JP5440061B2 - Air-cooled power semiconductor device - Google Patents

Air-cooled power semiconductor device Download PDF

Info

Publication number
JP5440061B2
JP5440061B2 JP2009214392A JP2009214392A JP5440061B2 JP 5440061 B2 JP5440061 B2 JP 5440061B2 JP 2009214392 A JP2009214392 A JP 2009214392A JP 2009214392 A JP2009214392 A JP 2009214392A JP 5440061 B2 JP5440061 B2 JP 5440061B2
Authority
JP
Japan
Prior art keywords
power semiconductor
heat sink
cooling air
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009214392A
Other languages
Japanese (ja)
Other versions
JP2011066123A (en
Inventor
稔之 野田
司 高屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009214392A priority Critical patent/JP5440061B2/en
Publication of JP2011066123A publication Critical patent/JP2011066123A/en
Application granted granted Critical
Publication of JP5440061B2 publication Critical patent/JP5440061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

この発明は、高圧インバータなどの半導体電力変換装置に適用する空冷式のパワー半導体装置に関する。   The present invention relates to an air-cooled power semiconductor device applied to a semiconductor power conversion device such as a high-voltage inverter.

よく知られているように、高圧インバータの電力変換装置は、入力変圧器,該入力変圧器の二次側に接続してインバータ回路を構成するインバータユニット,およびその制御部を個別に分けて収納した変圧器盤,変換器盤,制御盤の列盤で構成し、前記変換器盤には、インバータ回路の各相に対応するインバータユニットが上下段に並べて収納されている。ここで、インバータユニットは、風胴を兼ねたユニットケースに複数個のパワー半導体モジュール(例えば、IGBTモジュール)をヒートシンクに搭載して収容し、このユニットケースを経由して盤内に冷却空気を導風してパワー半導体モジュールを空冷冷却するようにしている(例えば、特許文献1参照)。   As is well known, a power converter for a high-voltage inverter includes an input transformer, an inverter unit that is connected to the secondary side of the input transformer and constitutes an inverter circuit, and a control unit thereof separately stored. The inverter board corresponding to each phase of the inverter circuit is stored in the upper and lower stages in the converter board. Here, the inverter unit houses a plurality of power semiconductor modules (for example, IGBT modules) mounted on a heat sink in a unit case that also functions as a wind tunnel, and guides cooling air into the panel via the unit case. The power semiconductor module is cooled with air to cool it (see, for example, Patent Document 1).

一方、通電容量の比較的小さな汎用インバータ装置についても、前記と同様にユニットケース内にインバータ回路を構成する複数個のパワー半導体モジュール1をヒートシンク3に搭載して収容し、ここに冷却空気を送風してパワー半導体モジュール1の発生熱を外部に放熱するようにしている。また、汎用インバータ装置ではパワー半導体モジュール1と一緒に平滑用コンデンサ,プリント基板などをユニットケースに組込み、ここにヒートシンク3の冷却空気とは別にファンにより外気を流して風冷するようにしている。   On the other hand, also for a general-purpose inverter device having a relatively small energization capacity, a plurality of power semiconductor modules 1 constituting an inverter circuit are mounted and accommodated in a heat sink 3 in a unit case in the same manner as described above, and cooling air is blown here. Thus, heat generated by the power semiconductor module 1 is radiated to the outside. Further, in the general-purpose inverter device, a smoothing capacitor, a printed circuit board, and the like are incorporated in the unit case together with the power semiconductor module 1, and air is cooled by flowing outside air by a fan separately from the cooling air of the heat sink 3.

