JP4323333B2 - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP4323333B2
JP4323333B2 JP2004009960A JP2004009960A JP4323333B2 JP 4323333 B2 JP4323333 B2 JP 4323333B2 JP 2004009960 A JP2004009960 A JP 2004009960A JP 2004009960 A JP2004009960 A JP 2004009960A JP 4323333 B2 JP4323333 B2 JP 4323333B2
Authority
JP
Japan
Prior art keywords
gas
cylindrical housing
passage
valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004009960A
Other languages
Japanese (ja)
Other versions
JP2005201578A5 (en
JP2005201578A (en
Inventor
洋行 駒井
雅広 有山
領谷 有田
Original Assignee
株式会社マーレ フィルターシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マーレ フィルターシステムズ filed Critical 株式会社マーレ フィルターシステムズ
Priority to JP2004009960A priority Critical patent/JP4323333B2/en
Priority to EP05000942A priority patent/EP1555421B1/en
Priority to CNB2005100017982A priority patent/CN100439694C/en
Publication of JP2005201578A publication Critical patent/JP2005201578A/en
Publication of JP2005201578A5 publication Critical patent/JP2005201578A5/ja
Application granted granted Critical
Publication of JP4323333B2 publication Critical patent/JP4323333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/04Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes comprising shape memory alloys or bimetallic elements

Description

本発明は、内燃機関の排気ガスの一部を吸気通路側に戻すことによって排気中の窒素酸化物の排出量を抑制する排気還流装置に関し、とりわけ、還流ガスを冷却するガス冷却機能を備えた内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device that suppresses the emission amount of nitrogen oxides in exhaust gas by returning a part of the exhaust gas of an internal combustion engine to the intake passage side, and particularly has a gas cooling function for cooling the recirculated gas. The present invention relates to an exhaust gas recirculation device for an internal combustion engine.

内燃機関の排気還流装置は、排気系から取り出された高温の排気ガスの一部を吸気通路に再循環させるものであるが、熱膨張した排気ガスを効率良く吸気通路に導入するためには、排気ガスをガスクーラによって冷却し、冷却後の排気ガスを吸気通路に導入することが有効であることが知られており、現在、種々のガスクーラーを備えた排気還流装置が開発されていて、内燃機関の運転条件によっては還流ガスの冷却が好ましくない場合、例えば、低温始動や低負荷運転時等には却って窒素酸化物やパティキュレート等の排出抑制性能を悪化させる等の問題を招く。そこで、これに対処し得る排気還流装置として、従来、特許文献1や特許文献2に記載されるようなものが案出されている。   An exhaust gas recirculation device for an internal combustion engine recirculates a part of high-temperature exhaust gas taken out from an exhaust system to an intake passage. In order to efficiently introduce thermally expanded exhaust gas into an intake passage, It is known that it is effective to cool the exhaust gas with a gas cooler and introduce the cooled exhaust gas into the intake passage. At present, exhaust gas recirculation devices equipped with various gas coolers have been developed. When cooling of the reflux gas is not preferable depending on the operating conditions of the engine, for example, at the time of low-temperature start-up or low-load operation, problems such as deterioration of emission suppression performance of nitrogen oxides, particulates, etc. are caused. Thus, as an exhaust gas recirculation device capable of coping with this, those described in Patent Document 1 and Patent Document 2 have been devised.

特許文献1に記載の排気還流装置は、ガスクーラの配管と別体にバイパス配管を並列に設け、両配管の合流部に切換え弁を設け、その切換え弁を内燃機関の運転条件に応じてオン/オフ式、或は、変調式で使用し切換える構造となっている。   In the exhaust gas recirculation device described in Patent Document 1, a bypass pipe is provided in parallel with a gas cooler pipe, a switching valve is provided at the junction of both pipes, and the switching valve is turned on / off according to the operating conditions of the internal combustion engine. It is structured to be switched by using an off type or a modulation type.

また、特許文献2に記載の排気還流装置は、周壁を外気によって空気冷却する所謂空冷式ガスクーラの冷却配管の中心側に保温通路を入れ子型にして配置し、内側の保温通路と外側のガス冷却通路の合流部に、両通路を流れるガス流量を調整する流量調整弁を設けた構造となっている。
特表平9−508691号公報 特開2003−328864号公報
In addition, the exhaust gas recirculation device described in Patent Document 2 has a heat insulation passage nested in the center of a cooling pipe of a so-called air-cooled gas cooler that cools a peripheral wall with outside air, and has an inner heat insulation passage and an outer gas cooling device. It has a structure in which a flow rate adjusting valve that adjusts the flow rate of gas flowing through both passages is provided at the junction of the passages.
Japanese National Patent Publication No. 9-508691 JP 2003-328864 A

特許文献1に記載の装置は、ガス冷却配管と、その冷却配管を迂回するバイパス配管を別に設け、両配管を外部で接続する構造となっているため、どうしても装置全体が大型化してしまい、車両搭載上好ましくない。   The apparatus described in Patent Document 1 has a structure in which a gas cooling pipe and a bypass pipe that bypasses the cooling pipe are separately provided and both pipes are connected to the outside. It is not preferable for mounting.

特許文献2に記載の装置は、ガス冷却通路の内側にバイパス通路が入れ子型に配置されているため、装置全体をコンパクト化することができるが、冷却配管の周壁外面のみを外気に晒して冷却する構造であるため、充分なガス冷却性能を得ることが難しい。   In the device described in Patent Document 2, since the bypass passage is nested inside the gas cooling passage, the entire device can be made compact, but only the outer surface of the peripheral wall of the cooling pipe is exposed to the outside air and cooled. Therefore, it is difficult to obtain sufficient gas cooling performance.

そこで本発明は、装置の大型化やガス冷却性能の悪化を招くことなく、還流ガスの温度を機関運転条件に応じて調整することのできる内燃機関の排気還流装置を提供しようとするものである。   Accordingly, the present invention is intended to provide an exhaust gas recirculation device for an internal combustion engine that can adjust the temperature of the recirculation gas in accordance with engine operating conditions without causing an increase in the size of the device or a deterioration in gas cooling performance. .

上述した課題を解決するための手段として、本発明は、ガス流入口とガス排出口を有する筒状ハウジングと、周壁に冷却液の流通路を形成し、前記筒状ハウジングの内側に配置されて内周側に第1ガス冷却通路を形成する熱交換用筒部材と、前記筒状ハウジングと熱交換用筒部材の間に介装され、内周面と熱交換用筒部材の間に第2ガス冷却通路を形成すると共に、外周面と筒状ハウジングの間にバイパス通路を形成する仕切筒と、筒状ハウジング内の前記ガス流入口側とガス排出口側のいずれか一方側に配置され、前記第1,第2ガス冷却通路とバイパス通路のガス通過比率を調整する流量調整弁と、を備えた構成とした。   As means for solving the above-mentioned problems, the present invention includes a cylindrical housing having a gas inlet and a gas outlet, and a cooling liquid flow passage formed in a peripheral wall, which is disposed inside the cylindrical housing. A heat exchange cylinder member forming a first gas cooling passage on the inner peripheral side, and a second member between the inner peripheral surface and the heat exchange cylinder member interposed between the cylindrical housing and the heat exchange cylinder member. A gas cooling passage is formed, and a partition cylinder that forms a bypass passage between the outer peripheral surface and the cylindrical housing, and is disposed on either the gas inlet side or the gas outlet side in the cylindrical housing, The first and second gas cooling passages and the flow rate adjusting valve for adjusting the gas passage ratio of the bypass passages are provided.

この発明の場合、流量調整弁の操作によって第1,第2ガス冷却通路のガス通過比率を増大させると、熱交換用筒部材の内外面で還流ガスと冷却液の熱交換が効率良く行われるようになる。また、流量調整弁の操作によって第1,第2ガス冷却通路のガス通過比率を減少させると、熱交換用筒部材の内外面での熱交換量が減少し、相対的に、仕切筒外側のバイパス通路を通過するガス通過比率が増大する。このとき、仕切筒の内側の第2ガス冷却通路は内部のガスが断熱層として機能し、バイパス通路を通過する還流ガスが熱交換用筒部材の冷却液によって冷却されるのを阻止するようになる。   In the case of the present invention, when the gas passage ratio of the first and second gas cooling passages is increased by operating the flow rate adjusting valve, the heat exchange between the reflux gas and the coolant is efficiently performed on the inner and outer surfaces of the heat exchange cylinder member. It becomes like this. Further, when the gas passage ratio of the first and second gas cooling passages is decreased by operating the flow rate adjusting valve, the heat exchange amount on the inner and outer surfaces of the heat exchange cylinder member is decreased, The gas passage ratio passing through the bypass passage increases. At this time, the second gas cooling passage inside the partition cylinder functions as a heat insulation layer so that the reflux gas passing through the bypass passage is prevented from being cooled by the coolant of the heat exchange cylinder member. Become.

前記流量調整弁は、請求項2に記載のように、ガス流入口側に配置されると共に、筒状ハウジングの軸心と直交する軸部で回動自在に支持された一対の弁板を備え、前記第1,第2ガス冷却通路のガス通過比率を増大させるときに、前記一対の弁板を筒状ハウジングの軸心と略平行になる方向に回動させ、ガス通過比率を減少させるときに、一対の弁板を仕切筒に向かって外開き方向に傾斜するように回動させるようにしても良い。 The flow rate adjusting valve includes a pair of valve plates arranged on the gas inlet side and rotatably supported by a shaft portion orthogonal to the axial center of the cylindrical housing. When the gas passage ratio of the first and second gas cooling passages is increased, the pair of valve plates are rotated in a direction substantially parallel to the axial center of the cylindrical housing to reduce the gas passage ratio. In addition, the pair of valve plates may be rotated so as to incline outwardly toward the partition tube.

この場合、極めて簡単な構造でありながら、第1,第2ガス冷却通路のガス通過比率を減少させるときには、流量調整弁の弁体(弁板)自体がガス流入口から流入した還流ガスを最外周側のバイパス通路に案内するガイドとして機能するようになる。したがって、乱流の発生等を招くことなく、バイパス通路のガス通路流量を相対的に増大させることができる。   In this case, although the structure is very simple, when the gas passage ratio of the first and second gas cooling passages is reduced, the valve body (valve plate) itself of the flow rate adjusting valve can reduce the recirculation gas flowing in from the gas inlet. It functions as a guide for guiding the bypass passage on the outer peripheral side. Therefore, the gas passage flow rate of the bypass passage can be relatively increased without causing turbulence.

また、請求項3に記載のように、筒状ハウジング内のガス流入口側に、軸心部から仕切筒に向かって外開きに傾斜するガイド壁を設け、そのガイド壁に、ガス流入口側と第1,第2ガス冷却通路側を連通する窓を形成すると共に、その窓を開閉調整する弁体を設け、その窓と弁体によって前記流量調整弁を構成するようにしても良い。   According to a third aspect of the present invention, a guide wall that inclines outwardly from the axial center toward the partition tube is provided on the gas inlet side in the cylindrical housing, and the gas inlet side is provided on the guide wall. In addition, a window communicating with the first and second gas cooling passages may be formed, and a valve body for opening and closing the window may be provided, and the flow rate adjusting valve may be configured by the window and the valve body.

この場合、バイパス通路への還流ガスの流れは基本的にガイド壁によって案内するため、例えば、ガイド壁を筒状ハウジングの軸心部から仕切筒に連続する円錐形状に形成することによってより円滑な還流ガスの流れを作ることができる。   In this case, since the flow of the reflux gas to the bypass passage is basically guided by the guide wall, for example, the guide wall is formed more smoothly by forming a conical shape continuous from the axial center portion of the cylindrical housing to the partition cylinder. A reflux gas stream can be created.

本発明は、筒状ハウジング内の流量調整弁によってガス冷却通路とバイパス通路を通過する還流ガスの割合を調整するため、還流ガスの温度を機関運転条件に応じて確実に調整することができ、しかも、還流ガスの冷却を要するときには、基本的に熱交換用筒部材の内外面に面する第1,第2ガス冷却通路で冷却液との熱交換を行うため、高い冷却性能を得ることができ、さらに、すべての通路を筒状ハウジングの内側にほぼ同軸に配置できることから、装置全体のコンパクト化も図ることができる。   The present invention adjusts the ratio of the reflux gas passing through the gas cooling passage and the bypass passage by the flow rate adjustment valve in the cylindrical housing, so that the temperature of the reflux gas can be reliably adjusted according to the engine operating conditions, Moreover, when the reflux gas needs to be cooled, heat exchange with the coolant is basically performed in the first and second gas cooling passages facing the inner and outer surfaces of the heat exchange cylinder member, so that high cooling performance can be obtained. In addition, since all the passages can be arranged almost coaxially inside the cylindrical housing, the entire apparatus can be made compact.

また、還流ガスの冷却を要しないときには、仕切筒の内側の第2ガス冷却通路が、バイパス通路と熱交換用筒部材の熱伝達を遮断する断熱層として機能するため、特別な断熱材を付加することなく還流ガスが不必要に冷却される不具合を防止することができる。   When the reflux gas does not need to be cooled, a special heat insulating material is added because the second gas cooling passage inside the partition tube functions as a heat insulating layer that blocks heat transfer between the bypass passage and the heat exchange tube member. Therefore, it is possible to prevent a problem that the reflux gas is unnecessarily cooled.

次に、本発明の各実施形態を図面に基づいて説明する。   Next, each embodiment of the present invention will be described with reference to the drawings.

図1〜図3は、本発明の第1の実施形態を示すものであり、図1は本発明にかかる排気還流装置の縦断面図を示し、図2は同装置の図1のA矢視の端面図、図3は同装置の側面図を夫々示す。   1 to 3 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an exhaust gas recirculation apparatus according to the present invention, and FIG. 2 is a view of the apparatus in FIG. FIG. 3 is a side view of the apparatus.

図1において、1は、軸方向の両端部にガス流入口2とガス排出口3が設けられた略円筒状の筒状ハウジングであり、この筒状ハウジング1の両端の各口2,3は、内燃機関の排気側通路と吸気側通路に連通する図外の配管に夫々フランジ4,4部分でボルト結合されている。尚、この配管との接合はフランジ4,4でのボルト結合に限らず、嵌合状態での溶接やロー付け等であっても良い。   In FIG. 1, reference numeral 1 denotes a substantially cylindrical tubular housing in which a gas inlet 2 and a gas outlet 3 are provided at both ends in the axial direction. The flanges 4 and 4 are bolted to pipes (not shown) communicating with the exhaust side passage and the intake side passage of the internal combustion engine. The connection with the pipe is not limited to the bolt connection at the flanges 4 and 4 but may be welding or brazing in a fitted state.

前記筒状ハウジング1の内側には、略円筒状の熱交換用筒部材5がほぼ同軸に設けられている。この熱交換用筒部材5は、ステンレス等の薄肉金属板から成るインナチューブ5aとアウタチューブ5bの両端部が液密に接合され、これらの両チューブ5a,5b間に略円筒状の流通路6が形成されている。この流通路6は冷却液が流される部分であり、アウタチューブ5bの両端部の近傍には夫々流入パイプ7と排出パイプ8が径方向外側に向かって突設され、これらの各パイプ7,8が筒状ハウジング1の周壁を貫通して図外の冷却液配管に接続されている。   Inside the cylindrical housing 1, a substantially cylindrical heat exchanging cylinder member 5 is provided substantially coaxially. The heat exchanging cylinder member 5 has an inner tube 5a made of a thin metal plate such as stainless steel and both ends of an outer tube 5b joined in a liquid-tight manner, and a substantially cylindrical flow passage 6 between the tubes 5a and 5b. Is formed. This flow passage 6 is a portion through which the coolant flows, and an inflow pipe 7 and a discharge pipe 8 are provided in the vicinity of both ends of the outer tube 5b so as to project radially outward. Passes through the peripheral wall of the cylindrical housing 1 and is connected to a coolant pipe (not shown).

また、筒状ハウジング1と熱交換用筒部材5の間には、これらとほぼ同軸になるように仕切筒9が設けられている。この仕切筒9は、その外周面と筒状ハウジング1の間に略筒状のバイパス通路10を形成している。また、熱交換用筒部材5の内周側は第1ガス冷却通路11とされ、前記仕切筒9の内周面と熱交換用筒部材5の間は略円筒状の第2ガス冷却通路12とされている。これらの第1,第2ガス冷却通路11,12と前記バイパス通路10はガス流入口2から入ってガス排出口3に抜ける還流ガスの通路であるが、第1,第2ガス冷却通路11,12を通過するガスだけが、熱交換用筒部材5を流れる冷却液との間で熱交換を行い、バイパス通路10を通過するガスは冷却液との熱交換を行わないようになっている。尚、熱交換用筒部材5から突出した流入パイプ7と排出パイプ8は前記筒状ハウジング1と同様に仕切筒9の両端部近傍を貫通している。   A partition tube 9 is provided between the tubular housing 1 and the heat exchange tube member 5 so as to be substantially coaxial with them. The partition tube 9 forms a substantially cylindrical bypass passage 10 between the outer peripheral surface thereof and the cylindrical housing 1. Further, the inner peripheral side of the heat exchange cylinder member 5 is a first gas cooling passage 11, and a substantially cylindrical second gas cooling passage 12 is provided between the inner peripheral surface of the partition cylinder 9 and the heat exchange cylinder member 5. It is said that. The first and second gas cooling passages 11 and 12 and the bypass passage 10 are recirculation gas passages that enter from the gas inlet 2 and exit to the gas discharge port 3, but the first and second gas cooling passages 11, Only the gas passing through 12 performs heat exchange with the coolant flowing through the heat exchange cylinder member 5, and the gas passing through the bypass passage 10 does not exchange heat with the coolant. The inflow pipe 7 and the exhaust pipe 8 projecting from the heat exchange cylinder member 5 penetrate the vicinity of both end portions of the partition cylinder 9 in the same manner as the cylindrical housing 1.

熱交換用筒部材5のインナチューブ5aの内周面には、第1ガス冷却通路11での熱交換効率を向上させるためにフィン13がロー付けされており、同様にアウタチューブ5bには、第2ガス冷却通路12での熱交換効率を向上させるために蛇腹状の凹凸14が設けられている。   Fins 13 are brazed on the inner peripheral surface of the inner tube 5a of the heat exchange cylinder member 5 in order to improve the heat exchange efficiency in the first gas cooling passage 11, and similarly, the outer tube 5b has In order to improve the heat exchange efficiency in the second gas cooling passage 12, bellows-like irregularities 14 are provided.

また、筒状ハウジング1と仕切筒9の各パイプ7,8の貫通部は夫々軸心方向に部分的に隆起し、その隆起部分において、筒状ハウジング1、仕切筒9、アウタチューブ5bの三部材が重合状態で各パイプ7,8に結合されている。したがって、この実施形態では熱交換用筒部材5と仕切筒9はこの隆起部分での結合によって、筒状ハウジング1の内周壁に支持固定されている。   Further, the through portions of the pipes 7 and 8 of the cylindrical housing 1 and the partition tube 9 partially protrude in the axial direction, and the three portions of the cylindrical housing 1, the partition tube 9, and the outer tube 5 b are formed at the protruding portions. A member is connected to each pipe 7, 8 in a polymerized state. Therefore, in this embodiment, the heat exchanging cylinder member 5 and the partition cylinder 9 are supported and fixed to the inner peripheral wall of the cylindrical housing 1 by coupling at the raised portions.

