JP6156876B2 - Method for producing niobate sol - Google Patents

Method for producing niobate sol Download PDF

Info

Publication number
JP6156876B2
JP6156876B2 JP2013221131A JP2013221131A JP6156876B2 JP 6156876 B2 JP6156876 B2 JP 6156876B2 JP 2013221131 A JP2013221131 A JP 2013221131A JP 2013221131 A JP2013221131 A JP 2013221131A JP 6156876 B2 JP6156876 B2 JP 6156876B2
Authority
JP
Japan
Prior art keywords
sol
acid
mass
niobate
amine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013221131A
Other languages
Japanese (ja)
Other versions
JP2015081220A (en
Inventor
京子 高井
京子 高井
武利 黒田
武利 黒田
井筒 裕之
裕之 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2013221131A priority Critical patent/JP6156876B2/en
Publication of JP2015081220A publication Critical patent/JP2015081220A/en
Application granted granted Critical
Publication of JP6156876B2 publication Critical patent/JP6156876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ニオブ酸ゾルの製造方法に関する。   The present invention relates to a method for producing a niobate sol.

近年、セラミック原料、電子材料、表面処理剤等の分野で、高い屈折率及び誘電率を有する酸化ニオブに対する需要が高まっている。特に、オプトエレクトロニクス材料、半導体材料、表面保護剤、反射防止材、屈折率調整剤、触媒等の分野では、原料として粒子径が小さく、且つ均一な粒度分布を有するニオブ原料が要求され、種々のニオブ系ゾルが開発されてきた。   In recent years, there is an increasing demand for niobium oxide having a high refractive index and dielectric constant in the fields of ceramic raw materials, electronic materials, surface treatment agents, and the like. In particular, in the fields of optoelectronic materials, semiconductor materials, surface protective agents, antireflection materials, refractive index modifiers, catalysts, etc., niobium raw materials having a small particle diameter and a uniform particle size distribution are required as raw materials. Niobium-based sols have been developed.

本願出願人は、優れた自己結着性を示すニオブ系ゾルとして、特許文献1に記載のニオブ酸アンモニウムゾルに関する技術を開発した。   The applicant of the present application has developed a technique related to an ammonium niobate sol described in Patent Document 1 as a niobium-based sol exhibiting excellent self-binding properties.

特開2011−190115号公報JP 2011-190115 A

上記ニオブ酸アンモニウムゾルは、親水性溶媒との相溶性(混合安定性)が求められる用途においては改善の余地があるものであった。   The ammonium niobate sol has room for improvement in applications where compatibility (mixing stability) with a hydrophilic solvent is required.

本発明者らは、上記ニオブ酸アンモニウムゾルの親水性溶媒との相溶性の向上について鋭意検討した結果、上記ニオブ酸アンモニウムゾル中のアンモニア含有量を低減し、アンモニアに代わる分散剤としてアミン化合物を用いることによって、上記課題が解決されることを見出し、本発明を完成させたものである。   As a result of intensive investigations on improving the compatibility of the ammonium niobate sol with the hydrophilic solvent, the present inventors reduced the ammonia content in the ammonium niobate sol, and added an amine compound as a dispersant in place of ammonia. It has been found that the above-mentioned problems can be solved by the use, and the present invention has been completed.

即ち、本発明は下記の通りである。
[1]ニオブ酸アンモニウムゾルをアミン化合物の存在下で加熱してアンモニアを除去する工程、を含むことを特徴とするニオブ酸ゾルの製造方法。
[2]無機酸を混合したニオブ酸アンモニウムゾルを洗浄してアンモニアを除去した後、アミン化合物の存在下で加熱する工程、を含むことを特徴とするニオブ酸ゾルの製造方法。
[3]上記[1]又は[2]記載の製造工程の後に、さらに、有機酸を添加する工程、
を設けてなる、ニオブ酸ゾルの製造方法。
[4]上記[1]〜[3]のいずれか1項記載の製造方法によって製造されたニオブ酸ゾル。
[5]Nb2O5濃度を6質量%に調整した前記ニオブ酸ゾル100質量部に対して、エタノールの相溶量が50質量部以上であるという特性を有する上記[4]記載のニオブ酸ゾル。
[6]アミン化合物の含有量が、アミン化合物/Nb2O5(モル比)=0.1〜1.5の範囲である、
上記[4]又は[5]記載のニオブ酸ゾル。
[7]上記[4]〜[6]のいずれか1項記載のニオブ酸ゾルと親水性溶媒とを含有する薄膜形成用塗布液。
That is, the present invention is as follows.
[1] A method for producing a niobic acid sol, comprising a step of removing ammonia by heating an ammonium niobate sol in the presence of an amine compound.
[2] A method for producing a niobate sol, comprising: washing an ammonium niobate sol mixed with an inorganic acid to remove ammonia, and then heating in the presence of an amine compound.
[3] A step of further adding an organic acid after the production step according to [1] or [2],
A method for producing a niobate sol.
[4] A niobic acid sol produced by the production method according to any one of [1] to [3] above.
[5] The niobic acid according to the above [4], which has a characteristic that the amount of ethanol compatibility is 50 parts by mass or more with respect to 100 parts by mass of the niobate sol adjusted to a Nb 2 O 5 concentration of 6% by mass. Sol.
[6] The content of the amine compound is in the range of amine compound / Nb 2 O 5 (molar ratio) = 0.1 to 1.5.
The niobate sol as described in [4] or [5] above.
[7] A coating solution for forming a thin film comprising the niobate sol according to any one of [4] to [6] above and a hydrophilic solvent.

本発明のニオブ酸ゾルは、親水性溶媒との相溶性に優れているため、とりわけ親水性溶媒を用いる用途に好適に用いることができる。   Since the niobic acid sol of the present invention is excellent in compatibility with a hydrophilic solvent, it can be suitably used especially for applications using a hydrophilic solvent.

