JP2010229847A - Exhaust heat recovery equipment - Google Patents

Exhaust heat recovery equipment Download PDF

Info

Publication number
JP2010229847A
JP2010229847A JP2009076486A JP2009076486A JP2010229847A JP 2010229847 A JP2010229847 A JP 2010229847A JP 2009076486 A JP2009076486 A JP 2009076486A JP 2009076486 A JP2009076486 A JP 2009076486A JP 2010229847 A JP2010229847 A JP 2010229847A
Authority
JP
Japan
Prior art keywords
heat recovery
cooling water
recovery chamber
exhaust gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009076486A
Other languages
Japanese (ja)
Inventor
Toru Hisanaga
徹 久永
Tomoyuki Uchida
智幸 内田
Tamaki Kuniyoshi
珠希 國吉
Akihiro Kawamata
章弘 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutaka Giken Co Ltd
Original Assignee
Yutaka Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutaka Giken Co Ltd filed Critical Yutaka Giken Co Ltd
Priority to JP2009076486A priority Critical patent/JP2010229847A/en
Publication of JP2010229847A publication Critical patent/JP2010229847A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide exhaust heat recovery equipment reduced in weight and size. <P>SOLUTION: The exhaust heat recovery equipment 10 includes a heat recovery chamber 15 for warming cooling water by the heat of exhaust gas, a bypass line 16 for bypassing the heat recovery chamber 15 to carry the exhaust gas, and a temperature sensitive valve 17 for carrying the exhaust gas into the bypass line 16 when the temperature of the cooling water is high and for carrying the exhaust gas into the heat recovery chamber 15 when the temperature of the cooling water is low. The heat recovery chamber 15 is arranged over the bypass line 16. As a result, the heat recovery chamber 15 facing a road surface is covered with the bypass line 16. Thus, the heat recovery chamber 15 is prevented from being grounded on the road surface. This eliminates the need to provide a cover separately for reducing damage during grounding, reducing the weight of the exhaust heat recovery equipment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気ガスの熱で冷却水を温める排熱回収器に関する。   The present invention relates to an exhaust heat recovery device that warms cooling water with the heat of exhaust gas.

車両の駆動源が内燃機関である場合には、この内燃機関から排気ガスが発生する。この排気ガスが保有する熱との熱交換により冷却水を温め、この温められた冷却水の熱により車室内を温めることが行われている(例えば、特許文献1(図6)参照。)。   When the driving source of the vehicle is an internal combustion engine, exhaust gas is generated from the internal combustion engine. The cooling water is warmed by heat exchange with the heat held by the exhaust gas, and the vehicle interior is warmed by the heat of the warmed cooling water (see, for example, Patent Document 1 (FIG. 6)).

特許文献1を次図に基づいて説明する。
図10に示すように、排熱回収器100は、排気ガスが通過する排気通路101の周りを、冷却水が通過する伝熱媒体通路102で囲う構造とされている。排気通路101を通過する排気ガスの熱が、熱交換パイプ103を介して伝熱媒体通路102内の冷却水に伝わり、冷却水が温められる。
Patent document 1 is demonstrated based on the following figure.
As shown in FIG. 10, the exhaust heat recovery device 100 has a structure in which an exhaust passage 101 through which exhaust gas passes is surrounded by a heat transfer medium passage 102 through which cooling water passes. The heat of the exhaust gas passing through the exhaust passage 101 is transmitted to the cooling water in the heat transfer medium passage 102 via the heat exchange pipe 103, and the cooling water is warmed.

ところで、車両の走行中に想像線で示す路面104の段差105に車両が乗り上げることで、排熱回収器100が路面104に接地することがある。また、車両が走行することで、路面104から排熱回収器100に小石が飛ばされる。伝熱媒体通路102には、液体である冷却水が流されている。このため、排熱回収器100を実際に使用する場合は、接地によるダメージ軽減及び小石からの保護を目的として、伝熱媒体通路102の外周面にカバーを付ける等の手当をする必要がある。カバーの重量の分、排熱回収器が重くなる。   By the way, the exhaust heat recovery device 100 may come into contact with the road surface 104 when the vehicle rides on the step 105 of the road surface 104 indicated by an imaginary line while the vehicle is traveling. Further, when the vehicle travels, pebbles are blown from the road surface 104 to the exhaust heat recovery device 100. Cooling water, which is a liquid, flows through the heat transfer medium passage 102. For this reason, when the exhaust heat recovery device 100 is actually used, it is necessary to take care such as attaching a cover to the outer peripheral surface of the heat transfer medium passage 102 for the purpose of reducing damage due to ground contact and protecting it from pebbles. The exhaust heat recovery unit becomes heavier by the weight of the cover.

軽量且つコンパクトな排熱回収器の提供が望まれる。   It is desirable to provide a lightweight and compact exhaust heat recovery device.

再表2006−090725公報Table 2006-090725

本発明は、軽量且つコンパクトな排熱回収器の提供を課題とする。   An object of the present invention is to provide a lightweight and compact exhaust heat recovery device.

請求項1に係る発明は、排気ガスが通されこの排気ガスの熱により冷却水が温められる熱回収室と、この熱回収室を迂回して前記排気ガスを流す迂回路と、この迂回路の入口に配置され前記冷却水の温度が所定の温度よりも高いときに前記排気ガスを前記迂回路へ流し前記冷却水の温度が所定の温度以下のときに前記排気ガスを前記熱回収室へ流す感温式バルブとを備える排熱回収器において、
前記迂回路の上に前記熱回収室が配置されることを特徴とする。
The invention according to claim 1 is a heat recovery chamber in which exhaust gas is passed and cooling water is warmed by the heat of the exhaust gas, a detour that flows the exhaust gas around the heat recovery chamber, The exhaust gas is arranged at the inlet and flows into the bypass when the temperature of the cooling water is higher than a predetermined temperature, and flows into the heat recovery chamber when the temperature of the cooling water is equal to or lower than the predetermined temperature In the exhaust heat recovery device equipped with a temperature sensitive valve,
The heat recovery chamber is disposed on the bypass.

請求項2に係る発明は、感温式バルブは、排気ガスの流路を切替える流路切替ダンパと、この流路切替ダンパを回動可能に支持する回動軸とから構成され、絞り形状に構成された排気ガス入口の絞り面に、流路切替ダンパの先端が接触することにより、迂回路又は熱回収室を閉じることを特徴とする。   According to a second aspect of the present invention, the temperature-sensitive valve includes a flow path switching damper that switches the flow path of the exhaust gas, and a rotation shaft that rotatably supports the flow path switching damper. The bypass path or the heat recovery chamber is closed when the leading end of the flow path switching damper comes into contact with the throttle surface of the configured exhaust gas inlet.

請求項3に係る発明は、熱回収室は、冷却水を通過させるための複数の冷却水路と、排気ガスが通過するガス流路とが断面視で積層され、冷却水が所定の順路に沿って流されることを特徴とする。   In the invention according to claim 3, in the heat recovery chamber, a plurality of cooling water passages for allowing the cooling water to pass therethrough and a gas flow passage through which the exhaust gas passes are stacked in a sectional view, and the cooling water follows a predetermined forward path. It is characterized by being washed away.

請求項4に係る発明は、熱回収室は、正面断面が横長の矩形とされ、このような熱回収室に複数のガス流路が積層されるように配置され、これらのガス流路が同じ形状であることを特徴とする。   In the invention according to claim 4, the heat recovery chamber has a rectangular shape with a front cross-section and is arranged so that a plurality of gas flow paths are stacked in such a heat recovery chamber, and these gas flow paths are the same. It is a shape.

請求項5に係る発明は、熱回収室は、断面視で蒲鉾形、半円形、矩形、三角形又は五角形のいずれかの形状に形成され、迂回路は、断面視で蒲鉾形、半円形、矩形、三角形又は五角形のいずれかの形状に形成されていることを特徴とする。   In the invention according to claim 5, the heat recovery chamber is formed in any one of a bowl shape, a semicircle, a rectangle, a triangle, and a pentagon in a sectional view, and the detour is a bowl, a semicircle, a rectangle in a sectional view. It is formed in the shape of either a triangle or a pentagon.

請求項1に係る発明は、路面に対して、熱回収室が迂回路で覆われる。これにより、路面に対して熱回収室が接地することを防ぐことができる。このため、接地時のダメージを軽減するために別途カバー等を付ける必要がない。このため、排熱回収器を軽量且つコンパクトなものとすることができる。
また、小石が熱回収室に当たることを防ぐことにより、排熱回収器の長寿命化を図ることができる。
In the invention according to claim 1, the heat recovery chamber is covered with a detour on the road surface. Thereby, it can prevent that a heat recovery chamber grounds with respect to a road surface. For this reason, it is not necessary to attach a separate cover or the like in order to reduce damage at the time of grounding. For this reason, a waste heat recovery device can be made lightweight and compact.
Further, by preventing the pebbles from hitting the heat recovery chamber, the life of the exhaust heat recovery device can be extended.

請求項2に係る発明は、絞り形状に構成された排気ガス入口の絞り面に、流路切替ダンパの先端が接触する。絞り面に接触させるため、排気ガスの流れに対してより平行に近い角度で流路切替ダンパを配置することができる。これにより、排気ガスを円滑に導入することができ、効率よく排気ガスを流すことができる。   In the invention according to claim 2, the tip of the flow path switching damper contacts the throttle surface of the exhaust gas inlet configured in the throttle shape. In order to make contact with the throttle surface, the flow path switching damper can be disposed at an angle closer to parallel to the flow of the exhaust gas. Thereby, exhaust gas can be introduced smoothly and exhaust gas can be efficiently flowed.

請求項3に係る発明は、冷却水が所定の順路に沿って流される。即ち、冷却水は、向流及び並流を繰り返しながら流される。これにより、熱回収室内全体に冷却水を流すことができる。熱回収室内の全体を冷却水が流れるため、通水抵抗が抑えられ、熱回収室内へ冷却水を送るためのポンプ等を小型化できる。これにより、排熱回収路全体としても小型化を図ることができる。   In the invention according to claim 3, the cooling water is caused to flow along a predetermined route. That is, the cooling water is made to flow while repeating countercurrent and parallel flow. Thereby, cooling water can be poured through the whole heat recovery chamber. Since cooling water flows through the entire heat recovery chamber, the resistance to water flow is suppressed, and a pump or the like for sending the cooling water into the heat recovery chamber can be downsized. Thereby, size reduction can be achieved also as the whole waste heat recovery path.

加えて、冷却水が所定の順路に沿って流されることにより、冷却水は、熱回収室に導入されてから排出されるまで所定の時間熱回収室内を流される。これにより、冷却水に対して排気ガスの熱を十分に効率よく伝えることができる。   In addition, by flowing the cooling water along a predetermined route, the cooling water is allowed to flow through the heat recovery chamber for a predetermined time from being introduced into the heat recovery chamber to being discharged. As a result, the heat of the exhaust gas can be sufficiently efficiently transmitted to the cooling water.

請求項4に係る発明は、複数のガス流路が同じ形状である。ガス流路は同じ形状であるので、同じ部品を用いることができる。同じ部品を用いてガス流路を形成することにより、ガス流路の製造コストを下げることができる。   In the invention according to claim 4, the plurality of gas flow paths have the same shape. Since the gas flow paths have the same shape, the same parts can be used. By forming the gas flow path using the same components, the manufacturing cost of the gas flow path can be reduced.

請求項5に係る発明は、熱回収室及び迂回路は、断面視で蒲鉾形、半円形、矩形、五角形又は三角形のいずれかの形状に形成される。排熱回収器が配置される場所に合わせて、これらの形状を組み合わせることができる。配置場所に合わせた形状とすることにより、排熱回収器のコンパクト化を図ることができる。   In the invention according to claim 5, the heat recovery chamber and the bypass are formed in any one of a bowl shape, a semi-circle shape, a rectangle shape, a pentagon shape, and a triangle shape in a sectional view. These shapes can be combined according to the place where the exhaust heat recovery unit is arranged. The exhaust heat recovery device can be made compact by adopting a shape that matches the arrangement location.

本発明に係る排熱回収器の断面図である。It is sectional drawing of the waste heat recovery device which concerns on this invention. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. 図1の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 in FIG. 1. 本発明に係る排熱回収器の側面図である。It is a side view of the waste heat recovery device concerning the present invention. 図4の5−5線断面図である。FIG. 5 is a sectional view taken along line 5-5 of FIG. 本発明に係る感温式バルブについて説明する図である。It is a figure explaining the temperature sensitive type valve concerning the present invention. 第2実施例を説明する図である。It is a figure explaining 2nd Example. 第3実施例を説明する図である。It is a figure explaining 3rd Example. 第4実施例を説明する図である。It is a figure explaining the 4th example. 従来の技術の基本構成について説明する図である。It is a figure explaining the basic composition of the conventional technology.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.

先ず、本発明の実施例1を図面に基づいて説明する。
図1に示されるように、排熱回収器10は、筒状の本体11と、この本体11の上流側(図面左側)に接続される排気ガス導入部12と、この排気ガス導入部12の反対側に接続される排気ガス排出部13と、本体11を上下に区画する仕切り壁14と、仕切り壁14の上部に配置され排気ガスの熱により冷却水が温められる熱回収室15と、この熱回収室15に対して仕切り壁14を挟んで下側に配置され熱回収室15を迂回する迂回路16と、この迂回路16の入口に配置され冷却水の温度が所定の温度よりも高いときに排気ガスを迂回路16へ流し冷却水の温度が所定の温度以下のときに排気ガスを熱回収室15へ流す感温式バルブ17とからなる。
First, Embodiment 1 of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the exhaust heat recovery device 10 includes a cylindrical main body 11, an exhaust gas introduction part 12 connected to the upstream side (left side in the drawing) of the main body 11, and the exhaust gas introduction part 12. An exhaust gas discharge section 13 connected to the opposite side, a partition wall 14 that divides the main body 11 up and down, a heat recovery chamber 15 that is arranged on the upper portion of the partition wall 14 and that heats the cooling water by the heat of the exhaust gas, A detour 16 that is disposed below the heat recovery chamber 15 with the partition wall 14 interposed therebetween and bypasses the heat recovery chamber 15, and a cooling water that is disposed at the inlet of the detour 16 and has a temperature higher than a predetermined temperature. A temperature-sensitive valve 17 is sometimes used to flow the exhaust gas to the bypass 16 and flow the exhaust gas to the heat recovery chamber 15 when the temperature of the cooling water is lower than a predetermined temperature.

熱回収室15には、冷却水を導入する冷却水入口21と、この冷却水入口21から導入された冷却水を通過させるための複数の冷却水路22と、これらの冷却水路22の間に積層するように配置され排気ガスが通過する複数のガス流路23と、冷却水を排出する冷却水出口(詳細は後述)とからなるウォータージャケットが配置される。   In the heat recovery chamber 15, a cooling water inlet 21 for introducing cooling water, a plurality of cooling water paths 22 for allowing the cooling water introduced from the cooling water inlet 21 to pass therethrough, and a stack between these cooling water paths 22 are stacked. A water jacket including a plurality of gas passages 23 through which exhaust gas passes and a cooling water outlet (details will be described later) for discharging cooling water is arranged.

仕切り壁14の上下に熱回収室15と迂回路16を配置する構成にすることにより、排熱回収器10をコンパクトにすることができる。
次図で熱回収室の詳細について説明する。
By arranging the heat recovery chamber 15 and the bypass 16 above and below the partition wall 14, the exhaust heat recovery device 10 can be made compact.
Details of the heat recovery chamber will be described with reference to the next figure.

図2に示すように、ガス流路23は長手方向の側面を、流路支持部材24、24に溶接され、この流路支持部材24、24が冷却水路22、23の側面に溶接されている。流路支持部材24、24を一部配置しないことにより、冷却水ガイド穴25、25が形成される。   As shown in FIG. 2, the gas flow path 23 is welded to the flow path support members 24 and 24 on the side surfaces in the longitudinal direction, and the flow path support members 24 and 24 are welded to the side surfaces of the cooling water paths 22 and 23. . The cooling water guide holes 25 and 25 are formed by not arranging a part of the flow path support members 24 and 24.

矢印(1)で示すように、冷却水入口21から流される冷却水は、ガス流路23の上面や流路支持部材24の上面を通過して、冷却水ガイド穴25、25に達する。冷却水ガイド穴25、25に達した冷却水は、矢印(2)で示すように、下方(図面裏方向)に流される。   As indicated by the arrow (1), the cooling water flowing from the cooling water inlet 21 passes through the upper surface of the gas flow path 23 and the upper surface of the flow path support member 24 and reaches the cooling water guide holes 25 and 25. The cooling water that has reached the cooling water guide holes 25, 25 is allowed to flow downward (backward in the drawing) as indicated by an arrow (2).

このとき冷却水は、図面右から左に向かって流れる。一方、ガス流路23内を流れる排気ガスは図面左から右に向かって流される。排気ガスの流れを基準として、このときの冷却水の流れを向流という。
冷却水ガイド穴25、25から流された冷却水の流れについて次図で説明する。
At this time, the cooling water flows from the right to the left in the drawing. On the other hand, the exhaust gas flowing in the gas flow path 23 flows from the left to the right in the drawing. Based on the flow of exhaust gas, the flow of cooling water at this time is called countercurrent.
The flow of the cooling water flowing from the cooling water guide holes 25, 25 will be described with reference to the next drawing.

図3で矢印(3)に示すように上方から流される冷却水は、冷却水ガイド穴25、25に向かって流される。
このとき冷却水は、図面左から右に向かって流れる。また、ガス流路23内を流れる排気ガスも図面左から右に向かって流される。排気ガスの流れを基準として、このときの冷却水の流れを並流という。
As shown by an arrow (3) in FIG. 3, the cooling water that flows from above flows toward the cooling water guide holes 25 and 25.
At this time, the cooling water flows from the left to the right in the drawing. Further, the exhaust gas flowing in the gas flow path 23 is also flowed from the left to the right in the drawing. The flow of the cooling water at this time is called a parallel flow based on the flow of the exhaust gas.

冷却水ガイド穴25、25から流される冷却水は、さらに下方へ流される。下方へ流された冷却水は、冷却水路22を向流方向に流れ(図2参照)、熱回収室15外部へと流される。   The cooling water flowing from the cooling water guide holes 25, 25 is further flowed downward. The cooling water that has flowed downward flows in the counterflow direction through the cooling water channel 22 (see FIG. 2), and then flows to the outside of the heat recovery chamber 15.

図2及び図3から、冷却水は所定の順路に沿って流されるということがいえる。
冷却水は、向流及び並流を繰り返しながら流される。これにより、熱回収室内
全体に冷却水を流すことができる。熱回収室15内の全体を冷却水が流れるため、通水抵抗が抑えられ、熱回収室15内へ冷却水を送るためのポンプ等を小型化できる。これにより、排熱回収路10全体としても小型化を図ることができる。
From FIG. 2 and FIG. 3, it can be said that the cooling water flows along a predetermined route.
The cooling water is made to flow while repeating countercurrent and cocurrent flow. Thereby, cooling water can be poured through the whole heat recovery chamber. Since the cooling water flows through the heat recovery chamber 15 as a whole, the resistance to water flow is suppressed, and a pump for sending the cooling water into the heat recovery chamber 15 can be downsized. Thereby, it is possible to reduce the size of the exhaust heat recovery path 10 as a whole.

加えて、冷却水が所定の順路に沿って流される。これにより冷却水は、熱回収室15に導入されてから排出されるまで所定の時間熱回収室内を流される。これにより、冷却水に対して排気ガスの熱を十分に効率よく伝えることができる。
次図で冷却水出口について説明する。
In addition, cooling water is caused to flow along a predetermined route. Thus, the cooling water is allowed to flow through the heat recovery chamber for a predetermined time from being introduced into the heat recovery chamber 15 until being discharged. As a result, the heat of the exhaust gas can be sufficiently efficiently transmitted to the cooling water.
Next, the cooling water outlet will be described.

図4に示すように、冷却水出口28は、本体11の外面に配置される冷却水タンク31を介して設けられる。冷却水タンク31には更に、感温式バルブ17に冷却水を送る冷却水送入管32と、この冷却水送入管32によって送入れられた冷却水を送出する冷却水送出管33とが接続される。   As shown in FIG. 4, the cooling water outlet 28 is provided via a cooling water tank 31 disposed on the outer surface of the main body 11. The cooling water tank 31 further includes a cooling water feed pipe 32 for sending cooling water to the temperature sensitive valve 17 and a cooling water feed pipe 33 for sending the cooling water fed by the cooling water feed pipe 32. Connected.

感温式バルブ17は、温度が上昇することにより溶融されるワックスが内蔵されたサーモワックス部35と、このサーモワックス部35の先端に配置されサーモワックス部35の伸縮に合わせて図面左右に作動されるロッド36と、このロッド36の先端のピン37が長穴38に接続されロッド36が左右に作動することにより回動されるレバー39と、このレバー39を回動自在に支持する回動軸41と、この回動軸41にレバー39と共に回動可能に支持され排気ガスの流路を切替える流路切替ダンパ42とから構成される。   The thermosensitive valve 17 is disposed on the tip of the thermowax 35 and contains a thermowax 35 containing wax that is melted as the temperature rises. Rod 36, a pin 39 at the tip of the rod 36 is connected to the long hole 38, and a lever 39 that is rotated when the rod 36 is moved to the left and right, and a rotation that rotatably supports the lever 39. The shaft 41 and a flow path switching damper 42 that is rotatably supported by the rotation shaft 41 together with the lever 39 and switches the flow path of the exhaust gas.

絞り形状に構成された排気ガス導入部12の絞り面44に、流路切替ダンパの先端45が接触する。絞り面44に接触させるため、排気ガスの流れに対してより平行に近い角度で流路切替ダンパ42を配置することができる。排気ガスの流れに対してより平行に近いほど、排気ガスを円滑に導入することができる。即ち、効率よく排気ガスを流すことができる。   The tip 45 of the flow path switching damper contacts the throttle surface 44 of the exhaust gas introduction part 12 configured in the throttle shape. In order to make contact with the throttle surface 44, the flow path switching damper 42 can be disposed at an angle closer to parallel to the flow of the exhaust gas. The exhaust gas can be introduced more smoothly as it is more parallel to the flow of the exhaust gas. That is, the exhaust gas can flow efficiently.

流路切替ダンパ42の作動範囲が狭まれば、流路切替ダンパ42を作動させるための駆動源を小型化することができ、感温式バルブ17を小型化することもできる。   If the operating range of the flow path switching damper 42 is narrowed, the drive source for operating the flow path switching damper 42 can be reduced in size, and the temperature sensitive valve 17 can also be reduced in size.

図5に示すように、熱回収室15は、正面断面が横長の矩形とされ、このような熱回収室15に複数のガス流路23が積層されるように配置され、これらのガス流路23が同じ形状である。また、迂回路16も正面断面が横長の矩形に形成される。ガス流路23には、フィン47が配置される。
迂回路16を横長の矩形とすることにより、迂回路16を小スペースでコンパクトに配置することができる。
As shown in FIG. 5, the heat recovery chamber 15 has a rectangular shape with a front cross-section and is arranged so that a plurality of gas flow paths 23 are stacked in such a heat recovery chamber 15. 23 has the same shape. Further, the bypass 16 is also formed in a rectangular shape with a front cross section being horizontally long. Fins 47 are disposed in the gas flow path 23.
By making the detour 16 a horizontally long rectangle, the detour 16 can be compactly arranged in a small space.

複数のガス流路23が同じ形状である。ガス流路23は同じ形状であるので、同じ部品を用いることができる。同じ部品を用いてガス流路23を形成することにより、ガス流路23の製造コストを下げることができる。   The plurality of gas flow paths 23 have the same shape. Since the gas flow paths 23 have the same shape, the same parts can be used. By forming the gas channel 23 using the same components, the manufacturing cost of the gas channel 23 can be reduced.

想像線で示す路面48に対して、熱回収室15が迂回路16で覆われる。これにより、路面48に対して熱回収室が接地することを防ぐことができる。このため、接地時のダメージを軽減するために別途カバー等を付ける必要がない。このため、排熱回収器10を軽量なものとすることができる。
また、小石49が熱回収室15に当たることを防ぐことにより、排熱回収器10の長寿命化を図ることができる。
次図で感温式バルブの詳細について説明する。
The heat recovery chamber 15 is covered with the detour 16 with respect to the road surface 48 indicated by the imaginary line. Thereby, it is possible to prevent the heat recovery chamber from being grounded with respect to the road surface 48. For this reason, it is not necessary to attach a separate cover or the like in order to reduce damage at the time of grounding. For this reason, the exhaust heat recovery device 10 can be made lightweight.
Further, by preventing the pebbles 49 from hitting the heat recovery chamber 15, the life of the exhaust heat recovery device 10 can be extended.
The details of the temperature sensitive valve will be described with reference to the following figure.

図6に示すように、サーモワックス部35と、ロッド36が収納されるケース51内にはサーモワックス部35に抗する方向に力を加える戻しばね52が配置される。   As shown in FIG. 6, a return spring 52 that applies a force in a direction against the thermowax 35 is disposed in the case 51 in which the thermowax 35 and the rod 36 are accommodated.

冷却水送入管32から送られた冷却水の温度が上昇すると、サーモワックス部35に内蔵されるワックスが溶融し始める。ワックスが溶融することによりワックスの体積が膨張し、サーモワックス部35が戻しばね52の力に抗して図面左側に向かって伸張する。これによって想像線で示すようにロッド36が左方向に移動され、レバー39及び流路切替ダンパ42が回動軸41を中心に時計回り方向に回動される。流路切替ダンパの先端45が絞り面(図1符号44)に接触することで熱回収室の入口(図1符号15)は閉じられる。   When the temperature of the cooling water sent from the cooling water inlet pipe 32 rises, the wax built in the thermo wax part 35 starts to melt. As the wax melts, the volume of the wax expands, and the thermo wax portion 35 expands toward the left side of the drawing against the force of the return spring 52. As a result, the rod 36 is moved leftward as indicated by the imaginary line, and the lever 39 and the flow path switching damper 42 are rotated clockwise about the rotation shaft 41. The inlet (15 in FIG. 1) of the heat recovery chamber is closed by the tip 45 of the flow path switching damper contacting the throttle surface (44 in FIG. 1).

一方、想像線で示される状態から冷却水の温度が低下すると、サーモワックス部35内のワックスが固化し、ワックスの体積が縮小する。これにより、戻しばね52がサーモワックス部35の力に抗して図面右側に向かって伸張する。これによってロッド36が右方向に移動され、レバー39及び流路切替ダンパ42が反時計回り方向に回動される。流路切替ダンパ42が絞り面(図1符号44)に接触することで迂回路(図1符号16)は閉じられる。
感温式バルブが作動される所定の温度を変えたい場合は、種類の異なるアクチュエータに取替えればよい。
On the other hand, when the temperature of the cooling water is lowered from the state indicated by the imaginary line, the wax in the thermo wax part 35 is solidified and the volume of the wax is reduced. As a result, the return spring 52 extends toward the right side of the drawing against the force of the thermowax 35. Accordingly, the rod 36 is moved rightward, and the lever 39 and the flow path switching damper 42 are rotated counterclockwise. When the flow path switching damper 42 contacts the throttle surface (reference numeral 44 in FIG. 1), the detour (reference numeral 16 in FIG. 1) is closed.
When it is desired to change the predetermined temperature at which the temperature-sensitive valve is operated, a different type of actuator may be replaced.

感温式バルブは、サーモワックスや形状記憶合金ばね、ダイヤフラム等の機械的に作動されるバルブの他、センサ及びアクチュエータを用いる電気的なバルブ等様々なものを用いることができる。
機械的に作動されるバルブを用いる場合は、センサやアクチュエータ等の高価な部品が不要であるため、安価に排熱回収器を製造することができる。
As the temperature-sensitive valve, various valves such as an electrically operated valve using a sensor and an actuator can be used in addition to a mechanically operated valve such as a thermo wax, a shape memory alloy spring, and a diaphragm.
When a mechanically operated valve is used, an expensive part such as a sensor or an actuator is unnecessary, so that the exhaust heat recovery device can be manufactured at a low cost.

次に、本発明の実施例2を図面に基づいて説明する。
図7に示されるように、排熱回収器60は、正面断面で蒲鉾型(矩形の上面に半円形を載せた形)の熱回収室61と、正面断面で五角形形の迂回路62によっても構成することができる。
Next, a second embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 7, the exhaust heat recovery device 60 includes a heat recovery chamber 61 having a vertical cross section (a shape in which a semicircle is placed on a rectangular upper surface) and a pentagonal bypass 62 having a front cross section. Can be configured.

このような場合であっても、迂回路62によって熱回収室61が覆われている。これにより、熱回収室61が接地することを防ぐことができる。このことにより、接地時のダメージを軽減するために別途カバー等を付ける必要がない。このため、排熱回収器60を軽量なものとすることができるという本発明の効果を得ることができる。   Even in such a case, the heat recovery chamber 61 is covered by the bypass 62. Thereby, it is possible to prevent the heat recovery chamber 61 from being grounded. This eliminates the need for a separate cover or the like in order to reduce damage during grounding. For this reason, the effect of this invention that the waste heat recovery device 60 can be made lightweight can be acquired.

次に、本発明の実施例3を図面に基づいて説明する。
図8に示されるように、排熱回収器70は、正面断面で三角形の熱回収室71と、正面断面で半円形の迂回路72によっても構成することができる。
Next, Embodiment 3 of the present invention will be described with reference to the drawings.
As shown in FIG. 8, the exhaust heat recovery device 70 can also be configured by a triangular heat recovery chamber 71 in a front cross section and a bypass 72 in a semicircular shape in the front cross section.

このような場合であっても、迂回路72によって熱回収室71が覆われている。これにより、熱回収室71が接地することを防ぐことができる。このことにより、接地時のダメージを軽減するために別途カバー等を付ける必要がない。このため、排熱回収器70を軽量なものとすることができるという本発明の効果を得ることができる。   Even in such a case, the heat recovery chamber 71 is covered by the bypass 72. This can prevent the heat recovery chamber 71 from being grounded. This eliminates the need for a separate cover or the like in order to reduce damage during grounding. For this reason, the effect of this invention that the waste heat recovery device 70 can be made lightweight can be acquired.

またこの他にも、実施例1に示した正面断面が矩形の熱回収室(図5符号15)と、正面断面で半円形の迂回路72とで構成する等組み合わせは自由である。   In addition to this, a combination of a heat recovery chamber (reference numeral 15 in FIG. 5) having a rectangular front cross section and a detour 72 having a semicircular front cross section shown in the first embodiment is optional.

即ち熱回収室は、正面断面視で蒲鉾形、半円形、矩形、三角形又は五角形のいずれかの形状に形成され、迂回路は、正面断面視で蒲鉾形、半円形、矩形、三角形又は五角形のいずれかの形状に形成される。   That is, the heat recovery chamber is formed in any one of a bowl shape, a semicircle, a rectangle, a triangle, or a pentagon in a front sectional view, and the detour has a bowl shape, a semicircle, a rectangle, a triangle, or a pentagon in a front sectional view. It is formed in any shape.

排熱回収器が配置される場所に合わせて、これらの形状を組み合わせることができる。配置場所に合わせた形状とすることにより、排熱回収器のコンパクト化を図ることができる。   These shapes can be combined according to the place where the exhaust heat recovery unit is arranged. The exhaust heat recovery device can be made compact by adopting a shape that matches the arrangement location.

次に、本発明の実施例4を図面に基づいて説明する。
図9に示されるように、排熱回収器80は、路面に対して熱回収室81の他、感温式バルブ17のアクチュエータ82も迂回路83によって覆われる。これによって、アクチュエータ82の安全性も高めることができ、さらに有益である。
Next, a fourth embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 9, in the exhaust heat recovery device 80, the actuator 82 of the temperature sensitive valve 17 is covered with a bypass 83 in addition to the heat recovery chamber 81 with respect to the road surface. As a result, the safety of the actuator 82 can be increased, which is further beneficial.

尚、本発明に係る排熱回収器は、車両等の運輸機器の他、コージェネレーションシステム等エンジンの排気熱を使用するものであれば使用することができ、用途は限定されない。   The exhaust heat recovery device according to the present invention can be used as long as it uses exhaust heat from an engine such as a cogeneration system in addition to transportation equipment such as a vehicle, and its application is not limited.

本発明の排熱回収器は、車両の暖房装置に好適である。   The exhaust heat recovery device of the present invention is suitable for a vehicle heating device.

10、60、70、80…排熱回収器、15、61、71、81…熱回収室、16、62、72、83…迂回路、17…感温式バルブ、22…冷却水路、23…ガス流路、41…回動軸、42…流路切替ダンパ、43…排気ガス入口、44…絞り面、45…先端。   10, 60, 70, 80 ... exhaust heat recovery unit, 15, 61, 71, 81 ... heat recovery chamber, 16, 62, 72, 83 ... detour, 17 ... temperature sensitive valve, 22 ... cooling water channel, 23 ... Gas channel 41... Rotating shaft 42. Channel switching damper 43. Exhaust gas inlet 44. Restricted surface 45.

Claims (5)

排気ガスが通されこの排気ガスの熱により冷却水が温められる熱回収室と、この熱回収室を迂回して前記排気ガスを流す迂回路と、この迂回路の入口に配置され前記冷却水の温度が所定の温度よりも高いときに前記排気ガスを前記迂回路へ流し前記冷却水の温度が所定の温度以下のときに前記排気ガスを前記熱回収室へ流す感温式バルブとを備える排熱回収器において、
前記迂回路の上に前記熱回収室が配置されることを特徴とする排熱回収器。
A heat recovery chamber through which the exhaust gas is passed and the cooling water is warmed by the heat of the exhaust gas; a detour that bypasses the heat recovery chamber and flows the exhaust gas; and a cooling water that is disposed at the inlet of the detour A temperature-sensitive valve that flows the exhaust gas to the bypass when the temperature is higher than a predetermined temperature, and flows the exhaust gas to the heat recovery chamber when the temperature of the cooling water is equal to or lower than a predetermined temperature. In the heat recovery unit,
The exhaust heat recovery device, wherein the heat recovery chamber is disposed on the bypass.
前記感温式バルブは、前記排気ガスの流路を切替える流路切替ダンパと、この流路切替ダンパを回動可能に支持する回動軸とから構成され、
絞り形状に構成された排気ガス入口の絞り面に、前記流路切替ダンパの先端が接触することにより、前記迂回路又は前記熱回収室のどちらかを閉じることを特徴とする請求項1記載の排熱回収器。
The temperature sensitive valve is composed of a flow path switching damper that switches the flow path of the exhaust gas, and a rotation shaft that rotatably supports the flow path switching damper.
2. The bypass circuit or the heat recovery chamber is closed when a tip of the flow path switching damper contacts a throttle surface of an exhaust gas inlet configured in a throttle shape. Waste heat recovery unit.
前記熱回収室は、前記冷却水を通過させるための複数の冷却水路と、前記排気ガスが通過するガス流路とが断面視で積層され、前記冷却水が所定の順路に沿って流されることを特徴とする請求項1又は請求項2記載の排熱回収器。   In the heat recovery chamber, a plurality of cooling water passages for allowing the cooling water to pass therethrough and gas passages through which the exhaust gas passes are stacked in a sectional view, and the cooling water is caused to flow along a predetermined forward path. The exhaust heat recovery device according to claim 1 or 2, characterized in that. 前記熱回収室は、正面断面が横長の矩形とされ、このような熱回収室に複数の前記ガス流路が積層されるように配置され、これらのガス流路が同じ形状であることを特徴とする請求項3記載の排熱回収器。   The heat recovery chamber has a rectangular shape with a front cross-section and is arranged so that a plurality of the gas flow paths are stacked in such a heat recovery chamber, and the gas flow paths have the same shape. The exhaust heat recovery device according to claim 3. 前記熱回収室は、断面視で蒲鉾形、半円形、矩形、三角形又は五角形のいずれかの形状に形成され、
前記迂回路は、断面視で蒲鉾形、半円形、矩形、三角形又は五角形のいずれかの形状に形成されていることを特徴とする請求項1、請求項2又は請求項3記載の排熱回収器。
The heat recovery chamber is formed in one of a bowl shape, a semicircle, a rectangle, a triangle, or a pentagon in a cross-sectional view,
4. The exhaust heat recovery according to claim 1, wherein the detour is formed in any one of a bowl shape, a semicircle, a rectangle, a triangle, and a pentagon in a cross-sectional view. vessel.
JP2009076486A 2009-03-26 2009-03-26 Exhaust heat recovery equipment Pending JP2010229847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076486A JP2010229847A (en) 2009-03-26 2009-03-26 Exhaust heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076486A JP2010229847A (en) 2009-03-26 2009-03-26 Exhaust heat recovery equipment

Publications (1)

Publication Number Publication Date
JP2010229847A true JP2010229847A (en) 2010-10-14

Family

ID=43045906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076486A Pending JP2010229847A (en) 2009-03-26 2009-03-26 Exhaust heat recovery equipment