一方、筒状ハウジング1内のガス流入口2の近傍には、第1,第2ガス冷却通路11,12とバイパス通路10のガス通過比率を調整するための流量調整弁15が設けられている。この流量調整弁15は、筒状ハウジング1の軸心と直交する軸部16a,16aで回動自在に支持された一対の弁板(弁体)16,16を備え、その弁板16,16の回動作動によって熱交換用筒部材5の内周部の開口面積を操作し得るようになっている。   On the other hand, a flow rate adjusting valve 15 for adjusting the gas passage ratio between the first and second gas cooling passages 11 and 12 and the bypass passage 10 is provided in the vicinity of the gas inlet 2 in the cylindrical housing 1. . The flow rate adjusting valve 15 includes a pair of valve plates (valve bodies) 16 and 16 that are rotatably supported by shaft portions 16 a and 16 a that are orthogonal to the axis of the cylindrical housing 1. The opening area of the inner peripheral portion of the heat exchanging cylinder member 5 can be manipulated by the pivoting operation.

具体的には、弁板16,16の各軸部16a,16aは、筒状ハウジング1の軸心部の近傍位置に平行に配置され、図2,図3に示すように筒状ハウジング1の外壁に固定設置されたアクチュエータ17によって回動操作されるようになっている。この実施形態のアクチュエータ17は、内燃機関の吸気負圧を利用してプランジャ18を進退作動させる負圧アクチュエータが用いられ、プランジャ18の進退作動がリンク機構19,19を介して各弁板16,16の回動作動に変換される。アクチュエータ17に供給される負圧は内燃機関の運転状態に応じて制御されるようになっている。ただし、アクチュエータ17は負圧アクチュエータに限らず、電動式、油圧式等であっても良い。   Specifically, the shaft portions 16a and 16a of the valve plates 16 and 16 are arranged in parallel to positions near the axial center portion of the cylindrical housing 1, and as shown in FIGS. The actuator 17 is rotated by an actuator 17 fixedly installed on the outer wall. As the actuator 17 of this embodiment, a negative pressure actuator that moves the plunger 18 forward / backward using the intake negative pressure of the internal combustion engine is used, and the forward / backward movement of the plunger 18 is performed via the link mechanisms 19, 19 through the valve plates 16, 19. 16 rotation operations are converted. The negative pressure supplied to the actuator 17 is controlled according to the operating state of the internal combustion engine. However, the actuator 17 is not limited to the negative pressure actuator, and may be an electric type, a hydraulic type, or the like.

また、仕切筒9のガス流入口2側の端部は、内側の熱交換用筒部材5に対してガス流入口2側にオフセットされており、前記各弁板16の先端側縁部はほぼこのオフセット領域において作動する。そして、各弁板16の先端側縁部は略円弧状に形成されており、弁板16が筒状ハウジング1の軸心と略平行な状態(図1中実線で示す状態。)から設定角度傾斜すると(図1中鎖線で示す状態。)、そこで弁体16の先端側縁部が仕切筒9の周壁に近接し、仕切筒9の内周部をほぼ閉塞する。尚、各弁板16の基端は軸部16aと平行な直線状に形成されており、両弁体16,16の傾斜角度の増大に伴なって基端部相互間が閉じられるようになっている。   Further, the end of the partition tube 9 on the gas inlet 2 side is offset to the gas inlet 2 side with respect to the inner heat exchanging cylinder member 5, and the end side edge of each valve plate 16 is substantially the same. It operates in this offset region. The leading edge of each valve plate 16 is formed in a substantially arc shape, and the valve plate 16 is set at a set angle from a state substantially parallel to the axis of the cylindrical housing 1 (a state indicated by a solid line in FIG. 1). When tilted (the state indicated by the chain line in FIG. 1), the leading edge of the valve body 16 approaches the peripheral wall of the partition tube 9 and substantially closes the inner periphery of the partition tube 9. In addition, the base end of each valve plate 16 is formed in a straight line parallel to the shaft portion 16a, and the base end portions are closed as the inclination angle of both valve bodies 16 and 16 increases. ing.

流量調整弁15は、内燃機関が高温状態で通常運転されるときには、一対の弁板16,16が筒状ハウジング1の軸線と略平行になる初期状態に維持されている。この状態では、ガス流入口2から入り込んだ還流ガスは弁板16,16に沿って真直ぐに進み、このとき第1,第2ガス冷却通路11,12と一部がバイパス通路10を通過してガス排出口3から排出される。このとき、還流ガスは筒状ハウジング1の中心側に位置されている第1,第2ガス冷却通路11,12を主に通過するため、熱交換用筒部材5の内外面を通して冷却液と効率良く熱交換される。   When the internal combustion engine is normally operated at a high temperature, the flow rate adjusting valve 15 is maintained in an initial state in which the pair of valve plates 16 and 16 are substantially parallel to the axis of the cylindrical housing 1. In this state, the recirculated gas entering from the gas inlet 2 advances straight along the valve plates 16 and 16, and at this time, the first and second gas cooling passages 11 and 12 partially pass through the bypass passage 10. It is discharged from the gas outlet 3. At this time, since the reflux gas mainly passes through the first and second gas cooling passages 11 and 12 located on the center side of the cylindrical housing 1, the cooling gas and the efficiency pass through the inner and outer surfaces of the heat exchange cylinder member 5. The heat is exchanged well.

一方、内燃機関の低温始動時等には、アクチュエータ17の制御によって流量調整弁15の弁板16,16が傾斜角を最大にするように回動操作され、これらの弁板16,16が仕切筒9の内周部をほぼ閉塞するようになる。この結果、第1,第2ガス冷却通路11,12には還流ガスが殆ど流れなくなり、ガス流入口2から筒状ハウジング1内に流入した還流ガスはほぼ全量がバイパス通路10を通過してガス排出口3から排出される。このとき、第2ガス冷却通路12内のガスはバイパス通路10と熱交換用筒部材5の間にあって略円筒状の断熱層として機能するため、バイパス通路10を通過する還流ガスは熱交換用筒部材5の冷却液によって熱を奪われることなくガス排出口3へと誘導される。したがって、この排気還流装置においては、還流ガスの温度が必要以上に低下することによる窒素酸化物やパティキュレート等の排出抑制性能の悪化を確実に防止することができる。   On the other hand, when the internal combustion engine is started at a low temperature, the valve plates 16 and 16 of the flow rate adjusting valve 15 are rotated so as to maximize the inclination angle under the control of the actuator 17, and the valve plates 16 and 16 are partitioned. The inner peripheral portion of the tube 9 is almost closed. As a result, almost no recirculation gas flows through the first and second gas cooling passages 11 and 12, and almost all of the recirculation gas flowing into the cylindrical housing 1 from the gas inlet 2 passes through the bypass passage 10 to form gas. It is discharged from the discharge port 3. At this time, since the gas in the second gas cooling passage 12 is between the bypass passage 10 and the heat exchange cylinder member 5 and functions as a substantially cylindrical heat insulating layer, the reflux gas passing through the bypass passage 10 is the heat exchange cylinder. It is guided to the gas outlet 3 without taking heat away by the coolant of the member 5. Therefore, in this exhaust gas recirculation apparatus, it is possible to reliably prevent the deterioration of the emission suppression performance of nitrogen oxides, particulates, and the like due to the temperature of the recirculation gas being lowered more than necessary.

また、流量調整弁15は、熱交換用筒部材5の内周部を上述のように全開状態と全閉状態に切換えるばかりでなく、機関の運転状態に応じてこれらの中間の任意の開弁状態に調整することができる。したがって、この排気還流装置は、第1,第2ガス冷却通路11,12とバイパス通路10を通過する還流ガスの比率が機関運転条件に応じて任意に調整されるため、還流ガスの温度を常に最適温度に維持することができる。よって、この装置によれば、窒素酸化物やパティキュレート等の排出抑制性能を機関運転中に常に高く維持することができる。   The flow rate adjusting valve 15 not only switches the inner peripheral portion of the heat exchanging cylinder member 5 between the fully open state and the fully closed state as described above, but also opens any intermediate valve according to the operating state of the engine. Can be adjusted to the state. Therefore, in this exhaust gas recirculation device, the ratio of the recirculation gas passing through the first and second gas cooling passages 11 and 12 and the bypass passage 10 is arbitrarily adjusted according to the engine operating conditions. The optimum temperature can be maintained. Therefore, according to this device, it is possible to always maintain high emission suppressing performance such as nitrogen oxides and particulates during engine operation.

以上のように、この排気還流装置は、内燃機関の運転条件に応じた流量調整弁15の操作によって第1,第2ガス冷却通路11,12とバイパス通路10の還流ガスの通過比率を任意に操作することができるが、第1,第2ガス冷却通路11,12、冷却液の流通路6、バイパス通路10が複数のパイプ状部材を同軸に組付けて構成されているため、筒状ハウジング1の外径を小さくし、装置全体をコンパクト化できるという利点がある。したがって、この排気還流装置を採用した場合には、車載レイアウト上有利となる。   As described above, this exhaust gas recirculation device can arbitrarily set the flow rate of the recirculation gas between the first and second gas cooling passages 11 and 12 and the bypass passage 10 by operating the flow rate adjusting valve 15 according to the operating condition of the internal combustion engine. Although it can be operated, the first and second gas cooling passages 11 and 12, the coolant flow passage 6 and the bypass passage 10 are configured by coaxially assembling a plurality of pipe-like members, so that the cylindrical housing There is an advantage that the outer diameter of 1 can be reduced and the entire apparatus can be made compact. Therefore, when this exhaust gas recirculation device is adopted, it is advantageous in terms of in-vehicle layout.

さらに、この実施形態においては、流量調整弁15を筒状ハウジング1内のガス流入口2の近傍に配置したが、筒状ハウジング1内のガス排出口3の近傍に配置することも可能である。ただし、この実施形態のように流量調整弁15をガス流入口2側に配置するようにした場合、バイパス通路10を通過する還流ガスの比率を増大させるときにバイパス通路10側への円滑なガスの流れを作り易いという利点がある。   Furthermore, in this embodiment, the flow rate adjusting valve 15 is arranged in the vicinity of the gas inlet 2 in the cylindrical housing 1, but it can also be arranged in the vicinity of the gas outlet 3 in the cylindrical housing 1. . However, when the flow rate adjusting valve 15 is arranged on the gas inlet 2 side as in this embodiment, smooth gas to the bypass passage 10 side is increased when the ratio of the reflux gas passing through the bypass passage 10 is increased. There is an advantage that it is easy to make the flow.

特に、この実施形態の流量調整弁15は、一対の弁板16,16が筒状ハウジング1の軸心部から外開き状に開いて仕切筒9の内周側の通過ガス流量を減少させるため、このとき弁板16,16自体が還流ガスを最外周側のバイパス通路10に円滑に誘導するガイド壁として機能する。一方、仕切筒9の内周側の通過流量を増大させるときには、弁板16,16が筒状ハウジング1の軸心と略平行になるように回動操作されるため、バイパス通路10方向へのガスの流れを少なくすることができる。   In particular, in the flow rate adjusting valve 15 of this embodiment, the pair of valve plates 16, 16 open outwardly from the axial center portion of the cylindrical housing 1 to reduce the passing gas flow rate on the inner peripheral side of the partition tube 9. At this time, the valve plates 16 and 16 themselves function as guide walls for smoothly guiding the reflux gas to the bypass passage 10 on the outermost peripheral side. On the other hand, when the passage flow rate on the inner peripheral side of the partition tube 9 is increased, the valve plates 16 and 16 are rotated so as to be substantially parallel to the axial center of the cylindrical housing 1. Gas flow can be reduced.

尚、上記の実施形態においては、筒状ハウジング1のガス流入口2側に一対の弁板16,16を配置したが、一枚、或は、三枚以上の弁板を同様に回動操作可能に設けることも可能である。   In the above embodiment, the pair of valve plates 16 and 16 are arranged on the gas inlet 2 side of the cylindrical housing 1, but one or three or more valve plates are similarly rotated. It is also possible to provide it.

つづいて、図4,図5に示す第2の実施形態について説明する。この実施形態の排気還流装置は、基本的な構成は第1の実施形態とほぼ同様であるが、流入パイプ7の取付方向と、ガス流入口2の近傍に配置する流量調整弁115と、その周辺部の構造が若干異なっている。以下では、さらに後に説明する第3の実施形態も含め、第1の実施形態と同一部分に同一符号を付し、重複する説明を省略するものとする。   Next, a second embodiment shown in FIGS. 4 and 5 will be described. The exhaust gas recirculation apparatus of this embodiment is basically the same as that of the first embodiment except that the inflow pipe 7 is attached in the direction of flow, the flow rate adjusting valve 115 disposed near the gas inlet 2, The peripheral structure is slightly different. In the following, the same reference numerals are given to the same parts as those in the first embodiment, including the third embodiment described later, and duplicate explanations are omitted.