以下、本発明のニオブ酸ゾルの製造方法(以下、「本製造方法」ともいう)について詳細に説明する。本製造方法の特徴は、親水性溶媒と高い相溶性が得られる程度にまでニオブ酸アンモニウムゾルからアンモニアを除去することである。即ち、アンモニアを完全に除去できることが望ましいが、所定量のアミン化合物を用いることにより親水性溶媒との高い相溶性を得ることができれば、一定量のアンモニアが残存しても構わない。   The niobate sol production method of the present invention (hereinafter also referred to as “the present production method”) will be described in detail below. A feature of this production method is that ammonia is removed from the ammonium niobate sol to the extent that high compatibility with a hydrophilic solvent is obtained. That is, it is desirable that ammonia can be completely removed, but a certain amount of ammonia may remain as long as high compatibility with a hydrophilic solvent can be obtained by using a predetermined amount of amine compound.

下記の第一の製法と第二の製法はアンモニアの除去方法が異なるだけであり、両製法によって得られるニオブ酸ゾルはいずれも同様の構成を有し、親水性溶媒と高い相溶性を示すものである。   The following 1st manufacturing method and 2nd manufacturing method differ only in the removal method of ammonia, and the niobic acid sol obtained by both manufacturing methods has the same structure, and shows high compatibility with a hydrophilic solvent. It is.

ここで、親水性溶媒とは、メタノール、エタノール、イソプロパノール、n−プロパノール等のアルコール類、エチレングリコール、ジエチレングリコール、グリセリン等のグリコール類、アセトン等のケトン類等、水に対して概ね10%以上溶解し得る有機溶媒をいう。   Here, the hydrophilic solvent is approximately 10% or more soluble in water such as alcohols such as methanol, ethanol, isopropanol and n-propanol, glycols such as ethylene glycol, diethylene glycol and glycerin, ketones such as acetone and the like. An organic solvent that can be used.

また、親水性溶媒との相溶性については、例えば、親水性溶媒としてエタノールを選択したときに、Nb2O5濃度を6質量%に調整したニオブ酸ゾル100質量部に対して、エタノールの相溶量が50質量部以上であれば、親水性溶媒との相溶性が高いと評価することができる。 As for the compatibility with the hydrophilic solvent, for example, when ethanol is selected as the hydrophilic solvent, the ethanol phase is compared with 100 parts by mass of the niobate sol in which the Nb 2 O 5 concentration is adjusted to 6% by mass. If the dissolved amount is 50 parts by mass or more, it can be evaluated that the compatibility with the hydrophilic solvent is high.

第一の製法は、ニオブ酸アンモニウムゾルをアミン化合物の存在下で加熱してアンモニアを除去する工程、を含むことを特徴とするものである。   The first production method includes a step of removing ammonia by heating an ammonium niobate sol in the presence of an amine compound.

第二の製法は、無機酸を混合したニオブ酸アンモニウムゾルを洗浄してアンモニアを除去した後、アミン化合物の存在下で加熱する工程、を含むことを特徴とするものである。   The second production method includes a step of washing the ammonium niobate sol mixed with an inorganic acid to remove ammonia, and then heating in the presence of an amine compound.

ここで、原料として用いるニオブ酸アンモニウムゾルについて説明する。ニオブ酸アンモニウムゾルとしては、特許文献1に記載のニオブ酸アンモニウムゾルを用いてもよいし、市販のニオブ酸アンモニウムゾル、例えば、多木化学(株)製の商品名「バイラール Nb-G6000」を用いてもよい。ニオブ酸アンモニウムゾルの特徴は、100℃で10時間乾燥させたときのアンモニアとニオブ酸が、NH3/Nb2O5(モル比)=0.5〜1.5の範囲であり、実質的に有機酸を含まないことである。 Here, the ammonium niobate sol used as a raw material will be described. As the ammonium niobate sol, the ammonium niobate sol described in Patent Document 1 may be used, or a commercially available ammonium niobate sol, for example, the trade name “Vilar Nb-G6000” manufactured by Taki Chemical Co., Ltd. may be used. It may be used. Characterized ammonium niobate sol, ammonia and niobate when dried at 100 ° C. 10 hours, a range of NH 3 / Nb 2 O 5 (molar ratio) = 0.5 to 1.5, a substantially organic acid It is not included.

ニオブ酸アンモニウムゾル中のアンモニアの形態としては、ゾル中に存在するアンモニウムイオンの他に、上記のように100℃で10時間乾燥させても一定量のアンモニアが検出されることより、無定形のニオブ酸のコロイド粒子表面に強固に吸着したアンモニア(以下、「ニオブ酸吸着アンモニア」という)が存在すると考えられている。   As the form of ammonia in the ammonium niobate sol, in addition to the ammonium ions present in the sol, a certain amount of ammonia is detected even after drying at 100 ° C. for 10 hours as described above. It is considered that ammonia adsorbed firmly on the surface of niobic acid colloidal particles (hereinafter referred to as “niobic acid-adsorbed ammonia”) exists.

ニオブ酸アンモニウムゾルの製造方法は、特許文献1記載の方法、即ち、(1)フッ酸、またはフッ酸と硫酸の混酸にニオブ化合物を溶解させた水溶液と、アンモニア水溶液とを、pHを8以上に維持しつつ混合、反応させてニオブ酸アンモニウムの微粒子を含有する分散液を得る工程、(2)(1)の分散液をろ過洗浄する工程、を用いることが好適である。   The method for producing an ammonium niobate sol is the method described in Patent Document 1, that is, (1) an aqueous solution obtained by dissolving a niobium compound in hydrofluoric acid or a mixed acid of hydrofluoric acid and sulfuric acid, and an aqueous ammonia solution with a pH of 8 or more. It is preferable to use a step of obtaining a dispersion containing fine particles of ammonium niobate by mixing and reacting while maintaining the above, and a step of filtering and washing the dispersion of (2) (1).

先ず、第一の製法について説明する。
第一の製法は、ニオブ酸アンモニウムゾルとアミン化合物とを混合した後、加熱することにより、ゾル中のアンモニウムイオンをアンモニアとして揮散させるものである。ゾル中のアンモニウムイオンとしては、予めゾル中に存在するアンモニウムイオンに加えて、ニオブ酸吸着アンモニアの一部がアミン化合物によって置換されてアンモニウムイオンとなったものも含まれると考えられる。アミン化合物の使用量を増大させると、得られるニオブ酸ゾルの親水性溶媒との相溶性が高くなる傾向がある。
尚、混合条件に特に制約はなく、ニオブ酸アンモニウムゾルにアミン化合物を添加しても、またはその逆であっても構わない。なお、通常の撹拌で混合すれば良い。
First, the first production method will be described.
In the first production method, after mixing an ammonium niobate sol and an amine compound, the ammonium ion in the sol is volatilized as ammonia by heating. The ammonium ions in the sol are considered to include those in which a part of the niobic acid-adsorbed ammonia is substituted with an amine compound to become ammonium ions in addition to the ammonium ions previously present in the sol. When the amount of the amine compound used is increased, the compatibility of the resulting niobic acid sol with the hydrophilic solvent tends to increase.
The mixing conditions are not particularly limited, and an amine compound may be added to the ammonium niobate sol, or vice versa. In addition, what is necessary is just to mix by normal stirring.

アミン化合物の使用量は、得られるニオブ酸ゾル中のアミン化合物の含有量が、アミン化合物/Nb2O5(モル比)=0.1〜1.5の範囲となるように設定することが好ましい。前記含有量が0.1未満であると、ニオブ酸ゾル中のアンモニアの残存量が多くなるため、親水性溶媒との高い相溶性を得ることが困難となる。一方、前記含有量が1.5を上回っても、含有量に見合う相溶性が得られ難いため、経済的でない。 The amount of the amine compound used is preferably set so that the content of the amine compound in the resulting niobic acid sol is in the range of amine compound / Nb 2 O 5 (molar ratio) = 0.1 to 1.5. When the content is less than 0.1, the residual amount of ammonia in the niobate sol increases, so that it becomes difficult to obtain high compatibility with the hydrophilic solvent. On the other hand, even if the content exceeds 1.5, it is difficult to obtain compatibility corresponding to the content, which is not economical.

アミン化合物としては、第一級アミン、第二級アミン、第三級アミン、水酸化第四級アンモニウム、芳香族アミン、脂環式アミン等を例示することができる。第一級アミンとしては、例えば、メチルアミン、エチルアミン、ブチルアミン、モノエタノールアミン、イソプロパノールアミン等が挙げられる。第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジエタノールアミン、ジイソプロパノールアミン等が挙げられる。第三級アミンとしては、例えば、トリメチルアミン、トリエタノールアミン、トリイソプロパノールアミン等が挙げられる。水酸化第四級アンモニウムとしては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化トリメチルプロピルアンモニウム、水酸化ジメチルジエチルアミン、コリン等が挙げられる。芳香族アミンとしては、例えば、ベンジルアミン、フェネチルアミン等が挙げられる。脂環式アミンとしては、例えば、ピペリジン等が挙げられる。   Examples of amine compounds include primary amines, secondary amines, tertiary amines, quaternary ammonium hydroxides, aromatic amines, and alicyclic amines. Examples of the primary amine include methylamine, ethylamine, butylamine, monoethanolamine, and isopropanolamine. Examples of the secondary amine include dimethylamine, diethylamine, diethanolamine, diisopropanolamine and the like. Examples of the tertiary amine include trimethylamine, triethanolamine, triisopropanolamine and the like. Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, dimethyldiethylamine hydroxide. , Choline and the like. Examples of aromatic amines include benzylamine and phenethylamine. Examples of alicyclic amines include piperidine.

加熱条件は、ゾル中のアンモニウムイオンがアンモニアとして揮散すれば特に限定はなく、加熱温度は、例えば、50〜150℃であることが好ましい。また、加熱時間は加熱温度に応じて適宜設定すればよいが、目安としては、1〜8時間である。アミン化合物の使用量および加熱条件を最適化すれば、得られるニオブ酸ゾル中のアンモニア含有量を検出限界以下とすることもできる。   The heating conditions are not particularly limited as long as ammonium ions in the sol are volatilized as ammonia, and the heating temperature is preferably, for example, 50 to 150 ° C. Moreover, what is necessary is just to set a heating time suitably according to heating temperature, but it is 1 to 8 hours as a standard. If the amount of amine compound used and the heating conditions are optimized, the ammonia content in the resulting niobate sol can be made below the detection limit.

以上の第一の製法によって得られるニオブ酸ゾルの(a)アンモニア含有量、(b)pH、(c)親水性溶媒との相溶性について説明する。   The (a) ammonia content, (b) pH, and (c) compatibility with the hydrophilic solvent of the niobate sol obtained by the first production method will be described.

(a)アンモニア含有量については、目安として、NH3/Nb2O5(モル比)=0(検出限界以下)〜1.2の範囲である。ここで、検出限界以下とは、ケルダール法による窒素分析の検出限界以下のことである。 The amount contained (a) ammonia, as a guide, NH 3 / Nb 2 O 5 ( molar ratio) = 0 (detection limit) in the range of 1.2. Here, below the detection limit is below the detection limit of nitrogen analysis by the Kjeldahl method.

(b)pHについては、6〜10の範囲であることが好ましい。   (b) The pH is preferably in the range of 6-10.

