JP5439312B2 - Waste heat recovery device - Google Patents

Waste heat recovery device Download PDF

Info

Publication number
JP5439312B2
JP5439312B2 JP2010172532A JP2010172532A JP5439312B2 JP 5439312 B2 JP5439312 B2 JP 5439312B2 JP 2010172532 A JP2010172532 A JP 2010172532A JP 2010172532 A JP2010172532 A JP 2010172532A JP 5439312 B2 JP5439312 B2 JP 5439312B2
Authority
JP
Japan
Prior art keywords
heat recovery
heat
detour
bypass
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010172532A
Other languages
Japanese (ja)
Other versions
JP2012031796A (en
Inventor
徹 久永
珠希 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutaka Giken Co Ltd
Original Assignee
Yutaka Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutaka Giken Co Ltd filed Critical Yutaka Giken Co Ltd
Priority to JP2010172532A priority Critical patent/JP5439312B2/en
Publication of JP2012031796A publication Critical patent/JP2012031796A/en
Application granted granted Critical
Publication of JP5439312B2 publication Critical patent/JP5439312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Description

本発明は、排気ガスの熱で冷却水を温める排熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus that warms cooling water with the heat of exhaust gas.

内燃機関で発生した排気ガスの熱を冷却水に伝え、冷却水を温める排熱回収装置が知られている(例えば、特許文献1(図3)参照。)。   2. Description of the Related Art An exhaust heat recovery device that transmits heat of exhaust gas generated in an internal combustion engine to cooling water and warms the cooling water is known (see, for example, Patent Document 1 (FIG. 3)).

特許文献1を次図に基づいて説明する。
図7に示すように、排熱回収装置100は、排気ガスの熱で冷却水を温める熱回収器101と、この熱回収器101に繋げられ熱回収器101に排気ガスを送る熱回収路102と、この熱回収路102を迂回するように熱回収器101の側方に設けられる迂回路103と、これらの迂回路103及び熱回収路102の上流に回動可能に設けられ迂回路103又は熱回収路102のどちらかを閉じることで排気ガスの流れを規制するバルブ104とを含む。
Patent document 1 is demonstrated based on the following figure.
As shown in FIG. 7, the exhaust heat recovery apparatus 100 includes a heat recovery unit 101 that warms cooling water with the heat of exhaust gas, and a heat recovery path 102 that is connected to the heat recovery unit 101 and sends exhaust gas to the heat recovery unit 101. A bypass circuit 103 provided on the side of the heat recovery unit 101 so as to bypass the heat recovery path 102, and a bypass circuit 103 or a bypass circuit 103 provided rotatably on the upstream side of the bypass circuit 103 and the heat recovery path 102. And a valve 104 that regulates the flow of exhaust gas by closing one of the heat recovery paths 102.

冷却水が所定の温度になるまで、バルブ104が迂回路103を閉じ、排気ガスは熱回収路102に向かって流れる。排気ガスが熱回収器101に流れることで、排気ガスの熱が熱回収器101内の冷却水に伝えられ、冷却水が温められる。   The valve 104 closes the bypass circuit 103 until the cooling water reaches a predetermined temperature, and the exhaust gas flows toward the heat recovery path 102. As the exhaust gas flows into the heat recovery unit 101, the heat of the exhaust gas is transmitted to the cooling water in the heat recovery unit 101, and the cooling water is warmed.

一方、冷却水が所定の温度になることで、冷却水を温める必要がなくなる。バルブ104は熱回収路102を閉じ、熱交換を停止する。バルブ104が熱回収路102を閉じることで、排気ガスは迂回路103に向かって流れる。バルブ104は、例えば、冷却水の温度で作動されるサーモアクチュエータによって作動される。   On the other hand, since the cooling water reaches a predetermined temperature, it is not necessary to warm the cooling water. The valve 104 closes the heat recovery path 102 and stops heat exchange. When the valve 104 closes the heat recovery path 102, the exhaust gas flows toward the bypass 103. The valve 104 is operated by, for example, a thermo actuator that is operated at the temperature of the cooling water.

排気ガスが迂回路103を流される間は、冷却水の温度が上昇することを防止する必要がある。即ち、迂回路103を通る排気ガスの熱が、熱回収器101へ伝わることを防ぐ必要がある。熱回収器101に熱が伝わることを防ぐため、迂回路103は熱回収器101から離して設けられる。熱回収器101と迂回路103とが離して設けられることで、排熱回収装置100にデッドスペースが生じ、排熱回収装置100が大型化する。
排熱回収装置の小型化が望まれる。
While the exhaust gas flows through the detour 103, it is necessary to prevent the temperature of the cooling water from rising. That is, it is necessary to prevent the heat of the exhaust gas passing through the detour 103 from being transmitted to the heat recovery unit 101. In order to prevent heat from being transmitted to the heat recovery device 101, the bypass 103 is provided away from the heat recovery device 101. By providing the heat recovery device 101 and the detour route 103 apart from each other, a dead space is generated in the exhaust heat recovery device 100, and the exhaust heat recovery device 100 is enlarged.
Miniaturization of the exhaust heat recovery device is desired.

特開2008−157211公報JP 2008-157211 A

本発明は、排熱回収装置の小型化を課題とする。   An object of the present invention is to reduce the size of the exhaust heat recovery apparatus.

