JP5437280B2 - Method for reforming low-rank coal and method for producing coke - Google Patents

Method for reforming low-rank coal and method for producing coke Download PDF

Info

Publication number
JP5437280B2
JP5437280B2 JP2010549495A JP2010549495A JP5437280B2 JP 5437280 B2 JP5437280 B2 JP 5437280B2 JP 2010549495 A JP2010549495 A JP 2010549495A JP 2010549495 A JP2010549495 A JP 2010549495A JP 5437280 B2 JP5437280 B2 JP 5437280B2
Authority
JP
Japan
Prior art keywords
coal
low
reforming
modifier
caking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010549495A
Other languages
Japanese (ja)
Other versions
JPWO2010090230A1 (en
Inventor
竹司 目黒
健次 松原
勝明 塩原
秀俊 諸富
隆 横山
雄大 西川
英史 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010549495A priority Critical patent/JP5437280B2/en
Publication of JPWO2010090230A1 publication Critical patent/JPWO2010090230A1/en
Application granted granted Critical
Publication of JP5437280B2 publication Critical patent/JP5437280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • C10L5/16Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders with bituminous binders, e.g. tar, pitch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Coke Industry (AREA)

Description

本発明は、低石炭化度炭の改質方法及びコークスの製造方法に関し、具体的には、低石炭化度炭に分類される非粘結炭或いは微粘結炭などを、製鉄用のコークス製造時などの原料として使用可能な粘結炭相当品に改質する技術に関する。本発明の低石炭化度炭の改質技術は、資源の有効利用を、より省エネルギーで達成できるものである。   The present invention relates to a method for reforming low-coalizing coal and a method for producing coke. Specifically, non-caking coal or slightly caking coal classified as low-coalizing coal is used as coke for iron making. The present invention relates to a technique for reforming to a caking coal equivalent that can be used as a raw material during production. The low-coalification coal reforming technology of the present invention can achieve effective use of resources with more energy saving.

製鉄用コークスは、コークス炉内で、石炭を、コークス化が可能な1,000℃以上の温度まで熱処理をする過程で軟化溶融して塊状のコークスとして製造するため、原料の石炭には、瀝青炭に属する粘結炭が用いられている。しかし、粘結炭の産出量は、低石炭化度炭に分類される非粘結炭或いは微粘結炭(これらをまとめて非微粘結炭とする)と比べて絶対量が少なく、且つ、可採量も少ないため、近年、コークス製造に適した粘結炭は、高価で入手が難しくなってきている。JIS M 0104(石炭利用技術用語)の定義によれば、粘結炭とは、石炭の性状による分類において、粘結性を示す石炭のことである。また微粘結炭とは、僅かに粘結性を示す石炭のことであり、非粘結炭とは、粘結性を示さない石炭のことである。石炭は天然物であるため明確に分類することは難しいが、非微粘結炭として通常扱われている石炭の範囲を数値で特定する試みがなされている。例えば、石炭の反射率(Ro)と最高流動度(MF)の測定値が、図3に示した斜線で囲まれた範囲内にあるものが非微粘結炭と定義されており、石炭の使用にあたっては、この図を用いることが多い。これと同様に、石炭の性状を最高流動度と平均反射率(石炭化度)によって表示し、産地別の傾向を示したMOFダイヤグラムと呼ばれる石炭評価図(図4参照)が知られている。このMOFダイヤグラムを用いることで、対象とする石炭の最高流動度と平均反射率(石炭化度)の測定値から、コークス原料として用いることができるか否かを評価することも行われている。本発明における非微粘結炭は、図3に示した斜線で囲まれた範囲を意味するものとする。すなわち、石炭化度を示す平均反射率(Ro)と最高流動度(MF;logddpm)で決定される、Ro<0.85であり、かつ、MF<2.5であるbの範囲と、Ro>0.85であり、かつ、MF<0.5であるaの範囲の両方の範囲である。本発明における低石炭化度炭は、これらのうちのbの範囲を意味する。   Coke for iron making is produced as a bulk coke by softening and melting coal in the coke oven in the process of heat treatment up to a temperature of 1,000 ° C. or higher where coking is possible. The caking coal belonging to is used. However, the amount of caking coal produced is smaller in absolute amount than non-caking coal or slightly caking coal classified as low-coalizing coal (collectively these are non-caking coal), and In recent years, caking coal suitable for the production of coke has become expensive and difficult to obtain because of its low yield. According to the definition of JIS M 0104 (coal utilization technical term), caking coal is coal that shows caking properties in classification according to the properties of coal. Moreover, the slightly caking coal is coal which shows slightly caking property, and non-caking coal is coal which does not show caking property. Although it is difficult to classify coal clearly because it is a natural product, attempts have been made to numerically specify the range of coal that is normally treated as non-coking coal. For example, coal reflectance (Ro) and maximum fluidity (MF) measured values within the range surrounded by diagonal lines shown in FIG. In use, this figure is often used. Similarly, a coal evaluation diagram called MOF diagram (see FIG. 4) is known in which the properties of coal are displayed by the maximum fluidity and average reflectance (coalization degree), and the tendency by production area is shown. By using this MOF diagram, it is also evaluated whether or not it can be used as a coke raw material from the measured values of the maximum fluidity and average reflectance (coalization degree) of the target coal. The non-slightly caking coal in this invention shall mean the range enclosed with the oblique line shown in FIG. That is, the range of b where Ro <0.85 and MF <2.5 determined by the average reflectance (Ro) indicating the degree of coalification and the maximum fluidity (MF; logddpm), and Ro > 0.85 and both ranges of a range where MF <0.5. The low-rank coal in the present invention means the range of b among these.

上記したように、粘結炭は高価でしかも入手が難しくなっているのに対し、非微粘結炭は、世界的に粘結炭よりも産出量が多く、粘結炭よりも安価に入手できる。このため、従来より、非微粘結炭を粘結炭相当品に改質する研究が進められており、これまでにも数多くの提案がなされている。   As mentioned above, caking coal is expensive and difficult to obtain, while non-minor caking coal has a higher production volume than caking coal worldwide and is cheaper than caking coal. it can. For this reason, research on reforming non-slightly caking coal to caking coal equivalent has been advanced, and many proposals have been made so far.

低石炭化度炭を粘結炭相当品に変換する技術に関しては、粘結性に劣る非微粘結炭を、原料炭に含めて使用する場合に、タールやピッチを粘結材として添加することについて種々提案されている(特許文献1、特許文献2参照)。また、粉状の低石炭化度炭を、タールピッチなどを粘結材としてブリケット化し、これを原料炭(粘結炭)と共にコークス炉に装入する、成型炭法と呼ばれる方法によれば、コークス化性が大幅に改善されるので、コークス炉へ共に装入する原料炭の比率を低減できる。また、非特許文献1では、非粘結炭に、アスファルトを特殊な条件で熱処理して得られる特殊粘結材(ASPと呼ばれている)を添加して成型することで、非粘結炭を良質な強粘結炭に改質できると述べている。さらに、非特許文献1では、ASPは、単なるピッチの代替品ではなく、非粘結炭に対する独特の改質性をもつ改質材であり、これを用いることで、改質効果と成型効果の相乗効果が得られるとしている。なお、上記した技術において、コークス炉に装入される通常の石炭粉の粒度(−3mm)で、湿炭(水分10%程度)にて40mm程度のブリケット(成型物)を作り、コークス炉に装入することが行われている。   Regarding the technology for converting low-carbonized coal to caking coal equivalent, tar and pitch are added as caking material when using non-slightly caking coal that is inferior in caking properties in coking coal. Various proposals have been made (see Patent Document 1 and Patent Document 2). In addition, according to a method called a coal molding method, powdered low-coalizing coal is briquetted with tar pitch as a caking material and charged into a coke oven together with raw coal (caking coal). Since the coking property is greatly improved, the ratio of coking coal charged into the coke oven can be reduced. Further, in Non-Patent Document 1, non-caking coal is obtained by adding a special caking material (called ASP) obtained by heat-treating asphalt under special conditions to non-caking coal. Says that it can be modified to a high-quality strong caking coal. Furthermore, in Non-Patent Document 1, ASP is not just a substitute for pitch, but is a modifying material having a unique modifying property for non-coking coal, and by using this, the reforming effect and the molding effect are improved. It is said that a synergistic effect can be obtained. In addition, in the above-described technique, a briquette (molded product) of about 40 mm is made with wet coal (water content of about 10%) with a normal coal powder particle size (-3 mm) charged in the coke oven, Charging is done.

近年、上記で説明した成型炭法と概念の異なった方法の非微粘結炭を改質する方法が登場している。(財)石炭利用総合センターと(社)日本鉄鋼連盟との共同開発によるSCOPE21と称されるシステムであるが、当該技術の基本は、非微粘結炭の粉体を急速加熱することで粘結性を帯びさせることを利用したものである。SCOPE21プロセスは、通常のコークス炉と比較し、原料炭に対する非微粘結炭の使用比率を拡大することができると同時に、高生産性、環境改善、省エネルギーを図るという特徴をも有する(非特許文献2参照)。   In recent years, a method for modifying non-coking coal, which has a different concept from the coal casting method described above, has appeared. This is a system called SCOPE21 jointly developed by the Coal Utilization Center and the Japan Iron and Steel Federation, but the basis of this technology is to rapidly heat non-coking coal powder. It is used to make it tangible. The SCOPE21 process can increase the usage ratio of non-slightly caking coal relative to raw coal compared to a normal coke oven, and at the same time has the characteristics of high productivity, environmental improvement, and energy saving (non-patented) Reference 2).

特開2000−8047号公報JP 2000-8047 A 特開2004−307557号公報JP 2004-307557 A

燃料協会誌,Vol.56,No.607,886-897(1977).Journal of Fuel Association, Vol.56, No.607,886-897 (1977). エネルギー学会誌,Vol.84,No.3,170-176(2005).Journal of the Japan Institute of Energy, Vol.84, No.3, 170-176 (2005).

しかしながら、従来の改質技術は、いずれも、改質した非微粘結炭のみを原料として強度の高いコークスを製造できているわけではない。これまでに出されている各報告でも、コークス原料中、高々20〜50%程度の非微粘結炭の使用に甘んじているし、現実はもっとその比率は低いといわれている。また、非微粘結炭の改質材として使用されている前記したASPは、石油精製で副生した残留残渣油を過熱水蒸気(500〜700℃)で熱処理して得られる石油製品であるため、価格が高いという問題以上に、近年、大きな問題となっている省エネルギーという観点からも解決すべき課題がある。このように、コークス製造における非微粘結炭の有効利用は、積年の課題であるが、いまだ確立した技術とは言い難いのが現状である。さらに、資源の枯渇、環境保全、省エネルギー(二酸化炭素発生量の削減)といった問題もあり、この点からも検討が急務となっている。   However, none of the conventional reforming technologies can produce high-strength coke using only the modified non-caking coal as a raw material. In the reports published so far, it is said that the coke raw material is at most 20-50% non-slightly caking coal, and the ratio is actually lower. Moreover, since the above-mentioned ASP used as a modifier of non-slightly caking coal is a petroleum product obtained by heat-treating residual residual oil by-produced in petroleum refining with superheated steam (500 to 700 ° C.). In addition to the problem of high price, there is a problem to be solved from the viewpoint of energy saving, which has become a big problem in recent years. Thus, the effective use of non-slightly caking coal in coke production is a long-standing issue, but it is difficult to say that it is still an established technology. In addition, there are problems such as resource depletion, environmental conservation, and energy saving (reduction of carbon dioxide generation).

したがって、本発明の目的は、低石炭化度炭に分類される非微粘結炭を、製鉄用などのコークスの製造における原料として使用可能な粘結炭相当品に変換する低石炭化度炭の改質方法を提供することにある。また、本発明の別の目的は、改質した低石炭化度炭をコークスの製造原料として高い使用比率で適用でき、しかも、適用した場合に、粘結炭を原料としたコークスと同等の品質のコークスが得られ、さらに、省エネルギーにも寄与し得るコークスの製造方法を提供することにある。   Therefore, the object of the present invention is to convert a non-coking coal classified as a low-coalizing coal into a coking coal equivalent that can be used as a raw material in the production of coke for iron making and the like. It is an object of the present invention to provide a reforming method. Another object of the present invention is that a modified low-coalized coal can be applied at a high use ratio as a raw material for producing coke, and when applied, the quality is equivalent to that of coke made from caking coal. It is another object of the present invention to provide a method for producing coke that can contribute to energy saving.

上記目的は以下の本発明によって達成される。すなわち、本発明は、低石炭化度炭を粘結炭相当品に変換させるための低石炭化度炭の改質方法であって、粉状の低石炭化度炭と、石油系又は石炭系の改質材とを併存させた状態で350℃〜450℃の温度で加熱して改質する改質工程を少なくとも有し、上記石油系又は石炭系の改質材が、軟化点が200℃以下80℃以上、キノリン不溶分含有量が10質量%以下、芳香族炭素指数fa値が0.3以上の重質油であり、かつ、その使用比率が、上記低石炭化度炭と上記改質材との比が質量基準で97:3〜60:40であり、上記低石炭化度炭として、非微粘結炭に分類されるもののうち、平均反射率(Ro)がRo<0.85で、かつ、最高流動度(MF;logddpm)がMF<2.5であり、さらに、石炭のマセラル分析の測定方法によって求められる活性部分の比率が50%を超えるものを選定することを特徴とする低石炭化度炭の改質方法である。 The above object is achieved by the present invention described below. That is, the present invention is a method for reforming low-carbonized coal for converting low-carbonized coal to caking coal equivalent, which is a powdered low-carbonized coal, petroleum-based or coal-based At least a reforming step for reforming by heating at a temperature of 350 ° C. to 450 ° C. in a state where the reformer is coexisting, and the above-mentioned petroleum-based or coal-based modifier has a softening point of 200 ° C. Below 80 ° C., heavy oil with quinoline insoluble content of 10% by mass or less, aromatic carbon index fa value of 0.3 or more, and the use ratio is the above-mentioned low coal degree coal and the above modified coal The ratio with respect to the mass material is 97: 3 to 60:40 on a mass basis, and among those classified as non-slightly caking coal as the low -rank coal, the average reflectance (Ro) is Ro <0. 85, and maximum fluidity degree; a (MF logddpm) is MF <2.5, further measurement of the maceral analysis of coal The ratio of the active moiety which are determined by the law is a method of modifying a low coalification degree coal characterized that you selected in excess of 50%.

本発明の低石炭化度炭の改質方法の好ましい形態としては、下記のものが挙げられる。上記低石炭化度炭が、水分2%以下のものである低石炭化度炭の改質方法。上記低石炭化度炭の活性部分の比率が60%を超えるものである低石炭化度炭の改質方法。上記粉状の低石炭化度炭と石油系又は石炭系の改質材とを混和して、これらを併存させた状態とする低石炭化度炭の改質方法。上記低石炭化度炭が、水分2%以下、粒度1mm以下に乾燥・粉砕されたものであり、且つ、該粉状の低石炭化度炭と石油系又は石炭系の改質材とを混和し、該混和物を所定の形状に成型して成型物とし、該成型物を350℃〜450℃の温度で加熱する低石炭化度炭の改質方法。 The following are mentioned as a preferable form of the reforming method of the low coal degree coal of this invention. The low coalification degree charcoal method for modifying a low coalification degree coal Ru der those less than 2% moisture. A method for reforming low-carbonized coal, wherein the ratio of the active portion of the low-carbonized coal exceeds 60%. A method for reforming low-coalification coal, in which the powdery low-coalification coal and petroleum-based or coal-based reforming material are mixed and coexisted . Upper SL low coalification degree coal, 2% moisture or less, which has been dried and ground to a particle size of less than 1 mm, and, a powder-like low-coalification degree coal and petroleum or coal-based modifying material A method for reforming low-coalizing coal comprising mixing, molding the mixture into a predetermined shape to obtain a molded product, and heating the molded product at a temperature of 350 ° C to 450 ° C.

本発明の別の実施形態は、コークス原料の少なくとも一部に低石炭化度炭を改質して得られる粘結炭相当品を用いるコークスの製造方法であって、粉状の低石炭化度炭と、石油系又は石炭系の改質材とを併存させた状態で350℃〜450℃の温度で加熱して低石炭化度炭を改質する改質工程を有し、上記石油系又は石炭系の改質材が、軟化点が200℃以下80℃以上、キノリン不溶分含有量が10質量%以下、芳香族炭素指数fa値が0.3以上の重質油であり、かつ、その使用比率が、上記低石炭化度炭と上記改質材との比が質量基準で97:3〜60:40であり、上記低石炭化度炭として、非微粘結炭に分類されるもののうち、平均反射率(Ro)がRo<0.85で、かつ、最高流動度(MF;logddpm)がMF<2.5であり、さらに、石炭のマセラル分析の測定方法によって求められる活性部分の比率が50%を超えるものを選定することを特徴とするコークスの製造方法である。 Another embodiment of the present invention is a method for producing coke using caking coal equivalent obtained by reforming low-coalification coal as at least a part of a coke raw material, which is a powdery low-coalization degree It has a charcoal, a modifying step of modifying the petroleum or by heating at a temperature of 350 ° C. to 450 ° C. in a state in which coexist a modifier of coal-based low coalification degree coal, the petroleum or The coal-based modifier is a heavy oil having a softening point of 200 ° C. or less and 80 ° C. or more, a quinoline insoluble content of 10% by mass or less, and an aromatic carbon index fa value of 0.3 or more, and Although the usage ratio is 97: 3 to 60:40 on a mass basis, the ratio of the low- carbonized coal and the modifier is classified as non- coking coal as the low -carbonized coal. Of these, the average reflectance (Ro) is Ro <0.85, and the maximum fluidity (MF; logddpm) is MF <2.5. There further proportion of the active moiety which are determined by the measuring method of the maceral analysis of coal is coke production method which is characterized that you selected in excess of 50%.

本発明のコークスの製造方法の好ましい形態としては、下記のものが挙げられる。上記低石炭化度炭が、水分2%以下のものであるコークスの製造方法。上記低石炭化度炭の活性部分の比率が60%を超えるものであるコークスの製造方法。上記低石炭化度炭が、水分2%以下、粒度1mm以下に乾燥・粉砕されたものであり、且つ、該粉状の低石炭化度炭と石油系又は石炭系の改質材との混和物を所定の形状に成型して成型物とし、該成型物を350℃〜450℃の温度で加熱するコークスの製造方法。 The following are mentioned as a preferable form of the manufacturing method of the coke of this invention. The low coalification degree charcoal method moisture less than 2% of what der Ru coke. A method for producing coke, wherein the ratio of the active portion of the low-carbonized coal exceeds 60%. The low coal content coal is dried and pulverized to a moisture content of 2% or less and a particle size of 1 mm or less, and the powdery low coal content coal is mixed with a petroleum-based or coal-based modifier. A method for producing coke, wherein a product is molded into a predetermined shape to obtain a molded product, and the molded product is heated at a temperature of 350 ° C to 450 ° C.

本発明によれば、低石炭化度炭を、製鉄用などのコークスの製造における原料として使用可能な粘結炭相当品に効率よく変換する低石炭化度炭の改質方法が提供される。また、本発明によれば、改質した低石炭化度炭をコークスの製造原料として高い使用比率で適用でき、しかも、適用した場合に、粘結炭を原料としたコークスと同等の品質のコークスが得られ、さらに、省エネルギーにも寄与し得る工業価値の極めて高いコークスの製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the reforming method of the low coalification degree coal which converts efficiently low coalification degree coal into the caking coal equivalent which can be used as a raw material in manufacture of coke for iron manufacture etc. is provided. In addition, according to the present invention, the modified low-coalizing coal can be applied at a high use ratio as a raw material for producing coke, and when applied, coke having a quality equivalent to that of coke using caking coal as a raw material. Further, a method for producing coke having an extremely high industrial value that can contribute to energy saving is provided.

本発明のコークス製造方法を工業化した場合の概略構成図である。It is a schematic block diagram at the time of industrializing the coke manufacturing method of this invention. ブリケットを成型するペレタイジング法を適用した一例を示す概略構成図である。It is a schematic block diagram which shows an example to which the pelletizing method which shape | molds a briquette is applied. 低石炭化度炭の範囲を示す図である。It is a figure which shows the range of a low coalification degree coal. MOFダイヤグラムである。It is a MOF diagram.

以下、好ましい実施の形態を挙げて、本発明をさらに詳細に説明するが、低石炭化度炭に分類される非微粘結炭を例にとって説明する。本発明者らは、積年の課題であるコークス製造における非微粘結炭の有効利用を可能とする低石炭化度炭の粘結炭相当品への改質方法について鋭意検討を行った。そして、その最終目的を、非微粘結炭を100%粘結炭相当品に改質でき、しかも、その際の改質効率を上げ、資源の枯渇、省エネルギー(二酸化炭素発生量の削減)にも配慮した改質技術を提供するものである。そして、かかる目的達成に向けて、具体的に、これまでの改質材に対しても有用である効率のよい改質が可能な低石炭化度炭の選定、安価で有効な新たな改質材の探索、低石炭化度炭に対する改質材の使用比率の低減、改質速度の改善などの検討を行った結果、本発明に至った。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments, but an explanation will be given by taking, as an example, non-slightly caking coal classified as low-coalizing coal. The present inventors diligently studied a method for reforming low-coalizing coal to a caking coal equivalent that enables effective use of non-slightly caking coal in coke production, which is a long-standing problem. And the ultimate goal is to improve the non-slightly caking coal to 100% caking coal equivalent, increase the reforming efficiency at that time, deplete resources and save energy (reducing carbon dioxide generation). It also provides reforming technology that takes into account. In order to achieve these objectives, specifically, the selection of low-rank coal that can be efficiently reformed, which is also useful for conventional reformers, and new reforms that are inexpensive and effective. As a result of investigations such as search for materials, reduction of the ratio of use of the reforming material relative to low-coalized coal, and improvement of the reforming speed, the present invention has been achieved.

まず、本発明者らは、従来より、非微粘結炭の改質材として使用されているASPは、改質材としての性能に不満があること、また、前記したように、ASPは、石油精製で副生した残留残渣油を過熱水蒸気(500℃〜700℃)で熱処理して製造された特殊ピッチであるため、価格が高く、近年、大きな問題となっている省エネルギーの観点からも課題があることに着目した。そして、改質効果が高く、しかも、製造にかかるコストやエネルギーの低減が可能な新たな改質材を探索すべく検討を行った。その結果、例えば、石油精製工程で副生する残渣を含んだ高沸点溜出物(重質油)が、低石炭化度炭の改質材として有用であることを見出した。さらなる検討の結果、副生物の中でも、軟化点が200℃以下80℃以上、キノリン不溶分含有量(以下、QI成分とも呼ぶ)が10質量%以下、芳香族炭素指数fa値が0.3以上の芳香族性をもつ重質油が、低石炭化度炭の改質材として有用であることを見出した。このような特徴を有する重質油の一例として、アスファルトを高温高圧下で、ブタンやペンタンなどの溶剤を用い抽出した残渣があるが、かかる重質油は、特に本発明で使用する改質材として好適である。以下、この重質油をSDAピッチと呼ぶ。上記の重質油は石油精製の際の副生物として得られ、前記した従来の改質材(例えば、ASP)のように特別の製造コストを必要とするものではなく安価であり、しかも、低石炭化度炭に対して高い改質性能を示すため、改質材として使用した場合には、極めて効果的で、且つ、非常に経済的な石油系の改質材であり、低石炭化度炭に対する使用量を従来のものよりも大幅に低減することができる。詳細については後述する。なお、上記と同様の特性のものが得られれば、石炭系の改質材であっても使用可能である。   First, the inventors of the present invention have been unsatisfied with the performance of the reformer as an ASP that has been conventionally used as a modifier of non-slightly caking coal, and as described above, Because it is a special pitch produced by heat-treating residual residual oil produced as a by-product in petroleum refining with superheated steam (500 ° C to 700 ° C), the price is high and it is also a problem from the viewpoint of energy saving, which has become a big problem in recent years. Focused on the fact that there is. And it examined in order to search for the new modifier which has a high reforming effect and can reduce the cost and energy required for manufacturing. As a result, it has been found that, for example, a high boiling point distillate (heavy oil) containing a residue by-produced in an oil refining process is useful as a modifier for low-degree coal. As a result of further studies, among the by-products, the softening point is 200 ° C. or lower and 80 ° C. or higher, the quinoline insoluble content (hereinafter also referred to as QI component) is 10% by mass or lower, and the aromatic carbon index fa value is 0.3 or higher. It has been found that heavy oils having the following aromatic properties are useful as modifiers for low-rank coal. As an example of heavy oil having such characteristics, there is a residue obtained by extracting asphalt with a solvent such as butane or pentane under high temperature and high pressure, and such heavy oil is particularly a modifier used in the present invention. It is suitable as. Hereinafter, this heavy oil is referred to as SDA pitch. The above heavy oil is obtained as a by-product during petroleum refining, and does not require a special production cost as in the case of the above-described conventional modifier (for example, ASP), and is low in price. Because it shows high reforming performance against coal, it is an extremely effective and very economical petroleum-based reformer when used as a reformer. The amount used for charcoal can be greatly reduced as compared with the conventional one. Details will be described later. In addition, even if the thing of the characteristic similar to the above is obtained, even if it is a coal-type modifier, it can be used.

本発明者らは、次に、改質対象の低石炭化度炭に着目して検討を行った。すなわち、低石炭化度炭の中で、より改質が容易であるものを選択できれば、改質効率を向上できると考えて、非微粘結炭について詳細な検討を行った。その結果、本発明者らが新たに見出した上記の石油系の改質材SDAピッチを用いた場合は勿論のこと、従来技術において改質材として使用されているASP等を用いた場合にも、より良好な粘結炭相当品への改質が効率的に可能となる低石炭化度炭の特性を見出して、本発明に至った。具体的には、本発明の低石炭化度炭の改質方法は、改質対象の低石炭化度炭を、石炭のマセラル分析の測定によって求められる活性部分が50%以上、より好ましくは60%以上のものを使用することを特徴とする。本発明で規定する「石炭のマセラル分析の測定によって求められる活性部分」は、「石炭の微細組織成分及び反射率測定方法 JIS M8816」に準拠して測定することで得られる値である。すなわち、本発明でいう活性部分とは、石炭のマセラル分析の測定によって求められる活性成分のことであるが、より具体的には、活性成分とは、石炭中に含まれるビトリニット、エクジニット、デグラレディニットなどの成分を意味するとされている。なお、当該JISでは、活性成分に対する語の不活性成分を、「不活性成分とは、石炭を顕微鏡で観察して識別できる微細組織成分(マセラル)のうち、空気との接触を断って加熱した場合、軟化・溶融しない成分」と定義している。   Next, the present inventors examined by focusing on the low-rank coal to be reformed. That is, if low-coalizing coal that can be easily reformed can be selected, the reforming efficiency can be improved. As a result, not only when the above-mentioned petroleum-based reforming material SDA pitch newly found by the present inventors is used, but also when ASP or the like used as a reforming material in the prior art is used. As a result, the present inventors have found the characteristics of low-carbonized coal that can be efficiently modified into a caking coal-equivalent product, and have reached the present invention. Specifically, in the method for reforming low-rank coal according to the present invention, the low-rank coal to be reformed has an active portion determined by measurement of coal maceral analysis of 50% or more, more preferably 60%. % Or more is used. The “active part calculated | required by the measurement of the maceral analysis of coal” prescribed | regulated by this invention is a value obtained by measuring based on "the fine structure component of a coal, and the reflectance measuring method JISM8816." That is, the active part as used in the present invention refers to an active ingredient obtained by measurement of coal maceral analysis. More specifically, the active ingredient refers to vitrinite, ecdynite, degrading contained in coal. It is said to mean ingredients such as ready knit. In addition, in the said JIS, the inactive ingredient of the word with respect to an active ingredient is "the inactive ingredient is a micro structure component (maceral) that can be identified by observing coal with a microscope, and is heated by cutting off contact with air. In this case, it is defined as a component that does not soften or melt.

本発明者らの検討によれば、このような活性部分が、50%以上、より好ましくは60%以上の低石炭化度炭を選択して使用することで、改質効率を向上させることができる。本発明者らは、種々の低石炭化度炭について、改質材として、従来のASPと本発明者らが新たに見出したSDAピッチとを用いて改質の程度を観察した。具体的には、活性部分が75%である低石炭化度炭を粉砕し、分級した35メッシュ以下の乾燥石炭粉にそれぞれの改質材を添加し、混練して得た混和物の改質の程度を、ギーセラープラストメータでされる最高流動度で評価した。石炭の粘結性や粘着性に関しては、通常、測定装置として、ギーセラープラストメータ[JIS M8801(石炭類の試験方法)]を使用して流動度を測定することで評価されている。ギーセラープラストメータでの測定の際に使用する電気炉は、JIS M8801で、300℃〜500℃の温度範囲で、3.0±0.1℃/minで昇温できるものと規定されている。これに対して本発明では、低石炭化度炭と改質材とを混練し、混和物を350℃〜450℃の温度で加熱処理して改質することを前提とすることとしたため、実験室での検討にあったては、上記電気炉で、加熱処理を行うと同時にギーセラープラストメータでの流動度の測定を行った。   According to the study by the present inventors, the reforming efficiency can be improved by selecting and using low-carbonized coal having such an active portion of 50% or more, more preferably 60% or more. it can. The present inventors have observed the degree of reforming using various conventional low-grade coals and SDA pitch newly found by the present inventors as a reforming material for various low-coalized coals. Specifically, low-carbonized coal with an active portion of 75% is pulverized, and each modifier is added to dry coal powder of 35 mesh or less, and kneaded. The degree of fluidity was evaluated by the maximum fluidity measured by a Gieseler plastometer. Coal caking and tackiness are usually evaluated by measuring the fluidity using a Gieseller Plastometer [JIS M8801 (Coal testing method)] as a measuring device. The electric furnace used for measurement with a Gisela plastometer is JIS M8801, and is specified as being capable of raising the temperature at a temperature range of 300 ° C. to 500 ° C. at 3.0 ± 0.1 ° C./min. . On the other hand, in the present invention, it is assumed that the low-carbonized coal and the reforming material are kneaded and the admixture is heat-treated at a temperature of 350 ° C. to 450 ° C. for reforming. In the examination in the room, heat treatment was performed in the electric furnace, and at the same time, the fluidity was measured with a Gieseler plastometer.