(c)親水性溶媒との相溶性については、エタノールとの相溶性で説明する。尚、以下では、加熱濃縮、減圧濃縮または希釈等の適切な方法によりNb2O5濃度を6質量%に調整したゾル100質量部に対してエタノールを添加していったときに、液の増粘が確認できた時点のエタノール量のことを「エタノール相溶量」と称する。
従来ゾルのエタノール相溶量の一例を示すと、上記「バイラール Nb-G6000」のエタノール相溶量は30質量部である。そこで、本発明のニオブ酸ゾルのエタノール相溶量は、少なくとも50質量部であることが好ましく、より好ましくは100質量部以上である。特に、アミン化合物の含有量が、アミン化合物/Nb2O5(モル比)=0.2〜1.5の範囲であれば、エタノール相溶量が少なくとも100質量部となる傾向がある。エタノール相溶量の上限については特に制限は無いが、多量のエタノール添加はニオブ酸の含有割合が低下するために好ましくない。上限の目安は500質量部程度である。
(c) Compatibility with a hydrophilic solvent will be described in terms of compatibility with ethanol. In the following, when ethanol is added to 100 parts by mass of sol with the Nb 2 O 5 concentration adjusted to 6% by mass by an appropriate method such as heat concentration, reduced pressure concentration or dilution, the amount of liquid increases. The amount of ethanol at the time when the viscosity is confirmed is referred to as “ethanol compatible amount”.
An example of the ethanol compatibility of conventional sols is 30 parts by mass with respect to the above-mentioned “Viral Nb-G6000”. Accordingly, the ethanol compatibility amount of the niobate sol of the present invention is preferably at least 50 parts by mass, more preferably 100 parts by mass or more. In particular, if the amine compound content is in the range of amine compound / Nb 2 O 5 (molar ratio) = 0.2 to 1.5, the ethanol compatibility tends to be at least 100 parts by mass. Although there is no restriction | limiting in particular about the upper limit of the amount of ethanol compatibility, Addition of a large amount of ethanol is not preferable because the content ratio of niobic acid decreases. The upper limit is about 500 parts by mass.

次に、第二の製法について説明する。
第二の製法は、(i)ニオブ酸アンモニウムゾルと無機酸とを混合したゾルを調製し、(ii)このゾルを洗浄してアンモニアを除去した後、(iii)このアンモニアを除去したゾルとアミン化合物とを混合し、次いで、(iv)加熱するものである。
Next, the second manufacturing method will be described.
In the second production method, (i) a sol obtained by mixing an ammonium niobate sol and an inorganic acid is prepared, (ii) the sol is washed to remove ammonia, and (iii) the ammonia is removed from the sol. Amine compound is mixed and then (iv) heated.

上記(i)では、次の(ii)の洗浄においてアンモニアを除去するために、ニオブ酸アンモニウムゾルと無機酸とを混合する。無機酸の使用量は目的とするアンモニア除去量に応じて適宜設定すればよいが、目安を示すと、無機酸/Nb2O5(モル比)=0.2〜1.5の範囲である。無機酸の種類としては、塩酸、硝酸、硫酸などが例示でき、これらのうち塩酸が好ましい。尚、混合条件に特に制約はなく、ニオブ酸アンモニウムゾルに無機酸を添加しても、またはその逆であっても構わない。なお、通常の撹拌で混合すれば良い。 In (i) above, ammonium niobate sol and an inorganic acid are mixed in order to remove ammonia in the following washing (ii). The amount of the inorganic acid used may be set as appropriate according to the target ammonia removal amount. However, in general, the inorganic acid / Nb 2 O 5 (molar ratio) is in the range of 0.2 to 1.5. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid and the like, and among these, hydrochloric acid is preferable. The mixing conditions are not particularly limited, and an inorganic acid may be added to the ammonium niobate sol or vice versa. In addition, what is necessary is just to mix by normal stirring.

上記(ii)における洗浄は、アンモニアが除去できれば洗浄方法に特に制限はなく、水を添加しながらの限外ろ過、ヌッチェろ過、フィルタープレス等が例示でき、これらのうち特に限外ろ過が好ましい。洗浄方法や洗浄条件を最適化すれば、得られるニオブ酸ゾル中のアンモニア含有量を検出限界以下とすることもできる。洗浄終点の目安は、ろ液ECが200μS/cmとなる時点が好ましく、より好ましくは50μS/cmとなる時点である。   The washing in the above (ii) is not particularly limited as long as ammonia can be removed, and examples include ultrafiltration while adding water, Nutsche filtration, filter press, etc. Among these, ultrafiltration is particularly preferable. If the washing method and washing conditions are optimized, the ammonia content in the resulting niobic acid sol can be made below the detection limit. The standard of the end point of washing is preferably the time when the filtrate EC becomes 200 μS / cm, more preferably 50 μS / cm.

上記(iii)で用いるアミン化合物の量は、除去したアンモニアの代わりにゾルを安定化させられる量であれば特に制限は無く、例えば、ゾルの安定化と経済性を考慮して、アミン化合物/Nb2O5(モル比)=0.1〜1.5の範囲であることが好ましく、より好ましくは0.5〜1.5の範囲である。尚、混合条件に特に制約はなく、ゾルにアミン化合物を添加しても、またはその逆であっても構わない。なお、通常の撹拌で混合すれば良い。 The amount of the amine compound used in the above (iii) is not particularly limited as long as it is an amount capable of stabilizing the sol instead of the removed ammonia. For example, in view of the stabilization and economic efficiency of the sol, the amine compound / Nb 2 O 5 (molar ratio) is preferably in the range of 0.1 to 1.5, more preferably in the range of 0.5 to 1.5. The mixing conditions are not particularly limited, and an amine compound may be added to the sol or vice versa. In addition, what is necessary is just to mix by normal stirring.

上記(iv)の加熱は、アミン化合物とニオブ酸とを反応させ、ゾルを安定化させられるように加熱条件を適宜設定すればよい。一例を示すと、加熱温度は、50〜150℃であり、加熱時間は加熱温度に応じて適宜設定すればよいが、目安としては、1〜8時間である。   In the heating of (iv) above, the heating conditions may be appropriately set so that the amine compound and niobic acid are reacted to stabilize the sol. As an example, the heating temperature is 50 to 150 ° C., and the heating time may be appropriately set according to the heating temperature, but it is 1 to 8 hours as a guide.

以上の第二の製法によって得られるニオブ酸ゾルは、前記第一の製法によって得られるニオブ酸ゾルと同様のものであるため、その特性(アンモニア含有量、pH範囲および親水性溶媒との相溶性)も前記(a)〜(c)と同様である。   Since the niobic acid sol obtained by the second production method is the same as the niobic acid sol obtained by the first production method, its characteristics (ammonia content, pH range and compatibility with hydrophilic solvents) ) Is the same as (a) to (c) above.

本製造方法は、前記第一の製法又は第二の製法の製造工程の後に、さらに、有機酸を添加する工程を設けてもよいものである。有機酸の添加によって、得られるニオブ酸ゾルの安定性が向上し、さらに、親水性溶媒との相溶性が向上する傾向がある。   In this production method, a step of adding an organic acid may be further provided after the production step of the first production method or the second production method. Addition of an organic acid improves the stability of the resulting niobic acid sol and further tends to improve compatibility with a hydrophilic solvent.

有機酸の添加量は、過剰に添加しても添加量に見合うだけの効果が得られにくいため経済的でなく、また、少な過ぎても添加の効果が発揮されないため、例えば、有機酸/Nb2O5(モル比)=0.05〜0.20の範囲であることが好ましい。尚、有機酸の添加量が上記範囲内である場合、得られるニオブ酸ゾルのpH範囲の目安は、4〜9である。 The addition amount of the organic acid is not economical because it is difficult to obtain an effect commensurate with the addition amount even if it is added excessively, and the addition effect is not exhibited if it is too small. For example, organic acid / Nb 2 O 5 (molar ratio) is preferably in the range of 0.05 to 0.20. When the addition amount of the organic acid is within the above range, the standard of the pH range of the obtained niobic acid sol is 4 to 9.

有機酸の種類としては、モノカルボン酸、ジカルボン酸、オキシカルボン酸等を例示することができ、これらのうち1種類以上を用いることができる。例えば、モノカルボン酸としては、ギ酸、酢酸、プロピオン酸、n-酪酸、吉草酸等が挙げられ、ジカルボン酸としては、シュウ酸、コハク酸、マレイン酸、マロン酸、フマル酸、グルタル酸等が挙げられ、オキシカルボン酸としてはクエン酸、グリコール酸、乳酸、酒石酸、リンゴ酸等が挙げられる。これらのうち、オキシカルボン酸が好ましい。   Examples of the organic acid include monocarboxylic acid, dicarboxylic acid, and oxycarboxylic acid, and one or more of these can be used. For example, monocarboxylic acids include formic acid, acetic acid, propionic acid, n-butyric acid, valeric acid, and the like, and dicarboxylic acids include oxalic acid, succinic acid, maleic acid, malonic acid, fumaric acid, glutaric acid, and the like. Examples of the oxycarboxylic acid include citric acid, glycolic acid, lactic acid, tartaric acid, malic acid and the like. Of these, oxycarboxylic acids are preferred.

以上の製造方法によって得られるニオブ酸ゾルは、いずれも親水性溶媒と混合して薄膜形成用塗布液とすることもできる。当該薄膜形成用塗布液には、各種添加剤、例えば、樹脂エマルションなどの高分子化合物や、シリカゾル、シランカップリング剤などのシリカ化合物、界面活性剤、光触媒活性を有する酸化物ゾルなどを必要に応じて添加してもよい。   Any niobic acid sol obtained by the above production method can be mixed with a hydrophilic solvent to form a coating solution for forming a thin film. The coating solution for forming a thin film requires various additives, for example, polymer compounds such as resin emulsions, silica compounds such as silica sols and silane coupling agents, surfactants, oxide sols having photocatalytic activity, and the like. It may be added accordingly.

薄膜形成用塗布液を基材に塗布して基材上に被膜を形成させる方法は、刷毛塗り、スプレー塗布、スピンコート、ディップコート、ロールコート、グラビアコート、バーコートなど各種の公知の塗布方法が、基材の形状を考慮して選択できる。塗布液の乾燥は基材の種類によって異なるが、通常300℃以下で熱処理されることが好ましい。ただし、ガラスやセラミクスを基材とする場合は、密着性向上の点から高温処理が望ましく、ニオブ酸の焼結により酸化ニオブが生成する500℃以上の加熱処理が望ましい。一方、基材がアクリル、PET、ポリカーボネート、塩化ビニルなどのプラスチック類の場合は、基材の耐熱性から熱処理温度は150℃以下とすることが好ましい。プラスチックや金属等の基材とニオブ酸薄膜との密着性が不足する場合は、基材とニオブ酸薄膜との間にその他の金属酸化物薄膜やシランカップリング剤からなる膜、樹脂膜などをプライマー層として設けることもできる。   The method of forming a coating film on a substrate by applying a coating solution for forming a thin film on the substrate includes various known coating methods such as brush coating, spray coating, spin coating, dip coating, roll coating, gravure coating, and bar coating. However, it can be selected in consideration of the shape of the substrate. Although drying of a coating liquid changes with kinds of base material, it is preferable to heat-process normally at 300 degrees C or less. However, when glass or ceramics is used as the base material, high temperature treatment is desirable from the viewpoint of improving adhesion, and heat treatment at 500 ° C. or higher, in which niobium oxide is generated by sintering niobic acid, is desirable. On the other hand, when the substrate is a plastic such as acrylic, PET, polycarbonate, or vinyl chloride, the heat treatment temperature is preferably 150 ° C. or less because of the heat resistance of the substrate. If the adhesion between the base material such as plastic or metal and the niobic acid thin film is insufficient, put another metal oxide thin film, a film made of a silane coupling agent, a resin film, etc. between the base material and the niobic acid thin film. It can also be provided as a primer layer.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに制限されるものではない。尚、実施例において%は、特に断らない限り全て質量%を示す。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In Examples, “%” means “% by mass” unless otherwise specified.

参考例1〕
多木化学(株)製の「バイラール Nb-G6000」(Nb2O5=6.2%)100gに、水酸化テトラメチルアンモニウム(以下TMAHと略、25.0%)0.9gを添加し、80℃で3時間加熱処理を行い、ニオブ酸ゾル(Nb2O5=6.2%、pH8.9)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール70質量部付近で、液の増粘が確認された。
[ Reference Example 1]
To 100 g of `` Vilal Nb-G6000 '' (Nb 2 O 5 = 6.2%) manufactured by Taki Chemical Co., Ltd., 0.9 g of tetramethylammonium hydroxide (hereinafter abbreviated as TMAH, 25.0%) is added, and 3% at 80 ° C. The heat treatment was performed for a time to obtain a niobate sol (Nb 2 O 5 = 6.2%, pH 8.9).
When ethanol was added to 100 parts by mass of the niobate sol with the Nb 2 O 5 concentration adjusted to 6%, thickening of the liquid was confirmed in the vicinity of 70 parts by mass of ethanol.

参考例2〕
TMAHを1.7gとした以外は、実施例1と同様にしてニオブ酸ゾル(Nb2O5=6.2%、pH9.0)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール110質量部付近で、液の増粘が確認された。
[ Reference Example 2]
A niobate sol (Nb 2 O 5 = 6.2%, pH 9.0) was obtained in the same manner as in Example 1 except that TMAH was changed to 1.7 g.
When ethanol was added to 100 parts by mass of the niobic acid sol with the Nb 2 O 5 concentration adjusted to 6%, thickening of the liquid was confirmed in the vicinity of 110 parts by mass of ethanol.

参考例3〕
TMAHを4.3gとした以外は、実施例1と同様にしてニオブ酸ゾル(Nb2O5=6.2%、pH8.8)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール300質量部付近で、液の増粘が確認された。
尚、エタノール以外の親水性溶媒との相溶性について調査したところ、Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部に対し、n−プロパノールは130質量部付近、アセトンは150質量部付近まで添加した時点で液の増粘が確認された。また、エチレングリコールは400質量部まで添加しても液の増粘が確認されなかった。
[ Reference Example 3]
A niobate sol (Nb 2 O 5 = 6.2%, pH 8.8) was obtained in the same manner as in Example 1 except that TMAH was changed to 4.3 g.
When ethanol was added to 100 parts by mass of the niobic acid sol with the Nb 2 O 5 concentration adjusted to 6%, thickening of the liquid was confirmed in the vicinity of 300 parts by mass of ethanol.
In addition, when the compatibility with a hydrophilic solvent other than ethanol was investigated, n-propanol was around 130 parts by mass and acetone was around 150 parts by mass with respect to 100 parts by mass of the niobate sol adjusted to 6% Nb 2 O 5 concentration. When the mixture was added to the vicinity of part by mass, thickening of the liquid was confirmed. Further, even when ethylene glycol was added up to 400 parts by mass, no thickening of the liquid was confirmed.

〔実施例4〕
多木化学(株)製の「バイラール Nb-G6000」(Nb2O5=6.2%)100gに、TMAH(25.0%)0.9gを添加し、80℃で3時間加熱処理を行った後、クエン酸1水和物0.5gを添加することにより、ニオブ酸ゾル(Nb2O5=6.2%、pH6.5)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール100質量部付近で、液の増粘が確認された。
Example 4
After adding 0.9 g of TMAH (25.0%) to 100 g of `` Vilal Nb-G6000 '' (Nb 2 O 5 = 6.2%) manufactured by Taki Chemical Co., Ltd. Niobic acid sol (Nb 2 O 5 = 6.2%, pH 6.5) was obtained by adding 0.5 g of acid monohydrate.
When ethanol was added to 100 parts by mass of the niobic acid sol with the Nb 2 O 5 concentration adjusted to 6%, thickening of the liquid was confirmed in the vicinity of 100 parts by mass of ethanol.

〔実施例5〕
クエン酸1水和物を1.0gとした以外は、実施例4と同様にしてニオブ酸ゾル(Nb2O5=6.2%、pH6.2)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール150質量部付近で、液の増粘が確認された。
Example 5
A niobate sol (Nb 2 O 5 = 6.2%, pH 6.2) was obtained in the same manner as in Example 4 except that citric acid monohydrate was changed to 1.0 g.
When ethanol was added to 100 parts by mass of the niobic acid sol with the Nb 2 O 5 concentration adjusted to 6%, thickening of the liquid was confirmed in the vicinity of 150 parts by mass of ethanol.

〔実施例6〕
TMAHを4.3gとした以外は、実施例4と同様にしてニオブ酸ゾル(Nb2O5=6.2%、pH6.5)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール400質量部付近で一度増粘が確認されたが、1時間程度放置したところ粘度が概ねエタノール添加前にまで戻ったため、さらにエタノールを添加したところ、エタノール合計添加量600質量部で液の増粘が確認された。
尚、エタノール以外の親水性溶媒との相溶性について調査したところ、Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部に対し、n−プロパノールは140質量部付近、アセトンは150質量部付近まで添加した時点で液の増粘が確認された。また、エチレングリコールは400質量部まで添加しても液の増粘が確認されなかった。
Example 6
A niobate sol (Nb 2 O 5 = 6.2%, pH 6.5) was obtained in the same manner as in Example 4 except that 4.3 g of TMAH was used.
When ethanol was added to 100 parts by mass of the niobate sol with the Nb 2 O 5 concentration adjusted to 6%, thickening was confirmed once in the vicinity of 400 parts by mass of ethanol. However, when ethanol was further added, thickening of the liquid was confirmed at a total ethanol addition amount of 600 parts by mass.
In addition, when the compatibility with a hydrophilic solvent other than ethanol was investigated, n-propanol was around 140 parts by mass and acetone was around 150 parts by mass with respect to 100 parts by mass of the niobate sol adjusted to 6% Nb 2 O 5 concentration. When the mixture was added to the vicinity of part by mass, thickening of the liquid was confirmed. Further, even when ethylene glycol was added up to 400 parts by mass, no thickening of the liquid was confirmed.

参考例7〕
多木化学(株)製の「バイラール Nb-G6000」(Nb2O5=6.2%)100gに、コリン(2ヒドロキシエチルトリメチルアンモニウムヒドロキシド 48.9%、(株)日本ファインケム製)2.3gを添加し、80℃で3時間加熱処理を行い、ニオブ酸ゾル(Nb2O5=6.2%、pH8.9)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール250質量部付近で、液の増粘が確認された。
[ Reference Example 7]
To 100 g of “Vilal Nb-G6000” (Nb 2 O 5 = 6.2%) manufactured by Taki Chemical Co., Ltd. was added 2.3 g of choline (2hydroxyethyltrimethylammonium hydroxide 48.9%, manufactured by Nippon Finechem Co., Ltd.) Then, heat treatment was performed at 80 ° C. for 3 hours to obtain a niobate sol (Nb 2 O 5 = 6.2%, pH 8.9).
When ethanol was added to 100 parts by mass of the niobic acid sol with the Nb 2 O 5 concentration adjusted to 6%, thickening of the liquid was confirmed in the vicinity of 250 parts by mass of ethanol.

〔実施例8〕
多木化学(株)製の「バイラール Nb-G6000」(Nb2O5=6.2%)1000gをイオン交換水でNb2O5=2.0%まで希釈後、塩酸(5%)102.0gを添加し、10分程度撹拌後、ろ液ECが100μS/cmになるまで限外洗浄を行った。得られたゾルに、TMAH(25.0%)51.0gを添加し、120℃で5時間の加熱処理を行い、ニオブ酸ゾル(Nb2O5=6.2%、pH8.3)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール400質量部付近で一度増粘が確認されたが、1時間程度放置したところ粘度が概ねエタノール添加前にまで戻ったため、さらにエタノールを添加したところ、エタノール合計添加量600質量部で液の増粘が確認された。
Example 8
After diluting 1000 g of `` Vilar Nb-G6000 '' (Nb 2 O 5 = 6.2%) manufactured by Taki Chemical Co., Ltd. to Nb 2 O 5 = 2.0% with ion-exchanged water, add 102.0 g of hydrochloric acid (5%). After stirring for about 10 minutes, ultracleaning was performed until the filtrate EC reached 100 μS / cm. To the obtained sol, 51.0 g of TMAH (25.0%) was added, and heat treatment was performed at 120 ° C. for 5 hours to obtain a niobate sol (Nb 2 O 5 = 6.2%, pH 8.3).
When ethanol was added to 100 parts by mass of the niobate sol with the Nb 2 O 5 concentration adjusted to 6%, thickening was confirmed once in the vicinity of 400 parts by mass of ethanol. However, when ethanol was further added, thickening of the liquid was confirmed at a total ethanol addition amount of 600 parts by mass.

〔実施例9〕
塩酸を221.1gとした以外は、実施例8と同様にしてニオブ酸ゾル(Nb2O5=6.2%、pH7.7)を得た。
Nb2O5濃度を6%に調整した当該ニオブ酸ゾル100質量部にエタノールを添加していったところ、エタノール600質量部を添加しても、液の増粘は確認されず、液の分散性は良好であった。
Example 9
A niobate sol (Nb 2 O 5 = 6.2%, pH 7.7) was obtained in the same manner as in Example 8 except that hydrochloric acid was changed to 221.1 g.
When ethanol was added to 100 parts by mass of the niobate sol with the Nb 2 O 5 concentration adjusted to 6%, even when ethanol was added by 600 parts by mass, no thickening of the liquid was confirmed, and the dispersion of the liquid The property was good.

表1に各実施例及び参考例で得られたゾルの物性とエタノール相溶量を示した。
ゾル中のアンモニアはケルダール法によって測定した。また、アミン化合物は全有機炭素を全有機炭素(TOC)分析装置TOC-V/CSN(島津製作所(株)製)により測定し、それをアミン化合物量に換算した。有機酸は製造中の損失がないことから仕込み量を用いた。なお、アミン化合物と有機酸を併用した場合は、全有機炭素量から有機酸の分を減じてアミン化合物量を求めた。
Table 1 shows the physical properties and ethanol compatibility of the sols obtained in each Example and Reference Example .
Ammonia in the sol was measured by the Kjeldahl method. In addition, the amine compound was measured for total organic carbon using a total organic carbon (TOC) analyzer TOC-V / CSN (manufactured by Shimadzu Corporation), and converted to the amount of amine compound. The amount of organic acid used was used because there was no loss during production. When an amine compound and an organic acid were used in combination, the amount of the amine compound was determined by subtracting the amount of the organic acid from the total amount of organic carbon.

Figure 0006156876
Figure 0006156876


Claims (6)

ニオブ酸アンモニウムゾルをアミン化合物の存在下で加熱してアンモニアを除去する工程、
次に、有機酸を添加する工程、
を含むことを特徴とするニオブ酸ゾルの製造方法。
Heating the ammonium niobate sol in the presence of an amine compound to remove ammonia;
Next, a step of adding an organic acid,
A process for producing a niobic acid sol, comprising:
無機酸を混合したニオブ酸アンモニウムゾルを洗浄してアンモニアを除去した後、アミン化合物の存在下で加熱する工程、
を含むことを特徴とするニオブ酸ゾルの製造方法。
A step of washing the ammonium niobate sol mixed with an inorganic acid to remove ammonia and then heating in the presence of an amine compound;
A process for producing a niobic acid sol, comprising:
請求項2記載の製造工程の後に、さらに、有機酸を添加する工程、
を設けてなる、ニオブ酸ゾルの製造方法。
A step of further adding an organic acid after the production step according to claim 2 ,
A method for producing a niobate sol.
アミン化合物を、アミン化合物/Nb 2 O 5 (モル比)=0.1〜1.5の範囲で含有し、
有機酸を、有機酸/Nb 2 O 5 (モル比)=0.05〜0.20の範囲で含有し、
アンモニアを、NH 3 /Nb 2 O 5 (モル比)=0(検出限界以下)〜1.2の範囲で含有した、
ニオブ酸ゾル。
ここで、上記NH 3 /Nb 2 O 5 (モル比)の範囲における「検出限界以下」とは、ケルダール法による窒素分析の検出限界以下のことである。
An amine compound is contained in the range of amine compound / Nb 2 O 5 (molar ratio) = 0.1 to 1.5,
Containing an organic acid in the range of organic acid / Nb 2 O 5 (molar ratio) = 0.05-0.20,
Ammonia was contained in a range of NH 3 / Nb 2 O 5 (molar ratio) = 0 (below detection limit) to 1.2,
Niobic acid sol.
Here, “below the detection limit” in the NH 3 / Nb 2 O 5 (molar ratio) range is below the detection limit of nitrogen analysis by the Kjeldahl method.
Nb2O5濃度を6質量%に調整した前記ニオブ酸ゾル100質量部に対して、エタノールの相溶量が50質量部以上であるという特性を有する請求項4記載のニオブ酸ゾル。 5. The niobate sol according to claim 4, having a characteristic that the amount of ethanol compatibility is 50 parts by mass or more with respect to 100 parts by mass of the niobate sol adjusted to a Nb 2 O 5 concentration of 6% by mass. 請求項4又は5記載のニオブ酸ゾルと親水性溶媒とを含有する薄膜形成用塗布液。 A coating solution for forming a thin film comprising the niobic acid sol according to claim 4 or 5 and a hydrophilic solvent.
JP2013221131A 2013-10-24 2013-10-24 Method for producing niobate sol Active JP6156876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221131A JP6156876B2 (en) 2013-10-24 2013-10-24 Method for producing niobate sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221131A JP6156876B2 (en) 2013-10-24 2013-10-24 Method for producing niobate sol

Publications (2)

Publication Number Publication Date
JP2015081220A JP2015081220A (en) 2015-04-27
JP6156876B2 true JP6156876B2 (en) 2017-07-05

Family

ID=53012029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221131A Active JP6156876B2 (en) 2013-10-24 2013-10-24 Method for producing niobate sol

Country Status (1)

Country Link
JP (1) JP6156876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022145520A (en) * 2021-03-18 2022-10-04 多木化学株式会社 Lithium-phosphate stabilized niobate sol

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6864422B2 (en) * 2017-02-13 2021-04-28 多木化学株式会社 Niobium acid powder
CN114901597A (en) 2020-02-14 2022-08-12 三井金属矿业株式会社 Aqueous solution of niobic acid
CN116529204A (en) * 2020-12-25 2023-08-01 三井金属矿业株式会社 Niobate compound dispersion and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051322B2 (en) * 1995-05-30 2000-06-12 多木化学株式会社 Niobium oxide sol
JP4236182B2 (en) * 2004-04-20 2009-03-11 多木化学株式会社 Process for producing organic solvent-dispersed oxalic acid / citric acid stable niobium oxide sol
DE102006032590A1 (en) * 2006-07-13 2008-01-17 H.C. Starck Gmbh Hydrothermal process for the production of nano- to microscale particles
JP5441264B2 (en) * 2009-03-12 2014-03-12 多木化学株式会社 Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022145520A (en) * 2021-03-18 2022-10-04 多木化学株式会社 Lithium-phosphate stabilized niobate sol
JP7161276B2 (en) 2021-03-18 2022-10-26 多木化学株式会社 Lithium-phosphate stable niobate sol

Also Published As

Publication number Publication date
JP2015081220A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6156876B2 (en) Method for producing niobate sol
JP7054588B2 (en) Niobium acid organosol and its manufacturing method
JP5441264B2 (en) Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate
CN104117293B (en) A kind of preparation method of fabricated in situ Nano Silver modification PVDF ultrafiltration membrane
EP1994979A1 (en) Method for producing zirconia sol
CN108193199B (en) Corrosion-resistant and rust-resistant conversion film-forming liquid for iron parts
TW201617287A (en) Dispersion of zirconium oxide particles in organic solvent and method for producing thereof
TWI688548B (en) Method for producing dispersion of particles of titanium oxide in organic solvent
KR102628262B1 (en) Niobic acid compound dispersion and method for producing the same
JP6304584B2 (en) Dispersion solution and method for producing the same, coating solution and method for producing mesoporous silica porous membrane
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
JP2007320821A (en) Electroconductive titanium oxide and its manufacture method
JP6253178B2 (en) Method for producing alumina dispersion
TW202112666A (en) Method for producing water glass containing chelating agent and silica sol
KR20210130146A (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP4521801B2 (en) Organic solvent-dispersed titanium oxide sol and method for producing the same
CN108554384B (en) Aminated humic acid-nano silicon dioxide composite material and preparation method and application thereof
JP2003192348A (en) Titanium oxide sol dispersed in organic solvent, and its production method
JP4236182B2 (en) Process for producing organic solvent-dispersed oxalic acid / citric acid stable niobium oxide sol
JP2003201112A (en) Surface modified silica powder and its silica slurry
JP3642490B1 (en) Method for producing titania solution
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
KR20140116193A (en) Etching liquid for forming texture
JP2002145614A (en) Titanium oxide sol composition
JP2018131346A (en) Niobic acid powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6156876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250