請求項1に係る発明は、排気ガスの熱で冷却水を温める熱回収器と、この熱回収器に繋げられ熱回収器に排気ガスを送る熱回収路と、この熱回収路を迂回するように設けられる迂回路と、これらの迂回路及び熱回収路の上流又は迂回路及び熱回収路の下流に回動可能に設けられ迂回路又は熱回収路のどちらかを閉じることで排気ガスの流れを規制するバルブと、このバルブを回動させる回動軸に接続され冷却水の温度によって作動されるサーモアクチュエータとからなる排熱回収装置において、
前記熱回収器は、前記迂回路の上面に載置されていることにより、前記迂回路に接するように設けられ、
前記迂回路から前記熱回収器への熱の移動を防ぐ熱移動防止部が、前記迂回路の内部であって、前記熱回収器が載置される部位の下部に備えられ
前記熱移動防止部は、前記迂回路の内部に接合された板状部材と、前記迂回路の左右の側壁とによって形成され、
前記左右の側壁のそれぞれに、前記熱移動防止部と外部とを連通する連通孔又は前記熱移動防止部と外部とを連通するルーバーが設けられ、
前記連通孔又は前記ルーバーは、前記左の側壁と前記右の側壁とで、設けられる高さが異なることを特徴とする。
According to the first aspect of the present invention, there is provided a heat recovery device that warms the cooling water with the heat of the exhaust gas, a heat recovery path that is connected to the heat recovery device and sends the exhaust gas to the heat recovery device, and bypasses the heat recovery path. And the exhaust gas flow by closing either the bypass or the heat recovery path that is pivotally provided upstream of the bypass and the heat recovery path or downstream of the bypass and the heat recovery path. In a waste heat recovery device comprising a valve that regulates the temperature and a thermoactuator that is connected to a rotating shaft that rotates the valve and that is actuated by the temperature of cooling water,
The heat recovery unit is provided on the upper surface of the detour to be in contact with the detour,
A heat transfer prevention part for preventing heat transfer from the bypass to the heat recovery unit is provided inside the bypass and at a lower part of the part on which the heat recovery unit is placed ,
The heat transfer prevention part is formed by a plate-like member joined inside the detour, and left and right side walls of the detour,
Each of the left and right side walls is provided with a communication hole that communicates the heat transfer prevention part and the outside or a louver that communicates the heat transfer prevention part and the outside,
The communication hole or the louver is different in height provided between the left side wall and the right side wall .

請求項1に係る発明では、熱回収器への熱の移動を防止する熱移動防止部が迂回路内に設けられる。熱移動防止部を迂回路の内部に設けるため、熱回収器を迂回路に接するよう設けることができる。熱回収器を迂回路に接するよう設けることで、排熱回収装置を小型化することができる。   In the invention which concerns on Claim 1, the heat transfer prevention part which prevents the movement of the heat | fever to a heat recovery device is provided in a detour. Since the heat transfer prevention part is provided inside the detour, the heat recovery unit can be provided in contact with the detour. By providing the heat recovery device so as to contact the detour, the exhaust heat recovery device can be downsized.

加えて、請求項に係る発明では、熱回収器は、迂回路の上面に載置されている。例えば排熱回収装置を車両に用いた場合に、排熱回収装置に向かって路面から石が跳ねることがある。熱回収器を迂回路の上面に載置することで、このような飛び石から熱回収器を保護することができる。 In addition, in the invention according to claim 1 , the heat recovery device is placed on the upper surface of the detour. For example, when the exhaust heat recovery device is used in a vehicle, stones may jump from the road surface toward the exhaust heat recovery device. By placing the heat recovery device on the upper surface of the detour, the heat recovery device can be protected from such stepping stones.

さらに、請求項に係る発明では、板状部材と、迂回路の側壁とで熱移動防止部が形成されている。熱移動防止部を形成するのに、新たに板状部材のみを追加すればよく、少ない部品点数で熱移動防止部を形成することができる。 Furthermore, in the invention which concerns on Claim 1 , the heat transfer prevention part is formed with the plate-shaped member and the side wall of the detour. In order to form the heat transfer prevention part, it is only necessary to newly add a plate-like member, and the heat transfer prevention part can be formed with a small number of parts.

加えて、請求項に係る発明では、側壁に、熱移動防止部と外部とを連通する連通孔又は熱移動防止部と外部とを連通するルーバーが設けられている。迂回路を通過する排気ガスの熱が熱移動防止部に伝わる。熱移動防止部は、連通孔又はルーバーによって外部に連通される。熱移動防止部に篭もった熱を連通孔又はルーバーから外部に放出することで、熱回収器へ熱が移動することをより確実に防ぐことができる。
さらに、熱移動防止部に迂回路から排気ガスの熱が伝わることがある。排気ガスの熱は高温であるため、高い位置に設けられる連通孔又はルーバーから熱が逃げる。温度の高い熱が逃げた分、低い位置に設けられた連通孔又はルーバーから、温度の低い熱が熱移動防止部内に流れる。即ち、熱移動防止部内に対流が生じる。熱移動防止部内に対流が生じることで、効率よく熱を外部へ排出することができ、熱回収器への熱の移動をより確実に防ぐことができる。
In addition, in the invention according to claim 1 , the side wall is provided with a communication hole that communicates the heat transfer prevention part with the outside or a louver that communicates the heat transfer prevention part with the outside. The heat of the exhaust gas passing through the detour is transmitted to the heat transfer prevention unit. The heat transfer prevention unit communicates with the outside through a communication hole or a louver. By releasing the heat trapped in the heat transfer prevention part to the outside from the communication hole or louver, it is possible to more reliably prevent the heat from moving to the heat recovery unit.
Further, the heat of the exhaust gas may be transmitted from the bypass to the heat transfer prevention unit. Since the heat of the exhaust gas is high, the heat escapes from the communication hole or louver provided at a high position. The heat of low temperature flows into the heat transfer prevention part from the communication hole or louver provided at the low position as much as the heat of high temperature escapes. That is, convection is generated in the heat transfer prevention part. By generating convection in the heat transfer prevention unit, heat can be efficiently discharged to the outside, and heat transfer to the heat recovery unit can be more reliably prevented.

本発明に係る排熱回収装置の側面図である。It is a side view of the waste heat recovery device concerning the present invention. 本発明に係る排熱回収装置の断面図である。It is sectional drawing of the waste heat recovery apparatus which concerns on this invention. 熱移動防止部の分解斜視図である。It is a disassembled perspective view of a heat transfer prevention part. 迂回路の分解斜視図である。It is a disassembled perspective view of a detour. 図1の5−5線断面図、兼作用説明図である。FIG. 5 is a sectional view taken along line 5-5 in FIG. 図5の変更実施例図である。FIG. 6 is a modified embodiment diagram of FIG. 5. 従来の技術の基本構成を説明する図である。It is a figure explaining the basic composition of the conventional technology.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.

本発明の実施例を図面に基づいて説明する。
図1に示されるように、排熱回収装置10は、内燃機関で発生した排気ガスが導入される排ガス導入部11と、この排ガス導入部11の下流側上部に接続される熱回収路12と、この熱回収路12の下方に設けられ排ガス導入部11の下流側下部に接続される迂回路13と、この迂回路13の上面に載置され熱回収路12から送られる排気ガスで冷却水を温める熱回収器14と、この熱回収器14に繋がれ熱回収器14内に冷却水を送る送水管16と、この送水管16から熱回収器14に送られた冷却水が排出される排出部17と、この排出部17に支持され排出部17から冷却水の一部が流されるサーモアクチュエータ18と、このサーモアクチュエータ18のロッド19に接触するよう設けられ付勢手段により図面時計回り方向に向かって付勢される回動板21とが備えられる。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the exhaust heat recovery apparatus 10 includes an exhaust gas introduction part 11 into which exhaust gas generated in an internal combustion engine is introduced, and a heat recovery path 12 connected to an upper part on the downstream side of the exhaust gas introduction part 11. The detour path 13 provided below the heat recovery path 12 and connected to the lower downstream side of the exhaust gas introduction section 11, and the exhaust water placed on the upper surface of the detour path 13 and sent from the heat recovery path 12 The heat recovery device 14 that warms the water, the water supply pipe 16 that is connected to the heat recovery device 14 and sends cooling water into the heat recovery device 14, and the cooling water sent from the water supply tube 16 to the heat recovery device 14 is discharged. A discharge portion 17, a thermoactuator 18 that is supported by the discharge portion 17 and in which a part of the cooling water flows from the discharge portion 17, and is provided in contact with the rod 19 of the thermoactuator 18, and is biased in the clockwise direction in the drawing Heading to A rotating plate 21 is biased is provided.

熱回収器14内の冷却水の温度が上昇すると、サーモアクチュエータ18はロッド19を図面左に向かって、矢印(1)に示すように前進させる。ロッド19は、回動板21が時計回り方向に付勢される力に抗して、前進する。ロッド19が前進することで、回動板21は図面反時計回りに回転される。回動板21が回転することで、この回動板21に支持される回動軸(図2、符号22)も同方向に回動する。詳細を次図で説明する。   When the temperature of the cooling water in the heat recovery device 14 rises, the thermoactuator 18 advances the rod 19 toward the left of the drawing as shown by the arrow (1). The rod 19 moves forward against the force with which the rotating plate 21 is urged clockwise. As the rod 19 moves forward, the rotating plate 21 is rotated counterclockwise in the drawing. As the rotating plate 21 rotates, the rotating shaft (reference numeral 22 in FIG. 2) supported by the rotating plate 21 also rotates in the same direction. Details are described in the following figure.

図2に示すように、排気ガスの流れ方向を基準として、熱回収路12と迂回路13との上流側に回動軸22が設けられ、この回動軸22にV字形のバルブ24が支持される。回動軸22は、排気ガスの流れに垂直に設けられる。回動軸22の設けられる方向を幅方向という。   As shown in FIG. 2, a rotation shaft 22 is provided on the upstream side of the heat recovery path 12 and the detour 13 on the basis of the flow direction of the exhaust gas, and a V-shaped valve 24 is supported on the rotation shaft 22. Is done. The rotation shaft 22 is provided perpendicular to the flow of exhaust gas. The direction in which the rotation shaft 22 is provided is referred to as the width direction.

回動軸22は、回動板(図1、符号21)に支持されることで、図面時計回り方向に付勢される。回動軸22に支持されるバルブ24も、図面時計回り方向、即ち、迂回路13を閉じる方向に付勢される。迂回路13を閉じる方向に付勢されるバルブ24は、先端がストッパとしての着座部25に着座される。   The rotation shaft 22 is urged clockwise in the drawing by being supported by a rotation plate (FIG. 1, reference numeral 21). The valve 24 supported by the rotating shaft 22 is also urged in the clockwise direction of the drawing, that is, in the direction of closing the detour 13. The tip of the valve 24 urged in the direction to close the detour 13 is seated on a seating portion 25 as a stopper.

バルブ24が迂回路13を閉じることで、排気ガスは熱回収路12を経由して、熱回収器14に流される。
熱回収器14は、迂回路13に接するコアケース26と、このコアケース26内に複数設けられ排気ガスが通されるヒートプレート27とからなる。
When the valve 24 closes the bypass circuit 13, the exhaust gas flows through the heat recovery path 12 to the heat recovery unit 14.
The heat recovery device 14 includes a core case 26 that is in contact with the bypass 13 and a heat plate 27 that is provided in the core case 26 and through which exhaust gas is passed.

ヒートプレート27に流される排気ガスの熱が、コアケース26内に流される冷却水に伝わり、冷却水が温められる。ヒートプレート27を通過した排気ガスは、排出孔28を通り外部へ排出される。   The heat of the exhaust gas flowing through the heat plate 27 is transmitted to the cooling water flowing into the core case 26, and the cooling water is warmed. The exhaust gas that has passed through the heat plate 27 is discharged to the outside through the discharge hole 28.

熱回収器14の下部に設けられる迂回路13は、排ガス導入部11に接続される本体部31と、この本体部31に被せられる蓋部32とからなる。
迂回路13の蓋部32には、板状部材33が溶接される。この板状部材33と迂回路13の側壁34とで囲われた部位が、迂回路13から熱回収器14への熱の移動を防ぐ熱移動防止部35である。即ち、熱移動防止部35は、熱回収器14が設けられる部位と対応する部位に備えられている。
迂回路13の側壁34に、熱移動防止部35と外部とを連通するルーバー36が複数設けられる。
The detour circuit 13 provided in the lower part of the heat recovery unit 14 includes a main body 31 connected to the exhaust gas introduction unit 11 and a lid 32 covering the main body 31.
A plate-like member 33 is welded to the lid portion 32 of the bypass 13. A portion surrounded by the plate member 33 and the side wall 34 of the detour 13 is a heat transfer prevention unit 35 that prevents heat from being transferred from the detour 13 to the heat recovery unit 14. That is, the heat transfer prevention unit 35 is provided in a portion corresponding to the portion where the heat recovery unit 14 is provided.
A plurality of louvers 36 are provided on the side wall 34 of the detour 13 to communicate the heat transfer prevention unit 35 with the outside.

熱回収器14へ排気ガスを流し続け、冷却水の温度が所定の温度まで上がると、サーモアクチュエータ(図1、符号18)が作動する。サーモアクチュエータが作動することで、ロッド(図1、符号19)が回動軸22を反時計回りに回転させる。回動軸22が回転することで、バルブ24も回転し、想像線で示すように熱回収路12が閉じられる。   When the exhaust gas continues to flow to the heat recovery unit 14 and the temperature of the cooling water rises to a predetermined temperature, the thermoactuator (FIG. 1, reference numeral 18) operates. When the thermoactuator is activated, the rod (FIG. 1, reference numeral 19) rotates the rotating shaft 22 counterclockwise. As the rotation shaft 22 rotates, the valve 24 also rotates, and the heat recovery path 12 is closed as indicated by an imaginary line.

熱回収路12を閉じることで、排気ガスは迂回路13に向かって流される。熱回収路12側へ排気ガスが流れないようにすることで、熱回収器14での熱交換を停止する。迂回路13を流れる排気ガスの熱は、熱移動防止部35で熱回収器14への熱の移動を防止する。   By closing the heat recovery path 12, the exhaust gas flows toward the detour 13. By preventing the exhaust gas from flowing to the heat recovery path 12 side, heat exchange in the heat recovery unit 14 is stopped. The heat of the exhaust gas flowing through the detour 13 prevents the heat transfer to the heat recovery unit 14 by the heat transfer prevention unit 35.

熱回収路12は、迂回路13に接触させて設けられる。このことで、熱交換器14内の冷却水の放熱を抑えることができる。
即ち、熱回収路12の途中に設けられる熱回収器14も迂回路13に接触させて設けられる。熱回収器14を迂回路13に接触して設けることで、熱回収器14のコアケース26が外気に触れる接触面積を少なくすることができる。コアケース26と外気との接触量を減らすことで、冷却水の放熱を防ぐことができる。冷却水の放熱を防ぐことで、効率よく冷却水を温めることができる。
The heat recovery path 12 is provided in contact with the bypass 13. As a result, heat dissipation from the cooling water in the heat exchanger 14 can be suppressed.
That is, the heat recovery unit 14 provided in the middle of the heat recovery path 12 is also provided in contact with the bypass 13. By providing the heat recovery device 14 in contact with the bypass 13, the contact area where the core case 26 of the heat recovery device 14 comes into contact with outside air can be reduced. By reducing the amount of contact between the core case 26 and the outside air, heat radiation of the cooling water can be prevented. By preventing heat dissipation of the cooling water, the cooling water can be efficiently warmed.

また、熱回収路12と迂回路13とを接触させて設ける。接触させて設けることで、コンパクトに設けることができ、熱回収路12の前後に設けられる連結部材の点数を減らすことができる。連結部材の点数を減らすことで、排熱回収装置10の軽量化を図ることができる。   Further, the heat recovery path 12 and the detour path 13 are provided in contact with each other. By providing it in contact, it can be provided compactly, and the number of connecting members provided before and after the heat recovery path 12 can be reduced. By reducing the number of connecting members, it is possible to reduce the weight of the exhaust heat recovery apparatus 10.

さらに、従来の排熱回収装置では、図7に示すように内壁部材105、105が、熱回収路102側と迂回路103側との間に設けられる。内壁部材105、105は、溶接で接合される。内壁部材105、105で区切られた、狭いスペース106内で溶接用のトーチを操作することは困難であり、作業時間の長大化を招く。また、溶接用トーチを操作するためのスペースが必要であり、この点が排熱回収装置100のさらなる大型化を招いていた。   Further, in the conventional exhaust heat recovery apparatus, as shown in FIG. 7, inner wall members 105 and 105 are provided between the heat recovery path 102 side and the detour path 103 side. The inner wall members 105 and 105 are joined by welding. It is difficult to operate the welding torch in the narrow space 106 defined by the inner wall members 105 and 105, resulting in a long working time. In addition, a space for operating the welding torch is necessary, and this point has led to a further increase in the size of the exhaust heat recovery apparatus 100.

図2に戻り、熱回収路12と迂回路13とを接触させて設けるため、熱回収路12と迂回路13との間に内壁部材(図7、符号105参照)を設ける必要がない。接合することが困難な内壁部材を設けないことで、溶接時の溶接トーチの操作が容易になり、排熱回収装置10の組立作業を短時間で行うことができる。   Returning to FIG. 2, since the heat recovery path 12 and the detour path 13 are provided in contact with each other, there is no need to provide an inner wall member (see reference numeral 105 in FIG. 7) between the heat recovery path 12 and the detour path 13. By not providing the inner wall member that is difficult to join, the operation of the welding torch at the time of welding becomes easy, and the assembly work of the exhaust heat recovery apparatus 10 can be performed in a short time.

なお、迂回路13の上面に熱回収器14を載置することを例に説明したが、熱交換器を迂回路の側方に配置する等、任意の位置に配置できる。
ただし、迂回路13の上面に熱回収器14を載置した場合は、以下の効果を得ることができる。
Note that although the heat recovery device 14 is placed on the upper surface of the detour 13 as an example, the heat exchanger 14 can be disposed at an arbitrary position, such as disposed on the side of the detour.
However, when the heat recovery device 14 is placed on the upper surface of the bypass 13, the following effects can be obtained.

例えば排熱回収装置10を車両に用いた場合に、排熱回収装置10に向かって路面から石が跳ねることがある。熱回収器14を迂回路13の上面に載置することで、このような飛び石から熱回収器14を保護することができる。   For example, when the exhaust heat recovery device 10 is used in a vehicle, a stone may jump from the road surface toward the exhaust heat recovery device 10. By placing the heat recovery device 14 on the upper surface of the detour 13, the heat recovery device 14 can be protected from such stepping stones.

加えて、バルブ24は、熱回収路12及び迂回路13の上流側のみならず、熱回収路12及び迂回路13の下流側に設けることもできる。
例えば、想像線で示すように、排出孔28近傍に回動軸58を設け、この回動軸58で一枚板状のバルブ59を支持する。熱回収路12及び迂回路13の下流側にバルブ59を設けた場合も、上流側に設けた場合と同様の効果を得ることができる。
熱移動防止部35の形成について詳細を次図で説明する。
In addition, the valve 24 can be provided not only on the upstream side of the heat recovery path 12 and the bypass 13 but also on the downstream side of the heat recovery path 12 and the bypass 13.
For example, as indicated by an imaginary line, a rotating shaft 58 is provided in the vicinity of the discharge hole 28, and the single plate-like valve 59 is supported by the rotating shaft 58. Even when the valve 59 is provided on the downstream side of the heat recovery path 12 and the bypass route 13, the same effect as that provided on the upstream side can be obtained.
The details of the formation of the heat transfer prevention part 35 will be described with reference to the next drawing.

図3に示すように、板状部材33は、蓋部32の内周部と同じ幅の板であり、蓋部32に接する脚部38、38と、これらの脚部38、38から折曲げられる折曲げ部39、39と、これらの折曲げ部39、39を繋ぎ蓋部32から離間される離間部41とからなる。離間部41に剛性を高める凹部42が形成される。
なお、蓋部32に向かって凹む凹部42は、蓋部32から離れる方向に膨らまされる凸部であってもよい。
As shown in FIG. 3, the plate-like member 33 is a plate having the same width as the inner peripheral portion of the lid portion 32, and is bent from the leg portions 38 and 38 that are in contact with the lid portion 32 and these leg portions 38 and 38. The bent portions 39 and 39 are connected to each other, and the bent portions 39 and 39 are connected to each other to be separated from the lid portion 32. A recess 42 for increasing rigidity is formed in the separation portion 41.
The concave portion 42 that is recessed toward the lid portion 32 may be a convex portion that is swollen in a direction away from the lid portion 32.

蓋部32は、側壁34から幅方向に延ばされる蓋部フランジ部44、44を有し、側壁34、34間を繋ぐ天板部45に剛性を高めるための凹部46が形成される。   The lid part 32 has lid part flange parts 44, 44 extending in the width direction from the side wall 34, and a recess 46 for increasing rigidity is formed in the top plate part 45 that connects the side walls 34, 34.

熱移動防止部(図2、符号35)は、板状部材33を蓋部32に嵌込み、全周に亘り板状部材33を溶接することで形成される。迂回路の側壁34と板状部材33とで、熱移動防止部が形成される。熱移動防止部を形成するのに、新たに板状部材33のみを追加すればよく、少ない部品点数で熱移動防止部を形成することができる。   The heat transfer preventing portion (FIG. 2, reference numeral 35) is formed by fitting the plate-like member 33 into the lid portion 32 and welding the plate-like member 33 over the entire circumference. The detour side wall 34 and the plate-like member 33 form a heat transfer prevention unit. In order to form the heat transfer prevention part, it is only necessary to newly add the plate member 33, and the heat transfer prevention part can be formed with a small number of parts.

熱移動防止部を形成した後に、蓋部32をひっくり返し、本体部(図2、符号31)に溶接することで迂回路(図2、符号13)を形成する。詳細を次図で説明する。   After forming the heat transfer prevention part, the cover part 32 is turned over and welded to the main body part (FIG. 2, reference numeral 31) to form a detour (FIG. 2, reference numeral 13). Details are described in the following figure.

図4に示すように、本体部31は、半円形状を呈し、幅方向に向かって本体部フランジ部48、48が延ばされる。この本体部フランジ部48、48に、蓋部フランジ部44、44を合わせた上で、溶接する。本体部31に蓋部32が溶接されることで、迂回路(図2、符号13)が形成される。   As shown in FIG. 4, the main body 31 has a semicircular shape, and the main body flanges 48 and 48 are extended in the width direction. The main body flange portions 48, 48 are welded together with the lid flange portions 44, 44. The detour (FIG. 2, code | symbol 13) is formed because the cover part 32 is welded to the main-body part 31. FIG.

熱移動防止部(図2、符号35)が形成された蓋部32を本体部31に溶接することで、迂回路を形成する。迂回路を蓋部32と本体部31とに分け、これらを溶接することにしたので、迂回路内に熱移動防止部を有する排熱回収装置を容易に製造することができる。
本発明に係る排熱回収装置の作用について、次図で詳細を説明する。
A detour is formed by welding the lid portion 32 on which the heat transfer prevention portion (FIG. 2, reference numeral 35) is formed to the main body portion 31. Since the bypass route is divided into the lid portion 32 and the main body portion 31 and these are welded, an exhaust heat recovery device having a heat transfer prevention portion in the bypass route can be easily manufactured.
The operation of the exhaust heat recovery apparatus according to the present invention will be described in detail with reference to the following diagram.

図5に示すように、本発明に係る排熱回収装置10によれば、熱移動防止部35が、迂回路13の内部であって、熱回収器14が設けられる部位と対応する部位に備えられる。熱回収器14への熱の移動を防止する熱移動防止部35が迂回路13内に設けられる。熱移動防止部35を迂回路13の内部に設けるため、熱回収器14を迂回路13に接するよう設けることができる。熱回収器14を迂回路13に接するよう設けることで、排熱回収装置10を小型化することができる。   As shown in FIG. 5, according to the exhaust heat recovery apparatus 10 according to the present invention, the heat transfer prevention unit 35 is provided in a part corresponding to the part where the heat recovery unit 14 is provided inside the detour 13. It is done. A heat transfer prevention unit 35 that prevents heat transfer to the heat recovery unit 14 is provided in the detour 13. Since the heat transfer prevention unit 35 is provided inside the bypass 13, the heat recovery device 14 can be provided in contact with the bypass 13. By providing the heat recovery device 14 in contact with the detour 13, the exhaust heat recovery device 10 can be reduced in size.

加えて、板状部材33と、迂回路13の側壁34とで熱移動防止部35が形成されている。熱移動防止部35を形成するのに、新たに板状部材33のみを追加すればよく、少ない部品点数で熱移動防止部35を形成することができる。   In addition, the plate-shaped member 33 and the side wall 34 of the detour 13 form a heat transfer prevention unit 35. In order to form the heat transfer prevention part 35, it is only necessary to newly add a plate-like member 33, and the heat transfer prevention part 35 can be formed with a small number of parts.

加えて、側壁34に、熱移動防止部35と外部とを連通する熱移動防止部35と外部とを連通するルーバー36が設けられている。迂回路13を通過する排気ガスの熱が熱移動防止部35に伝わることがある。熱移動防止部35は、ルーバー36によって外部に連通される。熱移動防止部35に篭もり得る熱をルーバー36から外部に放出することで、熱回収器14へ熱が移動することをより確実に防ぐことができる。   In addition, the side wall 34 is provided with a louver 36 that communicates the heat transfer prevention unit 35 that communicates with the heat transfer prevention unit 35 and the outside. The heat of the exhaust gas passing through the detour 13 may be transmitted to the heat transfer prevention unit 35. The heat transfer prevention unit 35 communicates with the outside by a louver 36. By releasing the heat that can be trapped in the heat transfer prevention unit 35 from the louver 36 to the outside, it is possible to more reliably prevent the heat from moving to the heat recovery unit 14.

さらに、蓋部32の熱回収器14と接する部位に凹部46が設けられる。凹部46を設けることで、蓋部32の剛性を高めることができると共に、凹部46を設けることで、熱回収器14と蓋部32とが接触する面積を減らすことができる。接触面積を減らすことで、迂回路13側から熱回収器14側への熱の移動を、さらに低減させることができる。即ち、剛性を高めつつ、熱の移動を低減させることができる。   Furthermore, a recess 46 is provided in a portion of the lid portion 32 that contacts the heat recovery device 14. By providing the concave portion 46, the rigidity of the lid portion 32 can be increased, and by providing the concave portion 46, the area where the heat recovery device 14 and the lid portion 32 are in contact can be reduced. By reducing the contact area, the movement of heat from the bypass 13 side to the heat recovery device 14 side can be further reduced. That is, heat transfer can be reduced while increasing rigidity.

さらに、板状部材33の素材(熱移動防止部35を形成するための素材)は、迂回路13の素材と同一の素材であることが望ましい。
本発明に係る排熱回収装置10では、板状部材33を迂回路13に溶接することで、熱移動防止部35を形成する。迂回路13内に溶接される板状部材33は、迂回路13が受けるのと同量の排気ガスの熱を受ける。
また、板状部材33の素材を迂回路13の素材と同一にすることで、板状部材33の熱膨張率と迂回路13の熱膨張率は同じになる。
Furthermore, it is desirable that the material of the plate-like member 33 (the material for forming the heat transfer prevention unit 35) is the same material as that of the detour 13.
In the exhaust heat recovery apparatus 10 according to the present invention, the heat transfer prevention part 35 is formed by welding the plate-like member 33 to the bypass 13. The plate-like member 33 welded in the detour 13 receives the same amount of exhaust gas heat as the detour 13 receives.
Further, by making the material of the plate-like member 33 the same as the material of the bypass 13, the thermal expansion coefficient of the plate-like member 33 and the thermal expansion coefficient of the bypass 13 are the same.

即ち、排気ガスの熱から受ける熱量が同じであり、熱膨張率が同じであることにより、熱により膨張する量が板状部材33と迂回路13とで同じになる。
仮に、板状部材を迂回路の外に設けた場合は、迂回路に比べて板状部材の受ける熱量は少なくなる。板状部材の受ける熱量が少ないことで、板状部材の膨張量は、迂回路の膨張量よりも少なくなる。相対的に迂回路のみが伸びることで、迂回路と板状部材との溶接部に負荷がかかる。
That is, since the amount of heat received from the heat of the exhaust gas is the same and the coefficient of thermal expansion is the same, the amount of expansion due to heat is the same in the plate-like member 33 and the bypass 13.
If the plate member is provided outside the detour, the amount of heat received by the plate member is smaller than that of the detour. Since the amount of heat received by the plate member is small, the expansion amount of the plate member is smaller than the expansion amount of the detour. Since only the detour is relatively extended, a load is applied to the welded portion between the detour and the plate-like member.

本発明に係る排熱回収装置によれば、膨張量が同じことで、迂回路13と板状部材33との溶接部49に係る負荷を低減することができる。負荷が低減されることで、熱移動防止部35を迂回路13の外に設けた場合に比べ、排熱回収装置10の長寿命化を図ることができる。
排熱回収装置は、さらに次図で説明するよう形成することもできる。
According to the exhaust heat recovery apparatus according to the present invention, it is possible to reduce the load on the welded portion 49 between the detour 13 and the plate-like member 33 because the expansion amount is the same. By reducing the load, it is possible to extend the life of the exhaust heat recovery apparatus 10 as compared with the case where the heat transfer prevention unit 35 is provided outside the detour 13.
The exhaust heat recovery device can also be formed as described in the next figure.

図6に示されるように、排熱回収装置50は、迂回路51の側壁52に連通孔53、54が設けられる。連通孔53、54は、それぞれ異なる高さに設けられる。   As shown in FIG. 6, in the exhaust heat recovery device 50, communication holes 53 and 54 are provided in the side wall 52 of the bypass 51. The communication holes 53 and 54 are provided at different heights.

熱移動防止部56に迂回路51から排気ガスの熱が伝わることがある。排気ガスの熱は高温であるため、矢印(2)で示すように、高い位置に設けられる連通孔53から熱が逃げる。温度の高い熱が逃げた分、低い位置に設けられた連通孔54から、矢印(3)で示すように、温度の低い熱が熱移動防止部56内に流れる。即ち、熱移動防止部56内に対流が生じる。熱移動防止部56内に対流が生じることで、効率よく熱を外部へ排出することができ、熱回収器14への熱の移動をより確実に防ぐことができる。   The heat of the exhaust gas may be transmitted from the bypass 51 to the heat transfer prevention unit 56. Since the heat of the exhaust gas is high, as shown by an arrow (2), the heat escapes from the communication hole 53 provided at a high position. As the high temperature heat escapes, the low temperature heat flows into the heat transfer preventing portion 56 from the communication hole 54 provided at the low position as indicated by the arrow (3). That is, convection occurs in the heat transfer prevention unit 56. By generating convection in the heat transfer prevention unit 56, heat can be efficiently discharged to the outside, and heat transfer to the heat recovery unit 14 can be more reliably prevented.

また、このような排熱回収装置50であっても当然に、熱の移動を防止しつつ排熱回収装置50を小型化するという本発明の効果を得ることができる。
なお、連通孔53、54を例に説明をしたが、ルーバー(図5、符号36)であっても、高さを変えることで、熱移動防止部56内に対流を発生させることができる。即ち、側壁に設けられる孔の形状は、丸穴に限定されない。
Moreover, even if it is such an exhaust heat recovery apparatus 50, naturally, the effect of this invention that size reduction of the exhaust heat recovery apparatus 50 can be acquired, preventing the movement of heat.
Although the communication holes 53 and 54 have been described as an example, convection can be generated in the heat transfer preventing portion 56 by changing the height even for the louver (FIG. 5, reference numeral 36). That is, the shape of the hole provided in the side wall is not limited to a round hole.

尚、本発明に係る排熱回収装置は、EGR(Exhaust Gas Recirculation)クーラにも適用することができ、これらのものに用途は限定されない。   The exhaust heat recovery apparatus according to the present invention can also be applied to an EGR (Exhaust Gas Recirculation) cooler, and the application is not limited to these.

本発明の排熱回収装置は、ハイブリッド車に好適である。   The exhaust heat recovery apparatus of the present invention is suitable for a hybrid vehicle.

10、50…排熱回収装置、12…熱回収路、13、51…迂回路、14…熱回収器、18…サーモアクチュエータ、22…回動軸、24…バルブ、33…板状部材、34、52…側壁、35、56…熱移動防止部、36…ルーバー、53、54…連通孔。   DESCRIPTION OF SYMBOLS 10, 50 ... Waste heat recovery apparatus, 12 ... Heat recovery path, 13, 51 ... Detour, 14 ... Heat recovery device, 18 ... Thermo actuator, 22 ... Rotating shaft, 24 ... Valve, 33 ... Plate-shaped member, 34 , 52 ... side walls, 35, 56 ... heat transfer prevention parts, 36 ... louvers, 53, 54 ... communication holes.

Claims (1)

排気ガスの熱で冷却水を温める熱回収器と、この熱回収器に繋げられ前記熱回収器に排気ガスを送る熱回収路と、この熱回収路を迂回するように設けられる迂回路と、これらの迂回路及び熱回収路の上流又は迂回路及び熱回収路の下流に回動可能に設けられ前記迂回路又は前記熱回収路のどちらかを閉じることで前記排気ガスの流れを規制するバルブと、このバルブを回動させる回動軸に接続され前記冷却水の温度によって作動されるサーモアクチュエータとからなる排熱回収装置において、
前記熱回収器は、前記迂回路の上面に載置されていることにより、前記迂回路に接するように設けられ、
前記迂回路から前記熱回収器への熱の移動を防ぐ熱移動防止部が、前記迂回路の内部であって、前記熱回収器が載置される部位の下部に備えられ
前記熱移動防止部は、前記迂回路の内部に接合された板状部材と、前記迂回路の左右の側壁とによって形成され、
前記左右の側壁のそれぞれに、前記熱移動防止部と外部とを連通する連通孔又は前記熱移動防止部と外部とを連通するルーバーが設けられ、
前記連通孔又は前記ルーバーは、前記左の側壁と前記右の側壁とで、設けられる高さが異なることを特徴とする排熱回収装置。
A heat recovery unit that heats the cooling water with the heat of the exhaust gas, a heat recovery path that is connected to the heat recovery unit and sends the exhaust gas to the heat recovery unit, and a detour that is provided to bypass the heat recovery path; A valve that is rotatably provided upstream of the bypass and the heat recovery path or downstream of the bypass and the heat recovery path, and restricts the flow of the exhaust gas by closing either the bypass or the heat recovery path. And an exhaust heat recovery device comprising a thermoactuator connected to a rotating shaft for rotating the valve and operated by the temperature of the cooling water,
The heat recovery unit is provided on the upper surface of the detour to be in contact with the detour,
A heat transfer prevention part for preventing heat transfer from the bypass to the heat recovery unit is provided inside the bypass and at a lower part of the part on which the heat recovery unit is placed ,
The heat transfer prevention part is formed by a plate-like member joined inside the detour, and left and right side walls of the detour,
Each of the left and right side walls is provided with a communication hole that communicates the heat transfer prevention part and the outside or a louver that communicates the heat transfer prevention part and the outside,
The exhaust heat recovery apparatus , wherein the communication hole or the louver is provided with different heights on the left side wall and the right side wall .
JP2010172532A 2010-07-30 2010-07-30 Waste heat recovery device Expired - Fee Related JP5439312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172532A JP5439312B2 (en) 2010-07-30 2010-07-30 Waste heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172532A JP5439312B2 (en) 2010-07-30 2010-07-30 Waste heat recovery device

Publications (2)

Publication Number Publication Date
JP2012031796A JP2012031796A (en) 2012-02-16
JP5439312B2 true JP5439312B2 (en) 2014-03-12

Family

ID=45845496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172532A Expired - Fee Related JP5439312B2 (en) 2010-07-30 2010-07-30 Waste heat recovery device

Country Status (1)

Country Link
JP (1) JP5439312B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803843B1 (en) * 2013-05-14 2018-02-14 Bosal Emission Control Systems NV Unit for recovering thermal energy from exhaust gas of an internal combustion engine
JP6608857B2 (en) * 2016-04-11 2019-11-20 トヨタ自動車株式会社 Waste heat recovery device
JP6626531B2 (en) * 2018-05-22 2019-12-25 マレリ株式会社 Exhaust heat recovery device
JP7023040B2 (en) 2019-01-22 2022-02-21 三恵技研工業株式会社 Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330910B1 (en) * 1999-03-03 2001-12-18 Easton Bennett Heat exchanger for a motor vehicle exhaust
JP2004316611A (en) * 2003-04-18 2004-11-11 Calsonic Kansei Corp Cooling device for exhaust gas from engine
JP2007032561A (en) * 2005-06-20 2007-02-08 Sango Co Ltd Exhaust gas heat recovery device
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device
JP2010163899A (en) * 2009-01-13 2010-07-29 Fuji Heavy Ind Ltd Exhaust heat recovery device

Also Published As

Publication number Publication date
JP2012031796A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5108462B2 (en) Heat recovery equipment
JP5222977B2 (en) Waste heat recovery device
JP4323333B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5439312B2 (en) Waste heat recovery device
JP6838825B2 (en) Exhaust heat recovery device
JP2010229847A (en) Exhaust heat recovery equipment
JP5291656B2 (en) Waste heat recovery device
JP5074317B2 (en) Flow path switching valve
JP2008101481A (en) Exhaust system structure
JP6086837B2 (en) Exhaust heat recovery device
JP2009013838A (en) Exhaust heat recovery device
JP5520806B2 (en) Heat exchanger
JP5498988B2 (en) Heat recovery device assembly and exhaust heat recovery device
JP5581246B2 (en) Waste heat recovery device
JP5707123B2 (en) Heat exchange unit and manufacturing method thereof
JP5088751B2 (en) Waste heat recovery unit
JP7023040B2 (en) Heat exchanger
JP5291667B2 (en) Waste heat recovery device
JP2011214526A (en) Exhaust heat recovery device
JP5439311B2 (en) Waste heat recovery device
JP2019127925A (en) Exhaust heat recovery device
JP5431885B2 (en) Exhaust system heat exchanger actuator arrangement structure
JP5912779B2 (en) Waste heat recovery device
JP2011111963A (en) Switching valve structure
JP2022068879A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees