JP5438191B2 - Ultrasonic development processing method and ultrasonic development processing apparatus - Google Patents

Ultrasonic development processing method and ultrasonic development processing apparatus Download PDF

Info

Publication number
JP5438191B2
JP5438191B2 JP2012213586A JP2012213586A JP5438191B2 JP 5438191 B2 JP5438191 B2 JP 5438191B2 JP 2012213586 A JP2012213586 A JP 2012213586A JP 2012213586 A JP2012213586 A JP 2012213586A JP 5438191 B2 JP5438191 B2 JP 5438191B2
Authority
JP
Japan
Prior art keywords
substrate
circuit pattern
ultrasonic
development processing
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012213586A
Other languages
Japanese (ja)
Other versions
JP2013016857A (en
Inventor
繁則 亀井
雅仁 浜田
礼史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012213586A priority Critical patent/JP5438191B2/en
Publication of JP2013016857A publication Critical patent/JP2013016857A/en
Application granted granted Critical
Publication of JP5438191B2 publication Critical patent/JP5438191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えばマスク用ガラス基板等の基板の超音波現像処理方法及びその装置に関するものである。   The present invention relates to an ultrasonic development processing method and apparatus for a substrate such as a glass substrate for a mask.

一般に、半導体デバイスの製造においては、例えば半導体ウエハやLCDガラス基板等の基板の上に回路パターンを形成するために、フォトリソグラフィ技術が利用されている。このフォトリソグラフィ技術においては、基板にフォトレジストを塗布し、これにより形成されたレジスト膜を所定の回路パターンに応じて露光し、この露光パターンを現像処理することによりレジスト膜に回路パターンが形成されている。   In general, in the manufacture of a semiconductor device, a photolithography technique is used to form a circuit pattern on a substrate such as a semiconductor wafer or an LCD glass substrate. In this photolithographic technique, a photoresist is applied to a substrate, the resist film formed thereby is exposed according to a predetermined circuit pattern, and this exposure pattern is developed to form a circuit pattern on the resist film. ing.

近年では、回路線幅の微細化が進められており、線幅が32nm,22nmの回路パターンの半導体デバイスの製造において、従来の露光方式に代わってナノインプリントリソグラフィ(NIL:Nanoimprint Lithography)方式が開発されている。このナノインプリントリソグラフィ方式は、図14に示すように、光硬化性樹脂aを塗布した半導体ウエハW(以下にウエハWという)の表面側に、回路パターンbを加工した石英ガラス製のモールドc対向させ{図14(a)参照}、次に、ウエハWの表面にモールドcを押し付け{図14(b)参照}、この状態で、紫外線照射手段例えば超高圧水銀灯dから紫外線をモールドcを介してウエハWに照射し{図14(c)参照}、その後、モールドcをウエハWから離して{図14(d)参照}、ウエハW表面に回路パターンbを転写する方式である。   In recent years, the circuit line width has been miniaturized, and a nanoimprint lithography (NIL) method has been developed in place of the conventional exposure method in the manufacture of semiconductor devices having circuit patterns of 32 nm and 22 nm. ing. In this nanoimprint lithography system, as shown in FIG. 14, a quartz glass mold c processed with a circuit pattern b is opposed to a surface of a semiconductor wafer W coated with a photocurable resin a (hereinafter referred to as wafer W). {Refer to FIG. 14 (a)} Next, the mold c is pressed against the surface of the wafer W {refer to FIG. 14 (b)}. In this state, ultraviolet rays are irradiated from the ultraviolet irradiation means, for example, an ultrahigh pressure mercury lamp d through the mold c. The wafer W is irradiated {see FIG. 14C), then the mold c is separated from the wafer W {see FIG. 14D}, and the circuit pattern b is transferred to the surface of the wafer W.

上記ナノインプリントリソグラフィ方式においては、回路パターンの鮮明度はモールドcの形状やモールド形状の忠実転写性が重要である。   In the nanoimprint lithography system, the shape of the mold c and the faithful transfer of the mold shape are important for the definition of the circuit pattern.

上記モールドに回路パターンを形成する手段としては、半導体製造工程のフォトリソグラフィ方式すなわち塗布・露光・現像方式が採用され、モールドを形成する基板にレジストを塗布し、露光した後、現像液を液盛りして現像処理を行ってモールドに回路パターンが形成される。   As a means for forming a circuit pattern on the mold, a photolithography method in a semiconductor manufacturing process, that is, a coating / exposure / development method, is adopted. A resist is applied to the substrate on which the mold is formed, exposed, and then the developer is added to the liquid. Then, development processing is performed to form a circuit pattern on the mold.

この場合、現像処理において、現像液を基板全体に均一に拡散・分散させる手段として、ノズルから基板に供給(吐出)された現像液を拡散する拡散部材を超音波振動させる超音波発振子を備えたものが知られている(例えば、特許文献1参照)。   In this case, in the development process, as a means for uniformly diffusing and dispersing the developing solution over the entire substrate, an ultrasonic oscillator that ultrasonically vibrates a diffusion member that diffuses the developing solution supplied (discharged) from the nozzle to the substrate is provided. Are known (for example, see Patent Document 1).

また、別の方式として、基板を保持するチャックの回転部に超音波装置を装着する方式が知られている(例えば、特許文献2参照)。   As another method, a method of attaching an ultrasonic device to a rotating part of a chuck that holds a substrate is known (for example, see Patent Document 2).

特開平8−22952号公報(特許請求の範囲、段落0043、図10)Japanese Patent Laid-Open No. 8-22952 (Claims, paragraph 0043, FIG. 10) 特開平9−139345号公報(特許請求の範囲、図1)JP-A-9-139345 (Claims, FIG. 1)

しかしながら、特許文献1,2に記載のものは、いずれも基板表面の現像液全体を超音波振動によって拡散又は分散させるため、回路パターン以外の必要のない箇所にも均等に超音波振動を与えることとなり、無駄なエネルギを消費するばかりか、現像処理に多くの時間を要すると共に、回路パターン部に残渣するスカムの除去効果が低下する懸念がある。また、基板表面の現像液全体を超音波振動によって拡散又は分散させるため、装置が大型化する懸念もある。   However, since all of the ones described in Patent Documents 1 and 2 diffuse or disperse the entire developer on the surface of the substrate by ultrasonic vibration, the ultrasonic vibration is evenly applied to unnecessary portions other than the circuit pattern. Thus, not only wasteful energy is consumed, but a long time is required for development processing, and there is a concern that the effect of removing scum remaining on the circuit pattern portion may be reduced. In addition, since the entire developing solution on the substrate surface is diffused or dispersed by ultrasonic vibration, there is a concern that the apparatus becomes large.

なお、モールドに形成される回路パターンの線幅は微細であるため、現像液の供給時(吐出時)には基板上に与えるインパクトを少なくして、回路パターンのダメージを抑制する必要があるが、有機現像においては、ある程度のインパクトは必要である。   In addition, since the line width of the circuit pattern formed on the mold is fine, it is necessary to reduce the impact on the substrate when supplying the developer (at the time of discharge) and to suppress damage to the circuit pattern. In organic development, a certain degree of impact is necessary.

この発明は、上記事情に鑑みてなされたもので、低インパクトでの現像を可能にすると共に、現像時間の短縮及び現像精度の向上が図れ、かつ、回路パターン部に残渣するスカムの除去効果の向上が図れるようにした超音波現像処理方法及びその装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and enables development with low impact, shortens development time and improves development accuracy, and removes scum remaining in the circuit pattern portion. It is an object of the present invention to provide an ultrasonic development processing method and apparatus capable of being improved.

上記課題を解決するために、請求項1記載の発明は、露光処理された基板の回路パターン表面に現像液を接触させて、現像処理を行う現像処理方法であって、 現像液が接触した状態にある基板の回路パターンの近傍の該基板の側面に超音波振動子の発振面を当接させ、超音波振動子より発生する超音波振動が上記基板を介して回路パターン上の現像液に伝播しながら現像処理を行う、ことを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a development processing method in which a developing solution is brought into contact with the circuit pattern surface of the substrate subjected to the exposure processing, and the developing processing is performed. The surface of the ultrasonic transducer is brought into contact with the side surface of the substrate near the circuit pattern on the substrate, and the ultrasonic vibration generated by the ultrasonic transducer propagates to the developer on the circuit pattern through the substrate. The development processing is performed while the operation is being performed.

また、請求項2記載の発明は、請求項1記載の超音波現像処理方法において、上記現像処理を複数回繰り返して行う、ことを特徴とする。   According to a second aspect of the present invention, in the ultrasonic development processing method according to the first aspect, the development processing is repeated a plurality of times.

また、請求項3記載の発明は、請求項1記載の超音波現像処理方法を具現化するもので、露光処理された基板の回路パターン表面に現像液を接触させて、現像処理を行う現像処理装置であって、 現像液が接触した状態にある基板の回路パターンの近傍の該基板側面に発振面が当接される超音波振動子と、上記超音波振動子の駆動電源とを具備し、 上記超音波振動子より発生する超音波振動が上記基板を介して回路パターン上の現像液に伝播しながら現像処理を行う、ことを特徴とする。この場合、上記超音波振動子を基板の側面及び基板を保持する保持手段に対して接離移動する接離移動機構を更に具備する方が好ましい(請求項4)。   Further, the invention described in claim 3 embodies the ultrasonic development processing method described in claim 1, and performs development processing by bringing a developer into contact with the circuit pattern surface of the exposed substrate. An apparatus comprising: an ultrasonic vibrator having an oscillation surface in contact with a side surface of a substrate in the vicinity of a circuit pattern of the substrate in contact with a developer; and a driving power source for the ultrasonic vibrator, Development processing is performed while ultrasonic vibration generated from the ultrasonic transducer propagates to the developer on the circuit pattern through the substrate. In this case, it is preferable to further include a contact / separation moving mechanism for moving the ultrasonic transducer in contact with and away from the side surface of the substrate and the holding means for holding the substrate.

請求項1,3,4記載の発明によれば、現像液が接触した状態にある基板の回路パターンの近傍の該基板の側面に超音波振動子の発振面を当接させた状態で、超音波振動子より発生する超音波振動が基板を介して回路パターン上の現像液に伝播しながら現像処理を行うことにより、現像液自体の対流が促進され、回路パターンに沿った溝方向の現像液の流れが促進されるため、現像液を積極的に接触させて回路パターンに残渣するスカムの除去効果を高めることができると共に、現像処理の精度を向上させることができる。   According to the first, third, and fourth aspects of the invention, in a state where the oscillation surface of the ultrasonic vibrator is in contact with the side surface of the substrate in the vicinity of the circuit pattern of the substrate in contact with the developer, The development process is performed while the ultrasonic vibration generated from the ultrasonic vibrator propagates to the developer on the circuit pattern through the substrate, thereby promoting the convection of the developer itself and developing the developer in the groove direction along the circuit pattern. Therefore, it is possible to increase the effect of removing the scum remaining in the circuit pattern by positively contacting the developer, and improve the accuracy of the developing process.

請求項2記載の発明によれば、請求項1記載の超音波現像処理方法において、現像処理を複数回繰り返して行うことにより、新しい現像液を回路パターンに接触させるので、更に回路パターンに残渣するスカムの除去効果を更に高めることができる。   According to the second aspect of the invention, in the ultrasonic development processing method according to the first aspect, the development process is repeated a plurality of times, so that a new developer is brought into contact with the circuit pattern, and thus further remains in the circuit pattern. The scum removal effect can be further enhanced.

この発明によれば、上記のように構成されているので、低インパクトでの現像を可能にすることができると共に、現像時間の短縮及び現像精度の向上が図れ、かつ、回路パターン部に残渣するスカムの除去効果の向上が図れる。また、回路パターン上の現像液を積極的に回路パターンに接触させることで、超音波振動を有効に現像処理に供することができるので、省力化が図れると共に、装置の小型化が図れる。   According to the present invention, since it is configured as described above, it is possible to perform development with low impact, shorten development time, improve development accuracy, and remain in the circuit pattern portion. The scum removal effect can be improved. Further, since the developer on the circuit pattern is positively brought into contact with the circuit pattern, the ultrasonic vibration can be effectively used for the developing process, so that labor can be saved and the apparatus can be miniaturized.

この発明に係る第1実施形態の現像処理装置を示す概略断面図である。1 is a schematic sectional view showing a development processing apparatus according to a first embodiment of the present invention. 上記現像処理装置の概略平面図である。It is a schematic plan view of the development processing apparatus. 第1実施形態における超音波振動子の使用状態を示す平面図(a)及び側面図(b)である。It is the top view (a) and side view (b) which show the use condition of the ultrasonic transducer | vibrator in 1st Embodiment. 第1実施形態の変形例の現像処理装置を示す概略断面図である。It is a schematic sectional drawing which shows the development processing apparatus of the modification of 1st Embodiment. 図4の概略平面図である。FIG. 5 is a schematic plan view of FIG. 4. 第1実施形態の別の変形例を示す概略断面図である。It is a schematic sectional drawing which shows another modification of 1st Embodiment. 図6の概略平面図である。FIG. 7 is a schematic plan view of FIG. 6. この発明に係る第2実施形態の現像処理装置を示す概略断面図である。It is a schematic sectional drawing which shows the image development processing apparatus of 2nd Embodiment concerning this invention. この発明に係る第3実施形態の現像処理装置の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the development processing apparatus of 3rd Embodiment concerning this invention. 図9の概略平面図である。FIG. 10 is a schematic plan view of FIG. 9. 第3実施形態の変形例の要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the modification of 3rd Embodiment. 第4実施形態の現像処理装置の現像処理状態を示す概略断面図(a)、(a)のI部拡大断面図(b)及びリンス処理状態を示す概略断面図(c)である。FIG. 10 is a schematic cross-sectional view (a) showing a development processing state of the development processing apparatus according to the fourth embodiment, an enlarged I-sectional view (b) of (a), and a schematic cross-sectional view (c) showing a rinse processing state. この発明に係る第5実施形態の現像処理装置の要部を示す概略平面図(a)、(a)のII部拡大図(b)及び(b)のIII−III線に沿う断面図(c)である。Schematic plan view (a) showing an essential part of the development processing apparatus according to the fifth embodiment of the present invention, (a) an enlarged view of part II (b), and a sectional view taken along line III-III (b) (c) ). ナノインプリントリソグラフィ方式の製造工程を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing process of a nanoimprint lithography system.

以下に、この発明の実施形態を添付図面に基づいて詳細に説明する。ここでは、この発明に係る超音波現像処理装置を角形のモールドのマスク用ガラス基板の現像に適用した場合について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, the case where the ultrasonic development processing apparatus according to the present invention is applied to development of a glass substrate for a mask of a square mold will be described.

<第1実施形態>
図1は、この発明に係る第1実施形態の現像処理装置を示す概略断面図、図2は、上記現像処理装置の概略平面図である。
<First Embodiment>
FIG. 1 is a schematic sectional view showing a development processing apparatus according to a first embodiment of the present invention, and FIG. 2 is a schematic plan view of the development processing apparatus.

この発明に係る現像処理装置は、ケーシング1を有し、このケーシング1内に、角形ガラス基板G(以下に基板Gという)を回転可能に保持する保持手段である回転基台2と、この回転基台2と共に回転可能で、かつ回転基台2に保持された基板Gの外周部を囲む、基板Gの表面の同一平面上に基板Gの表面上から連続する現像液Lの液膜を形成するための助走ステージ3と、回転基台2に保持された基板Gの表面に沿って移動可能で、基板Gに対して現像液Lを帯状に供給(吐出)する現像液供給ノズル5(以下に現像ノズル5という)と、基板Gに形成された角形の回路パターンPの対向位置に移動可能で、回路パターンP上の現像液Lに超音波振動を伝播する超音波振動子7を具備している。なお、ケーシング1の一側壁1aには基板Gの搬入搬出口1bが設けられており、この搬入搬出口1bはシャッタ1cによって開閉可能になっている。   The development processing apparatus according to the present invention has a casing 1, a rotating base 2 that is a holding means for rotatably holding a square glass substrate G (hereinafter referred to as a substrate G) in the casing 1, and the rotation A liquid film of the developing solution L that is continuous with the surface of the substrate G is formed on the same plane of the surface of the substrate G that can be rotated together with the base 2 and surrounds the outer periphery of the substrate G held on the rotating base 2. And a developing solution supply nozzle 5 (hereinafter referred to as a belt) that can move along the surface of the substrate G held on the rotating base 2 and supply (discharge) the developer L to the substrate G in a strip shape. And an ultrasonic vibrator 7 that can move to a position opposite to the rectangular circuit pattern P formed on the substrate G and propagate ultrasonic vibrations to the developer L on the circuit pattern P. ing. In addition, a loading / unloading port 1b for the substrate G is provided on one side wall 1a of the casing 1, and the loading / unloading port 1b can be opened and closed by a shutter 1c.

また、上記回転基台2及び助走ステージ3は、カップ6内に収容可能に形成されており、カップ6の外方側には、回転基台2に保持された基板Gに向かって洗浄液(リンス液)例えば純水を供給するリンス液供給手段8が配設されている。   The rotating base 2 and the run-up stage 3 are formed so as to be accommodated in the cup 6. On the outer side of the cup 6, a cleaning liquid (rinse) is directed toward the substrate G held on the rotating base 2. Liquid) A rinse liquid supply means 8 for supplying pure water, for example, is provided.

この場合、上記回転基台2は、図1及び図2に示すように、隙間9をおいて基板Gを収容する四角形状の開口凹部4を有しており、開口凹部4の各角部には基板Gの角部を保持する位置決め用保持ピン10が配設されている。この回転基台2は回転軸11を介して回転駆動部例えばサーボモータ12に連結され、回転軸11を中心軸として所定の回転速度で回転できる。なお、回転基台2によって保持された基板Gの回路パターンPの位置決めはサーボモータ12の調整によって行われる。   In this case, as shown in FIGS. 1 and 2, the rotary base 2 has a rectangular opening recess 4 that accommodates the substrate G with a gap 9, and is provided at each corner of the opening recess 4. Are provided with positioning holding pins 10 for holding the corners of the substrate G. The rotation base 2 is connected to a rotation drive unit such as a servo motor 12 via a rotation shaft 11 and can rotate at a predetermined rotation speed with the rotation shaft 11 as a central axis. The positioning of the circuit pattern P on the substrate G held by the rotary base 2 is performed by adjusting the servo motor 12.

また、上記助走ステージ3は、図2に示すように、平面から見て基板Gの角部の位置が切り欠かれた略円形の薄い板形状を有し、中央部に基板Gを収容する四角形状の開口凹部4が形成されている。このように助走ステージ3の外形を略円形状に形成することにより、助走ステージ3を回転させた際に、助走ステージ3の外周部付近において乱流が形成されることを防止している。この場合、助走ステージ3は、基板Gの表面と同一平面上、若しくは、僅かに低い位置例えば200〜400μm低い位置に固定されている。これにより、基板Gの表面から助走ステージ3の表面に渡る同一平面上に連続した液膜を形成することができる。   Further, as shown in FIG. 2, the run-up stage 3 has a substantially circular thin plate shape in which the positions of the corners of the substrate G are cut out as viewed from above, and a square that accommodates the substrate G in the center. A shaped opening recess 4 is formed. Thus, by forming the outer shape of the run-up stage 3 in a substantially circular shape, turbulence is prevented from being formed near the outer periphery of the run-up stage 3 when the run-up stage 3 is rotated. In this case, the run-up stage 3 is fixed on the same plane as the surface of the substrate G or at a slightly lower position, for example, a position 200 to 400 μm lower. Thereby, a continuous liquid film can be formed on the same plane extending from the surface of the substrate G to the surface of the run-up stage 3.

また、上記回転基台2は、図1に示すように、開口凹部4の底部の3箇所には、垂直方向に貫通する貫通孔13が設けられている。貫通孔13内には、基板Gを支持して昇降させる支持ピン14が昇降可能に貫挿されている。支持ピン14は、例えばシリンダなどの昇降駆動機構15によって昇降自在であり、回転基台2上に突出して回転基台2に対する基板Gの受け渡しを行うことができる。   Further, as shown in FIG. 1, the rotary base 2 is provided with through-holes 13 penetrating in the vertical direction at three locations at the bottom of the opening recess 4. A support pin 14 that supports and lifts the substrate G is inserted into the through-hole 13 so as to be lifted and lowered. The support pin 14 can be moved up and down by a lift drive mechanism 15 such as a cylinder, for example, and can protrude on the rotary base 2 to deliver the substrate G to the rotary base 2.

また、回転基台2は、基板Gから飛散又は落下する液体を受け止め、回収するためのカップ6内に収容されている。カップ6は、回転基台2及び基板保持台4の側方と下方を覆うように、例えば下面が閉鎖され上面が開口した円筒状に形成されている。カップ6の底部には、排気口6aと排液口6bが設けられており、排気口6aには図示しない排気ポンプ等の排気装置を介設した排気管16が接続され、また、排液口6bには例えば工場の排液部に連通した排出管17が接続されており、カップ6において回収した液体を現像処理装置の外部に排出できる。   Further, the rotary base 2 is accommodated in a cup 6 for receiving and collecting the liquid scattered or dropped from the substrate G. For example, the cup 6 is formed in a cylindrical shape having a closed lower surface and an opened upper surface so as to cover the sides and the lower side of the rotating base 2 and the substrate holding table 4. An exhaust port 6a and a drainage port 6b are provided at the bottom of the cup 6, and an exhaust pipe 16 provided with an exhaust device such as an exhaust pump (not shown) is connected to the exhaust port 6a. 6b is connected to, for example, a discharge pipe 17 that communicates with a drainage section of a factory, and the liquid collected in the cup 6 can be discharged to the outside of the development processing apparatus.

また、図2に示すようにカップ6のY方向負方向(図2の左方向)側には、第1の待機部61が設けられている。第1の待機部61には、現像液Lの供給を行う現像ノズル5が待機可能になっている。現像ノズル5は、例えば少なくとも基板Gの辺の寸法と同じかそれよりも長いスリット状のノズル孔(図示せず)を有すると共に、X方向に沿った略直方体形状を有している。現像ノズル5は、逆L字型のヘッドアーム18に支持されており、ヘッドアーム18が取り付けられた例えばボールねじとその回転モータ等からなる水平移動機構19によって、第1の待機部61から少なくともカップ6のY方向正方向(図2の右方向)側の端部付近まで水平移動(スキャン)可能に形成されている。また、現像ノズル5は、例えばヘッドアーム18に取り付けられたシリンダ等の昇降機構(図示せず)によって上下方向にも移動可能に形成されている。なお、現像ノズル5は現像液供給管を介して現像液供給源(図示せず)に接続されており、基板G上をスキャンしながら現像液供給源から供給される現像液Lを基板上に帯状に液盛りして液膜を形成することができる。   As shown in FIG. 2, a first standby portion 61 is provided on the negative side of the cup 6 in the Y direction (left direction in FIG. 2). In the first standby section 61, the developing nozzle 5 that supplies the developer L can be on standby. The developing nozzle 5 has, for example, a slit-like nozzle hole (not shown) that is at least equal to or longer than the dimension of the side of the substrate G, and has a substantially rectangular parallelepiped shape along the X direction. The developing nozzle 5 is supported by an inverted L-shaped head arm 18, and is moved at least from the first standby unit 61 by a horizontal moving mechanism 19 including, for example, a ball screw and its rotation motor to which the head arm 18 is attached. The cup 6 is formed to be horizontally movable (scannable) to the vicinity of the end portion on the Y direction positive direction (right direction in FIG. 2) side. Further, the developing nozzle 5 is formed to be movable in the vertical direction by an elevating mechanism (not shown) such as a cylinder attached to the head arm 18, for example. The developing nozzle 5 is connected to a developing solution supply source (not shown) via a developing solution supply pipe, and the developing solution L supplied from the developing solution supply source while scanning on the substrate G is placed on the substrate. A liquid film can be formed by piling up in a strip shape.

また、図1及び図2に示すように、カップ6のY方向正方向側には、第2の待機部62が設けられている。第2の待機部62には、リンス液供給手段であるリンス液吐出ノズル8(以下にリンスノズル8という)が待機可能になっている。リンスノズル8は、例えば回転駆動部8aの回転軸8bに取り付けられたノズルアーム8cの先端部に支持されており、回転軸8bの回動によって第2の待機部62からカップ6内の基板Gの中心部上方まで移動できる。なお、リンスノズル8は、リンス液供給管を介して例えば現像処理装置1の外部に設置されたリンス液供給源(図示せず)に接続されており、リンス液供給源から供給されたリンス液(純水)を下方に向けて吐出して基板Gをリンス処理する。   Further, as shown in FIGS. 1 and 2, a second standby portion 62 is provided on the Y direction positive direction side of the cup 6. In the second standby section 62, a rinse liquid discharge nozzle 8 (hereinafter referred to as a rinse nozzle 8) that is a rinse liquid supply means can wait. The rinse nozzle 8 is supported by, for example, a tip end of a nozzle arm 8c attached to the rotation shaft 8b of the rotation drive unit 8a, and the substrate G in the cup 6 from the second standby unit 62 is rotated by the rotation of the rotation shaft 8b. It can move to the upper center part. The rinsing nozzle 8 is connected to, for example, a rinsing liquid supply source (not shown) installed outside the development processing apparatus 1 via a rinsing liquid supply pipe, and the rinsing liquid supplied from the rinsing liquid supply source. (Pure water) is discharged downward to rinse the substrate G.

一方、上記超音波振動子7は、図3に示すように、現像液Lが接触した状態すなわち現像液Lが基板G表面に液盛りされた状態にある基板Gの回路パターンPに対して近接して対向配設され、回路パターンPの領域と同じ若しくは若干大きい領域の発振面7aを有している。この超音波振動子7は超音波発振器30を介して高周波駆動電源31に接続されている(図1参照)。なおこの場合、超音波振動子7の周波数は、例えば400kHz〜3MHzに設定されている。   On the other hand, as shown in FIG. 3, the ultrasonic vibrator 7 is close to the circuit pattern P of the substrate G in the state where the developer L is in contact, that is, the state where the developer L is accumulated on the surface of the substrate G. Thus, the oscillating surface 7a has a region that is the same as or slightly larger than the region of the circuit pattern P. The ultrasonic transducer 7 is connected to a high frequency drive power source 31 via an ultrasonic oscillator 30 (see FIG. 1). In this case, the frequency of the ultrasonic transducer 7 is set to 400 kHz to 3 MHz, for example.

また、超音波振動子7は、図1及び図2に示すように、カップ6の外方側に配置された水平回動及び昇降機能を有する移動機構20に連結される回動・昇降アーム21によって支持されている。したがって、移動機構20の駆動によって超音波振動子7は、現像ノズル5による現像液Lの液盛り時には現像ノズル5と干渉しないカップ6の外方位置に待機し、現像液Lの液盛り後には、基板Gの回路パターンPの上方まで回動した後、下降して基板Gの回路パターンP上に近接して現像液Lに接液し、超音波振動子7の発振面7aより発生する超音波振動が回路パターンP上の現像液Lに伝播しながら現像処理を行うことができる。   Further, as shown in FIGS. 1 and 2, the ultrasonic vibrator 7 is a turning / lifting arm 21 connected to a moving mechanism 20 having a horizontal turning and lifting function disposed on the outer side of the cup 6. Is supported by. Therefore, when the moving mechanism 20 is driven, the ultrasonic vibrator 7 waits at an outer position of the cup 6 that does not interfere with the developing nozzle 5 when the developing liquid 5 is deposited by the developing nozzle 5. Then, after rotating to above the circuit pattern P of the substrate G, it descends and comes close to the circuit pattern P of the substrate G and comes into contact with the developer L, and the supersonic wave generated from the oscillation surface 7a of the ultrasonic vibrator 7 The development process can be performed while the sonic vibration propagates to the developer L on the circuit pattern P.

上記実施形態では、超音波振動子7が移動機構20によってカップ6の外方の待機位置と、回転基台2によって保持された基板Gの回路パターンPの上方位置及び回路パターンP上の近接位置に移動する場合について説明したが、別の移動機構を用いて超音波振動子7を基板Gの回路パターンP上に近接するようにしてもよい。   In the above embodiment, the ultrasonic vibrator 7 is moved to the outside standby position of the cup 6 by the moving mechanism 20, the upper position of the circuit pattern P of the substrate G held by the rotating base 2, and the close position on the circuit pattern P. However, the ultrasonic transducer 7 may be brought close to the circuit pattern P of the substrate G using another moving mechanism.

例えば、図4及び図5に示すように、回転基台2によって保持された基板Gの回路パターンPの上方位置に配設される超音波振動子7を、例えばシリンダ等の昇降移動機構20Aに連結する逆L字状の昇降アーム21Aによって支持し、昇降移動機構20Aの駆動によって現像ノズル5のスキャン時(液盛り時)には現像ノズル5と干渉しない上方位置に待機し、現像液Lの液盛り後には、基板Gの回路パターンPの近接位置まで下降するように構成してもよい。なお、図4及び図5において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   For example, as shown in FIGS. 4 and 5, the ultrasonic vibrator 7 disposed above the circuit pattern P of the substrate G held by the rotating base 2 is moved to the up-and-down moving mechanism 20A such as a cylinder. It is supported by an inverted L-shaped lifting arm 21A to be connected, and when the developing nozzle 5 is scanned (at the time of liquid piling) by driving the lifting / lowering moving mechanism 20A, it waits at an upper position where it does not interfere with the developing nozzle 5, You may comprise so that it may descend | fall to the proximity position of the circuit pattern P of the board | substrate G after liquid accumulation. 4 and 5, the other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and description thereof is omitted.

また、上記実施形態では、回路パターンPが基板Gの中心部の1箇所に形成される場合について説明したが、例えば図6及び図7に示すように、基板Gの複数箇所例えば同心円上の4箇所に回路パターンPが形成される場合においても、各回路パターンP上の近接位置に上記と同様に超音波振動子7を対向配置して現像処理を行うことができる。   In the above-described embodiment, the case where the circuit pattern P is formed at one central portion of the substrate G has been described. However, for example, as shown in FIGS. Even in the case where the circuit pattern P is formed at a location, the development process can be performed by arranging the ultrasonic transducer 7 so as to face each other in the vicinity of each circuit pattern P in the same manner as described above.

この場合、各超音波振動子7は、昇降アーム21Aに連結される支持プレート22によって垂下されており、支持プレート22を介して超音波発振器30と高周波駆動電源31に接続されている(図6参照)。この場合においても、各回路パターンPと各超音波振動子7の位置決めはサーボモータ12の調整によって行うことができる。   In this case, each ultrasonic transducer 7 is suspended by a support plate 22 connected to the elevating arm 21A, and is connected to the ultrasonic oscillator 30 and the high-frequency drive power source 31 via the support plate 22 (FIG. 6). reference). Even in this case, each circuit pattern P and each ultrasonic transducer 7 can be positioned by adjusting the servo motor 12.

上記説明では、支持プレート22によって垂下される4つの超音波振動子7を昇降移動機構20Aによって各回路パターンP上の近接位置に対向させる場合について説明したが、第1実施形態の水平回動及び昇降機能を有する移動機構20によって支持プレート22によって垂下される4つの超音波振動子7を、カップ6の外方の待機位置と各回路パターンP上の近接位置に移動させることも可能である。   In the above description, the case where the four ultrasonic transducers 7 suspended by the support plate 22 are opposed to the adjacent positions on each circuit pattern P by the lifting / lowering moving mechanism 20A has been described. It is also possible to move the four ultrasonic transducers 7 suspended by the support plate 22 by the moving mechanism 20 having the lifting function to the standby position outside the cup 6 and the proximity position on each circuit pattern P.

次に、上記のように構成される第1実施形態の現像処理装置の現像処理について説明する。まず、現像処理装置の外部の図示しない搬送アームによって搬送された基板Gが搬入出口1bを介してケーシング1内に搬入されると、基板Gは、予め上昇していた支持ピン14に受け渡され、支持ピン14の下降によって回転基台2上に載置されると共に、位置決めピン10によって位置決めされる。   Next, development processing of the development processing apparatus according to the first embodiment configured as described above will be described. First, when the substrate G transported by a transport arm (not shown) outside the development processing apparatus is loaded into the casing 1 via the loading / unloading port 1b, the substrate G is transferred to the support pins 14 that have been raised in advance. The support pin 14 is lowered and placed on the rotary base 2 and positioned by the positioning pin 10.

次に、第1の待機部61に待機していた現像ノズル5が基板GよりY方向負方向側の助走ステージ3上まで移動して、助走ステージ3上に配置される。そして、現像ノズル5が下降し、スタート位置である助走ステージ3の表面に近接され、現像液Lを帯状に供給(吐出)しながらY方向正方向側に移動して基板G表面に現像液Lを液盛りする。   Next, the developing nozzle 5 that has been waiting in the first standby section 61 moves to the run-up stage 3 on the Y direction negative direction side from the substrate G and is arranged on the run-up stage 3. Then, the developing nozzle 5 descends and comes close to the surface of the run-up stage 3 that is the start position, and moves to the positive direction side in the Y direction while supplying (discharging) the developer L in a strip shape, and the developer L on the substrate G surface. Pour up.

基板Gの表面に現像液Lが液盛りされた後、移動機構20(又は昇降移動機構20A)の駆動により超音波振動子7が基板Gの回路パターンPの上方から下降して基板Gの回路パターンPに近接する位置に移動し現像液Lに接液する。この状態で、高周波駆動電源31が駆動して、超音波振動子7の発振面7aより発生する超音波振動が回路パターンP上の現像液Lに伝播しながら現像処理を行う。これにより、回路パターンP上の現像液分子が振動しながら回路パターンPの全域に拡散・分散して有機系現像プロセス時のスカム発生を防止することができる。つまり、現像液自体の流体が促進され、回路パターンに沿った溝方向の現像液の流れが促進されるので、現像液を積極的に接触させて回路パターンに残渣するスカムの除去効果(スカムの沈着を抑制する効果)を高めることができる。   After the developer L is deposited on the surface of the substrate G, the ultrasonic transducer 7 descends from above the circuit pattern P of the substrate G by driving the moving mechanism 20 (or the lifting / lowering moving mechanism 20A). It moves to a position close to the pattern P and comes into contact with the developer L. In this state, the high frequency driving power source 31 is driven, and the development process is performed while the ultrasonic vibration generated from the oscillation surface 7a of the ultrasonic vibrator 7 propagates to the developer L on the circuit pattern P. As a result, the developer molecules on the circuit pattern P can be diffused and dispersed throughout the circuit pattern P while oscillating, thereby preventing the occurrence of scum during the organic development process. In other words, the fluid of the developing solution itself is promoted, and the flow of the developing solution in the groove direction along the circuit pattern is promoted. Therefore, the effect of removing the scum remaining in the circuit pattern by positively contacting the developing solution (scum of the scum) The effect of suppressing deposition) can be enhanced.

上記のようにして現像処理が終了した後、超音波振動子7は基板Gの回路パターンPの近接位置から後退して基板Gの上方又はカップ6の外方の待機位置に退避する。   After the development processing is completed as described above, the ultrasonic transducer 7 is retracted from the proximity position of the circuit pattern P on the substrate G and retracted to the standby position above the substrate G or outside the cup 6.

続いて、第2の待機部62で待機していたリンスノズル8が基板Gの中心部上方まで移動し、回転基台2によって助走ステージ3と共に基板Gが回転される。リンスノズル8から回転された基板G上にリンス液が吐出されて基板Gが洗浄される。   Subsequently, the rinse nozzle 8 that has been waiting in the second standby unit 62 moves to above the center of the substrate G, and the substrate G is rotated together with the running stage 3 by the rotation base 2. A rinse liquid is discharged onto the substrate G rotated from the rinse nozzle 8 to clean the substrate G.

上記のようにして、基板Gが所定時間洗浄された後、サーボモータ12の駆動により基板Gを高速回転して基板Gを乾燥する。   As described above, after the substrate G is cleaned for a predetermined time, the substrate G is rotated at a high speed by driving the servo motor 12 to dry the substrate G.

基板Gが乾燥されると、再び支持ピン14が上昇して基板Gを持ち上げ、ケーシング1内に進入する搬送アーム(図示せず)が基板Gを受け取って現像処理装置の外部に搬出される。   When the substrate G is dried, the support pins 14 are raised again to lift the substrate G, and a transfer arm (not shown) that enters the casing 1 receives the substrate G and carries it out of the development processing apparatus.

上記説明では、現像処理を1回行う場合について説明したが、現像処理を複数回繰り返して行うようにしてもよい。現像処理を複数回繰り返すことにより、先の現像処理によって生じた溶解生成物を除去した後、新たに現像液Lを液盛りして現像処理を行うことができるので、更に現像処理の精度の向上を図ることができる。   In the above description, the case where the development process is performed once has been described, but the development process may be repeated a plurality of times. By repeating the development process a plurality of times, the dissolved product generated by the previous development process can be removed, and then the developer L can be newly added to perform the development process, further improving the accuracy of the development process. Can be achieved.

<第2実施形態>
図8は、この発明に係る第2実施形態の現像処理装置の一例を示す概略断面図である。
Second Embodiment
FIG. 8 is a schematic sectional view showing an example of the development processing apparatus according to the second embodiment of the present invention.

第2実施形態は、基板Gを保持手段である搬送チャック25によって保持して、基板Gを現像液槽24内の現像液Lに浸漬し、搬送チャック25に設けられた超音波振動子7より発生する超音波振動を、基板Gの回路パターンP上の現像液Lに伝播しながら現像処理を行う場合である。   In the second embodiment, the substrate G is held by the transport chuck 25 that is a holding unit, the substrate G is immersed in the developer L in the developer tank 24, and the ultrasonic vibrator 7 provided on the transport chuck 25 is used. This is a case where development processing is performed while propagating the generated ultrasonic vibration to the developer L on the circuit pattern P of the substrate G.

第2実施形態の現像処理装置における搬送チャック25は、図8に示すように、水平基部26の側端部から垂下する略L字状の複数の保持爪27を具備すると共に、水平基部26の下面における基板Gの回路パターンP(この場合、基板Gの中心部に1つ設けられている。)と対向する部位に設けられる超音波振動子7Aを具備している。この場合、超音波振動子7Aは、第1実施形態と同様に、回路パターンPの領域と同じ若しくは若干大きい領域の発振面7aを有している。この超音波振動子7は超音波発振器30を介して高周波駆動電源31に接続されている。   As shown in FIG. 8, the transport chuck 25 in the development processing apparatus according to the second embodiment includes a plurality of substantially L-shaped holding claws 27 that hang from the side end of the horizontal base 26, and The ultrasonic transducer 7A is provided at a portion facing the circuit pattern P of the substrate G on the lower surface (in this case, one is provided at the center of the substrate G). In this case, the ultrasonic transducer 7A has the oscillation surface 7a in the same or slightly larger area than the area of the circuit pattern P, as in the first embodiment. The ultrasonic vibrator 7 is connected to a high frequency drive power supply 31 via an ultrasonic oscillator 30.

なお、現像液槽24の底部には排液口28が設けられており、この排液口28に開閉弁Vを介設した排液管29が接続されている。   A drain port 28 is provided at the bottom of the developer tank 24, and a drain pipe 29 having an open / close valve V is connected to the drain port 28.

上記のように構成される第2実施形態の現像処理装置によれば、図示しない基板保持台上に位置決めされた状態で載置された基板Gを搬送チャック25が受け取って、現像液槽24内の現像液Lに浸漬した状態で、高周波駆動電源31が駆動して、超音波振動子7の発振面7aより発生する超音波振動が回路パターンP上の現像液Lに伝播しながら現像処理を行うことができる。   According to the development processing apparatus of the second embodiment configured as described above, the transport chuck 25 receives the substrate G placed in a state of being positioned on a substrate holding table (not shown), and the inside of the developer tank 24 The high frequency driving power source 31 is driven in the state of being immersed in the developing solution L, and the ultrasonic vibration generated from the oscillation surface 7a of the ultrasonic vibrator 7 is propagated to the developing solution L on the circuit pattern P to perform the developing process. It can be carried out.

なお、上記説明では、回路パターンPが1つの場合について説明したが、基板Gの複数箇所例えば4箇所に回路パターンPが形成されている場合においても、搬送チャック25の水平基部26の下面における回路パターンPと対向する部位に超音波振動子7を配設することで、各超音波振動子7の発振面7aより発生する超音波振動が各回路パターンP上の現像液Lに伝播しながら現像処理を行うことができる。   In the above description, the case where there is one circuit pattern P has been described, but the circuit on the lower surface of the horizontal base portion 26 of the transport chuck 25 even when the circuit pattern P is formed at a plurality of places, for example, four places on the substrate G. By disposing the ultrasonic vibrator 7 at a portion facing the pattern P, the ultrasonic vibration generated from the oscillation surface 7a of each ultrasonic vibrator 7 is developed while propagating to the developer L on each circuit pattern P. Processing can be performed.

<第3実施形態>
図9は、この発明に係る第3実施形態の現像処理装置の要部を示す概略断面図、図10は、図9の概略平面図である。
<Third Embodiment>
FIG. 9 is a schematic cross-sectional view showing the main part of the development processing apparatus according to the third embodiment of the present invention, and FIG. 10 is a schematic plan view of FIG.

第3実施形態は、現像液Lが接触した状態にある基板Gの回路パターンPの近傍の該基板Gの側面に超音波振動子7Bの発振面7bを当接させ、超音波振動子7Bより発生する超音波振動が基板Gを介して回路パターンP上の現像液Lに伝播して現像処理を行う場合である。   In the third embodiment, the oscillation surface 7b of the ultrasonic transducer 7B is brought into contact with the side surface of the substrate G in the vicinity of the circuit pattern P of the substrate G in contact with the developer L, and the ultrasonic transducer 7B This is a case where the generated ultrasonic vibration propagates to the developer L on the circuit pattern P through the substrate G to perform development processing.

例えば、基板Gの中心部に1つの回路パターンPが形成されている場合は、図9及び図10に示すように、回転基台2に保持された基板Gの4辺の側面Gaの対向する中心部にそれぞれ超音波振動子7Bの発振面7bを当接して、超音波振動子7Bより発生する超音波振動が基板Gを介して回路パターンP上の現像液Lに伝播して現像処理を行う。   For example, when one circuit pattern P is formed in the center of the substrate G, the side surfaces Ga on the four sides of the substrate G held on the rotating base 2 face each other as shown in FIGS. The oscillation surface 7b of the ultrasonic vibrator 7B is brought into contact with the center portion, and the ultrasonic vibration generated from the ultrasonic vibrator 7B propagates to the developing solution L on the circuit pattern P through the substrate G to perform development processing. Do.

この場合、各超音波振動子7Bは、先端に発振面7bを有する棒状に形成され、回転基台2の側壁部2aに設けられた貫通孔2b内に移動可能に嵌挿されており、基端に連結するシリンダ等の接離移動機構40によって先端の発振面7bが基板Gの側面Gaに対して接離移動可能に形成されている。すなわち、基板表面に現像液Lが液盛りされた現像処理時には、接離移動機構40の伸長動作によって発振面7bが基板Gの側面Gaに当接し、この状態で、高周波駆動電源31が駆動して、超音波振動子7Bの発振面7aより発生する超音波振動が基板Gを伝って回路パターンP上の現像液Lに伝播しながら現像処理を行う。また、リンス処理時には、接離移動機構40の収縮動作によって発振面7bが基板Gの側面Gaから離れると共に、回転基台2の外方側に退避して、リンス処理時の回転基台2の回転を可能にしている。   In this case, each ultrasonic transducer 7B is formed in a rod shape having an oscillation surface 7b at the tip, and is movably fitted in a through hole 2b provided in the side wall 2a of the rotary base 2. The tip oscillation surface 7b is formed so as to be able to move toward and away from the side surface Ga of the substrate G by a contact and separation mechanism 40 such as a cylinder connected to the end. That is, during the development process in which the developer L is accumulated on the surface of the substrate, the oscillation surface 7b contacts the side surface Ga of the substrate G by the extension operation of the contact / separation moving mechanism 40, and in this state, the high-frequency drive power source 31 is driven. Thus, development processing is performed while ultrasonic vibration generated from the oscillation surface 7a of the ultrasonic transducer 7B propagates through the substrate G to the developer L on the circuit pattern P. Further, at the time of the rinsing process, the oscillation surface 7b is moved away from the side surface Ga of the substrate G by the contraction operation of the contact / separation moving mechanism 40 and retracted to the outer side of the rotating base 2 to Rotation is possible.

なお、第3実施形態において、超音波振動子7Bの発振面7bを回路パターンPになるべく近接する位置に当接する方がよく、好ましくは基板Gの上部側面Gaに当接する方がよい。   In the third embodiment, the oscillation surface 7b of the ultrasonic transducer 7B is preferably in contact with a position as close as possible to the circuit pattern P, and preferably in contact with the upper side surface Ga of the substrate G.

なお、第3実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the third embodiment, the other parts are the same as those in the first embodiment. Therefore, the same parts are denoted by the same reference numerals and description thereof is omitted.

なお、上記説明では、基板Gの中心部に1つの回路パターンPが形成される場合について説明したが、基板Gの複数箇所例えば同心円上の4箇所に回路パターンPが形成される場合は、図11に示すように、基板Gの側面Gaにおける各回路パターンPの外側の2辺の近傍位置に超音波振動子7Bの発振面7bを当接する。   In the above description, the case where one circuit pattern P is formed at the center of the substrate G has been described. However, when the circuit pattern P is formed at a plurality of locations on the substrate G, for example, four locations on concentric circles, FIG. 11, the oscillation surface 7b of the ultrasonic transducer 7B is brought into contact with positions near the two outer sides of each circuit pattern P on the side surface Ga of the substrate G.

このように構成することにより、基板表面に現像液Lが液盛りされた現像処理時には、接離移動機構40の伸長動作によって発振面7bが基板Gの側面Gaに当接し、この状態で、高周波駆動電源31が駆動して、各超音波振動子7Bの発振面7aより発生する超音波振動が基板Gを伝って各回路パターンP上の現像液Lに伝播しながら現像処理を行うことができる。   With this configuration, during the development process in which the developer L is accumulated on the surface of the substrate, the oscillation surface 7b is brought into contact with the side surface Ga of the substrate G by the extension operation of the contact / separation moving mechanism 40. The drive power supply 31 is driven, and the development process can be performed while the ultrasonic vibration generated from the oscillation surface 7a of each ultrasonic vibrator 7B propagates through the substrate G to the developer L on each circuit pattern P. .

また、第3実施形態においても、現像処理を繰り返して行うことにより、新しい現像液Lを回路パターンPに接触させることができるので、更に回路パターンPに残渣するスカムの除去効果を更に高めることができる。   Also in the third embodiment, by repeatedly performing the developing process, the new developer L can be brought into contact with the circuit pattern P, so that the effect of removing scum remaining on the circuit pattern P can be further enhanced. it can.

<第4実施形態>
図12は、第4実施形態の現像処理装置の現像処理状態を示す概略断面図(a)、(a)のI部拡大断面図(b)及びリンス処理状態を示す概略断面図(c)である。
<Fourth embodiment>
FIG. 12 is a schematic cross-sectional view (a) showing the development processing state of the development processing apparatus according to the fourth embodiment, an enlarged sectional view (b) of I part of (a), and a schematic cross-sectional view (c) showing the rinsing processing state. is there.

第4実施形態は、現像液Lが接触した状態にある基板Gを保持する回転基台2における基板Gの回路パターンPの近傍位置に超音波振動子7Cを配設すると共に、超音波振動子7Cを基板Gの下面Gbに当接し、超音波振動子7Cより発生する超音波振動が基板Gを介して回路パターンP上の現像液Lに伝播しながら現像処理を行う場合である。   In the fourth embodiment, an ultrasonic vibrator 7C is disposed at a position near the circuit pattern P of the substrate G in the rotating base 2 that holds the substrate G in contact with the developer L, and the ultrasonic vibrator In this case, 7C is brought into contact with the lower surface Gb of the substrate G, and the development process is performed while the ultrasonic vibration generated from the ultrasonic vibrator 7C propagates to the developer L on the circuit pattern P through the substrate G.

この場合、超音波振動子7Cは、基板Gの回路パターンPに近接する回転基台2の底部の下面Gbに配設されており、超音波振動子7Cの上面に突設された複数の針状片7cが、それぞれ回転基台2の底部に設けられた複数の貫通孔2c内を貫通して基板Gの下面に接触(当接)している(図12(b)参照)。   In this case, the ultrasonic transducer 7C is disposed on the lower surface Gb of the bottom of the rotary base 2 close to the circuit pattern P of the substrate G, and a plurality of needles protruding from the upper surface of the ultrasonic transducer 7C. Each piece 7c penetrates through a plurality of through-holes 2c provided at the bottom of the rotary base 2 and is in contact (contact) with the lower surface of the substrate G (see FIG. 12B).

このように構成することにより、基板表面に現像液Lが液盛りされた現像処理時には、高周波駆動電源31が駆動して、超音波振動子7Cの針状片7cより発生する超音波振動が基板Gを伝って回路パターンP上の現像液Lに伝播しながら現像処理を行うことができる。   With this configuration, during the development process in which the developer L is deposited on the surface of the substrate, the high frequency driving power source 31 is driven, and the ultrasonic vibration generated from the needle-like piece 7c of the ultrasonic transducer 7C is generated. Development processing can be performed while propagating through G to the developer L on the circuit pattern P.

また、第4実施形態においては、上記のようにして現像処理を行った後、図12(c)に示すように、基板Gの中央部上方にリンスノズル8を移動し、回転する基板Gに対してリンスノズル8からリンス液である純水(DIW)を供給(吐出)しながらリンス処理を行う。この際においても、高周波駆動電源31が駆動して、超音波振動子7Cの針状片7cより発生する超音波振動が基板Gを伝って回路パターンP上の純水(DIW)に伝播しながらリンス処理を行うことができる。これにより、回路パターンに残渣するスカムの除去効果を更に高めることができる。   In the fourth embodiment, after the development processing is performed as described above, the rinse nozzle 8 is moved above the central portion of the substrate G as shown in FIG. On the other hand, a rinsing process is performed while supplying (discharging) pure water (DIW) as a rinsing liquid from the rinsing nozzle 8. Also in this case, the high frequency driving power source 31 is driven, and the ultrasonic vibration generated from the needle-like piece 7c of the ultrasonic vibrator 7C is transmitted through the substrate G to the pure water (DIW) on the circuit pattern P. A rinsing process can be performed. Thereby, the removal effect of the scum remaining on the circuit pattern can be further enhanced.

なお、第4実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the fourth embodiment, the other parts are the same as those in the first embodiment, and therefore the same parts are denoted by the same reference numerals and description thereof is omitted.

なお、第4実施形態においても、基板Gの複数箇所例えば同心円上の4箇所に回路パターンPが形成される場合は、各回路パターンPに近接する回転基台2の底部の下面に、同様に超音波振動子7Cを配設すればよい。   Also in the fourth embodiment, when the circuit patterns P are formed at a plurality of locations on the substrate G, for example, at four locations on the concentric circles, the bottom surface of the rotary base 2 adjacent to each circuit pattern P is similarly applied to the bottom surface. An ultrasonic transducer 7C may be provided.

また、第4実施形態においても、現像処理を繰り返して行うことにより、新しい現像液Lを回路パターンPに接触させることができるので、更に回路パターンPに残渣するスカムの除去効果を更に高めることができる。   Also in the fourth embodiment, by repeatedly performing the developing process, the new developer L can be brought into contact with the circuit pattern P, so that the effect of removing scum remaining on the circuit pattern P can be further enhanced. it can.

<第5実施形態>
図13は、この発明に係る第5実施形態の現像処理装置の要部を示す概略平面図(a)、(a)のII部拡大図(b)及び(b)のIII−III線に沿う断面図(c)である。
<Fifth Embodiment>
FIG. 13: is a schematic plan view (a) which shows the principal part of the developing processing apparatus of 5th Embodiment based on this invention, the II section enlarged view of (a), and the III-III line of (b). It is sectional drawing (c).

第5実施形態は、現像液Lが接触した状態にある基板Gを保持する回転基台2に設けられた基板保持部材である位置決め用ピンを超音波振動子7Dによって形成し、超音波振動子7Dより発生する超音波振動が基板Gを介して回路パターンP(この場合、基板の同心円上の4箇所に形成されている。)上の現像液Lに伝播して現像処理を行う場合である。   In the fifth embodiment, a positioning pin, which is a substrate holding member provided on the rotary base 2 that holds the substrate G in contact with the developer L, is formed by the ultrasonic vibrator 7D, and the ultrasonic vibrator This is a case where the ultrasonic vibration generated from 7D propagates through the substrate G to the developer L on the circuit pattern P (in this case, formed at four locations on the concentric circles of the substrate) to perform development processing. .

この場合、位置決め用ピンを兼用する超音波振動子7Dは、回転基台2の開口凹部4の角部よりなるべく回路パターンPの外側辺に近接する位置に配設されており、各超音波振動子7Dは、超音波発振器30を介して高周波駆動電源31に接続されている。   In this case, the ultrasonic transducer 7D also serving as a positioning pin is disposed at a position as close as possible to the outer side of the circuit pattern P from the corner of the opening recess 4 of the rotation base 2, and each ultrasonic vibration The child 7D is connected to a high-frequency drive power source 31 via an ultrasonic oscillator 30.

なお、第5実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the fifth embodiment, the other parts are the same as those in the first embodiment, and therefore the same parts are denoted by the same reference numerals and description thereof is omitted.

第5実施形態の現像処理装置を用いて基板Gを現像処理する場合は、第1実施形態と同様に、現像ノズル5から現像液Lを帯状に供給(吐出)しながら移動して基板G表面に現像液Lが液盛りされた後、高周波駆動電源31が駆動して、超音波振動子7Dより発生する超音波振動が基板Gを伝って回路パターンP上の現像液Lに伝播しながら現像処理を行うことができる。   When developing the substrate G using the development processing apparatus of the fifth embodiment, as in the first embodiment, the developer G is moved while being supplied (discharged) in a strip shape from the developing nozzle 5 and moved to the surface of the substrate G. After the developer L is deposited, the high-frequency drive power source 31 is driven, and the ultrasonic vibration generated from the ultrasonic vibrator 7D propagates through the substrate G to the developer L on the circuit pattern P while developing. Processing can be performed.

また、第5実施形態においても、上記のようにして現像処理を行った後、基板Gの中央部上方にリンスノズル8を移動し、回転する基板Gに対してリンスノズル8からリンス液である純水(DIW)を供給(吐出)しながらリンス処理を行う。この際においても、高周波駆動電源31が駆動して、超音波振動子7Dより発生する超音波振動が基板Gを伝って回路パターンP上の純水(DIW)に伝播しながらリンス処理を行うことができる。   Also in the fifth embodiment, after the development processing is performed as described above, the rinse nozzle 8 is moved above the central portion of the substrate G, and the rinse liquid is supplied from the rinse nozzle 8 to the rotating substrate G. Rinsing is performed while supplying (discharging) pure water (DIW). Also in this case, the high frequency drive power supply 31 is driven, and the rinsing process is performed while the ultrasonic vibration generated from the ultrasonic vibrator 7D propagates through the substrate G to the pure water (DIW) on the circuit pattern P. Can do.

また、第5実施形態においても、現像処理を繰り返して行うことにより、新しい現像液Lを回路パターンPに接触させることができるので、更に回路パターンPに残渣するスカムの除去効果を更に高めることができる。   Also in the fifth embodiment, by repeatedly performing the developing process, the new developer L can be brought into contact with the circuit pattern P, so that the effect of removing scum remaining on the circuit pattern P can be further enhanced. it can.

なお、上記説明では、基板Gの同心円上の4箇所に回路パターンPが形成される場合について説明したが、基板Gの中心部に1つの回路パターンPが形成される場合についても、第5実施形態の現像処を適用することができる。   In the above description, the case where the circuit pattern P is formed at four locations on the concentric circles of the substrate G has been described, but the case where one circuit pattern P is formed at the center of the substrate G is also the fifth embodiment. A form of development can be applied.

G 基板
Ga 基板側面
Gb 基板下面
2 回転基台(保持手段)
5 現像ノズル(現像液供給ノズル)
7,7A,7B,7C 超音波振動子
7D 位置決めピン兼用超音波振動子
7a,7b 発振面
7c 針状片
8 リンスノズル(リンス液供給手段)
12 サーボモータ(回転駆動部)
20 移動機構
20A 昇降移動機構
21 回動・昇降アーム
21A 昇降アーム
24 現像液槽
25 搬送チャック(保持手段)
30 超音波発振器
31 高周波駆動電源
40 接離移動機構
G substrate Ga substrate side surface Gb substrate lower surface 2 Rotating base (holding means)
5 Development nozzle (Developer supply nozzle)
7, 7A, 7B, 7C Ultrasonic vibrator 7D Ultrasonic vibrator serving as positioning pin 7a, 7b Oscillating surface 7c Needle piece 8 Rinsing nozzle (rinsing liquid supply means)
12 Servo motor (rotary drive)
DESCRIPTION OF SYMBOLS 20 Moving mechanism 20A Elevating / moving mechanism 21 Rotating / elevating arm 21A Elevating arm 24 Developer tank 25 Conveying chuck (holding means)
30 Ultrasonic oscillator 31 High frequency drive power supply 40 Contact / separation moving mechanism

Claims (4)

露光処理された基板の回路パターン表面に現像液を接触させて、現像処理を行う現像処理方法であって、
現像液が接触した状態にある基板の回路パターンの近傍の該基板の側面に超音波振動子の発振面を当接させ、超音波振動子より発生する超音波振動が上記基板を介して回路パターン上の現像液に伝播しながら現像処理を行う、ことを特徴とする超音波現像処理方法。
A development processing method in which a developer is brought into contact with a circuit pattern surface of a substrate subjected to exposure processing to perform development processing,
The oscillation surface of the ultrasonic transducer is brought into contact with the side surface of the substrate in the vicinity of the circuit pattern of the substrate in contact with the developer, and the ultrasonic vibration generated by the ultrasonic transducer is passed through the substrate through the circuit pattern. An ultrasonic development processing method, wherein development processing is performed while propagating to the developer above.
請求項1記載の超音波現像処理方法において、
上記現像処理を複数回繰り返して行う、ことを特徴とする超音波現像処理方法。
The ultrasonic development processing method according to claim 1,
An ultrasonic development method, wherein the development treatment is repeated a plurality of times.
露光処理された基板の回路パターン表面に現像液を接触させて、現像処理を行う現像処理装置であって、
現像液が接触した状態にある基板の回路パターンの近傍の該基板側面に発振面が当接される超音波振動子と、上記超音波振動子の駆動電源とを具備し、
上記超音波振動子より発生する超音波振動が上記基板を介して回路パターン上の現像液に伝播しながら現像処理を行う、ことを特徴とする超音波現像処理装置。
A development processing apparatus that performs a development process by bringing a developer into contact with a circuit pattern surface of an exposed substrate,
An ultrasonic transducer in which an oscillation surface is in contact with the side surface of the substrate in the vicinity of the circuit pattern of the substrate in contact with the developer, and a driving power source for the ultrasonic transducer,
An ultrasonic development processing apparatus, wherein development processing is performed while ultrasonic vibration generated from the ultrasonic transducer propagates to a developer on a circuit pattern through the substrate.
請求項3記載の超音波現像処理装置において、
上記超音波振動子を基板の側面及び基板を保持する保持手段に対して接離移動する接離移動機構を更に具備することを特徴とする超音波現像処理装置。
In the ultrasonic development processing device according to claim 3,
An ultrasonic development processing apparatus, further comprising a contact / separation moving mechanism for moving the ultrasonic transducer toward and away from a side surface of the substrate and a holding means for holding the substrate.
JP2012213586A 2012-09-27 2012-09-27 Ultrasonic development processing method and ultrasonic development processing apparatus Active JP5438191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213586A JP5438191B2 (en) 2012-09-27 2012-09-27 Ultrasonic development processing method and ultrasonic development processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213586A JP5438191B2 (en) 2012-09-27 2012-09-27 Ultrasonic development processing method and ultrasonic development processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008155106A Division JP5305330B2 (en) 2008-06-13 2008-06-13 Ultrasonic development processing method and ultrasonic development processing apparatus

Publications (2)

Publication Number Publication Date
JP2013016857A JP2013016857A (en) 2013-01-24
JP5438191B2 true JP5438191B2 (en) 2014-03-12

Family

ID=47689142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213586A Active JP5438191B2 (en) 2012-09-27 2012-09-27 Ultrasonic development processing method and ultrasonic development processing apparatus

Country Status (1)

Country Link
JP (1) JP5438191B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415678B1 (en) 2017-03-30 2022-07-04 에이씨엠 리서치 (상하이) 인코포레이티드 substrate cleaning device
WO2023200027A1 (en) * 2022-04-14 2023-10-19 주식회사 올도완 Method for removing photoresist particles

Also Published As

Publication number Publication date
JP2013016857A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
TW494714B (en) Method of processing substrate and apparatus for processing substrate
KR0150596B1 (en) Developing method and apparatus thereof
US7819594B2 (en) Development processing device
JP2005347761A (en) Substrate-cleaning device and substrate-cleaning method
JP5438191B2 (en) Ultrasonic development processing method and ultrasonic development processing apparatus
JPH11329960A (en) Substrate processing method and device therefor
JP2013115207A (en) Substrate cleaning device and substrate cleaning method
KR101023069B1 (en) Apparatus and Method for Processing A Substrate
JP5305330B2 (en) Ultrasonic development processing method and ultrasonic development processing apparatus
JP3624116B2 (en) Processing apparatus and processing method
JP3880480B2 (en) Liquid processing equipment
TW201305724A (en) Film formation method, computer memory medium, and film formation device
JP2002289502A (en) Substrate processing method and substrate processing apparatus
KR102041309B1 (en) Method for washing mask
JP4263559B2 (en) Development processing apparatus and development processing method
JP3865669B2 (en) Liquid processing apparatus and liquid processing method
TWI384333B (en) Development processing device
KR102095233B1 (en) Apparatus for cleaning both plane of photomask
JP2000262989A (en) Substrate washing device
KR101024355B1 (en) Nozzle and Apparatus for Processing A Substrate The Same
JP3583552B2 (en) Processing device and processing method
KR20030089326A (en) Method of cleaning wafer plat-zone bevel, cleaning machine and edge exposure wafer system having cleaning function
JP2004095705A5 (en)
JP4183121B2 (en) Development processing method and development processing apparatus
KR102188935B1 (en) Brush device for apparatus cleaning both plane of photomask

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5438191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250