この装置では、仕切筒9のガス流入口2側の端部に、同筒9の軸心部から外開きに傾斜する円錐状のガイド壁20が一体に取付けられている。このガイド壁20は軸心部から仕切筒9の外周面に向かって広がっているため、還流ガスをバイパス通路10方向に円滑に誘導するように機能する。また、ガイド壁20には略扇状の複数の窓21…が円周方向に略等間隔に形成され、還流ガスは、この窓21…を通して第1,第2ガス冷却通路11,12内に導入されるようになっている。   In this apparatus, a conical guide wall 20 that is inclined outwardly from the axial center of the cylinder 9 is integrally attached to the end of the partition cylinder 9 on the gas inlet 2 side. Since the guide wall 20 extends from the axial center toward the outer peripheral surface of the partition tube 9, the guide wall 20 functions to smoothly guide the reflux gas toward the bypass passage 10. In addition, a plurality of substantially fan-shaped windows 21 are formed in the guide wall 20 at substantially equal intervals in the circumferential direction, and the reflux gas is introduced into the first and second gas cooling passages 11 and 12 through the windows 21. It has come to be.

前記ガイド壁20の内側には、前記窓21…を開閉調整する略円錐形状の弁体22が配置されている。この弁体22はガイド壁20の窓21…に対応する窓23…を有し、両窓21,23の位置が合致したときにガイド壁20の窓21…が全開になり、その状態から両者がずれると窓21…が次第に閉じられるようになっている。弁体22は、ガイド壁20の頂部を貫通する操作ロッド24に連結支持され、この操作ロッド24が図外のアクチュエータによって回動操作されるようになっている。この実施形態では、ガイド壁20の窓21…と弁体22によって流量調整弁115が構成されている。   Inside the guide wall 20, a substantially conical valve body 22 for opening and closing the windows 21 is disposed. This valve body 22 has windows 23 corresponding to the windows 21 of the guide wall 20. When the positions of the windows 21 and 23 coincide, the windows 21 of the guide wall 20 are fully opened. When they are shifted, the windows 21 are gradually closed. The valve body 22 is connected and supported by an operation rod 24 that penetrates the top of the guide wall 20, and the operation rod 24 is rotated by an actuator (not shown). In this embodiment, a flow rate adjusting valve 115 is configured by the windows 21 of the guide wall 20 and the valve body 22.

この実施形態の排気還流装置は、円錐状のガイド壁20によって還流ガスをバイパス通路側10に常時円滑かつ確実に誘導することができる。また、弁体22は、ガイド壁20の窓21…を言わばスライド状態で開閉するため、還流ガスの全量をバイパス通路10側に流そうとするときに仕切筒9の内側方向への還流ガスの漏れをより少なくすることができる。さらに、弁体22が窓21…をスライド開閉することから、弁体22の作動に伴なうガタ付き等も少なくできるという利点がある。   In the exhaust gas recirculation apparatus of this embodiment, the recirculation gas can be always guided smoothly and reliably to the bypass passage side 10 by the conical guide wall 20. Further, since the valve body 22 opens and closes in a sliding state, so that the window 21 of the guide wall 20 is opened, when the entire amount of the reflux gas is to flow to the bypass passage 10 side, the reflux gas flows toward the inside of the partition tube 9. Leakage can be reduced. Further, since the valve body 22 slides open / closes the windows 21..., There is an advantage that the backlash caused by the operation of the valve body 22 can be reduced.

また、図6は、本発明の第3の実施形態を示すものであり、この実施形態の排気還流装置は、流入パイプ7の取付方向と、熱交換用筒部材5内にフィン13を配設する代りにインナチューブ11の両側を除く部位に蛇腹状のフィンを形成した点と、流量調整弁215の構成と、が第1の実施形態のものと異なっている。   FIG. 6 shows a third embodiment of the present invention. In the exhaust gas recirculation apparatus of this embodiment, fins 13 are arranged in the mounting direction of the inflow pipe 7 and in the heat exchange cylinder member 5. Instead of this, the point that bellows-like fins are formed in the portions excluding both sides of the inner tube 11 and the configuration of the flow rate adjusting valve 215 are different from those of the first embodiment.

即ち、この実施形態の流量調整弁215は、弁体30がバイメタル等の熱感応型の形状可変部材(形状記憶部材)によって形成されており、弁体30の周囲にあるガス温度に応じて弁体30自体が形状変化するようになっている。弁体30は第1の実施形態と同様に一対設けられ、板状の各弁体30の基部が、筒状ハウジング1に取付けられたフレーム部材31に軸心部近くで支持されている。各弁体30は、先端側縁部が円弧状に形成され、周囲のガス温度が低いときには、筒状ハウジング1の軸心に略平行になるようにストレート形状となり(図中、破線で示す状態。)、この状態から周囲のガス温度が上昇すると、先端側が外開きに湾曲変形して仕切筒9の内周部を閉塞する(図中、実線で示す状態。)。   That is, in the flow rate adjusting valve 215 of this embodiment, the valve body 30 is formed by a heat-sensitive shape variable member (shape memory member) such as a bimetal, and the valve body 30 is controlled according to the gas temperature around the valve body 30. The body 30 itself changes its shape. A pair of valve bodies 30 are provided in the same manner as in the first embodiment, and a base portion of each plate-like valve body 30 is supported by a frame member 31 attached to the cylindrical housing 1 near an axial center portion. Each valve body 30 is formed in an arc shape at the tip side edge portion, and has a straight shape so as to be substantially parallel to the axial center of the cylindrical housing 1 when the surrounding gas temperature is low (indicated by a broken line in the figure). .) When the ambient gas temperature rises from this state, the tip end side is curved and deformed to open outward, and the inner peripheral portion of the partition tube 9 is closed (indicated by the solid line in the figure).

この実施形態の装置は、基本的には第1の実施形態と同様の作用効果を得ることができるが、流量調整弁215の弁体30自体が温度に応じて形状変化するものであり、弁体30を作動させるための特別なアクチュエータを他に必要としないため、流量調整弁215を小型・軽量化することができるうえ、製造コストを低減できるというさらなる利点がある。   The device of this embodiment can basically obtain the same effects as those of the first embodiment, but the shape of the valve body 30 itself of the flow regulating valve 215 changes according to the temperature. Since no other special actuator for operating the body 30 is required, the flow rate adjusting valve 215 can be reduced in size and weight, and the manufacturing cost can be reduced.

尚、これまで説明したものは、略円筒状の筒状ハウジングを有する排気還流装置であったが、筒状ハウジングの形状は略円筒状に限るものでなく、略四角形状や多角形状であっても良い。この場合、熱交換筒部材等は筒状ハウジングの形状に従った任意形状であって良いのは言うまでもない。   Note that what has been described so far is the exhaust gas recirculation apparatus having a substantially cylindrical tubular housing, but the shape of the tubular housing is not limited to a substantially cylindrical shape, and is substantially rectangular or polygonal. Also good. In this case, it goes without saying that the heat exchange cylinder member or the like may have an arbitrary shape according to the shape of the cylindrical housing.