流動度は、通常ddpm(Dial Division per Minute)単位で表され、石炭の特性値としては最高流動度(Maximum Fluidity;MF)を用いている。慣用的にこれを流動度という場合が多く、また、ddpmの常用対数を使用することもある。通常、コークス製造の際に原料炭として用いられる粘結炭は、ギーセラープラストメータ値が300ddpm以上のもの、より好ましくは1,000ddpm以上のものである(図3参照)。これに対して、低石炭化度炭の最高流動度は、非粘結炭の場合は0ddpmであり、微粘結炭の場合は、通常、数十ddpm〜100ddpm、高くても200〜300ddpm程度であるが、このような非微粘結炭を粘結炭相当品に改質できれば、非常に有用である。例えば、低石炭化度炭を200〜300ddpm程度のものに改質できれば、粘結炭に配合してコークス原料として十分に使用可能であるし、さらに300ddpm以上のものに改質できれば、改質したもののみをコークスの原料炭とすることもできる。   The fluidity is usually expressed in units of ddpm (Dial Division per Minute), and the maximum fluidity (MF) is used as the characteristic value of coal. Conventionally, this is often referred to as fluidity, and the common logarithm of ddpm is sometimes used. Usually, caking coal used as coking coal at the time of coke production has a Gieseler plastometer value of 300 ddpm or more, more preferably 1,000 ddpm or more (see FIG. 3). On the other hand, the maximum fluidity of the low-coalizing coal is 0 ddpm in the case of non-caking coal, and is usually several tens ddpm to 100 ddpm, or about 200 to 300 ddpm at the highest in the case of slightly caking coal. However, it would be very useful if such non-slightly caking coal could be modified to caking coal equivalent. For example, if low-carbonized coal can be modified to about 200 to 300 ddpm, it can be used as coke raw material by blending with caking coal, and if it can be further modified to more than 300 ddpm, it has been modified. Only the raw material can be used as coking coal.

上記検討の結果、改質前の低石炭化度炭のみを熱処理した場合は、最高流動度が28ddpmであったのに対して、それぞれの改質材を、質量基準で低石炭化度炭90に対して10添加した場合には、低石炭化度炭のみの場合と比較し、ASPを添加したものでは、最高流動度が約3倍になり、SDAピッチを添加したものでは最高流動度が6倍以上になり、いずれも改質材として有効であることを確認した。さらに、改質材の添加量を、低石炭化度炭87.5に対して12.5とした場合には、ASPを添加したものでは、低石炭化度炭のみの場合と比較し、最高流動度が約4.5倍に留まったのに対して、SDAピッチを添加したものでは最高流動度が1,000ddpm以上の良質の粘結炭相当品になった。なお、改質材の添加量をさらに増大させれば、ASPを添加したものも、最高流動度が1,000ddpm以上の良質の粘結炭相当品になることがわかった。   As a result of the above examination, when only the low-carbonized coal before reforming was heat-treated, the maximum fluidity was 28 ddpm, whereas each modifier was reduced to 90% low-carbonized coal on a mass basis. When 10 is added, the maximum fluidity is about 3 times higher when ASP is added than when only low-degree coal is added, and the maximum fluidity is increased when SDA pitch is added. It became 6 times or more and confirmed that all were effective as a modifier. Furthermore, when the addition amount of the modifier is 12.5 with respect to 87.5 low-coalized coal, the one with ASP is the highest compared to the case of low-carbonized coal alone. While the fluidity remained at about 4.5 times, the one with the addition of SDA pitch became a high quality caking coal equivalent with a maximum fluidity of 1,000 ddpm or more. In addition, it was found that if the addition amount of the modifier was further increased, the one with ASP added would be a good quality caking coal equivalent with a maximum fluidity of 1,000 ddpm or more.

一方、活性部分が50%よりも少ない低石炭化度炭を用いて同様の検討を行ったところ、改質材の添加量を多くし、低石炭化度炭60に対して40としても、改質傾向を示すものの、いずれの改質材を用いた場合にも、得られた改質炭は、それだけでコークス原料とすることができるものではなく、満足できる結果は得られなかった。これらのことは、先ず、改質の対象とする低石炭化度炭を選定する場合には、活性部分が高いものとすることが有効であることを示している。本発明者らのさらなる検討によれば、活性部分が50%以上、より好ましくは60%以上のものを使用すれば、より効率的に且つ確実に、コークス原料となり得る良質の粘結炭相当品への改質が可能である。さらに、改質材としてSDAピッチを使用すれば、従来の改質材のASPよりも安価であることに加えて、その使用量を大幅に低減できることから、より経済的な改質が可能となるので、工業的にはより好ましいと言える。   On the other hand, when a similar study was performed using low-coalizing coal with less than 50% active part, the amount of modifier added was increased, and even when the low-coalizing coal 60 was set to 40, it was improved. Even though any modifier was used, the obtained modified coal could not be used as a coke raw material alone, and satisfactory results were not obtained. These facts show that it is effective to have a high active portion when selecting a low-rank coal to be reformed. According to further studies by the present inventors, a high-quality caking coal equivalent that can be used as a coke raw material more efficiently and reliably when an active portion is used in an amount of 50% or more, more preferably 60% or more. Can be modified. Furthermore, if SDA pitch is used as a modifier, in addition to being cheaper than the ASP of the conventional modifier, the amount used can be greatly reduced, so that more economical reform is possible. Therefore, it can be said that it is more preferable industrially.

上記した本発明に対し、従来技術では、改質対象の非微粘結炭について、元素分析、工業分析などの記述はあるが、それ以外の分析値に関しての規定はない。このことは、従来技術においては、改質対象の非微粘結炭に関し、石炭のマセラル分析の測定によって求められる活性部分の割合が、改質の程度に影響を及ぼすことについての知見さえも、これまでは全く得られていなかったことを意味している。本発明では、従来、まったく考えられていなかった改質対象とする低石炭化度炭を、そのマセラル分析の測定によって求められる活性部分の割合によって着目して選定するという手段によって、低石炭化度炭のより良質な粘結炭相当品への改質効果を、より確実なものとする。   In contrast to the above-described present invention, in the prior art, there are descriptions of elemental analysis, industrial analysis, and the like for non-slightly caking coal to be reformed, but there is no provision for other analysis values. This indicates that, in the prior art, regarding the non-coking coal to be reformed, even the knowledge that the proportion of the active part determined by the measurement of the maceral analysis of the coal affects the degree of reforming, It means that it has never been obtained so far. In the present invention, a low-coalization degree coal to be reformed, which has not been considered in the past, is selected by paying attention to the ratio of the active portion determined by the measurement of the maceral analysis. The effect of reforming charcoal to a higher quality caking coal equivalent is made more reliable.

前記したように、本発明の低石炭化度炭の改質方法によって改質する対象の石炭としては、例えば、ギーセラープラストメータ値が200〜300ddpmよりも小さい値の非微粘結炭が挙げられる。石炭の種類でいうと、瀝青炭のうち石炭化度の低いものから、亜瀝青炭のうちで石炭化度の高いものが該当する。本発明の低石炭化度炭の改質方法によれば、例えば、後述する実施例の場合のように、この値が数ddpmのものや、さらには0ddpmの非粘結炭であっても、良質な粘結炭相当品に改質することが可能である。   As described above, examples of coal to be reformed by the method for reforming low-coalification coal of the present invention include non-slightly caking coal having a Gieseler plastometer value smaller than 200 to 300 ddpm. It is done. In terms of the type of coal, the bituminous coal is the one with the lowest degree of coalification and the sub-bituminous coal is the one with the highest degree of coalification. According to the reforming method of low-degree coal of the present invention, for example, even in the case of this value of several ddpm or even non-caking coal of 0 ddpm, as in the case of the examples described later, It can be modified to a high quality caking coal equivalent.

本発明では、改質対象の低石炭化度炭の選定を、マセラル分析の測定によって求められる活性部分の割合を規定することで行い、さらに選定した低石炭化度炭を改質材と併存させた状態で350℃〜450℃の温度で加熱して改質を行う。前記したように、本発明では、より好ましくは、改質材として石油系の改質材のSDAピッチを使用する。このようにすれば、改質材の使用量を低減した状態で、極めて効率よく良質な粘結炭相当品に改質することができる。以下、本発明に好適な石油系の改質材であるSDAピッチについて説明する。   In the present invention, the selection of the low-carbonized coal to be reformed is performed by defining the ratio of the active portion obtained by the measurement of maceral analysis, and the selected low-carbonized coal is coexisted with the reformer. In this state, reforming is performed by heating at a temperature of 350 ° C. to 450 ° C. As described above, in the present invention, more preferably, an SDA pitch of a petroleum-based modifier is used as the modifier. If it does in this way, in the state which reduced the usage-amount of the modifier, it can modify | reform to the caking coal equivalent goods of good quality extremely efficiently. Hereinafter, the SDA pitch, which is a petroleum-based modifier suitable for the present invention, will be described.

SDAピッチは、石油精製において副生する残渣を含んだ高沸点溜出物として得られる。中でも改質材として好ましいものは、その軟化点が200℃以下80℃以上、QI成分が10質量%以下、芳香族炭素指数fa値(以下、単にfa値とも呼ぶ)が0.3以上の重質油である。より好ましいものとしては、fa値が0.5以上で、軟化点が190℃以下、さらに好ましくは180℃以下のものが挙げられる。ここで、fa値は、芳香族炭素の数を全炭素の数で除した値である。なお、本発明で使用した重質油の軟化点は、JIS−K2531に準拠した環球法により測定される軟化点である。この環球法にて測定困難な高軟化点の重質油の軟化点は、JIS−M8801の流動性試験方法(ギーセラープラストメータ法)に準拠した軟化開始温度(ギーセラープラストメータ測定時に指示が動き始めて1.0ddpmに達した時の温度)とした。   SDA pitch is obtained as a high-boiling distillate containing a by-product residue in petroleum refining. Among them, preferred modifiers are those having a softening point of 200 ° C. or less and 80 ° C. or more, a QI component of 10% by mass or less, and an aromatic carbon index fa value (hereinafter also simply referred to as fa value) of 0.3 or more. It is a quality oil. More preferable examples include those having an fa value of 0.5 or more and a softening point of 190 ° C. or less, more preferably 180 ° C. or less. Here, the fa value is a value obtained by dividing the number of aromatic carbons by the total number of carbons. In addition, the softening point of the heavy oil used by this invention is a softening point measured by the ring and ball method based on JIS-K2531. The softening point of heavy oil with a high softening point, which is difficult to measure by the ring and ball method, is determined by the softening start temperature in accordance with the fluidity test method of JIS-M8801 (Gieseller plastometer method). The temperature when starting to move and reaching 1.0 ddpm).

本発明者らの検討によれば、上記したように、80℃以上の高い軟化点の重質油は、低石炭化度炭との混合で、低石炭化度炭を改質する際に有効となる改質成分が多く、これを用いることで、より高い改質効果を得ることができることがわかった。一方、軟化点が80℃よりも低くなると、本発明で改質を行う350℃〜450℃での熱処理時に、重質油に含まれる改質成分が蒸散してしまい十分な改質効果を得にくくなる。一方、熱処理温度は450℃よりも高い温度であると改質が進行しない。具体的な熱処理温度は、使用する改質材との兼ね合いで決定すればよい。例えば、改質材として上記したSDAピッチを用いた場合には、400℃前後の温度で、低石炭化度炭が粘結炭相当品に改質される。   According to the study by the present inventors, as described above, a heavy oil having a high softening point of 80 ° C. or higher is effective when reforming low coal content coal by mixing with low coal content coal. It was found that a higher reforming effect can be obtained by using many reforming components. On the other hand, when the softening point is lower than 80 ° C., the reforming components contained in the heavy oil are evaporated during the heat treatment at 350 ° C. to 450 ° C. in which the reforming is performed in the present invention, and a sufficient reforming effect is obtained. It becomes difficult. On the other hand, if the heat treatment temperature is higher than 450 ° C., the reforming does not proceed. The specific heat treatment temperature may be determined in consideration of the modifier used. For example, when the above-described SDA pitch is used as the reforming material, the low-rank coal is reformed to a caking coal equivalent at a temperature of around 400 ° C.

石油系の重質油は、軟化点が常温から200℃超まで広い範囲にわたっており、例えば、表1に示すようなものが知られている(松原健次 学位論文「コークス原料用粘結材の評価に関する研究」(1989年,東京大学)より)。本発明では、表1のうち、特に軟化点が200℃以下、80℃以上、QI成分が10%以下で、芳香族性(fa)が0.3以上のものを使用するのがより好ましいと判断した。上記の特性を有するものとしては、表1中のSDAピッチとSRCが該当するが、本発明ではSDAピッチを例にとって説明する。   Petroleum heavy oils have a wide range of softening points from room temperature to over 200 ° C. For example, those shown in Table 1 are known (Kenji Matsubara dissertation "Evaluation of caking materials for coke raw materials" "Study on" (1989, University of Tokyo)). In the present invention, in Table 1, it is particularly preferable to use a softening point of 200 ° C. or lower, 80 ° C. or higher, a QI component of 10% or lower, and an aromaticity (fa) of 0.3 or higher. It was judged. The SDA pitch and SRC in Table 1 correspond to those having the above characteristics. In the present invention, the SDA pitch will be described as an example.

Figure 0005437280
Figure 0005437280

本発明において、改質材として好適な重質油のQI成分を10質量%以下としたのは、下記の理由による。すなわち、QI成分の高い重質油は、アスファルトのような石油精製プロセスからの副産物に対し加熱などの2次処理を施して製造されたもの(粘結材)であり、この2次処理によって生産コストが増大することに加えて、QI成分そのものに改質能力はなく、QI成分が10%を超えると必要な改質効果が小さくなってしまうことによる。なお、軟化点が高く、QI成分の大きい重質油は、通常の工程で得られる生成プロセスの副生物の重質油に、さらに特別に加熱処理等を行なって製造されているため価格が高くなり、改質にかかる費用、ひいてはコークスの価格が高くなるのみならず、製造にかかるエネルギーの使用量が大きくなり、省エネルギーの観点からも好ましくない。   In the present invention, the reason why the QI component of heavy oil suitable as a modifier is 10% by mass or less is as follows. In other words, heavy oil with a high QI component is produced by subjecting by-products from petroleum refining processes such as asphalt to secondary treatment such as heating (caking agent), and is produced by this secondary treatment. In addition to the increase in cost, the QI component itself has no reforming ability, and if the QI component exceeds 10%, the necessary reforming effect is reduced. Heavy oil with a high softening point and a large QI component is expensive because it is produced by subjecting heavy oil, which is a by-product of the production process obtained in the normal process, to heat treatment. Thus, not only the cost for reforming, and hence the price of coke, but also the amount of energy used for production increases, which is not preferable from the viewpoint of energy saving.

本発明の低石炭化度炭の改質方法において、上記したSDAピッチを改質材として使用し、低石炭化度炭と併存させて熱処理する場合には、低石炭化度炭とSDAピッチの混合比率を下記のようにすることが好ましい。この場合、後述するように低石炭化度炭を乾燥させて使用した場合と、湿潤状態で使用した場合とでは厳密には異なるが、例えば、質量基準で、97:3〜60:40、好ましくは96:4〜70:30、より好ましくは、95:5〜90:10の範囲とする。SDAピッチの混合割合が、97:3より少ないと、熱処理時に粘結性の発現が不足となり、一方、60:40より多くしても効果の向上は望めず、重質油を多量に使用することにより経済性が損なわれるので好ましくない。先に述べたように、改質材にSDAピッチを使用した場合には、例えば、従来のASPよりも、少ない添加量で、良質な粘結炭相当品への改質が可能となるのでより経済的である。   In the method for reforming low-carbonized coal of the present invention, when the above-mentioned SDA pitch is used as a modifier and heat-treated in combination with the low-carbonized coal, The mixing ratio is preferably as follows. In this case, as will be described later, the case where the low-coalized coal is used after being dried and the case where it is used in a wet state are strictly different, for example, 97: 3 to 60:40, preferably on a mass basis. Is in the range of 96: 4 to 70:30, more preferably 95: 5 to 90:10. When the mixing ratio of SDA pitch is less than 97: 3, the expression of caking property is insufficient during heat treatment. On the other hand, when the ratio is more than 60:40, improvement of the effect cannot be expected, and a large amount of heavy oil is used. This is not preferable because the economy is impaired. As described above, when SDA pitch is used as the reforming material, for example, it is possible to reform to a high quality caking coal equivalent with a smaller amount of addition than conventional ASP. Economical.

本発明においては、活性部分の比率が50%を超える低石炭化度炭と、上記したような石油系等の改質材とを併存させた状態で、350℃〜450℃の温度で熱処理すればよく、その併存のさせ方は特に限定されない。例えば、低石炭化度炭と改質材である重質油とを単に同一炉内に交互に入れたような状態でも、軽く混合して混合物とした状態であっても、ニーダー等で混練して混和物の状態としてもよいが、より好ましくは、十分に混合した混合物或いは混練物とする。本発明の低石炭化度炭の改質方法のより好ましい形態としては、改質対象の低石炭化度炭を、水分2%以下、粒度1mm以下に乾燥・粉砕し、これに、前記したSDAピッチのような改質材を所望の割合で添加して混練して得た混和物を、さらに所定の形状に成型した成型物とすることが挙げられる。成型物をブリケットにする場合、通常の大きさは、長径が40mmであるが、これよりも小さい30mm以下、好ましくは15〜25mm程度とするとよい。また、成型物をペレットにする場合、原料炭の粒度を−0.4mm(0.4mm以下)とし、その大きさを平均で直径が3mm程度の球状とすることが好ましい。また、これらの成型物の強度は、350〜450℃の反応温度で非微粘結炭の改質が進み、必要な粘結性が生ずるまで、所定の形状を維持できる程度のものとする。これらの成型物は、このままコークス炉の原料炭として使用することができ、その結果、製鉄用に使用可能なより良好なコークスを得ることができる。以下、本発明のコークスの製造方法について説明する。   In the present invention, heat treatment is performed at a temperature of 350 ° C. to 450 ° C. in a state where a low-rank coal having an active portion ratio of more than 50% coexists with a modifier such as petroleum as described above. What is necessary is just to make it coexist and there is no limitation in particular. For example, low-carbonized coal and heavy oil that is a modifier are simply kneaded with a kneader or the like, even if they are placed alternately in the same furnace or lightly mixed into a mixture. The mixture may be in the form of a mixture, but more preferably a sufficiently mixed mixture or kneaded product. As a more preferable embodiment of the method for reforming low coal content of the present invention, the low coal content coal to be reformed is dried and pulverized to a moisture content of 2% or less and a particle size of 1 mm or less. A mixture obtained by adding a kneading agent such as a pitch at a desired ratio and kneading is further formed into a molded product formed into a predetermined shape. When the molded product is used as a briquette, the normal size is 40 mm in major axis, but is 30 mm or less, preferably about 15 to 25 mm, smaller than this. Moreover, when making a molding into a pellet, it is preferable to make the particle size of raw coal into -0.4mm (0.4mm or less), and make the magnitude | size into a spherical shape about 3mm in diameter on average. In addition, the strength of these moldings is such that a predetermined shape can be maintained until the necessary caking properties are produced by the reforming of non-slightly caking coal at a reaction temperature of 350 to 450 ° C. These molded products can be used as coking coal in a coke oven as they are, and as a result, better coke that can be used for iron making can be obtained. Hereinafter, the manufacturing method of the coke of this invention is demonstrated.

本発明のコークスの製造方法は、コークス原料の少なくとも一部に、低石炭化度炭を本発明によって改質して得られる粘結炭相当品を用い、常法に従ってコークスを製造する。その際に、粉状の低石炭化度炭と、石油系又は石炭系の改質材とを併存させた状態で350℃〜450℃の温度で加熱して改質する改質工程を有し、上記低石炭化度炭が、石炭のマセラル分析の測定方法によって求められる活性部分の比率が50%を超えるものであることを要する。より具体的には、上記改質工程で粘結炭相当品を得、これを原料炭の一部或いは全部として用い、コークス化が起る1,000℃以上温度で加熱処理することで、良質のコークスを得ることができる。   In the method for producing coke of the present invention, coke is produced according to a conventional method using caking coal equivalent obtained by modifying low-coalized coal according to the present invention as at least a part of coke raw material. At that time, it has a reforming step in which it is reformed by heating at a temperature of 350 ° C. to 450 ° C. in a state where a powdery low-coalizing coal and a petroleum-based or coal-based modifying material coexist. The low-coalizing coal needs to have an active part ratio of more than 50% determined by a measuring method of coal maceral analysis. More specifically, a caking coal equivalent product is obtained in the above reforming process, and this is used as a part or all of the raw coal, and heat treatment is performed at a temperature of 1,000 ° C. or higher at which coking occurs, resulting in high quality. Coke can be obtained.

本発明のコークスの製造方法のより好ましい形態について説明する。先ず、活性部分が50%、より好ましくは60%以上の低石炭化度炭と、前述したSDAピッチを添加混練後、混和物を上記したようなブリケット或いはペレットに成型し、該成型物をコークス炉に装入する。この結果、ブリケット或いはペレットは、400℃付近の温度で加熱されて低石炭化度炭が粘結炭相当のものに変換される。その後、得られた粘結炭相当品をコークス化が起る温度に加熱すれば、強度の高い良質のコークスとなる。この一連の変化について具体的に説明する。先ず、上記のようにして得られる成型物をコークス炉に装入して、3℃/min(通常のコークス炉内では、3℃/minの昇温速度で加熱される)の昇温速度で常温から加熱すると、350〜450℃の温度範囲で、低石炭化度炭は前述したSDAピッチと反応し、成型物は、粘結性を有する粘結炭相当品に変換される。これをさらに昇温させると、熱分解によるガスの発生が盛んになり、成型物の内圧が高まることにより成型物は変形や破壊を伴うが、この段階での変形や破壊は全く問題にならない。さらなる昇温に伴って塊状化が進み、最終的に強固なコークスになる。なお、上記した成型物は、通常のコークスの製造に使用されている粉状の粘結炭と混合してコークス炉に装入するものとしてもよい。   A more preferable embodiment of the method for producing coke according to the present invention will be described. First, after adding and kneading the low-rank coal with an active portion of 50%, more preferably 60% or more, and the above-mentioned SDA pitch, the mixture is formed into a briquette or pellet as described above, and the molded product is coke. Charge into the furnace. As a result, the briquettes or pellets are heated at a temperature around 400 ° C., and the low-carbonized coal is converted into one corresponding to caking coal. Then, if the obtained caking coal equivalent is heated to a temperature at which coking occurs, high-quality coke with high strength can be obtained. This series of changes will be specifically described. First, the molded product obtained as described above is charged into a coke oven and heated at a rate of 3 ° C./min (in a normal coke oven, heated at a rate of 3 ° C./min). When heated from room temperature, the low-carbonized coal reacts with the SDA pitch described above in the temperature range of 350 to 450 ° C., and the molded product is converted into a caking coal equivalent having caking properties. When the temperature is further increased, gas generation due to thermal decomposition becomes active, and the molded product is deformed or broken due to an increase in the internal pressure of the molded product, but the deformation or breakage at this stage is not a problem at all. As the temperature rises further, the agglomeration progresses and eventually becomes strong coke. In addition, the above-mentioned molded product is good also as what is mixed with the powdery caking coal currently used for manufacture of a normal coke, and is charged in a coke oven.

本発明のコークスの製造方法は、上記の方法に限定されず、効率の点等で劣るものの、必ずしも成型物としなくとも、活性部分が50%以上、より好ましくは60%以上の低石炭化度炭と、SDAピッチ等の石油系の改質材等を単に混合し、上記の熱処理を行った場合にも良質なコークスを得ることは可能である。しかし、この場合は、SDAピッチ等の改質材の配合量を多くするなどの対策が必要となる。   The method for producing coke according to the present invention is not limited to the above-mentioned method, and although it is inferior in efficiency and the like, it is not necessarily formed into a molded product, but the active portion has a low coal degree of 50% or more, more preferably 60% or more. It is possible to obtain high-quality coke even when charcoal and petroleum-based reforming materials such as SDA pitch are simply mixed and the above heat treatment is performed. However, in this case, it is necessary to take measures such as increasing the amount of modifying material such as SDA pitch.

本発明にかかるコークスの製造方法を工業化した一例の概略図を、図1を示したが、この例では、低石炭化度炭と改質材(SDAピッチ)との混和物を成型物としている。図1を参照して説明すると、先ず、改質対象の低石炭化度炭を、乾燥粉砕機を用いて乾燥と粉砕を同時に行う。得られた粉砕品はサイクロンで集められ、スクリューコンベアにて運ばれ、加熱をしたSDAピッチを添加した後、混練機にて充分に混練し、その後、ブリケット装置で20mm程度の大きさのブリケットを製造する。次に、得られたブリケットをコークス炉に装入し加熱する。その結果、ブリケット状の低石炭化度炭は、炉内で350℃〜450℃に加熱される過程で粘結炭相当品に改質される。   FIG. 1 shows a schematic diagram of an example of industrializing the method for producing coke according to the present invention. In this example, a mixture of low-carbonized coal and a modifier (SDA pitch) is used as a molded product. . Referring to FIG. 1, first, the low-carbonized coal to be reformed is simultaneously dried and pulverized using a dry pulverizer. The obtained pulverized product is collected in a cyclone, transported on a screw conveyor, heated SDA pitch is added, and then sufficiently kneaded in a kneader, and then a briquette having a size of about 20 mm is used in a briquetting apparatus. To manufacture. Next, the obtained briquette is charged into a coke oven and heated. As a result, the briquette low-coalizing coal is reformed to a caking coal equivalent in the process of being heated to 350 ° C. to 450 ° C. in the furnace.

上記におけるブリケットを成型するペレタイジング法の一例について詳述する(図2参照)。先ず、低石炭化度炭を乾燥粉砕して粒度を−0.4mm(0.4mm以下)にしてSDAピッチと混合する。その後、造粒機にて造粒し、冷却乾燥をする。造粒品は篩にて分級された平均径3mmφのものを抜き取り、その後、固結防止のためコークス粉を被覆する。この結果、層状のペレットが得られるが、大きいペレットは粉砕後に、小さいペレットはそのまま循環して再び造粒、乾燥工程を経て、篩に入る。このようにして得られたペレットは、コークス炉に装入されて粘結炭相当品に改質された後、その後、さらに高温で加熱されて最終的にコークスとなる。   An example of the pelletizing method for molding the briquette will be described in detail (see FIG. 2). First, the low-carbonized coal is dried and pulverized to a particle size of −0.4 mm (0.4 mm or less) and mixed with SDA pitch. Then, it granulates with a granulator and cools and dries. The granulated product is extracted with an average diameter of 3 mmφ classified by a sieve, and then coated with coke powder to prevent caking. As a result, layered pellets are obtained. After pulverizing the large pellets, the small pellets are circulated as they are, and after passing through the granulation and drying process, enter the sieve. The pellets thus obtained are charged into a coke oven and reformed to a caking coal equivalent, and then heated at a higher temperature to finally become coke.

従来、原料炭は、湿炭(水分10%程度)の状態でコークス炉に装入されている。これに対して、上記のような方法で成型物とする場合には、低石炭化度炭を、水分2%以下、好ましくは1%以下、より好ましくは0.5%以下にまで乾燥された状態で炉内に装入することになる。このため、湿炭の有する水分の蒸発熱相当分が省エネルギーとなり、製鉄用コークスに使用される膨大な石炭量から考えれば、上記したような方法を採用することで莫大な省エネルギーが達成できる。また、低石炭化度炭とSDAピッチ等の石油系の改質材との反応は発熱であるので、省エネルギーという点では、この分も加味されるので、より省エネルギーになる。なお、図1に例示したように、乾燥工程においてコークス炉からの排ガスを有効利用すれば、省エネルギー効果をさらに向上させることができる。コークス炉からの排ガスは、排出温度が150℃程度であるが、殆どの製鉄所では未利用で煙突から排出させており、これを有効利用することができれば非常に有用である。   Conventionally, raw coal is charged into a coke oven in the state of wet coal (water content of about 10%). On the other hand, when forming into a molded product by the method as described above, the low-carbonized coal was dried to a moisture content of 2% or less, preferably 1% or less, more preferably 0.5% or less. It will be charged into the furnace in the state. For this reason, the amount corresponding to the heat of evaporation of moisture contained in the wet coal is energy-saving. Considering the enormous amount of coal used for iron-making coke, enormous energy-saving can be achieved by adopting the method described above. In addition, since the reaction between the low-carbonized coal and the petroleum-based reforming material such as SDA pitch is exothermic, this is also taken into consideration in terms of energy saving, so that energy saving is achieved. As illustrated in FIG. 1, the energy saving effect can be further improved by effectively using the exhaust gas from the coke oven in the drying step. The exhaust gas from the coke oven has a discharge temperature of about 150 ° C., but is not used at most steelworks and is discharged from the chimney, which is very useful if it can be used effectively.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断りがない限り、%とあるのは質量基準である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these. Unless otherwise specified,% is based on mass.

[実施例1〜4及び比較例1]
改質のための低石炭化度炭として、表2に記載のものを用いた。なお、MF(ddpm)値は、ギーセラープラストメータによって測定した最高流動度の値である。
[Examples 1 to 4 and Comparative Example 1]
As the low-rank coal for reforming, those listed in Table 2 were used. The MF (ddpm) value is a maximum fluidity value measured with a Gieseller Plastometer.

Figure 0005437280
Figure 0005437280

改質材には、下記の特性値を有する重質油A(SDAピッチ)を用いた。すなわち、灰分が0%、揮発分が71.0%、炭素量が84.0%、水素量が8.0%、軟化点が138℃、QI成分が0%、芳香族炭素指数を示すfa値が0.643のものを用いた。なお、重質油Aは石油精製工程で得られるライトリフォーメートを溶剤として、アスファルトを溶剤抽出した残渣である。   As the modifier, heavy oil A (SDA pitch) having the following characteristic values was used. That is, the ash content is 0%, the volatile content is 71.0%, the carbon content is 84.0%, the hydrogen content is 8.0%, the softening point is 138 ° C., the QI component is 0%, and the aromatic carbon index is fa. A value of 0.643 was used. Heavy oil A is a residue obtained by solvent extraction of asphalt using light reformate obtained in the petroleum refining process as a solvent.

表2に示した特性の各石炭90%に対して、重質油Aを10%混合配合して150℃にて成型し、20mmΦ×5mmの円盤状の成型物20gを得た。得られた成型物について、ギーセラープラストメータによって最高流動度(ddpm)を測定する際に、電気炉内の温度条件を、500℃まで3℃/minの昇温速度で上昇させて、流動度の測定をすると同時に、この条件で改質処理を行った。その結果を表2中に示したが、明らかに活性成分の違いが改質効果に影響を与えており、活性成分の割合が高いほど改質の効果がよくなっていることを確認した。特に、活性成分の割合が50%以上、より好ましくは60%以上であれば、十分な改質が可能であることがわかった。ただし、活性成分の割合が50%〜60%の比較的低い場合、より効果的な改質を行うには、改質材の添加量を多くするといった手段が必要になる。   10% of heavy oil A was mixed and blended with 90% of each of the characteristics shown in Table 2 and molded at 150 ° C. to obtain 20 g of a disk-shaped molded product of 20 mmΦ × 5 mm. When measuring the maximum fluidity (ddpm) of the obtained molded product with a Gisela plastometer, the temperature condition in the electric furnace is increased to 500 ° C. at a rate of 3 ° C./min. At the same time, the reforming treatment was performed under these conditions. The results are shown in Table 2. It was confirmed that the difference in the active ingredient clearly affects the reforming effect, and that the reforming effect is improved as the proportion of the active ingredient is higher. In particular, it has been found that sufficient reforming is possible when the proportion of the active ingredient is 50% or more, more preferably 60% or more. However, when the proportion of the active ingredient is relatively low, such as 50% to 60%, means for increasing the amount of the modifier added is necessary for more effective modification.

[参考例5〜8及び比較例2]
実施例1〜4及び比較例1で使用したものと同じ種類の石炭A、石炭B、石炭C、石炭D及び石炭Eと、重質油Aを用い、下記のようにして改質処理についての検討を行った。本参考例の場合は、石炭の粒度を−3mm(3mm以下)としたが、それぞれ石炭の水分量(%)は、参考例5の石炭Aでは9.9%、参考例6の石炭Bでは10.0%、参考例7の石炭Cでは11.0%、参考例8の石炭Dでは12.0%、比較例2の石炭Eでは13.0%であった。各石炭の配合率を90%、重質油Aの配合率を10%として混合配合して実施例1と同様にしてそれぞれ成型物を得た。
[Reference Examples 5 to 8 and Comparative Example 2]
Using the same types of coal A, coal B, coal C, coal D and coal E as used in Examples 1 to 4 and Comparative Example 1 and heavy oil A, the reforming treatment was performed as follows. Study was carried out. In the case of this reference example, the particle size of the coal was set to -3 mm (3 mm or less), and the moisture content (%) of the coal was 9.9% in the coal A of the reference example 5, and in the coal B of the reference example 6, respectively. 10.0%, Coal C of Reference Example 7 was 11.0%, Coal D of Reference Example 8 was 12.0%, and Coal E of Comparative Example 2 was 13.0%. Each coal was blended at a blending ratio of 90% and heavy oil A at a blending ratio of 10%.

得られた各成型物を3℃/minの昇温速度で350℃にまで昇温したところ、全部の成型物が亀裂を生じ成型物の形状が保持できず、重質油Aが部分的に成型物の外へ流失したことが確認された。この結果、これらの成型物内では、これよりも高い温度では石炭と重質油の反応があまり進行しないことが予測された。本発明者らは、形状が保持できなかった原因を、成型物中の水分量が高めになると予想されることから、水分の蒸発に起因して生じたものと推論している。重質油Aと石炭との反応は350℃〜450℃の温度範囲で起こると考えられるので、水分量の量が多い系では、反応の結果としての流動性の向上効果は少ないものと予想される。なお、実施例1〜実施例4及び比較例1では、昇温の結果成型物の亀裂や変形は起きなかった。   When each molded product obtained was heated to 350 ° C. at a rate of 3 ° C./min, all the molded products were cracked and the shape of the molded product could not be maintained, and heavy oil A was partially It was confirmed that it was washed out of the molding. As a result, it was predicted that the reaction between coal and heavy oil would not progress much at higher temperatures in these moldings. The present inventors infer that the reason why the shape could not be maintained was caused by the evaporation of moisture because the amount of moisture in the molded product is expected to increase. Since the reaction between heavy oil A and coal is considered to occur in the temperature range of 350 ° C. to 450 ° C., it is expected that the effect of improving fluidity as a result of the reaction will be small in a system with a large amount of water. The In Examples 1 to 4 and Comparative Example 1, cracks and deformation of the molded product did not occur as a result of the temperature increase.

[実施例5及び比較例3]
実施例1及び比較例1でそれぞれ使用したものと同じ種類の石炭A及び石炭Eを用い、重質油Aを下記の重質油Bにそれぞれ代えた以外は、実施例1及び比較例1と同様にして改質処理を行った。使用した重質油Bの分析値は以下の通りである。すなわち、重質油Bは、灰分が1.0%、揮発分が40.3%、炭素量が86.1%、水素量が5.9%、軟化点が193℃、QIが14.9%、芳香族炭素指数を示すfa値が0.637である。
[Example 5 and Comparative Example 3]
Example 1 and Comparative Example 1 except that heavy oil A was replaced with heavy oil B described below using the same types of coal A and coal E used in Example 1 and Comparative Example 1, respectively. The modification treatment was performed in the same manner. The analysis values of the heavy oil B used are as follows. That is, heavy oil B has an ash content of 1.0%, a volatile content of 40.3%, a carbon content of 86.1%, a hydrogen content of 5.9%, a softening point of 193 ° C., and a QI of 14.9. %, The fa value indicating the aromatic carbon index is 0.637.

上記の処理を行って得られた各成型品について、ギーセラープラストメータによって最高流動度を測定した。その結果、石炭Aは250ddpm(実施例5)、石炭Eは30ddpm(比較例3)であり、程度の差があるものの、それぞれ改質されていた。しかし、実施例1との比較において、重質油Aを、QI成分が10%以上の重質油Bに代えたことによって、改質効率が低下することが確認された。このことは、改質効率を向上させるためには、実施例1〜4で使用した重質油Aを用いることがより好ましいことを示している。   About each molded article obtained by performing said process, the maximum fluidity | liquidity was measured with the Giesser plastometer. As a result, coal A was 250 ddpm (Example 5), and coal E was 30 ddpm (Comparative Example 3). However, in comparison with Example 1, it was confirmed that the reforming efficiency was lowered by replacing heavy oil A with heavy oil B having a QI component of 10% or more. This indicates that it is more preferable to use the heavy oil A used in Examples 1 to 4 in order to improve the reforming efficiency.

Claims (9)

低石炭化度炭を粘結炭相当品に変換させるための低石炭化度炭の改質方法であって、粉状の低石炭化度炭と、石油系又は石炭系の改質材とを併存させた状態で350℃〜450℃の温度で加熱して改質する改質工程を少なくとも有し、上記石油系又は石炭系の改質材が、軟化点が200℃以下80℃以上、キノリン不溶分含有量が10質量%以下、芳香族炭素指数fa値が0.3以上の重質油であり、かつ、その使用比率が、上記低石炭化度炭と上記改質材との比が質量基準で97:3〜60:40であり、上記低石炭化度炭として、非微粘結炭に分類されるもののうち、平均反射率(Ro)がRo<0.85で、かつ、最高流動度(MF;logddpm)がMF<2.5であり、さらに、石炭のマセラル分析の測定方法によって求められる活性部分の比率が50%を超えるものを選定することを特徴とする低石炭化度炭の改質方法。 A method for reforming low-carbonized coal for converting low-carbonized coal to caking coal equivalent, comprising a powdery low-carbonized coal and a petroleum-based or coal-based modifier. It has at least a reforming step in which it is reformed by heating at a temperature of 350 ° C. to 450 ° C. in the coexisting state, and the above-mentioned petroleum-based or coal-based modifier has a softening point of 200 ° C. or lower, 80 ° C. or higher, It is a heavy oil having an insoluble content of 10% by mass or less and an aromatic carbon index fa value of 0.3 or more, and the use ratio thereof is a ratio of the low-rank coal and the modifier. 97: 3 to 60:40 on a mass basis, and among those classified as non-slightly caking coal as the low -coalizing coal, the average reflectance (Ro) is Ro <0.85, and the highest fluidity (MF; logddpm) is MF <2.5, further determined by the measuring method of the maceral analysis of coal Method of modifying a low coalification degree coal ratio of active moiety characterized that you selected in excess of 50%. 前記低石炭化度炭が、水分2%以下のものである請求項1に記載の低石炭化度炭の改質方法。 The method for reforming low coal content coal according to claim 1, wherein the low coal content coal has a moisture content of 2% or less . 前記低石炭化度炭の活性部分の比率が60%を超えるものである請求項1又は2に記載の低石炭化度炭の改質方法。   The method for reforming low coal content coal according to claim 1 or 2, wherein the ratio of the active part of the low coal content coal exceeds 60%. 前記粉状の低石炭化度炭と石油系又は石炭系の改質材とを混和して、これらを併存させた状態とする請求項1〜3のいずれか1項に記載の低石炭化度炭の改質方法。   The low coalification degree of any one of Claims 1-3 which makes the state which mixed the said powdery low coalification degree coal and a petroleum-type or coal-type modifier, and made these coexist. Charcoal reforming method. 前記低石炭化度炭が、水分2%以下、粒度1mm以下に乾燥・粉砕されたものであり、且つ、該粉状の低石炭化度炭と石油系又は石炭系の改質材とを混和し、該混和物を所定の形状に成型して成型物とし、該成型物を350℃〜450℃の温度で加熱する請求項1〜のいずれか1項に記載の低石炭化度炭の改質方法。 The low-carbonized coal is dried and pulverized to a moisture content of 2% or less and a particle size of 1 mm or less, and the powdery low-carbonized coal is mixed with a petroleum-based or coal-based modifier. and, a molded product by molding該混hydrate into a predetermined shape, molded type was low coalification degree coal according to any one of claims 1 to 4, heating at a temperature of 350 ° C. to 450 ° C. Modification method. コークス原料の少なくとも一部に低石炭化度炭を改質して得られる粘結炭相当品を用いるコークスの製造方法であって、粉状の低石炭化度炭と、石油系又は石炭系の改質材とを併存させた状態で350℃〜450℃の温度で加熱して低石炭化度炭を改質する改質工程を有し、上記石油系又は石炭系の改質材が、軟化点が200℃以下80℃以上、キノリン不溶分含有量が10質量%以下、芳香族炭素指数fa値が0.3以上の重質油であり、かつ、その使用比率が、上記低石炭化度炭と上記改質材との比が質量基準で97:3〜60:40であり、上記低石炭化度炭として、非微粘結炭に分類されるもののうち、平均反射率(Ro)がRo<0.85で、かつ、最高流動度(MF;logddpm)がMF<2.5であり、さらに、石炭のマセラル分析の測定方法によって求められる活性部分の比率が50%を超えるものを選定することを特徴とするコークスの製造方法。 A method for producing coke that uses caking coal equivalent obtained by modifying low-coalification coal as at least a part of coke raw material, which is a powdery low-coalification coal, petroleum-based or coal-based It has a reforming step of reforming low- rank coal by heating at a temperature of 350 ° C. to 450 ° C. in the state of coexisting with the reformer, and the above petroleum-based or coal-based reformer is softened It is a heavy oil having a point of 200 ° C. or less and 80 ° C. or more, a quinoline insoluble content of 10% by mass or less, and an aromatic carbon index fa value of 0.3 or more, and its use ratio is the above-mentioned low coalification degree The ratio of charcoal to the above modifier is 97: 3 to 60:40 on a mass basis, and among those classified as non-slightly caking coal as the low -coalizing coal, the average reflectance (Ro) is in ro <0.85, and the maximum fluidity (MF; logddpm) is MF <2.5, further coal Ma Method for producing a coke ratio of the active moiety which are determined by the measuring method of Lal analysis characterized that you selected in excess of 50%. 前記低石炭化度炭が、水分2%以下のものである請求項に記載のコークスの製造方法。 The method for producing coke according to claim 6 , wherein the low-rank coal has a moisture content of 2% or less . 前記低石炭化度炭の活性部分の比率が60%を超えるものである請求項又はに記載のコークスの製造方法。 The method for producing coke according to claim 6 or 7 , wherein the ratio of the active portion of the low-carbonized coal exceeds 60%. 前記低石炭化度炭が、水分2%以下、粒度1mm以下に乾燥・粉砕されたものであり、且つ、該粉状の低石炭化度炭と石油系又は石炭系の改質材との混和物を所定の形状に成型して成型物とし、該成型物を350℃〜450℃の温度で加熱する請求項のいずれか1項に記載のコークスの製造方法。 The low-carbonized coal is dried and pulverized to a moisture content of 2% or less and a particle size of 1 mm or less, and the powdery low-carbonized coal is mixed with a petroleum-based or coal-based modifier. The method for producing coke according to any one of claims 6 to 8 , wherein the product is molded into a predetermined shape to obtain a molded product, and the molded product is heated at a temperature of 350 ° C to 450 ° C.
JP2010549495A 2009-02-03 2010-02-03 Method for reforming low-rank coal and method for producing coke Active JP5437280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010549495A JP5437280B2 (en) 2009-02-03 2010-02-03 Method for reforming low-rank coal and method for producing coke

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009022556 2009-02-03
JP2009022556 2009-02-03
JP2010549495A JP5437280B2 (en) 2009-02-03 2010-02-03 Method for reforming low-rank coal and method for producing coke
PCT/JP2010/051531 WO2010090230A1 (en) 2009-02-03 2010-02-03 Upgrading method for low-grade coal, and process for production of coke

Publications (2)

Publication Number Publication Date
JPWO2010090230A1 JPWO2010090230A1 (en) 2012-08-09
JP5437280B2 true JP5437280B2 (en) 2014-03-12

Family

ID=42542123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010549495A Active JP5437280B2 (en) 2009-02-03 2010-02-03 Method for reforming low-rank coal and method for producing coke

Country Status (2)

Country Link
JP (1) JP5437280B2 (en)
WO (1) WO2010090230A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517061A (en) * 2011-12-03 2012-06-27 莱芜钢铁集团有限公司 Equipment for treating non-sticky coal and coking method for treating non-sticky coal
KR101549312B1 (en) * 2013-12-18 2015-09-01 오씨아이 주식회사 Coal upgrading system and method for upgrading coal
CN103740392B (en) * 2014-01-22 2015-08-05 安徽工业大学 The method of rotating disc type continuous heat treatment low order weakly caking coal or low order non-caking coal
CN104946285A (en) * 2014-03-31 2015-09-30 上海梅山钢铁股份有限公司 Coke blended with bituminous coal and coking method
CN104946284A (en) * 2014-03-31 2015-09-30 上海梅山钢铁股份有限公司 Coke of blended pretreated low-order non-sticking bituminous coal and coking method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399202A (en) * 1977-02-12 1978-08-30 Nippon Steel Corp Production of coking coal with improved quality for metallurgy
JPS53145804A (en) * 1977-05-25 1978-12-19 Sumitomo Metal Ind Ltd Manufacture of formed coal for coke
JPS5598283A (en) * 1979-01-17 1980-07-26 Kawasaki Heavy Ind Ltd Manufacture of artificial caking coal
JPS56118486A (en) * 1980-02-25 1981-09-17 Kashima Sekiyu Kk Preparation of metallurgic coke
JPS56139589A (en) * 1980-03-31 1981-10-31 Res Assoc Residual Oil Process<Rarop> Production of artificial caking coal
JPS59179586A (en) * 1983-03-29 1984-10-12 Res Assoc Residual Oil Process<Rarop> Production of coke

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399202A (en) * 1977-02-12 1978-08-30 Nippon Steel Corp Production of coking coal with improved quality for metallurgy
JPS53145804A (en) * 1977-05-25 1978-12-19 Sumitomo Metal Ind Ltd Manufacture of formed coal for coke
JPS5598283A (en) * 1979-01-17 1980-07-26 Kawasaki Heavy Ind Ltd Manufacture of artificial caking coal
JPS56118486A (en) * 1980-02-25 1981-09-17 Kashima Sekiyu Kk Preparation of metallurgic coke
JPS56139589A (en) * 1980-03-31 1981-10-31 Res Assoc Residual Oil Process<Rarop> Production of artificial caking coal
JPS59179586A (en) * 1983-03-29 1984-10-12 Res Assoc Residual Oil Process<Rarop> Production of coke

Also Published As

Publication number Publication date
JPWO2010090230A1 (en) 2012-08-09
WO2010090230A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5437280B2 (en) Method for reforming low-rank coal and method for producing coke
KR101405478B1 (en) Method for manufacturing coal bruquettes and apparatus for the same
WO2014087949A1 (en) Biomass solid fuel
JP5742650B2 (en) Molded coke manufacturing method and molded coke manufactured by the method
Nomura Coal briquette carbonization in a slot-type coke oven
CN110093467B (en) Preparation method of iron coke
JPH0665579A (en) Method for compounding raw material of coal briquet for producing metallurgical formed coke
JP6041694B2 (en) Method for producing coking coal for coke production and method for producing coke
CN110819367B (en) Biomass fuel quality prediction method and application thereof
JP2013116964A (en) Method for producing metallurgical coke
JP2011089051A (en) Method for modifying non- or slightly-caking coal and method for producing coke
JP5588372B2 (en) Method for producing agglomerates for blast furnace raw materials
JP5763308B2 (en) Ferro-coke manufacturing method
CN104830398B (en) The method of high sulphur occurring low rank coal desulfurization upgrading
KR20210035525A (en) Reduction method of the reducing agents ratio and co2 gas of the blast furnace
JP6241336B2 (en) Method for producing blast furnace coke
JP5394695B2 (en) Method for reforming non-caking coal with low coalification degree, molding for modifying non-caking coal, and method for producing coke
JP5846289B2 (en) Heat converter for converter
Jayasekara et al. Microalgae blending for sustainable metallurgical coke production–Impacts on coking behaviour and coke quality
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP2005053986A (en) Method for producing ferrocoke for blast furnace
JP5309966B2 (en) Method for producing highly reactive coke
Agrawal Technological Advancements in Cokemaking
CN106517208A (en) Method for preparing shaping pelletizing used for calcium carbide manufacture
KR102288801B1 (en) Method of manufacturing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250