Country Status (1)

Country Link
JP (1) JP2010229847A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184680A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2012246837A (en) * 2011-05-27 2012-12-13 Yutaka Giken Co Ltd Exhaust heat recovery device
WO2013005541A1 (en) * 2011-07-04 2013-01-10 カルソニックカンセイ株式会社 Waste heat recovery device
KR20140143926A (en) * 2013-06-10 2014-12-18 현대중공업 주식회사 Economizer having by-pass part
KR101497652B1 (en) * 2013-08-16 2015-03-02 삼성중공업 주식회사 Waste heat recovery apparatus
JP2015094356A (en) * 2013-11-14 2015-05-18 現代自動車株式会社 Valve actuator built-in type exhaust heat recovery system
CN104653261A (en) * 2015-02-04 2015-05-27 山东大学 Tail gas heat recovery device with controllable heat exchange amount and operating method thereof
JP2016156324A (en) * 2015-02-25 2016-09-01 カルソニックカンセイ株式会社 Exhaust heat recovery unit
JP2016186254A (en) * 2015-03-27 2016-10-27 カルソニックカンセイ株式会社 Exhaust heat recovery device and method for manufacturing the same
JP2017008868A (en) * 2015-06-24 2017-01-12 トヨタ自動車株式会社 Exhaust heat recovery device structure
US10648746B2 (en) 2014-01-30 2020-05-12 Calsonic Kansei Corporation Exhaust waste heat recovery device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754649A (en) * 1993-08-16 1995-02-28 Sanyo Electric Co Ltd Waste gas heat recovery device
US6141961A (en) * 1998-03-11 2000-11-07 Ecia-Equipments Et Composants Pour L'industrie Automobile Exhaust element with heat exchanger
JP2006312884A (en) * 2005-05-06 2006-11-16 Sango Co Ltd Exhaust heat recovery device
US20080110595A1 (en) * 2006-11-13 2008-05-15 Dana Canada Corporation Heat exchanger with bypass
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754649A (en) * 1993-08-16 1995-02-28 Sanyo Electric Co Ltd Waste gas heat recovery device
US6141961A (en) * 1998-03-11 2000-11-07 Ecia-Equipments Et Composants Pour L'industrie Automobile Exhaust element with heat exchanger
JP2006312884A (en) * 2005-05-06 2006-11-16 Sango Co Ltd Exhaust heat recovery device
US20080110595A1 (en) * 2006-11-13 2008-05-15 Dana Canada Corporation Heat exchanger with bypass
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184680A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2012246837A (en) * 2011-05-27 2012-12-13 Yutaka Giken Co Ltd Exhaust heat recovery device
WO2013005541A1 (en) * 2011-07-04 2013-01-10 カルソニックカンセイ株式会社 Waste heat recovery device
JP2013015068A (en) * 2011-07-04 2013-01-24 Calsonic Kansei Corp Exhaust heat recovery apparatus
KR20140143926A (en) * 2013-06-10 2014-12-18 현대중공업 주식회사 Economizer having by-pass part
KR101497652B1 (en) * 2013-08-16 2015-03-02 삼성중공업 주식회사 Waste heat recovery apparatus
JP2015094356A (en) * 2013-11-14 2015-05-18 現代自動車株式会社 Valve actuator built-in type exhaust heat recovery system
US10648746B2 (en) 2014-01-30 2020-05-12 Calsonic Kansei Corporation Exhaust waste heat recovery device
CN104653261A (en) * 2015-02-04 2015-05-27 山东大学 Tail gas heat recovery device with controllable heat exchange amount and operating method thereof
JP2016156324A (en) * 2015-02-25 2016-09-01 カルソニックカンセイ株式会社 Exhaust heat recovery unit
JP2016186254A (en) * 2015-03-27 2016-10-27 カルソニックカンセイ株式会社 Exhaust heat recovery device and method for manufacturing the same
JP2017008868A (en) * 2015-06-24 2017-01-12 トヨタ自動車株式会社 Exhaust heat recovery device structure
US10054026B2 (en) 2015-06-24 2018-08-21 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery structure

Similar Documents

Publication Publication Date Title
JP2010229847A (en) Exhaust heat recovery equipment
US9239001B2 (en) Heat exchanger
JP4281789B2 (en) Exhaust heat recovery device
JP5184518B2 (en) Exhaust gas recirculation device
JP2008038723A (en) Supporting structure for exhaust system heat exchanger
US20090236435A1 (en) Warming-up system for vehicle
JP2008157211A (en) Exhaust heat recovery device
US9709350B2 (en) Heat exchanger
JPWO2016140068A1 (en) Heat exchanger and exhaust heat recovery apparatus equipped with the heat exchanger
JP2007032561A (en) Exhaust gas heat recovery device
JP5291656B2 (en) Waste heat recovery device
JP2010144733A (en) Exhaust heat recovery device
JP6358938B2 (en) Exhaust heat recovery device
AU2005315782A1 (en) Heat exchanger
JP2007247555A (en) Exhaust heat recovery device
JP4892578B2 (en) Waste heat recovery unit
JP6250576B2 (en) Engine and exhaust system
JP2008101496A (en) Exhaust system heat exchanger
JP5439312B2 (en) Waste heat recovery device
JP5088751B2 (en) Waste heat recovery unit
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP4631718B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5581246B2 (en) Waste heat recovery device
JP2007247554A (en) Exhaust heat recovery device
JP5498988B2 (en) Heat recovery device assembly and exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828