화수소, 메르캅탄, 황화메틸 등의 황화물류, 초산, 프로피온산, 길초산 등의 지방산류, 디메틸아민, 트리메틸아민 등의 아민류, 지방족, 방향족 등의 탄화수소류 등이 존재한다.Types of odor components include nitrogen oxides (NOx), sulfur oxides (SOx), aldehydes such as acetaldehyde and formaldehyde, sulfides such as hydrogen sulfide, mercaptan, and methyl sulfide, and fatty acids such as acetic acid, propionic acid, and valeric acid. , amines such as dimethylamine and trimethylamine, and hydrocarbons such as aliphatics and aromatics.

본 발명은 수열합성 결정화(crystalization)기법을 통해 표면에 구리(Cu) 성분과 다공성 무기 산화물 캡슐구조를 포함하는 아나타아제(anatase) 이산화티타늄(TiO2) 광촉매를 제조하였다. The present invention produced an anatase titanium dioxide (TiO2) photocatalyst containing a copper (Cu) component and a porous inorganic oxide capsule structure on the surface through a hydrothermal crystallization technique.

추가적으로, 바인더 성분으로서 금속산화물-실록산 화합물을 졸겔(sol-gel process) 기법을 통해 제조하여 전술한 캡슐구조 광촉매와 혼합하여 본 발명의 광촉매코팅제의 주성분으로 사용하였다.Additionally, a metal oxide-siloxane compound as a binder component was prepared through a sol-gel process, mixed with the above-described capsule structure photocatalyst, and used as the main ingredient of the photocatalyst coating agent of the present invention.

보다 구체적으로는 1) 산-알카리 침전법으로 제조한 티타늄수산화물에 구리금속염을 첨가하고 처리하여 구리수산화물 상태로 혼합하였다. 2) 이후, 혼합물에 Ti-Si 알콕시드 킬레이트화 용액 을 첨가한 후 120℃ 정도에서 가열과 교반을 통하여 TiO2(anatase)입자 표면에 구리 산화물과 Ti-Si 산화물을 함유하는 광촉매 입자 분산체를 제조한다. 이와 같은 공정을 통해 구리 성분에 의한 항균력 강화와 Ti-Si 복합 산화물에 의한 흡착성능 강화 및 표면 보호 기능을 가진 신규의 광촉매 입자가 형성되는 것이 가능하다. 이러한 광촉매는 자외선이 조사되지 못하는 환경에서도 항균 성능을 발휘할 수 있게 되고, 악취성분이나 미생물 입자들에 대한 흡착력을 증가시켜 광촉매 표면 반응성능을 향상 시킴과 동시에 광촉매와 접촉 계면을 이루는 주변 바인더 성분과 피도면(substrate)의 손상을 억제할 수 있게 되어 도막의 내구성이 우수하고 고분자 물체에도 우수한 부착성능을 가지는 특징을 갖게 된다.More specifically, 1) copper metal salt was added to titanium hydroxide prepared by acid-alkali precipitation, treated, and mixed to form copper hydroxide. 2) After adding the Ti-Si alkoxide chelating solution to the mixture, heat and stir at about 120℃ to prepare a photocatalyst particle dispersion containing copper oxide and Ti-Si oxide on the surface of TiO2 (anatase) particles. do. Through this process, it is possible to form new photocatalyst particles with enhanced antibacterial activity by copper components, enhanced adsorption performance by Ti-Si composite oxide, and surface protection functions. This photocatalyst can demonstrate antibacterial performance even in environments where ultraviolet rays are not irradiated, and improves the surface reaction performance of the photocatalyst by increasing the adsorption capacity for odorous components or microbial particles. At the same time, it improves the surface reaction performance of the photocatalyst and the surrounding binder components that form the contact interface with the photocatalyst and the surface to be coated. Damage to the substrate can be suppressed, resulting in excellent durability of the coating film and excellent adhesion performance to polymer objects.

또한, 광촉매의 고활성을 반영구적으로 유지할 수 있고, 바인더 성분에 대한 안정화 광촉매 물질이 된다. In addition, it can maintain the high activity of the photocatalyst semi-permanently and serves as a stabilizing photocatalyst material for the binder component.

3) 추가적으로, 바인더(binder) 성분으로는 Ti-Si-Zr 3성분계 킬레이트화물과 반응성 실리콘화합물의 부분가수분해물을 혼합하여 축합반응을 통하여 내오염성과 광산화반응에 의해 손상이 없는 무기금속화합물을 함유하는 실록산 수지를 제조하였다. 결국 이러한 광촉매 물질과 바인더를 일정비율로 혼합하여 유용한 광촉매코팅제를 제조할 수 있다. 3) Additionally, the binder component contains an inorganic metal compound that is resistant to contamination and is not damaged by photooxidation through a condensation reaction by mixing a Ti-Si-Zr ternary chelate and a partial hydrolyzate of a reactive silicon compound. A siloxane resin was prepared. Ultimately, a useful photocatalytic coating agent can be manufactured by mixing these photocatalyst materials and a binder at a certain ratio.

이하에서는 본 발명의 실시예에 대하여 구체적으로 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

(구리함유 티타늄수산화물 수분산체의 제조)(Preparation of copper-containing titanium hydroxide aqueous dispersion)

이산화티타늄은 여러 가지의 공정을 통하여 제조될 수 있지만 대표적으로는 졸겔법(sol-gel process)과 석출(precipitation)법 그리고 기상(evaporation)법을 들 수 있다. 상기의 제조 공정 중 석출법의 경우, 황산티타늄(Ti(SO4)2), 황산티타닐(TiOSO4), 염화티타늄(TiCl4) 등의 수용액에 수산화나트륨(NaOH) 등의 알카리 수용액을 첨가하여 중화하여 침전물을 수득하고 이를 건조하고 고온에서 열처리하여 결정형의 광촉매 나노입자를 얻는 방법이다.Titanium dioxide can be manufactured through various processes, but representative examples include the sol-gel process, precipitation method, and evaporation method. In the case of the precipitation method during the above manufacturing process, aqueous solutions of titanium sulfate (Ti(SO4)2), titanyl sulfate (TiOSO4), and titanium chloride (TiCl4) are neutralized by adding an aqueous alkali solution such as sodium hydroxide (NaOH). This is a method of obtaining crystalline photocatalytic nanoparticles by obtaining a precipitate, drying it, and heat-treating it at high temperature.

통상적으로는 전술한 방법으로 만들어진 광촉매와 그의 코팅제에 Ag, Cu, Zn 등의 항균금속성분을 첨가하여 항균 효과를 증가시키게 된다. 그러나 해당 방식을 통해 첨가된 항균금속성분들은 변색을 유발하거나 광촉매의 활성도를 저하시키는 문제를 유발하며, 해당 효과가 장기간 유지되기 어려운 단점이 있다. 또한 항균금속이온의 유출로 인한 유해성도 문제시 된다.Typically, antibacterial metal components such as Ag, Cu, and Zn are added to the photocatalyst and its coating agent made by the above-described method to increase the antibacterial effect. However, antibacterial metal components added through this method cause problems such as discoloration or lowering the activity of the photocatalyst, and have the disadvantage that the effect is difficult to maintain for a long period of time. In addition, the harmfulness caused by the leakage of antibacterial metal ions is also a problem.

따라서, 본 발명에서는 전술한 항균금속성분을 보다 안정하게 코팅제 내부에 존재시키고 광촉매의 활성 정도에 영향을 미치지 않는 상태로 존재시키기 위하여 티타늄과 항균금속의 화합물을 형성시켜 광촉매 입자 표면에 다공성 캡슐형태로 존재 시킴으로서 장기간 안정적으로 항균효과를 발현함과 동시에 광촉매의 산화력을 일부 차단하여 접촉되어지는 바인더물질과 피도면에 손상을 억제시킬 수 있는 구조를 개시한다. Therefore, in the present invention, in order to allow the above-mentioned antibacterial metal component to exist more stably inside the coating and not affect the activity level of the photocatalyst, a compound of titanium and antibacterial metal is formed to form a porous capsule on the surface of the photocatalyst particle. By allowing it to exist, a structure is disclosed that can stably exhibit an antibacterial effect for a long period of time and at the same time block some of the oxidizing power of the photocatalyst, thereby suppressing damage to the binder material and surface to be coated.

또한, 이러한 캡슐형태의 Ti-Cu 화합물은 흡착제로서의 역할을 하기 때문에 악취성분이나 미생물들을 보다 용이하게 흡착 분해할 수 있어서, 광촉매의 촉매활성도를 향상시키는데 기여하며, 광촉매의 촉매기능이 상승하게 된다.In addition, since this capsule-type Ti-Cu compound acts as an adsorbent, it can more easily adsorb and decompose odorous components or microorganisms, contributing to improving the catalytic activity of the photocatalyst and increasing the catalytic function of the photocatalyst.

이를 위해, 우선 본 발명에서의 구리성분을 함유하는 광촉매 입자의 제조는 기술적으로 침전법(precipitation)과 함침법(impregnation)의 공정으로 이루어진다. To this end, the production of photocatalyst particles containing copper components in the present invention is technically accomplished through the processes of precipitation and impregnation.

티타늄 금속염 수용액을 알카리성 수용액으로 중화적정하여 티타늄 수산화 침전물을 수득하고, 별도로 소정의 티타늄 및 구리가 혼합된 금속염 수용액을 첨가하고 일련의 공정을 통하여 티타늄 수산화물 입자 표면에 티타늄과 구리 이온이 첨착 될 수 있도록 하며, 이를 1nm 내지 50nm이내의 미세한 콜로이드상으로 제조한다. 이어서 알카리 성분을 추가하여 pH=9 정도로 유지하여 티타늄수산화물 표면 부위에 티타늄과 구리 복합 수산화물이 형성한다.A titanium metal salt aqueous solution is neutralized and titrated with an alkaline aqueous solution to obtain a titanium hydroxide precipitate. A metal salt aqueous solution containing a predetermined mixture of titanium and copper is separately added, and through a series of processes, titanium and copper ions are deposited on the surface of the titanium hydroxide particles. It is manufactured into a fine colloidal phase within 1 nm to 50 nm. Next, an alkaline component is added to maintain pH = 9, and a composite hydroxide of titanium and copper is formed on the surface of the titanium hydroxide.

이어서, 건조공정 없이 수분산 상태를 유지하면서 120℃ 이상의 고온 고압 상태에서 일정 시간동안 유지하여 이산화티타늄의 결정화 진행과 동시에 그 표면에 비정질 상태의 티타늄-구리 복합 산화물을 화학적으로 결합시키는 일련의 공정을 유도하는 것이 가능하다. 그래서 항균성 금속성분이 표면에 안정적으로 첨착된 아나타제형 광촉매 수분산체를 취할 수 있다. Next, a series of processes are carried out to chemically bond the amorphous titanium-copper composite oxide to the surface at the same time as crystallization of titanium dioxide by maintaining it in a water-dispersed state without a drying process and maintaining it at a high temperature and high pressure of 120°C or higher for a certain period of time. It is possible to induce Therefore, an aqueous anatase-type photocatalyst dispersion with antibacterial metal components stably attached to the surface can be used.

보다 구체적으로는,More specifically,

본 발명에서는 티타늄 금속염으로서 황산티타늄(Ti(SO4)2), 황산티타닐(TiOSO4), 염화티타늄(TiCl4) 중 적어도 1개 이상을 선택하고 물을 첨가하여 수용액상태로 만들어 교반한다.In the present invention, at least one of titanium sulfate (Ti(SO4)2), titanyl sulfate (TiOSO4), and titanium chloride (TiCl4) is selected as a titanium metal salt, and water is added to make an aqueous solution and stirred.

교반하며, 알칼리 성분인 암모니아수(NH4OH), 탄산소다(NaCO3), 수산화나트륨(NaOH) 등에서 선택된 1종에 물을 첨가하여 만든 알칼리 수용액을 서서히 적하하면서 pH가 9에 이르도록하여 수산화티타늄(Ti(OH)2)의 침전물이 발생하게 된다. While stirring, an alkaline aqueous solution made by adding water to one selected from alkaline components such as ammonia water (NH4OH), soda carbonate (NaCO3), and sodium hydroxide (NaOH) is slowly added dropwise until the pH reaches 9 to produce titanium hydroxide (Ti( Precipitates of OH)2) are generated.

전술한 과정에서 수득된 티타늄수산화물을 충분히 수세한 후 일정량의 증류수에 분산하여 티타늄수산화물의 수분산액(이하, 티타늄산화물)을 제조하여 둔다. The titanium hydroxide obtained in the above-described process is sufficiently washed with water and then dispersed in a certain amount of distilled water to prepare an aqueous dispersion of titanium hydroxide (hereinafter referred to as titanium oxide).

이와는 별도로, 티타늄성분으로서 황산티타늄, 질산티타늄 중 적어도 1개 이상의 티타늄성분과 구리성분으로서 황산구리, 질산구리 그리고 초산구리 중 적어도 1개 이상의 구리성분을 선택하여 상기 티타늄성분(금속염)과 구리성분(금속염)을 각각 소정의 비율로 혼합하고 1시간 이상 교반을 수행하여 티타늄-구리복합물을 제조한다. Separately, at least one titanium component among titanium sulfate and titanium nitrate as the titanium component and at least one copper component among copper sulfate, copper nitrate, and copper acetate as the copper component are selected to form a mixture of the titanium component (metal salt) and the copper component (metal salt). ) are mixed in a predetermined ratio and stirred for more than 1 hour to prepare a titanium-copper composite.

이 경우, 티타늄산화물과 티타늄-구리복합물의 함량의 비는 티타늄산화물 대비 티타늄-구리복합물의 양이 20%를 넘지 않도록 한다. 보다 바람직하게는 10∼20%가 되도록 한다. In this case, the content ratio of titanium oxide and titanium-copper complex should not exceed 20% of the titanium-copper complex compared to titanium oxide. More preferably, it is 10 to 20%.

또한, 이와 같은 첨가비는 사전에 상기 티타늄-구리복합물의 구성 중 티타늄염과 구리염 수용액의 첨가농도와 연관되어 조정되는 것이 가능하다. 만일 티타늄-구리복합물의 구성 중 CuO 함량이 TiO2대비 10% 이상일 경우 anatase형 TiO2의 수득율이 저하되어 광촉매 성능이 낮아지게 되며, 5% 미만일 경우 만족할 만한 항균 탈취효과를 얻기가 어려울 수 있으며, 이에 따라 상기 티타늄-구리복합물의 구성과 혼합되는 티타늄산화물의 양을 조절하여 최적의 효과를 발휘하는 것이 가능하다. In addition, this addition ratio can be adjusted in advance in relation to the addition concentration of the titanium salt and copper salt aqueous solution in the composition of the titanium-copper complex. If the CuO content in the titanium-copper composite is more than 10% of TiO2, the yield of anatase-type TiO2 will decrease and the photocatalytic performance will be lowered, and if it is less than 5%, it may be difficult to obtain a satisfactory antibacterial and deodorizing effect. It is possible to achieve optimal effect by adjusting the composition of the titanium-copper composite and the amount of titanium oxide mixed.

전술한 방법으로 얻어진 티타늄-구리복합물을 상기의 티타늄수산화물 수분산액(티타늄산화물)에 첨가하고 고속으로 2시간 교반한 후 24시간 동안 정체하여 둔다. The titanium-copper complex obtained by the above-described method is added to the titanium hydroxide aqueous dispersion (titanium oxide), stirred at high speed for 2 hours, and left to stand for 24 hours.

이후, 다시 초음파 분산처리로 1마이크로미터 이하 크기의 콜로이드화하여 구리함유 티타늄수산화물 수분산체를 만들었다. 이와 같은 구리함유 티타늄수산화물 수분산체에 Ti 알콕시드와 Si알콕시드를 소정비율로 혼합하여 소정량의 물과 함께 첨가하고 고형분 농도가 20-30%인 Ti-Cu 수산화물의 수분산체(구리함유 티타늄수산화물 수분산체)를 제조하는 공정을 더하여 항균금속성분을 포함하는 다공성 무기질로 캡슐화된 결정화 이산화티타늄 광촉매가 생성되게 된다. Afterwards, the aqueous dispersion of copper-containing titanium hydroxide was made into a colloid with a size of less than 1 micrometer through ultrasonic dispersion treatment. To this aqueous dispersion of copper-containing titanium hydroxide, Ti alkoxide and Si alkoxide are mixed in a predetermined ratio and added with a predetermined amount of water, and an aqueous dispersion of Ti-Cu hydroxide (copper-containing titanium hydroxide) with a solid content concentration of 20-30% is added. By adding the process of producing an aqueous dispersion, a crystallized titanium dioxide photocatalyst encapsulated in a porous mineral containing antibacterial metal components is produced.

또한, 이후 100℃-110℃에서 수열합성반응을 통하여 다공질의 Ti-Si 산화물을 표면에 포함하는 동시에 항균성 구리함유 티타늄수산화물 수분산체를 합성하는 것이 가능하다.In addition, it is possible to synthesize an antibacterial copper-containing titanium hydroxide aqueous dispersion while containing porous Ti-Si oxide on the surface through a hydrothermal synthesis reaction at 100°C-110°C.

본 발명이 제공하는 또다른 구리함유 티타늄수산화물 수분산체 제조방법은,Another method for producing an aqueous dispersion of copper-containing titanium hydroxide provided by the present invention is,

(1) 마그네틱 교반장치에 놓인 1000ml의 유리 비이커에 증류수 또는 이온교환수 500ml를 넣고 10℃이하가 유지되도록 냉각 교반하면서 황산티타늄{Ti(SO4)2} 15g을 서서히 적하하고 10분동안 교반을 지속적으로 수행한다. 교반을 계속하면서 질산구리{Cu(NO3)23H2O} 0.5g을 서서히 투입하고 30분동안 교반한 후 pH 7이 되도록 암모니아수(NH4OH, 0.5mol/ℓ)를 서서히 적하하는 과정을 수행한다. 이상의 공정을 통해 청백색의 침전 생성물을 얻을 수 있게 되며, 해당 상태에서 교반을 멈추고 12시간동안 정체 유지시킨다. 이어서 이상의 침전 생성물을 분리 필터링한 후 이온교환수로 충분히 세척함으로써 Cu 성분(구리수산화물)이 포함된 수산화티타늄 겔을 얻을 수 있다. 여기에 이온교환수를 첨가하여 적정농도(TiO2로 환산하여 약 10wt%)의 혼합액을 만든다. 이후 해당 혼합액에 암모니아수(28%)를 첨가하여 pH가 9.5가 되도록 한 후 유화믹서(homo. mixer)를 이용하여 3시간동안 분산 처리하여 미립자 상태(1nm 내지100nm)의 Ti-Cu 혼합수산화물 콜로이드를 형성하도록 한다. (1) Add 500 ml of distilled water or ion-exchanged water to a 1000 ml glass beaker placed on a magnetic stirrer, and while cooling and stirring to maintain the temperature below 10°C, 15 g of titanium sulfate {Ti(SO 4 ) 2 } was slowly added dropwise and stirred for 10 minutes. Perform continuously. While continuing to stir, 0.5 g of copper nitrate {Cu(NO 3 ) 2 3H 2 O} was slowly added, stirred for 30 minutes, and ammonia water (NH 4 OH, 0.5 mol/l) was slowly added dropwise to reach pH 7. Perform. Through the above process, a blue-white precipitated product can be obtained. In this state, stirring is stopped and maintained for 12 hours. Next, the above precipitated product is separated and filtered, and then sufficiently washed with ion-exchanged water to obtain a titanium hydroxide gel containing Cu component (copper hydroxide). Add ion-exchanged water here to create a mixed solution with an appropriate concentration (about 10 wt% in terms of TiO 2 ). Afterwards, ammonia water (28%) was added to the mixed solution to bring the pH to 9.5, and then dispersion was performed for 3 hours using an emulsification mixer (homo. mixer) to form a Ti-Cu mixed hydroxide colloid in the form of fine particles (1 nm to 100 nm). Let it form.

이와 별도로 이소프로필알코올(Isopropyl alcohol) 70ml과 아세틸아세톤(Acetylacetone) 20ml 혼합액을 준비하고 상온에서 교반하면서, 티타늄 알콕시드로서 Titanium tetraisopropoxide 15g과 실리콘 알콕시드로서 Tetra ethylsilicate 10g을 서서히 첨가한 후 30분간 격렬하게 교반하여 알콕시드 혼합액을 만들고 이를 상기의 Ti-Cu 혼합수산화물에 서서히 첨가하고 30분간 교반하여 Ti-Cu 수산화물의 수분산체(A)를 제조하는 것이 가능하다.Separately, prepare a mixture of 70 ml of isopropyl alcohol and 20 ml of acetylacetone, and while stirring at room temperature, slowly add 15 g of titanium tetraisopropoxide and 10 g of tetra ethylsilicate as silicon alkoxide, then stir vigorously for 30 minutes. It is possible to prepare an aqueous dispersion of Ti-Cu hydroxide (A) by stirring to create an alkoxide mixture and gradually adding it to the Ti-Cu mixed hydroxide and stirring for 30 minutes.

(2) 또는, 마그네틱 교반장치에 놓인 1000ml의 유리 비이커에 증류수 또는 이온교환수 500ml를 넣고 10℃이하가 유지되도록 냉각 교반하면서 황산티타늄{Ti(SO4)2} 15g을 서서히 적하하고 10분동안 교반을 지속적으로 수행한다. 이상의 교반을 계속하면서 질산구리{Cu(NO3)23H2O} 1g을 서서히 투입하고 30분동안 교반한 후 pH 7이 되도록 암모니아수(NH4OH, 0.5mol/ℓ)를 서서히 적하한다. 해당 공정을 통해 청백색의 침전 생성물을 얻을 수 있게 되는데 그 상태에서 교반을 멈추고 12시간동안 정체 유지시킨다. 이후 이상의 침전 생성물을 분리 필터링한 후 이온교환수로 충분히 세척함으로써 Cu 성분(구리수산화물)이 포함된 수산화티타늄 겔을 얻게 된다. 여기에 이온교환수를 첨가하여 적정농도(TiO2로 환산하여 약 10wt%)의 혼합액을 만든다. 그런 후 여기에 암모니아수(28%)를 첨가하여 pH가 9.5가 되도록 한 후 유화믹서(homo. mixer)를 이용하여 3시간동안 분산 처리하여 미립자 상태(1nm 내지100nm)의 하여 Ti-Cu 혼합수산화물 콜로이드를 형성하도록 한다. (2) Alternatively, add 500 ml of distilled water or ion-exchanged water to a 1000 ml glass beaker placed on a magnetic stirrer, and slowly add 15 g of titanium sulfate {Ti(SO 4 ) 2 } dropwise while cooling and stirring to maintain the temperature below 10°C and stir for 10 minutes. Stirring is carried out continuously. While continuing the above stirring, 1 g of copper nitrate {Cu(NO 3 ) 2 3H 2 O} was slowly added and stirred for 30 minutes, and then ammonia water (NH 4 OH, 0.5 mol/l) was slowly added dropwise to adjust the pH to 7. Through this process, a blue-white precipitated product can be obtained, at which point stirring is stopped and allowed to remain stagnant for 12 hours. Afterwards, the above precipitated product is separated and filtered and thoroughly washed with ion-exchanged water to obtain a titanium hydroxide gel containing Cu component (copper hydroxide). Add ion-exchanged water here to create a mixed solution with an appropriate concentration (about 10 wt% in terms of TiO 2 ). Then, ammonia water (28%) was added to the pH to 9.5, and then dispersed for 3 hours using an emulsification mixer to form fine particles (1 nm to 100 nm) into Ti-Cu mixed hydroxide colloid. to form.

이와 별도로 이소프로필알코올(Isopropyl alcohol) 70ml과 아세틸아세톤(Acetylacetone) 20ml 혼합액을 준비하고 상온에서 교반하면서 여기에 티타늄 알콕시드로서 Titanium tetraisopropoxide 15g과 실리콘 알콕시드로서 Tetra ethylsilicate 10g을 서서히 첨가한 후 30분간 격렬하게 교반하여 알콕시드 혼합액을 만들고 이를 상기의 Ti-Cu 혼합수산화물에 서서히 첨가하고 30분간 교반하여 Ti-Cu 수산화물의 수분산체(B)를 제조하는 것 역시 가능하다.Separately, prepare a mixed solution of 70 ml of isopropyl alcohol and 20 ml of acetylacetone, and while stirring at room temperature, 15 g of titanium tetraisopropoxide and 10 g of tetra ethylsilicate as silicon alkoxide were slowly added thereto and stirred vigorously for 30 minutes. It is also possible to prepare an aqueous dispersion (B) of Ti-Cu hydroxide by stirring vigorously to create an alkoxide mixture and gradually adding it to the Ti-Cu mixed hydroxide and stirring for 30 minutes.

이러한 형태의 이산화티타늄 광촉매 입자는 항균성능이 강화될 뿐만 아니라 티타늄-구리 산화물(Ti-Cu oxide)이 다공성형태로 이산화티타늄 입자 표면에 부착(캡슐화 형태)되어 있는 형태가 되어 자외선이 조사되지 않는 조건에서도 강력한 항균력을 장기간 안정적으로 발휘할 뿐만 아니라, 이산화티타늄의 강한 산화력을 인접한 바인더나 피도물면과의 차단(절연) 효과로 바인더의 선택폭이 넓어지고 피도면의 재질 즉, 적용소재의 범위도 확대할 수 있도록 하는 지대한 영향을 미치게 된다. This type of titanium dioxide photocatalyst particle not only has enhanced antibacterial performance, but also has titanium-copper oxide (Ti-Cu oxide) attached (encapsulated) to the surface of the titanium dioxide particle in a porous form, allowing it to be used under conditions where ultraviolet rays are not irradiated. Not only does it demonstrate strong antibacterial power stably for a long period of time, but the strong oxidizing power of titanium dioxide has a blocking (insulating) effect from adjacent binders or the surface of the surface to be coated, which broadens the selection of binders and expands the range of materials applied to the surface to be coated. It will have a huge impact.

즉, 기존의 항균금속염 수용액의 첨가 또는 금속이온 첨착 등 단순 처리한 경우와 대비하여 안정된 광촉매 산화능의 내구성이 크게 향상되고 인체나 주변 환경에 안전성을 유지하면서 장기간의 항균력 유지가 가능하게 되며 하도 처리 없이 직접 1회 광촉매 코팅처리가 가능함과 동시에 코팅막의 내구성을 크게 향상 시킬수 있는 유리한 방법이 된다. In other words, compared to simple treatments such as the addition of existing antibacterial metal salt aqueous solutions or metal ion impregnation, the durability of the stable photocatalyst oxidation ability is greatly improved, and long-term antibacterial activity is maintained while maintaining safety to the human body and the surrounding environment without prior treatment. It is an advantageous method that allows direct one-time photocatalytic coating treatment and at the same time greatly improves the durability of the coating film.

전술한 방법으로 제조된 코팅제는 광촉매로서 TiO2, anatase형 단독 입자 형태보다는 Ti-Cu oxide형태의 입자구조를 가짐으로써, 가시광 영역에서의 항균 소취 성능이 향상되게 되고, 추가적으로 광촉매입자 보호막으로의 역할을 하는 캡슐성분인 Ti-Si 복합 산화물 입자들을 광촉매코팅막의 내화학성과 내오염성 그리고 코팅막 자체 바인더를 산화시키지 않을뿐더러 광촉매 코팅막과 접촉하는 피도물(substrate) 표면의 손상을 방지할 수 있게 된다.The coating agent manufactured by the above-described method has a Ti-Cu oxide particle structure rather than a TiO2 or anatase-type single particle as a photocatalyst, thereby improving antibacterial and deodorizing performance in the visible light region and additionally serving as a protective film for photocatalyst particles. Ti-Si composite oxide particles, which are a capsule component, not only improve the chemical resistance and contamination resistance of the photocatalyst coating film and do not oxidize the binder of the coating film itself, but also prevent damage to the surface of the substrate in contact with the photocatalyst coating film.

(Ti-Si-Zr 알콕시드의 킬레이트화물의 제조)(Preparation of chelate of Ti-Si-Zr alkoxide)

본 발명에서 사용하는 금속킬레이트화물은 금속 알콕시드(alkoxide)와 케톤류 등의 킬레이트화제를 이용하여 만들어지게 되며, 이는 본 발명의 광촉매 바인더로서의 주요 성분으로의 역할을 수행할 수 있다. The metal chelate used in the present invention is made using a chelating agent such as metal alkoxide and ketones, and can serve as a main ingredient as a photocatalyst binder of the present invention.

먼저 본 발명에서 사용하는 알콕시드는 다음의 3종류로 이들을 적정 비율로 혼합하여 사용하게 된다.First, the alkoxides used in the present invention are of the following three types and are used by mixing them in an appropriate ratio.

구체적으로 이러한 금속 알콕시드는 하기의 일반식으로 표기할 수 있다. Specifically, these metal alkoxides can be expressed by the general formula below.

Ti(OR1)n ----- (1)Ti(OR1)n ----- (1)

Si(OR2)n ----- (2)Si(OR2)n ----- (2)

Zr(OR3)n ----- (3)Zr(OR3)n----- (3)

상기의 (1)식이 티타늄알콕시드, (2)식이 실리콘알콕시드 그리고 (3)식이 지르코늄알콕시드이다. 본 발명에서는 이들을 일정비율로 혼합하여 사용하는 구성을 개시한다.The formula (1) above is titanium alkoxide, (2) is silicon alkoxide, and (3) is zirconium alkoxide. The present invention discloses a configuration in which these are mixed and used in a certain ratio.

여기서 n은 금속의 원자가이고, R은 탄소수 1-6의 유기기일 수 있다. 해당 유기기는 메틸기, 에틸기 그리고 이소프로필기 중 어느 하나의 구조가 적합하다.Here, n is the valence of the metal, and R may be an organic group having 1 to 6 carbon atoms. The organic group in question may have a structure of any one of a methyl group, an ethyl group, and an isopropyl group.

상기의 3종의 알콕시드를 적정비율로 혼합하고, 킬레이트화제로서 에탄올아민, 베타-디케톤 및 또는 베타-케토에스테르를 소정량 첨가하고 킬레이트화 반응을 유도하여 최종적으로 Ti-Si-Zr 킬레이트화합물을 제조할 수 있게 된다.The above three types of alkoxides are mixed in an appropriate ratio, a predetermined amount of ethanolamine, beta-diketone, and/or beta-keto ester is added as a chelating agent, and a chelation reaction is induced to finally produce a Ti-Si-Zr chelate compound. can be manufactured.

이 경우, 킬레이트화물이 가수분해 과정에서 진행 속도를 조정하여 반응성 알콕시실란화합물의 축합 속도를 추월하지 않도록 하기 위해서 본 발명은 킬레이트화제로서 아민류, 케톤류 또는 케토에스테르류 등을 사용할 수 있다. In this case, the present invention can use amines, ketones, or keto esters as chelating agents in order to adjust the progress rate of the chelated product during the hydrolysis process so that it does not overtake the condensation rate of the reactive alkoxysilane compound.

본 발명에서 사용 가능한 금속알콕시드의 종류로는, Types of metal alkoxides that can be used in the present invention include:

상기의 (1)식의 경우 구체적인 예로서, 티타늄테트라이소프로폭시드, 티타늄테트라부톡시드이고, In the case of formula (1) above, specific examples include titanium tetraisopropoxide and titanium tetrabutoxide,

상기의 (2)식의 경우 테트라메톡시실란, 테트라에톡시실란 등을 들 수 있다.In the case of formula (2) above, tetramethoxysilane, tetraethoxysilane, etc. can be mentioned.

상기의 (3)식의 경우는 지르코눔테트리에톡시드, 지르코늄테트라이소프로폭시드, 지르코늄테트라부톡시드, 지르코늄테트라벤톡시드 등을 들 수 있다. In the case of formula (3) above, examples include zirconium tetraethoxide, zirconium tetraisopropoxide, zirconium tetrabutoxide, and zirconium tetrabentoxide.

또한 킬레이트화제로서는 모노에탄올아민, 디에탄올아민, 트리에탄올아민, 아세틸아세톤, 아세트초산메틸, 아세트초산에틸, 마론산디에틸, 페녹시초산에틸 등에서 적어도 1개 이상을 혼합하여 사용할 수 있다. Additionally, as a chelating agent, at least one of monoethanolamine, diethanolamine, triethanolamine, acetylacetone, methyl acetoacetate, ethyl acetoacetate, diethyl malonate, and ethyl phenoxyacetate can be used in combination.

보다 구체적으로는, TIO2/SiO2=0.5∼1 그리고 (TiO2+SiO2)/ZrO2=0.5-2.5가 될 수 있도록 Ti, Si, Zr 알콕시드의 비를 조정하여 Ti-Si-Zr 혼합 알콕시드를 만드는 것이 바람직하며,More specifically, Ti-Si-Zr mixed alkoxide is made by adjusting the ratio of Ti, Si, and Zr alkoxide so that TIO2/SiO2=0.5∼1 and (TiO2+SiO2)/ZrO2=0.5-2.5. It is desirable,

해당 혼합된 Ti, Si, Zr 알콕시드와 무게비 1:1이 되도록 킬레이트화제를 첨가하고 70℃에서 12시간 이상 교반하여 Ti, Si, Zr 알콕시드 킬레이트화물을 얻게 된다. A chelating agent is added to the mixed Ti, Si, and Zr alkoxides in a weight ratio of 1:1, and stirred at 70°C for more than 12 hours to obtain a Ti, Si, and Zr alkoxide chelate.

또한, 본 발명에서는 다른 제조예시를 제공하는 것이 가능하다.Additionally, in the present invention, it is possible to provide other manufacturing examples.

(1) 온도계와 자석교반기가 부착된 1000ml 삼각플라스크에 이소프로필알코올(Isopropyl alcohol) 300ml 를 넣고 여기에 티타늄 알콕시드로서 Titanium tetraisopropoxide 50g과 실리콘 알콕시드로서 Tetra ethylsilicate 10g 및 지르코늄 알콕시드로서 Zirconium tetrabuthoxide 20g을 순차적으로 첨가한 후, 5분간 상온 교반하고 이어서 아세틸아세톤(Acetylacetone) 100ml를 10분간에 걸쳐 투입하고 격렬하게 20분간 상온에서 교반하여 Ti-Si-Zr 알콕시드의 혼합킬레이트화물(A)을 제조하는 것이 가능하다.(1) Add 300ml of isopropyl alcohol to a 1000ml Erlenmeyer flask equipped with a thermometer and magnetic stirrer, add 50g of titanium tetraisopropoxide as titanium alkoxide, 10g of tetra ethylsilicate as silicon alkoxide, and 20g of zirconium tetrabuthoxide as zirconium alkoxide. After sequential addition, stirring at room temperature for 5 minutes, then 100 ml of acetylacetone (Acetylacetone) was added over 10 minutes and stirred vigorously at room temperature for 20 minutes to prepare mixed chelate of Ti-Si-Zr alkoxide (A). It is possible.

(2) 또는, 온도계와 자석교반기가 부착된 1000ml 삼각플라스크에 이소프로필알코올(Isopropyl alcohol) 300ml 를 넣고 여기에 실리콘 알콕시드로서 Tetra ethylsilicate 50g, 티타늄 알콕시드로서 Titanium tetraisopropoxide 30g 및 지르코늄 알콕시드로서 Zirconium tetrabuthoxide 10g을 순차적으로 첨가한 후, 5분간 상온 교반하고 이어서 아세틸아세톤(Acetylacetone) 100ml를 10분간에 걸쳐 투입하고 격렬하게 20분간 상온에서 교반하여 Ti-Si-Zr 알콕시드의 혼합킬레이트화물(B)을 제조하는 것 역시 가능하다.(2) Alternatively, add 300 ml of isopropyl alcohol to a 1000 ml Erlenmeyer flask equipped with a thermometer and magnetic stirrer and add 50 g of Tetra ethylsilicate as silicon alkoxide, 30 g of Titanium tetraisopropoxide as titanium alkoxide, and Zirconium tetrabuthoxide as zirconium alkoxide. After adding 10 g sequentially, stirring at room temperature for 5 minutes, then 100 ml of acetylacetone was added over 10 minutes and stirred vigorously at room temperature for 20 minutes to form a mixed chelate of Ti-Si-Zr alkoxide (B). Manufacturing is also possible.

해당 Ti, Si, Zr 알콕시드 킬레이트화물은 광촉매 입자와 이웃해서 존재할 수 있는 Ti, Si 그리고 Zr 복합 산화물을 존재 시킴으로서 광촉매 산화 기능을 유지 시키고, 동시에 코팅막의 표면 내오염성을 향상시키는 효과를 얻게 된다.The Ti, Si, Zr alkoxide chelate maintains the photocatalytic oxidation function by creating Ti, Si, and Zr complex oxides that may exist adjacent to the photocatalyst particles, and at the same time has the effect of improving the surface fouling resistance of the coating film.

(반응성 실란 부분가수분해물의 제조)(Preparation of reactive silane partial hydrolyzate)

일반적으로 가수분해성 알콕시실란을 사용하여 소정의 공정을 통하여 부분가수분해물을 얻을 수 있다. In general, a partially hydrolyzed product can be obtained through a predetermined process using a hydrolyzable alkoxysilane.

본 발명에서는 반응기를 가지는 오가노알콕시실란(organo alkoxysilane) 중 트리알콕시실란(trialkoxysilane)을 사용하게 되며 이는 다음의 식으로 표시할 수 있다. In the present invention, trialkoxysilane is used among organo alkoxysilanes having a reactive group, and this can be expressed by the following formula.

일반식 RSi(OR4)3 ------(4)General formula RSi(OR4)3 ------(4)

상기 식 중의 R은 γ-클로로프로필기, 비닐기, 3,3,3-트리플루오로 프로필기, r-글리시드옥시프로필기, r-메타크릴옥시프로필기, γ-메르캅토프로필기, 3,4-에폭시시클로헥실에틸기가 해당이 되며, 이중 비닐기, r-글리시드옥시프로필기, r-메타크릴옥시프로필기가 보다 바람직하다. R in the above formula is γ-chloropropyl group, vinyl group, 3,3,3-trifluoropropyl group, r-glycidoxypropyl group, r-methacryloxypropyl group, γ-mercaptopropyl group, 3 , 4-epoxycyclohexylethyl group is applicable, of which vinyl group, r-glycidoxypropyl group, and r-methacryloxypropyl group are more preferable.

또한, R4는 알킬기 또는 아실기로서 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, sec-부틸기, tert-부틸기, 아세틸기 등을 들 수 있는데 본 발명에서는 메틸기가 보다 바람직하다.In addition, R4 is an alkyl group or acyl group and includes methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, tert-butyl group, acetyl group, etc. In the present invention, the methyl group is It is more desirable.

이와 같은 알콕시실란은 1종 또는 2종 이상을 혼합하여 사용할 수 있으며 그 종류를 예로들면 다음과 같다. 에폭시기를 가진 3-글리시독시프로필 트리메톡시실란, 3-글리시독시프로필 트리에톡시실란 또는 2-(3,4-에폭시사이클로헥실)-에틸트리메톡시실란 등을 들 수 있다. Such alkoxysilanes can be used alone or in a mixture of two or more types, and examples of such alkoxysilanes are as follows. Examples include 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl triethoxysilane, or 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, which have an epoxy group.

또한 비닐기를 갖는 실란 화합물의 예로는 비닐트리클로로실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 3-메타크릴옥시프로필 트리메톡시실란, 3-메타크릴옥시프로필 트리에톡시실란 또는 3-아크릴옥시프로필트리메톡시실란 등을 들 수 있다. Additionally, examples of silane compounds having a vinyl group include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl triethoxysilane, or 3-methacryloxypropyl triethoxysilane. Acryloxypropyltrimethoxysilane, etc. can be mentioned.

그리고 아미노기를 가지고 있는 N-2-(아미노에틸)-3-아미노프로필 트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필 트리에톡시실란, 3-아미노프로필 트리메톡시실란, 3-아미노프로필트리에톡시실란, 또는 N-페닐-3-아미노프로필트리메톡시실란등이 사용될 수 있다. 또한 이소시아네이트기를 가진 3-이소시아나토프로필 트리에톡시실란 또는 3-이소시아나토프로필 트리메톡시실란 등도 사용될 수 있다. And N-2-(aminoethyl)-3-aminopropyl trimethoxysilane, N-2-(aminoethyl)-3-aminopropyl triethoxysilane, 3-aminopropyl trimethoxysilane, 3-Aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. may be used. Additionally, 3-isocyanatopropyl triethoxysilane or 3-isocyanatopropyl trimethoxysilane having an isocyanate group may also be used.

이 중 3-글리시독시프로필 트리메톡시실란, 3-메타크릴옥시프로필 트리메톡시실란, 3-아미노프로필 트리메톡시실란과 3-메타크릴옥시프로필 트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필 트리메톡시실란 등이 보다 바람직하다. Among them, 3-glycidoxypropyl trimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-aminopropyl trimethoxysilane, 3-methacryloxypropyl trimethoxysilane, N-2-(amino Ethyl)-3-aminopropyl trimethoxysilane and the like are more preferable.

상기의 반응성 알콕시실란 적어도 1개 이상을 선택하고 소정 온도와 산 촉매하에서 가수분해를 진행한다. At least one of the above reactive alkoxysilanes is selected and hydrolysis is performed at a predetermined temperature and under an acid catalyst.

본 발명의 부분가수분해는 pH가 2-6, 보다 바람직하게는 pH가 2~5가 유지되도록 하며, 반응온도는 60℃ 이하가 바람직하다. In the partial hydrolysis of the present invention, the pH is maintained at 2-6, more preferably at 2-5, and the reaction temperature is preferably 60°C or lower.

또한, 물의 첨가량은 가수분해성 알콕시실란 의 가수분해성기 1몰에 대하여 0.1 내지 0.5몰의 물을 첨가하였다. Additionally, the amount of water added was 0.1 to 0.5 mole of water per 1 mole of the hydrolyzable group of the hydrolyzable alkoxysilane.

이러한 조건에서 일정시간 동안 가수분해를 진행하며, 진행완료 후 반응생성물인 알코올을 감압증류하여 제거한다. Under these conditions, hydrolysis proceeds for a certain period of time, and after completion of the process, the alcohol, which is a reaction product, is removed by distillation under reduced pressure.

보다 구체적인 예시로는, 온도계, 자석교반기, 냉각기가 부착된 1000ml 삼각플라스크에 에탄올(Ethyl alcohol), 200ml을 넣고 10℃이하로 유지하도록 조정하여 빙냉 교반하면서 에틸트리메톡시실란(Ethyl trimethoxysilane) 30g과 페닐트리메톡시실란(Phenyl trimethoxysilane) 20g 및 비닐트리메톡시실란(Vinyl trimethoxysilane) 5.0g을 순차적으로 투입하고 30분간 혼합 교반하여 균일한 용액이 되도록 한다. 이후 1.0% 질산수용액 20g을 1시간 동안 적하하면서 10℃ 이하로 유지한다. 적하가 끝난 이후 상온에서 3시간 교반한 후 48시간 정체하여 반응성 실란 부분가수분해물(A)을 제조가능하다.As a more specific example, add 200 ml of ethanol (Ethyl alcohol) to a 1000 ml Erlenmeyer flask equipped with a thermometer, magnetic stirrer, and condenser, adjust to maintain the temperature below 10°C, and add 30 g of ethyl trimethoxysilane and 30 g of ethyl trimethoxysilane while stirring on ice. Add 20 g of phenyl trimethoxysilane and 5.0 g of vinyl trimethoxysilane sequentially and mix and stir for 30 minutes to form a uniform solution. Afterwards, 20 g of 1.0% nitric acid aqueous solution was added dropwise over 1 hour while maintaining the temperature below 10°C. After the dropwise addition, the reactive silane partial hydrolyzate (A) can be produced by stirring at room temperature for 3 hours and then allowing it to sit for 48 hours.

또는, 온도계, 자석교반기, 냉각기가 부착된 1000ml 삼각플라스크에 메탄올(Methyl alcohol) 200ml을 넣고 10℃이하로 유지하도록 조정하여 빙냉 교반하면서 아크릴트리메톡시실란(Acryl trimethoxysilane) 30g과 그리시톡시프로필트리메톡시실란(Gricythoxy propyltrimethoxysilane) 15g 및 메틸트리메톡시실란(Methyl trimethoxysilane) 10g을 순차적으로 투입하고 30분간 혼합 교반하여 균일한 용액이 되도록 한다. 이후 1.0% 질산수용액 20g을 1시간 동안 적하하면서 10℃ 이하로 유지한다. 적하가 끝난 이후 상온에서 3시간 교반한 후 48시간 정체하여 반응성 실란 부분가수분해물(B)을 제조하였다.Alternatively, add 200 ml of methanol (Methyl alcohol) to a 1000 ml Erlenmeyer flask equipped with a thermometer, magnetic stirrer, and condenser, adjust to maintain the temperature below 10°C, cool with ice, and stir while mixing 30 g of Acryl trimethoxysilane and glycythoxypropyl trime. Add 15 g of Gricythoxy propyltrimethoxysilane and 10 g of Methyl trimethoxysilane sequentially and mix and stir for 30 minutes to form a uniform solution. Afterwards, 20 g of 1.0% nitric acid aqueous solution was added dropwise over 1 hour while maintaining the temperature below 10°C. After the dropwise addition, the mixture was stirred at room temperature for 3 hours and then allowed to stand for 48 hours to prepare a reactive silane partial hydrolyzate (B).

상기의 과정들을 통하여 최종적으로 실라놀기(Si-OH)를 가지는 올리고머 형태의 실란 부분가수분해물이 만들어진다. 이는 추후 상기의 복합물들과 혼합되어 수열합성공정에서 축합반응으로 이어지게 된다.Through the above processes, a partial hydrolyzate of silane in the form of an oligomer having a silanol group (Si-OH) is finally produced. This is later mixed with the above complexes, leading to a condensation reaction in the hydrothermal synthesis process.

(광촉매코팅제의 제조)(Manufacture of photocatalytic coating agent)

상기의 구리함유 티타늄수산화물 수분산체와 Ti-Si-Zr 알콕시드 킬레이트화물 그리고 실란 부분가수분해물을 혼합하고 고속으로 교반하면서 온도를 120℃이상에서 6시간 이상 유지시키며 수열합성반응을 발생시킨 후 상온으로 냉각하고 여기에 용매와 기타첨가제를 혼합하여 광촉매코팅제를 완성하였다.The above copper-containing titanium hydroxide aqueous dispersion, Ti-Si-Zr alkoxide chelate, and silane partial hydrolyzate are mixed and stirred at high speed, maintaining the temperature at 120°C or higher for more than 6 hours to generate a hydrothermal synthesis reaction, and then returning to room temperature. After cooling, solvent and other additives were mixed to complete the photocatalyst coating.

이하는 혼합비율에 대하여 설명한다.The mixing ratio is explained below.

<혼합 비율><Mixing ratio>

구리함유 티타늄산화물 고형분 = 1Copper-containing titanium oxide solid content = 1

Ti-Si-Zr 알콕시드 킬레이트화물의 고형분 = 0.5∼1.0Solid content of Ti-Si-Zr alkoxide chelate = 0.5∼1.0

실란 부분가수분해물의 고형분 = 0.2∼0.5Solid content of silane partial hydrolyzate = 0.2∼0.5

즉, 광촉매-무기산화물-실리콘부분가수분해물이 하이브리드화 구조를 갖는 광촉매코팅제를 얻을 수 있다. In other words, a photocatalyst coating agent having a hybrid structure of photocatalyst-inorganic oxide-silicon partial hydrolyzate can be obtained.

최종 가수분해된 산물의 각각의 고형분 대비 비율은 바람직하게는 광촉매고형분 : Ti-Si-Zr산화물의 고형분 : 실리콘축합물의 고형분 = 1 : 0.5∼1.0 : 0.2~0.5이다.The ratio of each solid content of the final hydrolyzed product is preferably photocatalyst solid content: solid content of Ti-Si-Zr oxide: solid content of silicon condensate = 1:0.5 to 1.0:0.2 to 0.5.

상기 실란 화합물은 가수분해되어 실라놀기인 Si-OH기가 형성된다. 그리고 Ti-Si-Zr 알콕시드 킬레이트화물은 가수분해 되어지면서 형성된 수산기(M-OH)가 서로 작용기가 되어 결합하게 되고, 이어서 이산화티타늄 광촉매입자의 표면 캡슐화물인 Ti-Cu 산화물과도 결합력이 강해지면서, 결과적으로는 상기 3종의 주요성분들이 화학적으로 견고한 결합을 이루며, 보다 안정된 화합물을 형성하게 된다. The silane compound is hydrolyzed to form a Si-OH group, which is a silanol group. In addition, the hydroxyl groups (M-OH) formed during hydrolysis of the Ti-Si-Zr alkoxide chelate become functional groups and bond to each other, and the bonding power is also strong with Ti-Cu oxide, which is the surface encapsulation of titanium dioxide photocatalyst particles. As a result, the three main components form a strong chemical bond and form a more stable compound.

따라서 이러한 결합체는 강력한 광산화력, 항균력 그리고 내오염성을 유지하면서 플라스틱등 고분자 물질 표면에도 부착성능이 우수하고 내구성이 우수한 광촉매 도막을 형성할 수 있어, 종래기술에 비해 새로운 효과를 가지는 광촉매 코팅제를 제조할 수 있다.Therefore, this combination can form a photocatalyst coating film with excellent adhesion performance and durability on the surface of polymer materials such as plastic while maintaining strong photooxidation power, antibacterial power, and contamination resistance, making it possible to manufacture a photocatalyst coating with new effects compared to the conventional technology. You can.

또한, 부분가수분해물과 결합할 수 있는 작용기를 가지고 있으므로 유기-무기 하이브리드 구조를 형성하여 친수성을 유지하면서 강력한 광촉매의 광산화능을 발휘함과 동시에 흡착성능과 내화학성 및 내구성 우수한 물리적 성질을 가질 수 있다.In addition, since it has a functional group that can bind to a partially hydrolyzed product, it forms an organic-inorganic hybrid structure, maintaining hydrophilicity and exhibiting a strong photooxidation ability of a photocatalyst, while also having excellent physical properties such as adsorption performance, chemical resistance, and durability. .

상기와 같이 Ti-Si-Zr계 비정질 산화물은 반응성 알콕시실란 화합물과 실록산 결합을 하여보다 치밀한 망목구조를 형성할 수 있으며, 또한, 이의 첨가 함량에 따라 광촉매 코팅막의 경도 및 굴절률 조절이 가능하다.As described above, the Ti-Si-Zr-based amorphous oxide can form a more dense network structure by forming a siloxane bond with a reactive alkoxysilane compound, and the hardness and refractive index of the photocatalyst coating film can be adjusted depending on its added content.

상기에서 제조된 구리함유 티타늄수산화물 수분산체와 Ti-Si-Zr 알콕시드 킬레이트화 용액그리고 반응성실란화합물을 일정비율로 혼합한 후 2시간 이상 교반 한 후 120℃ 이상의 온도에서 가수분해와 결정화 반응을 유도하는 수열합성반응 공정을 통하여 Cu 성분을 함유하는 결정형(anatase)의 TiO2 입자와 공존상태의 Ti-Si-Zr 산화물 입자 분산액을 얻을 수 있었다. The copper-containing titanium hydroxide aqueous dispersion prepared above, the Ti-Si-Zr alkoxide chelating solution, and the reactive silane compound are mixed in a certain ratio and stirred for more than 2 hours to induce hydrolysis and crystallization reactions at a temperature of 120°C or higher. Through the hydrothermal synthesis reaction process, it was possible to obtain a dispersion of Ti-Si-Zr oxide particles in a coexistence with crystalline (anatase) TiO2 particles containing Cu.

추가적으로, XRD 분석 패턴을 통해 아나타아제구조의 결정형 TiO2를 확인하였고, 반면에 Ti-Si 화합물상은 비결정(amorphous)상임을 확인할 수 있었다. Additionally, the crystalline TiO2 of anatase structure was confirmed through the XRD analysis pattern, while the Ti-Si compound phase was confirmed to be an amorphous phase.

이렇게 하여 얻은 복합 광촉매 분산체는 단독 또는 단순의 TiO2 단일체 대비 내구성이 우수하고 유기바인더를 사용하더라도 코팅막자체의 백화(chocking)현상을 억제할 수 있는 기본적 특성을 가지게 된다. The composite photocatalyst dispersion obtained in this way has superior durability compared to a single or simple TiO2 monolith, and has basic characteristics that can suppress chocking of the coating film itself even when an organic binder is used.

더불어 가시광 영역에서도 강력한 항균, 소취기능을 발휘할수 있을 뿐아니라 코팅막의 내화학성과 내오염성이 우수한 광촉매 물질이 가능하게 된다.In addition, it becomes possible to create a photocatalyst material that not only has strong antibacterial and deodorizing properties even in the visible light range, but also has excellent chemical resistance and contamination resistance of the coating film.

이러한 수열반응을 통하여 아나타제 광촉매구조의 결정화를 이루고, 아몰포스형의 무기산화물을 공존 시킴으로서 안정한 상태의 항균력 강화 광촉매 물질을 제조하였다. Through this hydrothermal reaction, the anatase photocatalyst structure was crystallized, and an amorphous inorganic oxide was coexisted to produce a photocatalyst material with enhanced antibacterial activity in a stable state.

해당 광촉매 분산체와 바인더 합성체를 일정한 비율로 계량하여 혼합하여, 이하의 용매와 계면활성제를 첨가하여 플라스틱 표면 코팅용 광촉매코팅제를 제조할 수 있게 된다.The photocatalyst dispersion and the binder composite are measured and mixed at a certain ratio, and the following solvent and surfactant are added to produce a photocatalyst coating agent for coating plastic surfaces.

이상의 광촉매코팅제 구성의 혼합비와 항균력을 확인하기 위하여 다른 추가적인 제공하는 것이 가능하다.In order to confirm the mixing ratio and antibacterial activity of the above photocatalyst coating composition, it is possible to provide additional information.

(생성물1)(Product 1)

상기의 Ti-Cu 수산화물의 수분산체(A) 100g, Ti-Si-Zr 알콕시드의 혼합킬레이트화물(A) 80g 및 반응성 실란 부분가수분해물(A) 50g을 순차적으로 서서히 혼합하고 수열합성반응기에 투입후 서서히 120℃에서 8시간동안 가열 교반하여 상온으로 서서히 냉각하여 광촉매 코팅제(생성물1)를 제조한다.100 g of the aqueous dispersion of Ti-Cu hydroxide (A), 80 g of mixed chelate of Ti-Si-Zr alkoxide (A), and 50 g of reactive silane partial hydrolyzate (A) were sequentially and slowly mixed and placed in a hydrothermal synthesis reactor. Then, the photocatalyst coating agent (Product 1) is prepared by gradually heating and stirring at 120°C for 8 hours and gradually cooling to room temperature.

(생성물2)(Product 2)

상기의 Ti-Cu 수산화물의 수분산체(B) 100g, Ti-Si-Zr 알콕시드의 혼합킬레이트화물(B) 80g 및 반응성 실란 부분가수분해물(B) 50g을 순차적으로 서서히 혼합하고 수열합성반응기에 투입후 서서히 120℃에서 8시간동안 가열 교반하여 상온으로 서서히 냉각하여 광촉매 코팅제(생성물2)를 제조한다.100 g of the aqueous dispersion of Ti-Cu hydroxide (B), 80 g of mixed chelate of Ti-Si-Zr alkoxide (B), and 50 g of reactive silane partial hydrolyzate (B) were sequentially and slowly mixed and placed in a hydrothermal synthesis reactor. Then, the mixture is gradually heated and stirred at 120°C for 8 hours and slowly cooled to room temperature to prepare a photocatalyst coating agent (Product 2).

(비교물1)(Comparative 1)

상기의 Ti-Cu 수산화물의 수분산체(A) 50g, Ti-Si-Zr 알콕시드의 혼합킬레이트화물(A) 100g 및 반응성 실란 부분가수분해물(A) 100g을 순차적으로 서서히 혼합하고 수열합성반응기에 투입후 서서히 120℃에서 8시간동안 가열 교반하여 상온으로 서서히 냉각하여 광촉매 코팅제(비교물1)를 제조한다.50 g of the aqueous dispersion of Ti-Cu hydroxide (A), 100 g of mixed chelate of Ti-Si-Zr alkoxide (A), and 100 g of reactive silane partial hydrolyzate (A) were sequentially and slowly mixed and placed in a hydrothermal synthesis reactor. Then, the photocatalyst coating agent (comparative material 1) was prepared by gradually heating and stirring at 120°C for 8 hours and gradually cooling to room temperature.

(비교물2)(Comparative 2)

상기의 Ti-Cu 수산화물의 수분산체(B) 50g, Ti-Si-Zr 알콕시드의 혼합킬레이트화물(B) 100g 및 반응성 실란 부분가수분해물(B) 100g을 순차적으로 서서히 혼합하고 수열합성반응기에 투입후 서서히 120℃에서 8시간동안 가열 교반하여 상온으로 서서히 냉각하여 광촉매 코팅제(비교물2)를 제조한다.50 g of the aqueous dispersion of Ti-Cu hydroxide (B), 100 g of mixed chelate of Ti-Si-Zr alkoxide (B), and 100 g of reactive silane partial hydrolyzate (B) were sequentially and slowly mixed and placed in a hydrothermal synthesis reactor. Then, the photocatalyst coating agent (comparative material 2) was prepared by gradually heating and stirring at 120°C for 8 hours and gradually cooling to room temperature.

<생성물과 비교물의 항균력 테스트> <Test antibacterial activity of product and comparative product>

항균력 시험은 다음과 같이 수행한다. 균주 1인 1.5±0.3X/ml 농 도의 황색포도상구균(Staphylococcus aureus, ATCC 6538)과 균주 2로써 1.3± 0.3X/ml 농도의 대장균(Escherichia coli, ATCC 25922)을 이용하여 이상의 생성물 및 비교물인 광촉매를 0.4g을 적용한 증균용 배지에서 35℃에서 18시간 동안 배양하고 균수를 측정하였다.The antibacterial activity test is performed as follows. 1.5±0.3X per strain /ml concentration of Staphylococcus aureus (ATCC 6538) and strain 2, 1.3± 0.3X Using Escherichia coli (ATCC 25922) at a concentration of /ml, 0.4 g of the above product and the comparative photocatalyst were cultured in an enrichment medium at 35°C for 18 hours, and the number of bacteria was measured.

결과는 다음의 표1에서 보듯이 생성물 1과 생성물 2의 경우 균주 접종 18시 간 후 잔존하는 균주가 육안식별을 할 수 없는 잔존수치를 나타내며 강한 항균력을 보임을 알 수 있는 반면, 비교물 1의 경우 세균 감소율이 비교적 낮게 나타났다. 원인은 항균성분을 함유하는 이산화티타늄의 함량이 낮아짐으로서 항균 효과를 거의 나타내지 못하고 있음을 알 수 있다. 마찬가지로 비교물 2의 경우도 항균성능을 나타내지 못하고 있음을 알 수 있다As shown in Table 1 below, the results show that in the case of Product 1 and Product 2, the remaining strains 18 hours after strain inoculation showed residual levels that could not be visually identified and showed strong antibacterial activity, whereas Comparative Product 1 In this case, the bacterial reduction rate was relatively low. It can be seen that the cause is that the content of titanium dioxide, which contains antibacterial ingredients, is low, showing little antibacterial effect. Likewise, it can be seen that Comparative Material 2 does not exhibit antibacterial activity.

BlankBlank 실시물 1Entity 1 실시물 2Entity 2 균주 1strain 1 초기균주Initial strain 1.7X 1.7X 1.7× 1.7× 1.7× 1.7× 18시간 후18 hours later 5.2× 5.2× <10<10 <10<10 균주 2strain 2 초기균주Initial strain 1.3× 1.3× 1.3× 1.3× 1.3× 1.3× 18시간 후18 hours later 5.9× 5.9× <10<10 <10<10 BlankBlank 비교물 1Comparison 1 비교물 2Comparison 2 균주 1strain 1 초기균주Initial strain 1.7× 1.7× 1.7× 1.7× 1.7× 1.7× 18시간 후18 hours later 5.2× 5.2× 5.7 × 5.7 × 7.8 × 7.8 × 균주 2strain 2 초기균주Initial strain 1.3× 1.3× 1.3× 1.3× 1.3× 1.3× 18시간 후18 hours later 5.9× 5.9× 6.4 × 6.4 × 7.8 × 7.8 ×

(용매)(menstruum)

상기 용매는 상압에서 200℃ 이하의 비점을 갖는 용매를 사용할 수 있고, 특히 물 또는 물과 유기 용매의 혼합물이 사용될 수 있다. 상기 유기 용매는 알코올 화합물, 케톤 화합물, 에테르 화합물, 에스테르 화합물, 방향족 화합물 및 아미드 화합물로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다.The solvent may be a solvent having a boiling point of 200° C. or lower at normal pressure, and in particular, water or a mixture of water and an organic solvent may be used. The organic solvent may be any one or more selected from the group consisting of alcohol compounds, ketone compounds, ether compounds, ester compounds, aromatic compounds, and amide compounds.

유기용매는 중합 반응 진행 시에 매질 역할을 하여 최초 원료들의 균일한 분산을 돕고, 중합 반응 시에 급격한 온도상승을 방지하고 기재에 균일한 코팅을 제공하는 역할을 수행 가능하다.The organic solvent acts as a medium during the polymerization reaction, helping to uniformly disperse the initial raw materials, preventing rapid temperature rise during the polymerization reaction, and providing a uniform coating to the substrate.

상기 알코올 화합물의 예로서, 메탄올, 에탄올, 아이소프로필알코올, 아이소뷰탄올, n-뷰탄올, t-뷰탄올, 에톡시에탄올, 뷰톡시에탄올, 아이에틸렌글라이콜 모노에틸 에터, 벤질 알코올, 펜에틸 알코올, 1-메톡시-2-프로판올 등을 들 수 있다.Examples of the alcohol compounds include methanol, ethanol, isopropyl alcohol, isobutanol, n-butanol, t-butanol, ethoxyethanol, butoxyethanol, ethylene glycol monoethyl ether, benzyl alcohol, and phene. Ethyl alcohol, 1-methoxy-2-propanol, etc. can be mentioned.

케톤 화합물의 예로서, 아세톤, 메틸 에틸 케톤, 메틸 아이소뷰틸 케톤, 사이클로헥사논등을 들 수 있다. Examples of ketone compounds include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.

에테르 화합물의 예로서, 다이뷰틸 에터, 프로필렌 글라이콜 모노에틸 에터 아세테이트 등을 들 수 있다. Examples of ether compounds include dibutyl ether, propylene glycol monoethyl ether acetate, and the like.

에스테르 화합물의 예로서, 에틸 아세테이트, 뷰틸 아세테이트, 에틸 락테이트, 메틸 아세토아세테이트, 에틸 아세토아세테이트, 1-메톡시-2-프로판올 아세테이트 등을 들 수 있다. Examples of ester compounds include ethyl acetate, butyl acetate, ethyl lactate, methyl acetoacetate, ethyl acetoacetate, and 1-methoxy-2-propanol acetate.

방향족 화합물의 예로서, 톨루엔, 자일렌 등을 들 수 있다. Examples of aromatic compounds include toluene, xylene, and the like.

아미드 화합물의 예로서, N,N-다이메틸폼아마이드, N,N-다이메틸아세트아마이드, N-메틸피롤리돈 등을 들 수 있다.Examples of amide compounds include N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.

(계면활성제)(Surfactants)

본 발명에서의 광촉매코팅제의 코팅막의 부착성과 레벨링성의 향상을 위해 계면활성제를 첨가할 수 있다.A surfactant may be added to improve the adhesion and leveling properties of the coating film of the photocatalytic coating agent in the present invention.

특히, 음이온계나 양이온계를 사용할 경우 코팅액의 침전물 발생과 같은 상분리 현상이 나타날 수 있기 때문에 비이온계 계면활성제만을 사용함이 바람직하다. In particular, when anionic or cationic surfactants are used, phase separation phenomena such as precipitation in the coating solution may occur, so it is preferable to use only nonionic surfactants.

이 경우, 비이온계면활성제로는 에테르형 비이온계면활성제, 에테르에스테르형 비이온계면활성제, 에스테르형 비이온계면활성제, 블록폴리머형 비이온계면활성제, 불소계 비이온계면활성제, 질소함유형 비이온계면활성제 등을 들 수 있다. In this case, the nonionic surfactants include ether-type nonionic surfactants, ether ester-type nonionic surfactants, ester-type nonionic surfactants, block polymer-type nonionic surfactants, fluorine-based nonionic surfactants, and nitrogen-containing nonionic surfactants. Surfactants, etc. can be mentioned.

에테르형 비이온계면활성제로는 단일사슬길이 폴리옥시에틸렌에테르형의 에테르형 비이온계면활성제, 폴리옥시에틸렌 지방알콜에테르, 폴리옥시에틸렌알킬알릴에테르, 폴리옥시에틸렌라노린알콜 등의 폴리옥시에틸렌알킬 또는 알킬알릴에테르류, 알킬페놀포르말린축합물의 산화에틸렌유도체 등을 들 수 있다. Ether-type nonionic surfactants include single-chain polyoxyethylene ether-type ether-type nonionic surfactants, polyoxyethylene fatty alcohol ether, polyoxyethylene alkyl allyl ether, and polyoxyethylene alkyl such as polyoxyethylene lanoline alcohol. Alternatively, alkyl allyl ethers, ethylene oxide derivatives of alkyl phenol formalin condensate, etc. may be mentioned.

에테르에스테르형 비이온계면활성제로는 폴리옥시에틸렌소르비탄지방산에스테르, 폴리옥시에틸렌글리세릴모노지방산에스테르, 폴리옥시에틸렌프로필렌글리콜지방산에스테르, 폴리옥시에틸렌소르비톨지방산에스테르 등이 있다. Ether ester type nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glyceryl mono fatty acid ester, polyoxyethylene propylene glycol fatty acid ester, and polyoxyethylene sorbitol fatty acid ester.

또한, 폴리에테르알킬계 계면활성제로는 폴리옥시에틸렌알킬에테르, 폴리옥시에틸렌알릴에테르, 폴리옥시에틸렌알킬페놀에틸, 폴리옥시에틸렌 지방산 에스테르, 소르비탄 지방산 에스테르, 폴리옥시에틸렌소르비탄 지방산 에스테르, 옥시에틸렌옥시프로필렌 블록 중합체 등을 들 수 있다.In addition, polyether alkyl-based surfactants include polyoxyethylene alkyl ether, polyoxyethylene allyl ether, polyoxyethylene alkyl phenolethyl, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and oxyethylene. Oxypropylene block polymer, etc. are mentioned.

Claims (3)

구리함유 티타늄수산화물 수분산체, Ti-Si-Zr 알콕시드 킬레이트화물, 실란 부분가수분해물을,
구리함유 티타늄수산화물 수분산체의 고형물 : Ti-Si-Zr 알콕시드 킬레이트화물의 고형분 : 실란 부분가수분해물의 고형분을 1 : 0.5~1.0 : 0.2~0.5 비율로 혼합 후 섭씨 120℃ 이상에서 6시간 이상 유지 후 상온 냉각하여 광촉매코팅제를 생성하는 코팅제 생성단계; 및
상기 코팅제 생성단계 이후 생성된 코팅제에 용매 및 계면활성제를 혼합하는 혼합단계;
를 포함하는 항균 기능이 강화된 하이브리드형 광촉매코팅제의 제조방법
Copper-containing titanium hydroxide aqueous dispersion, Ti-Si-Zr alkoxide chelate, and silane partial hydrolyzate,
Solid content of copper-containing titanium hydroxide aqueous dispersion: Solid content of Ti-Si-Zr alkoxide chelate: Solid content of silane partial hydrolyzate mixed in a ratio of 1:0.5~1.0:0.2~0.5 and maintained at 120℃ or higher for more than 6 hours. A coating agent production step of producing a photocatalytic coating agent after cooling to room temperature; and
A mixing step of mixing a solvent and a surfactant with the coating agent produced after the coating agent generation step;
Method for manufacturing a hybrid photocatalytic coating with enhanced antibacterial function containing
제2항에 있어서,
상기 생성단계에 사용되는 구리함유 티타늄수산화물 수분산체는,
티타늄금속염을 중화하여 침전물을 수득하는 티타늄수산화물 수득단계;
티타늄금속염과 구리금속염을 각각 혼합하고 교반을 수행하여 티타늄-구리 복합물을 제조하는 티타늄-구리 복합물 제조단계; 및
상기 제조된 티타늄-구리 복합물을 상기 티타늄수산화물에 첨가하고 2시간 교반한 후 24시간 안정화시키며, 초음파 분산처리로 콜로이드화하여 구리함유 티타늄수산화물 수분산체를 생성하는 구리함유 티타늄수산화물 수분산체 생성단계;
를 포함하여 생성되는 것을 특징으로 하는 항균 기능이 강화된 하이브리드형 광촉매코팅제의 제조방법
According to paragraph 2,
The copper-containing titanium hydroxide aqueous dispersion used in the production step is,
A titanium hydroxide obtaining step of neutralizing titanium metal salt to obtain a precipitate;
A titanium-copper composite manufacturing step of mixing titanium metal salt and copper metal salt and stirring to prepare a titanium-copper composite; and
Adding the prepared titanium-copper complex to the titanium hydroxide, stirring for 2 hours, stabilizing for 24 hours, and colloidizing by ultrasonic dispersion treatment to produce a copper-containing titanium hydroxide aqueous dispersion. A step of producing a copper-containing titanium hydroxide aqueous dispersion;
Method for producing a hybrid photocatalytic coating with enhanced antibacterial function, characterized in that it is produced comprising:
제1항에 있어서,
상기 생성단계의 킬레이트화물은,
티타늄알콕시드, 실리콘알콕시드 및 지르코늄알콕시드를 혼합하는 알콕시드 혼합단계;
상기 알콕시드 혼합단계를 거쳐 혼합된 알콕시드에 킬레이트화제를 혼합하는 혼합체 생성단계; 및
상기 혼합체를 섭씨 70℃에서 12시간 교반하는 킬레이트화물 생성단계;
를 포함하여 생성되는 것을 특징으로 하는 항균 기능이 강화된 하이브리드형 광촉매코팅제의 제조방법
According to paragraph 1,
The chelate cargo in the production step is,
An alkoxide mixing step of mixing titanium alkoxide, silicon alkoxide, and zirconium alkoxide;
A mixture producing step of mixing a chelating agent with the alkoxide mixed through the alkoxide mixing step; and
A chelate production step of stirring the mixture at 70° C. for 12 hours;
Method for producing a hybrid photocatalytic coating with enhanced antibacterial function, characterized in that it is produced comprising:
KR1020220097027A 2022-05-06 2022-08-04 Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function KR20230156624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220097027A KR20230156624A (en) 2022-05-06 2022-08-04 Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220055963A KR102430624B1 (en) 2022-05-06 2022-05-06 Hybrid type photocatalyst coating materials and manufacturing method thereof with enhanced antibacterial function
KR1020220097027A KR20230156624A (en) 2022-05-06 2022-08-04 Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020220055963A Division KR102430624B1 (en) 2022-05-06 2022-05-06 Hybrid type photocatalyst coating materials and manufacturing method thereof with enhanced antibacterial function

Publications (1)

Publication Number Publication Date
KR20230156624A true KR20230156624A (en) 2023-11-14

Family

ID=83112162

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020220055963A KR102430624B1 (en) 2022-05-06 2022-05-06 Hybrid type photocatalyst coating materials and manufacturing method thereof with enhanced antibacterial function
KR1020220097027A KR20230156624A (en) 2022-05-06 2022-08-04 Manufacturing method for hybrid type photocatalyst coating materials with enhanced antibacterial function

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020220055963A KR102430624B1 (en) 2022-05-06 2022-05-06 Hybrid type photocatalyst coating materials and manufacturing method thereof with enhanced antibacterial function

Country Status (1)

Country Link
KR (2) KR102430624B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102559941B1 (en) * 2023-05-02 2023-07-28 주식회사 에스필코리아 LED device with hybrid type photocatalyst coating materials enhanced antibacterial function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757568B1 (en) 2012-11-06 2017-07-12 엑카르트 게엠베하 Pigment with photocatalytic activity, method for the production thereof and coating agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111090A (en) * 2004-05-21 2005-11-24 주식회사 인트켐 Synthesis method of photocatalyst in doped anti-bacteria and de-odors catalyst
KR102075615B1 (en) * 2018-03-07 2020-03-17 (주)퓨리테크 Room temperature curing coating materials containing silan oligomer
KR102233580B1 (en) * 2020-12-11 2021-03-30 주식회사 태성콘텍 (Photocatalyst Coating Agent, Manufacturing Method thereof and Concrete Block Coated thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757568B1 (en) 2012-11-06 2017-07-12 엑카르트 게엠베하 Pigment with photocatalytic activity, method for the production thereof and coating agent

Also Published As

Publication number Publication date
KR102430624B1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
JP4974459B2 (en) Support comprising a photocatalytic TiO2 layer
KR101104262B1 (en) Article wih self-cleaning effect and method of preparation thereof
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
KR100696201B1 (en) Titanium oxide sol, thin film, and processes for producing these
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
KR20140011959A (en) Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for making the same, uv-shielding silicone coating composition, and coated article
JP4846088B2 (en) Titanium oxide-containing photocatalyst coating liquid, production method thereof, and titanium oxide photocatalyst structure
GB2521405A (en) A surface coating
WO2013126958A1 (en) Protective barrier composition for photocatalytic coatings
JP2010506041A (en) Mesostructured coatings for the aircraft and aerospace industry
KR20190049695A (en) The photocatalyst laminated body
TW201815683A (en) Coating composition and coated article
KR102430624B1 (en) Hybrid type photocatalyst coating materials and manufacturing method thereof with enhanced antibacterial function
EP2423269A1 (en) Method for obtaining photocatalytic coatings on metal substrates
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP3122082B2 (en) Manufacturing method of titanium oxide coated material
KR101028797B1 (en) The functional coating agent and manufacturing mtehod the same
JP2005171029A (en) Coating composition, method of forming film having optical catalytic function, and optical catalytic member
JP2012096133A (en) Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film
KR20060107089A (en) Coating composition having antibiotic and ultra water-repellent property, preparation method thereof and coating method using the coating composition
KR102559941B1 (en) LED device with hybrid type photocatalyst coating materials enhanced antibacterial function
KR101048340B1 (en) Transparent film forming composition
KR20060107097A (en) Coating composition having antibiotic and water-repellent property, preparation method thereof and coating method using the coating composition
EP3546497A1 (en) Inorganic particle/siloxane composite, method for producing same, and inorganic-particle-containing silicone composition