次に、前記パワー半導体装置の従来例の組立構造を図2(a)〜(c)に示す。図において、1は2組のIGBT素子2を左右に並べてパッケージ1aに内蔵した2個組のパワー半導体モジュール、3はベース板3aの裏面側にプレート状の放熱フィン列3bを設けたヒートシンクであり、外形が方形状になるヒートシンク3のベース板3a(アルミなどの高伝熱材で作られている)の上面中央には底面に放熱金属ベース(不図示)を備えた複数個(図示例では3個)のパワー半導体モジュール1が前後一列に並べて並置搭載されている。   Next, an assembly structure of a conventional example of the power semiconductor device is shown in FIGS. In the figure, 1 is a power semiconductor module of two sets in which two sets of IGBT elements 2 are arranged side by side in a package 1a, and 3 is a heat sink in which a plate-like radiating fin row 3b is provided on the back side of the base plate 3a. In the center of the upper surface of the base plate 3a (made of a high heat transfer material such as aluminum) of the heat sink 3 having a rectangular outer shape, a plurality of (in the illustrated example) provided with a heat dissipation metal base (not shown) on the bottom surface. Three) power semiconductor modules 1 are mounted side by side in a line.

なお、前記ベース板3aの面積は、各パワー半導体モジュール1の発生熱により上昇する温度分布の集中を避けるために半導体モジュール1を前後に離間して配列し、さらに左右には十分なマージンの伝熱面を確保した寸法幅に設計されている。また図示してないが、ヒートシンク3に搭載した各パワー半導体モジュール1の外部端子相互間にはインバータ回路の構成に合わせて入,出力導体(バー導体)がその配線インダクタンスを低めるように最短経路に沿って直線的に配線されている。   The area of the base plate 3a is set such that the semiconductor modules 1 are spaced apart from each other in order to avoid the concentration of the temperature distribution rising due to the heat generated by each power semiconductor module 1, and a sufficient margin is transmitted to the left and right. Designed with a dimension width that ensures a hot surface. Although not shown in the figure, between the external terminals of each power semiconductor module 1 mounted on the heat sink 3 is inserted in accordance with the configuration of the inverter circuit, and the output conductor (bar conductor) has a shortest path so as to reduce its wiring inductance. It is wired linearly along.

上記構成で、パワー半導体装置の通電中にヒートシンク3の放熱フィン列3bに沿って冷却空気を送風することにより、各パワー半導体素子2の発生熱がモジュールパッケージの底面金属ベースを介してヒートシンク3のベース板3aに伝熱し、放熱フィン列3bに沿って図示の矢印方向に流れる冷却空気流との間の強制対流伝熱により冷却空気側に熱移動して系外に熱放散されることは周知の通りである。   With the above configuration, the cooling air is blown along the radiating fin row 3b of the heat sink 3 while the power semiconductor device is energized, so that the generated heat of each power semiconductor element 2 is generated in the heat sink 3 via the bottom metal base of the module package. It is well known that heat is transferred to the base plate 3a and is transferred to the cooling air side by forced convection heat transfer with the cooling air flow flowing in the direction of the arrow along the radiating fin row 3b to dissipate heat outside the system. It is as follows.

ところで、図2のようにヒートシンク3に流す冷却空気の流れ方向に沿ってベース板3a上に複数個のパワー半導体モジュール1を前後一列に整列させて並置搭載した配置では、風上側に配置したパワー半導体モジュールと風下側に並ぶパワー半導体モジュールとを比べた場合に、風上側のパワー半導体モジュールの直下を通過した冷却空気はモジュールからの放熱を受けて空気温度が上昇して風下側に流れる。このために、このままでは前記の熱的干渉により風下側に並ぶパワー半導体モジュールの放熱性が風上側のモジュールに比べて低下するようになる。   By the way, in the arrangement in which a plurality of power semiconductor modules 1 are arranged side by side on the base plate 3a along the flow direction of the cooling air flowing through the heat sink 3 as shown in FIG. When comparing the semiconductor module with the power semiconductor module arranged on the leeward side, the cooling air that has passed directly under the power semiconductor module on the leeward side receives heat radiated from the module, and the air temperature rises and flows to the leeward side. For this reason, in this state, the heat dissipation of the power semiconductor modules arranged on the leeward side due to the thermal interference is lowered as compared with the module on the leeward side.

この場合に、ヒートシンク3の放熱面積をあらかじめ大きく設定する、あるいは冷却空気の送風量を多くするなどすれば風下側に並ぶパワー半導体モジュールに対しても十分な放熱性能を確保できるものの、ヒートシンク3の放熱面積を大きくするとヒートシンクの包絡容積,占有スペースが大きくなって半導体装置が大型化し、また冷却空気の送風量を高めるには大形送風ファンが必要となってコスト高となるほか、送風に伴う騒音増加の問題も派生する。   In this case, if the heat radiation area of the heat sink 3 is set large in advance or the amount of cooling air is increased, sufficient heat radiation performance can be ensured for the power semiconductor modules arranged on the leeward side. Increasing the heat dissipation area increases the envelope volume and space occupied by the heat sink, increasing the size of the semiconductor device. In addition, a large blower fan is required to increase the cooling air flow rate, and the cost increases. The problem of increased noise is also derived.

そこで、前記問題の対応策の一つとして、当該パワー半導体装置を収容したユニットケース内部の通風路に風向デフレクターを配置し、風下側に並ぶパワー半導体モジュールの直下を通過する冷却空気流の風速を局部的に高めてその強制対流伝熱によるパワー半導体モジュールの放熱性能を高めるようにした構成が本発明と同一出願人より先に提案されている(特許文献2参照)   Therefore, as one countermeasure against the above problem, a wind direction deflector is disposed in the ventilation path inside the unit case containing the power semiconductor device, and the wind speed of the cooling air flow passing directly under the power semiconductor modules arranged on the leeward side is determined. A configuration in which the heat dissipating performance of the power semiconductor module is enhanced locally by the forced convection heat transfer has been proposed earlier than the same applicant as the present invention (see Patent Document 2).

特開2007−174851号公報JP 2007-174851 A 特開2004−128439号公報JP 2004-128439 A

先記した図2および特許文献2の構成を含めて、複数のパワー半導体モジュールを前後一列に整列させてヒートシンクのベース板上に並置搭載した構成の空冷式パワー半導体装置では、ヒートシンクに導風する冷却空気流の風上側に配置した半導体モジュールの発熱による影響がそのまま風下側に並ぶ半導体モジュールに対して累積的に干渉してその放熱性能を低下させる。このために、従来装置では放熱面積の大きなヒートシンクを採用する、あるいは大形の送風ファンを用いてヒートシンクに送風する冷却空気風量を増加させるなどして所要の放熱性能を確保するようにしているが、この対応策ではヒートシンクの包絡容積,送風ファン容量増の加に伴う半導体装置の占有スペース増加、ファン騒音などの問題点が残る。また、ユニットケースの通風路に風向デフレクターを追加設置した特許文献2の構成は、ユニットの占有スペースが増して装置が大形化するほか、風損も増すので大形の送風ファンが必要となり、かつ騒音の発生も大きくなる。   In the air-cooled power semiconductor device having a configuration in which a plurality of power semiconductor modules are arranged in a line in the front and rear and mounted side by side on the base plate of the heat sink, including the configuration of FIG. 2 and Patent Document 2 described above, the air is guided to the heat sink. The influence of heat generated by the semiconductor modules disposed on the leeward side of the cooling air flow interferes with the semiconductor modules arranged on the leeward side as they are, and deteriorates the heat dissipation performance. For this reason, the conventional device uses a heat sink with a large heat dissipation area, or uses a large blower fan to increase the amount of cooling air to be blown to the heat sink to ensure the required heat dissipation performance. However, this countermeasure still has problems such as an increase in the space occupied by the semiconductor device due to an increase in the envelope volume of the heat sink, an increase in the capacity of the blower fan, and fan noise. In addition, the configuration of Patent Document 2 in which a wind direction deflector is additionally installed in the ventilation path of the unit case increases the space occupied by the unit, increases the size of the device, and increases the windage loss. In addition, the generation of noise increases.

この発明は上記の点に鑑みなされたものであり、その目的は風向デフレクターなどの追加部品を用いずに、ヒートシンクに搭載するパワー半導体モジュールの配列の向きを変更するだけで、モジュール間のリード配線性を損なうことなしに、冷却空気流に対するモジュール相互間の熱的干渉を低減してヒートシンクの小形化、および送風ファンの小形,低騒音化が図れるように改良したパワー半導体装置を提供することにある。   The present invention has been made in view of the above points, and an object thereof is to change the arrangement of power semiconductor modules mounted on a heat sink without using additional parts such as a wind direction deflector, and lead wiring between modules. To provide a power semiconductor device that is improved so as to reduce the thermal interference between modules with respect to the cooling air flow without reducing the performance and to reduce the size of the heat sink and the size and noise of the blower fan. is there.

上記目的を達成するために、この発明によれば、複数個のパワー半導体モジュールを整列させてプレート状放熱フィン列を備えたヒートシンクのベース板上に並置搭載し、該ヒートシンクのモジュール搭載側および放熱フィン側に冷却空気を通風してパワー半導体モジュールの発生熱を放散させるようにした空冷式のパワー半導体装置において、
前記パワー半導体モジュールを、前記ヒートシンクの放熱フィン列に沿って導風する冷却空気の流れ方向に対して、それぞれ斜めに配置するとともに、
前記複数個のパワー半導体モジュールを、方形状になるヒートシンクのベース板に対して、前記ベース板の対角方向に一列に整列して並置搭載する。
In order to achieve the above object, according to the present invention, a plurality of power semiconductor modules are aligned and mounted side by side on a base plate of a heat sink provided with a plate-like heat radiation fin array, In the air-cooled power semiconductor device in which cooling air is ventilated to the fin side to dissipate the generated heat of the power semiconductor module,
The power semiconductor module is disposed obliquely with respect to the flow direction of the cooling air that is guided along the radiating fin row of the heat sink,
The plurality of power semiconductor modules are mounted side by side in a line in the diagonal direction of the base plate with respect to the base plate of the heat sink having a rectangular shape.

上記構成によれば、同じ向きに傾けた整列姿勢でヒートシンクのベース板上に配列した複数個のパワー半導体モジュールについて、ヒートシンクの風上側に並ぶモジュールと風下側に並ぶモジュールは、放熱フィンに沿って流れる冷却空気流の方向に対し右方向にずれて整列することになる。これにより、ヒートシンクの風上側に並ぶモジュールの発熱により風下側のモジュールに及ぼす冷却空気の累積的な熱的影響が小さくなり、風下側に並ぶ各モジュールの直下には上流側に並ぶモジュールの発熱により昇温した冷却空気の熱的干渉をあまり受けないで比較的低温状態の冷却空気が通風するようになる。また、ヒートシンクのベース板の対角距離を有効に活用して複数個の半導体モジュール相互間の間隔も広く確保でき、これによりヒートシンクの放熱面積,放熱機能を最大に生かしてここに搭載する複数個のパワー半導体モジュールを効果的に風冷冷却することができる。   According to the above configuration, for a plurality of power semiconductor modules arranged on the base plate of the heat sink in an alignment posture inclined in the same direction, the modules arranged on the windward side of the heat sink and the modules arranged on the leeward side are arranged along the radiation fins. It will be aligned to the right with respect to the direction of the flowing cooling air flow. This reduces the cumulative thermal effect of the cooling air on the leeward modules due to the heat generated by the modules aligned on the leeward side of the heat sink, and the heat generated by the modules aligned on the upstream side immediately below each module aligned on the leeward side. Cooling air in a relatively low temperature state is ventilated without receiving much thermal interference from the heated cooling air. In addition, the diagonal distance of the base plate of the heat sink can be effectively used to ensure a wide space between the multiple semiconductor modules. The power semiconductor module can be effectively air-cooled and cooled.

その結果、ヒートシンクの放熱面積を必要以上に大きく設計したり送風風量を高めるために大形ファンを用いる必要がなく、これにより装置の小型化,低騒音化が達成できる。
しかも、各パワー半導体モジュール同士は向きを揃えて一列に整列しているので、モジュール相互間に配線する接続導体の配線性が損なわれるおそれもない。
As a result, it is not necessary to design a heat dissipation area of the heat sink to be larger than necessary or to use a large fan in order to increase the blown air volume, thereby achieving downsizing and low noise of the device.
In addition, since the power semiconductor modules are aligned in a line, the wiring properties of the connecting conductors that are wired between the modules are not impaired.

さらに加えて、ヒートシンクの放熱フィン列に沿って送風する冷却空気流とは別に、ヒートシンクのモジュール搭載面側にも冷却空気を送風してモジュール周辺の空気を換気する場合でも、斜め姿勢に整列して並ぶ各モジュールのパッケージ周壁面が風向ガイドとなってモジュール相互間に死角を作ることなく冷却空気を円滑に導風することができて風冷効果がより一層向上する。   In addition to the cooling air flow that blows along the heat sink fin rows of the heat sink, even when cooling air is blown to the module mounting surface side of the heat sink to ventilate the air around the module, it is aligned in an oblique position. The package peripheral wall surface of each module lined up becomes a wind direction guide, and the cooling air can be smoothly guided without creating a blind spot between the modules, thereby further improving the air cooling effect.

この発明の実施例によるパワー半導体装置の模式構成図で、(a)は平面図、(b)は正面図、(c)は側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the power semiconductor device by the Example of this invention, (a) is a top view, (b) is a front view, (c) is a side view. 図1に対応する従来のパワー半導体装置の模式構成図で、(a)は平面図、(b)は正面図、(c)は側面図である。FIG. 2 is a schematic configuration diagram of a conventional power semiconductor device corresponding to FIG. 1, in which (a) is a plan view, (b) is a front view, and (c) is a side view.

以下、この発明の実施の形態を図1(a)〜(c)に示す実施例に基づいて説明する。なお、実施例の図中で図2(a)〜(c)に対応する同一部材には同じ符号を付してその説明は省略する。   Hereinafter, embodiments of the present invention will be described based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the same member corresponding to FIG.2 (a)-(c), and the description is abbreviate | omitted.

この実施例においては、図示のように略正方形になるヒートシンクのベース板3aに対して、その対角方向に向きを揃えて複数個のパワー半導体モジュール1が斜め方向に整列して並置配列されている。なお、図中に一点鎖線で表す矢印Aはヒートシンク3の放熱フィン3bに沿って送風する冷却空気流を、破線矢印Bはベース3aのモジュール搭載側に流す換気用の冷却空気の流れを表している。   In this embodiment, as shown in the figure, a plurality of power semiconductor modules 1 are arranged in parallel with each other in an oblique direction with the diagonally oriented direction with respect to the base plate 3a of the heat sink having a substantially square shape. Yes. In the figure, an arrow A indicated by a one-dot chain line indicates a cooling air flow to be blown along the radiation fins 3b of the heat sink 3, and a broken arrow B indicates a flow of the cooling air for ventilation flowing to the module mounting side of the base 3a. Yes.

図示の配列から明らかなように、ヒートシンク3のベース板3aに搭載する複数個のパワー半導体モジュール1をベース板の対角方向に整列して並置配列することにより、放熱フィン列3bに沿って通風する冷却空気流Aの流れ方向に対し、各パワー半導体モジュール1が左右方向にずれて並ぶことになる。これにより、これにより、図2に示した従来の前後一列の配置と比べて、ヒートシンク3の風上側に並ぶモジュールの発熱によって風下側のモジュールに及ぼす累積的な熱的影響が小さくなり、風下側に並ぶ各モジュールの直下には風上側に並ぶモジュールを通過した冷却空気の熱的干渉をあまり受けないで低温状態の冷却空気が流れるようになる。また、ヒートシンク3のベース板3aの対角距離(一辺の長さの√2倍)を有効に活用して半導体モジュール1の相互間隔も広く確保できる。これによりヒートシンク3の放熱面積,放熱機能を最大に生かしてここに搭載する複数個のパワー半導体モジュール1を効果的に風冷冷却することができる。   As is apparent from the illustrated arrangement, a plurality of power semiconductor modules 1 mounted on the base plate 3a of the heat sink 3 are arranged side by side aligned in the diagonal direction of the base plate, thereby allowing ventilation along the radiating fin row 3b. The respective power semiconductor modules 1 are aligned in the left-right direction with respect to the flowing direction of the cooling air flow A. Thereby, as compared with the conventional arrangement of the front and rear rows shown in FIG. 2, the cumulative thermal influence on the leeward module due to the heat generated by the modules arranged on the leeward side of the heat sink 3 is reduced. Cooling air in a low temperature state flows directly under each module arranged in a row without receiving much thermal interference from the cooling air passing through the modules arranged on the windward side. Further, the diagonal distance of the base plate 3a of the heat sink 3 (√2 times the length of one side) can be effectively utilized to ensure a wide mutual interval between the semiconductor modules 1. Thereby, the plurality of power semiconductor modules 1 mounted thereon can be effectively air-cooled and cooled by making the best use of the heat radiation area and heat radiation function of the heat sink 3.

これにより、従来のようにヒートシンク3の放熱面積を必要以上に大きく設計したり、冷却空気の送風風量を高めるために大形ファンを用いる必要がなく、これにより占有スペースを縮減して半導体装置の小型化,低騒音化が達成できる。しかも、各パワー半導体モジュール1は向きを揃えて一列に整列しているので、モジュール相互間に配線する接続導体(バー導体)の配線性が損なわれるおそれもない。   As a result, it is not necessary to design the heat dissipation area of the heat sink 3 to be larger than necessary, or to use a large fan to increase the air flow rate of the cooling air as in the prior art. Miniaturization and low noise can be achieved. In addition, since the power semiconductor modules 1 are aligned in a line, the wiring property of the connection conductor (bar conductor) wired between the modules is not impaired.

また、図示例のようにヒートシンク3の放熱フィン列3bに沿って送風する冷却空気Aとは別に、ヒートシンク3のモジュール搭載面側にも冷却空気Bを送風してパワー半導体モジュール周辺の昇温空気を換気する場合でも、図示配列により斜め姿勢に整列した各パワー半導体モジュール1のパッケージ周壁面が風向ガイドとなってモジュールの相互間を縫うように冷却空気Bを円滑に導風することができて風冷効果が一層向上する。   In addition to the cooling air A that is blown along the radiating fin row 3b of the heat sink 3 as shown in the example, the cooling air B is also blown to the module mounting surface side of the heat sink 3 to raise the temperature rising air around the power semiconductor module. Even when the air is ventilated, the cooling air B can be smoothly guided so that the package peripheral wall surface of each power semiconductor module 1 aligned in an oblique posture according to the illustrated arrangement serves as a wind direction guide and sews between the modules. The air cooling effect is further improved.

1 パワー半導体モジュール
2 IGBT素子
3 ヒートシンク
3a ベース板
3b 放熱フィン列
DESCRIPTION OF SYMBOLS 1 Power semiconductor module 2 IGBT element 3 Heat sink 3a Base board 3b Radiation fin row

Claims (1)

複数個のパワー半導体モジュールを整列させてプレート状放熱フィン列を備えたヒートシンクのベース板上に並置搭載し、該ヒートシンクのモジュール搭載側および放熱フィン側に冷却空気を通風してパワー半導体モジュールの発生熱を放散させるようにした空冷式のパワー半導体装置において、
前記パワー半導体モジュールを、前記ヒートシンクの放熱フィン列に沿って導風する冷却空気の流れ方向に対して、それぞれ斜めに配置するとともに、
前記複数個のパワー半導体モジュールを、方形状になるヒートシンクのベース板に対して、前記ベース板の対角方向に一列に整列してヒートシンクのベース板上に並置搭載したことを特徴とする空冷式パワー半導体装置。
A plurality of power semiconductor modules are aligned and mounted side by side on a base plate of a heat sink having a plate-like heat radiation fin array, and cooling air is blown to the module mounting side and the heat radiation fin side of the heat sink to generate a power semiconductor module. In an air-cooled power semiconductor device that dissipates heat,
The power semiconductor module is disposed obliquely with respect to the flow direction of the cooling air that is guided along the radiating fin row of the heat sink,
The air-cooled type, wherein the plurality of power semiconductor modules are mounted side by side on the base plate of the heat sink so as to be aligned in a line in the diagonal direction of the base plate with respect to the base plate of the heat sink having a rectangular shape. Power semiconductor device.
JP2009214392A 2009-09-16 2009-09-16 Air-cooled power semiconductor device Active JP5440061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214392A JP5440061B2 (en) 2009-09-16 2009-09-16 Air-cooled power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214392A JP5440061B2 (en) 2009-09-16 2009-09-16 Air-cooled power semiconductor device

Publications (2)

Publication Number Publication Date
JP2011066123A JP2011066123A (en) 2011-03-31
JP5440061B2 true JP5440061B2 (en) 2014-03-12

Family

ID=43952090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214392A Active JP5440061B2 (en) 2009-09-16 2009-09-16 Air-cooled power semiconductor device

Country Status (1)

Country Link
JP (1) JP5440061B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109862765B (en) * 2019-04-23 2023-07-21 吉林大学 Air-cooled heat dissipation device for electronic element and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269676A (en) * 1999-03-15 2000-09-29 Tdk Corp Cooling device of electronic equipment
JP3566935B2 (en) * 2001-03-16 2004-09-15 Tdk株式会社 Electronic equipment cooling device
EP2065283B1 (en) * 2006-09-19 2014-07-23 Mitsubishi Electric Corporation Cooling device for mobile body

Also Published As

Publication number Publication date
JP2011066123A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP6072985B1 (en) Electronics
JP3094780B2 (en) Electronic equipment
KR101409102B1 (en) Cooling apparatus and power converter having the same
JP5847655B2 (en) control panel
JP2008103576A (en) Motor controller
JP2010187504A (en) Inverter device
KR101156903B1 (en) Thermal device for power converting module
JP2016157906A (en) Air-cooling laser device with l-shaped heat conduction member including radiation fin
JP2000161880A (en) Heat pipe type cooler
JP6177465B2 (en) Cooling system for railway vehicles
JP2006210516A (en) Cooling structure of electronic equipment
JP2017017133A (en) Liquid-cooled type cooling device
JP2006050742A (en) Forced air-cooling power converter and electric motor car
KR100619490B1 (en) A semiconductor cooling apparatus
JP6932632B2 (en) Liquid cooling system
JP5440061B2 (en) Air-cooled power semiconductor device
JP2008187136A (en) Heat dissipating structure
JP6222251B2 (en) Cooling structure and apparatus
JPH06315265A (en) Cooling structure of power converter
JP5705570B2 (en) Electronic component cooling system
JP2010093034A (en) Cooling device for electronic component
CN214592516U (en) Inverter and heat dissipation structure thereof
JP2009100508A (en) Ventilating cooler for control panel, and control panel using it
JP5939329B1 (en) Cooling structure and apparatus
JP2636810B2 (en) Multi-chip module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250