本発明の第1の実施形態を示す排気還流装置の縦断面図。1 is a longitudinal sectional view of an exhaust gas recirculation device showing a first embodiment of the present invention. 同実施形態を示す図1のA矢視図。The A arrow directional view of FIG. 1 which shows the same embodiment. 同実施形態を示す排気還流装置の側面図。The side view of the exhaust gas recirculation apparatus which shows the embodiment. 本発明の第2の実施形態を示す排気還流装置の縦断面図。The longitudinal cross-sectional view of the exhaust gas recirculation apparatus which shows the 2nd Embodiment of this invention. 同実施形態を示す図4のB矢視図。The B arrow directional view of FIG. 4 which shows the same embodiment. 本発明の第3の実施形態を示す排気還流装置の縦断面図。The longitudinal cross-sectional view of the exhaust gas recirculation apparatus which shows the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…筒状ハウジング
2…ガス流入口
3…ガス排出口
5…熱交換用筒部材
6…流通路
9…仕切筒
10…バイパス通路
11…第1ガス冷却通路
12…第2ガス冷却通路
15,115,215…流量調整弁
16…弁板(弁体)
16a…軸部
20…ガイド壁
21…窓
22,30…弁体
DESCRIPTION OF SYMBOLS 1 ... Cylindrical housing 2 ... Gas inflow port 3 ... Gas discharge port 5 ... Tube member 6 for heat exchange ... Flow channel 9 ... Partition tube 10 ... Bypass passage 11 ... First gas cooling passage 12 ... Second gas cooling passage 15, 115, 215 ... Flow rate adjusting valve 16 ... Valve plate (valve element)
16a ... Shaft 20 ... Guide wall 21 ... Window 22, 30 ... Valve

Claims (3)

ガス流入口とガス排出口を有する筒状ハウジングと、
周壁に冷却液の流通路を形成し、前記筒状ハウジングの内側に配置されて内周側に第1ガス冷却通路を形成する熱交換用筒部材と、
前記筒状ハウジングと熱交換用筒部材の間に介装され、内周面と熱交換用筒部材の間に第2ガス冷却通路を形成すると共に、外周面と筒状ハウジングの間にバイパス通路を形成する仕切筒と、
筒状ハウジング内の前記ガス流入口側とガス排出口側のいずれか一方側に配置され、前記第1,第2ガス冷却通路とバイパス通路のガス通過比率を調整する流量調整弁と、
を備えたことを特徴とする内燃機関の排気還流装置。
A cylindrical housing having a gas inlet and a gas outlet;
Forming a coolant flow passage in the peripheral wall, and being disposed inside the cylindrical housing, and forming a first gas cooling passage on the inner peripheral side;
The second gas cooling passage is interposed between the inner peripheral surface and the heat exchanging cylinder member and interposed between the outer peripheral surface and the cylindrical housing. A partition tube forming
A flow rate adjusting valve that is disposed on either the gas inlet side or the gas outlet side in the cylindrical housing and adjusts the gas passage ratio of the first and second gas cooling passages and the bypass passage;
An exhaust gas recirculation device for an internal combustion engine.
前記流量調整弁は、ガス流入口側に配置されると共に、筒状ハウジングの軸心と直交する軸部で回動自在に支持された一対の弁板を備え、
前記第1,第2ガス冷却通路のガス通過比率を増大させるときに、前記一対の弁板を筒状ハウジングの軸心と略平行になる方向に回動させ、ガス通過比率を減少させるときに、一対の弁板を仕切筒に向かって外開き方向に傾斜するように回動させることを特徴とする請求項1に記載の内燃機関の排気還流装置。
The flow rate adjusting valve includes a pair of valve plates disposed on the gas inlet side and rotatably supported by a shaft portion orthogonal to the axial center of the cylindrical housing,
When increasing the gas passage ratio of the first and second gas cooling passages, when rotating the pair of valve plates in a direction substantially parallel to the axial center of the cylindrical housing to decrease the gas passage ratio 2. The exhaust gas recirculation device for an internal combustion engine according to claim 1, wherein the pair of valve plates are rotated so as to be inclined outwardly toward the partition tube.
筒状ハウジング内のガス流入口側に、軸心部から仕切筒に向かって外開きに傾斜するガイド壁を設け、そのガイド壁に、ガス流入口側と第1,第2ガス冷却通路側を連通する窓を形成すると共に、その窓を開閉調整する弁体を設け、その窓と弁体によって前記流量調整弁を構成したことを特徴とする請求項1に記載の内燃機関の排気還流装置。
A guide wall is provided on the gas inlet side in the cylindrical housing so as to incline outwardly from the axial center toward the partition tube, and the gas inlet side and the first and second gas cooling passage sides are provided on the guide wall. 2. The exhaust gas recirculation device for an internal combustion engine according to claim 1, wherein a communicating valve is formed and a valve body for opening and closing the window is provided, and the flow rate adjusting valve is configured by the window and the valve body.
JP2004009960A 2004-01-19 2004-01-19 Exhaust gas recirculation device for internal combustion engine Expired - Fee Related JP4323333B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004009960A JP4323333B2 (en) 2004-01-19 2004-01-19 Exhaust gas recirculation device for internal combustion engine
EP05000942A EP1555421B1 (en) 2004-01-19 2005-01-18 Exhaust gas recirculation device of internal combustion engine
CNB2005100017982A CN100439694C (en) 2004-01-19 2005-01-19 Exhaust gas recirculation device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009960A JP4323333B2 (en) 2004-01-19 2004-01-19 Exhaust gas recirculation device for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2005201578A JP2005201578A (en) 2005-07-28
JP2005201578A5 JP2005201578A5 (en) 2007-03-08
JP4323333B2 true JP4323333B2 (en) 2009-09-02

Family

ID=34616928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009960A Expired - Fee Related JP4323333B2 (en) 2004-01-19 2004-01-19 Exhaust gas recirculation device for internal combustion engine

Country Status (3)

Country Link
EP (1) EP1555421B1 (en)
JP (1) JP4323333B2 (en)
CN (1) CN100439694C (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431579B2 (en) * 2004-09-28 2010-03-17 株式会社ティラド EGR cooler
CN100510607C (en) 2004-09-28 2009-07-08 株式会社T.Rad Heat exchanger
US7198037B2 (en) 2004-12-14 2007-04-03 Honeywell International, Inc. Bypass for exhaust gas cooler
DE102005012842A1 (en) * 2005-03-19 2006-09-21 Daimlerchrysler Ag Air intake device for an internal combustion engine with deployable bypass valve device
FR2891591A1 (en) * 2005-09-30 2007-04-06 Renault Sas Recirculated gas distribution device for e.g. exhaust gas recirculation gas cooler, has rotating cylindrical part provided between two planes for permitting circulation of gas in one direction and in reverse direction
ES2322728B1 (en) * 2005-11-22 2010-04-23 Dayco Ensa, S.L. THREE-STEP HEAT EXCHANGER FOR AN "EGR" SYSTEM.
DE112006003134T5 (en) 2005-12-02 2008-10-23 Borgwarner Inc., Auburn Hills Combination of EGR valve and radiator bypass
US7654078B2 (en) 2006-05-08 2010-02-02 Honeywell International, Inc. Exhaust gas particle collector
DE102006023855A1 (en) * 2006-05-19 2007-11-22 Mahle International Gmbh Exhaust gas recirculation device
FR2902151B1 (en) * 2006-06-07 2008-08-08 Peugeot Citroen Automobiles Sa INTERNAL COMBUSTION ENGINE HAVING AN EXHAUST GAS RECIRCULATION CIRCUIT
GB2451862A (en) * 2007-08-15 2009-02-18 Senior Uk Ltd High gas inlet temperature EGR system
DE102008005591A1 (en) 2008-01-22 2009-07-23 Bayerische Motoren Werke Aktiengesellschaft Valve device for an exhaust gas recirculation device
ITMI20080450A1 (en) * 2008-03-17 2009-09-18 Dellorto Spa EGR VALVE FOR THE RECIRCULATION OF EXHAUST GAS TO THE INTAKE MANIFOLD OF INTERNAL COMBUSTION ENGINES.
US7581533B1 (en) * 2008-10-09 2009-09-01 Gm Global Technology Operations, Inc. Three mode cooler for exhaust gas recirculation
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
DE102011100706A1 (en) * 2011-05-06 2012-11-08 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Adjustable heat exchanger for a motor vehicle air conditioning system
US9097214B2 (en) * 2011-09-01 2015-08-04 GM Global Technology Operations LLC Exhaust gas recirculation system having active material actuated by-pass
JP5861865B2 (en) * 2011-10-17 2016-02-16 大豊工業株式会社 EGR cooler
DE102012107908B4 (en) 2012-08-28 2018-11-15 Tenneco Gmbh Exhaust gas heat exchanger
CN103306787B (en) * 2013-06-17 2016-04-13 无锡创晨科技有限公司 The sliding barrel type smoke door switch unit of hot-water heating heater exhaust gas
KR20150050921A (en) * 2013-11-01 2015-05-11 현대중공업 주식회사 Smoke yube type boiler for waste heat
GB2524985B (en) * 2014-04-08 2020-07-15 Gt Emissions Systems Ltd Dual valve actuator
GB2532177A (en) * 2014-06-04 2016-05-18 Norgren Ltd C A Exhaust gas control valve for an internal combustion engine
DE102014222158A1 (en) * 2014-10-30 2016-05-04 Mahle International Gmbh Exhaust gas heat exchanger
CN113028858A (en) * 2021-03-23 2021-06-25 中国航发沈阳发动机研究所 Self-adaptive heat exchanger based on memory alloy
CN113983852A (en) * 2021-11-04 2022-01-28 浙江银轮机械股份有限公司 Heat exchanger shell structure and heat exchanger
CN113893953B (en) * 2021-12-08 2022-02-25 苏州好博医疗器械股份有限公司 Smoke treatment device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617726A (en) 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
US5740785A (en) * 1997-06-09 1998-04-21 Southwest Research Institute Two way-high pressure loop, exhaust gas recirculation valve
JP4009000B2 (en) * 1998-02-24 2007-11-14 株式会社マーレ フィルターシステムズ EGR gas cooler for internal combustion engine
JP2000282960A (en) * 1999-03-31 2000-10-10 Nissan Diesel Motor Co Ltd Egr-cooling device
JP2001073883A (en) * 1999-09-01 2001-03-21 Mitsubishi Motors Corp Egr device
KR20020023420A (en) * 2000-06-20 2002-03-28 다니구찌 이찌로오, 기타오카 다카시 Water-cooled exhaust gas recirculating device
EP1467082B1 (en) * 2002-01-16 2016-03-30 Mitsubishi Denki Kabushiki Kaisha Exhaust gas recirculating device
DE10203003B4 (en) * 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Exhaust gas heat exchanger
JP2003328864A (en) 2002-05-09 2003-11-19 Toyota Motor Corp Exhaust gas recirculation device and heat exchanger used for the same as well as internal combustion engine
DE50311520D1 (en) * 2002-05-15 2009-06-25 Behr Gmbh & Co Kg SWITCHABLE EXHAUST METHOD EXCHANGER

Also Published As

Publication number Publication date
EP1555421A3 (en) 2011-08-17
EP1555421A2 (en) 2005-07-20
CN1654807A (en) 2005-08-17
EP1555421B1 (en) 2013-03-13
CN100439694C (en) 2008-12-03
JP2005201578A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4323333B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4065239B2 (en) Exhaust gas recirculation device
RU2580996C2 (en) Combined heat exchanger for cab heater and exhaust gas recycling system
JP2007009724A (en) Heat exchange device for exhaust gas
US7198037B2 (en) Bypass for exhaust gas cooler
CA2474065C (en) Exhaust gas heat exchanger
US8695332B2 (en) Internal bypass exhaust gas cooler
US8733327B2 (en) Charge air duct for an internal combustion engine
JP2001027157A (en) Strut for egr cooler
MX2013000761A (en) Exhaust heat recovery system with bypass.
KR20020031052A (en) Vehicular cooling system
JP2011089522A (en) Valve device with operating means between two outlets
JP5039065B2 (en) Heat transfer device
KR20150121196A (en) Heat recovery device with improved lightweight flow coupling chamber and insertable valve
JP4732157B2 (en) Switching valve structure
JP4444319B2 (en) Exhaust gas recirculation device
JP2008215336A (en) Exhaust gas recirculation apparatus
JP4248095B2 (en) EGR cooler
JP5439312B2 (en) Waste heat recovery device
KR101619532B1 (en) An engine exhaust steam withdrawal apparatus of vehicle
JP5673229B2 (en) Exhaust heat exchanger
JP2002180915A (en) Egr cooler
US10731608B2 (en) Exhaust heat recovery device
JP4941364B2 (en) Exhaust gas recirculation device for internal combustion engine
KR20190072416A (en) Device for heat transfer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees