JP5435545B2 - Desalting method - Google Patents

Desalting method Download PDF

Info

Publication number
JP5435545B2
JP5435545B2 JP2009048137A JP2009048137A JP5435545B2 JP 5435545 B2 JP5435545 B2 JP 5435545B2 JP 2009048137 A JP2009048137 A JP 2009048137A JP 2009048137 A JP2009048137 A JP 2009048137A JP 5435545 B2 JP5435545 B2 JP 5435545B2
Authority
JP
Japan
Prior art keywords
raw water
fine bubbles
gas
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009048137A
Other languages
Japanese (ja)
Other versions
JP2010201310A (en
Inventor
裕晃 長谷川
秀昭 竹崎
高志 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2009048137A priority Critical patent/JP5435545B2/en
Publication of JP2010201310A publication Critical patent/JP2010201310A/en
Application granted granted Critical
Publication of JP5435545B2 publication Critical patent/JP5435545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、膜分離を利用して不純物を含む液体から該不純物を分離する技術に関し、特に、海水やかん水(低濃度の塩水)の淡水化に適した脱塩処理方法に関する。   The present invention relates to a technique for separating impurities from a liquid containing impurities using membrane separation, and more particularly to a desalination treatment method suitable for desalination of seawater or brine (low-concentration brine).

従来、不純物を含む液体から特定の物質を選択的に分離する方法として、濾過膜を用いた膜分離法が広く知られている。かかる濾過膜には、孔の大きさが概ね10μm〜5nmの精密濾過膜、孔の大きさが200nm〜2nmの限外濾過膜、孔の大きさが2nm以下の逆浸透膜等の種類がある。これらの濾過膜の素材としては、酢酸セルロースや芳香族ポリアミドが一般的である。これらのうち、特に逆浸透膜(RO膜)は、水は通すがイオンや塩類など水以外の不純物は透過しない性質を持つ膜で、海水やかん水から工業用、農業用、飲用等の淡水(真水)を得る脱塩処理に広く利用されている。逆浸透膜のうち、孔の大きさが1〜2nmでイオンや塩類の阻止率が概ね70%以下のものは、特にナノフィルター又はNF膜とも呼ばれるが、作用や利用法は逆浸透膜と基本的に同様である。   Conventionally, a membrane separation method using a filtration membrane is widely known as a method for selectively separating a specific substance from a liquid containing impurities. Such filtration membranes include microfiltration membranes with a pore size of approximately 10 μm to 5 nm, ultrafiltration membranes with a pore size of 200 nm to 2 nm, and reverse osmosis membranes with a pore size of 2 nm or less. . As a material for these filtration membranes, cellulose acetate and aromatic polyamide are generally used. Of these, the reverse osmosis membrane (RO membrane) is a membrane that allows water to pass through but does not allow impurities other than water, such as ions and salts, to pass through. It is widely used for desalting to obtain fresh water. Among the reverse osmosis membranes, those with pore sizes of 1 to 2 nm and ions and salts blocking rate of approximately 70% or less are also called nanofilters or NF membranes. The same.

逆浸透膜による脱塩処理では、逆浸透膜を隔てて浸透平衡にある原水(例えば、海水等)と水に対して、原水の浸透圧よりも高い圧力(「操作圧」と呼ぶ。)を原水側から加えることにより、原水中の水分子を水側へ移行させる。操作圧と原水の浸透圧との差が「有効圧」となる。   In the desalination treatment using a reverse osmosis membrane, a pressure higher than the osmotic pressure of raw water (referred to as “operation pressure”) is applied to raw water (for example, seawater) and water that are in osmotic equilibrium across the reverse osmosis membrane. By adding from the raw water side, water molecules in the raw water are transferred to the water side. The difference between the operating pressure and the osmotic pressure of the raw water is the “effective pressure”.

逆浸透膜を透過できない塩類は膜面近傍に滞留して、膜面近傍での塩濃度が上昇する。これをそのまま滞留させると、原水側の浸透圧が限りなく上昇して濾過できなくなるので、塩類や不純物が濃縮された水(「濃縮水」と呼ぶ。)を連続的に排出する必要がある。したがって、逆浸透法では、原水の全量を濾過して取り出すことはできない。   Salts that cannot permeate the reverse osmosis membrane stay in the vicinity of the membrane surface, and the salt concentration in the vicinity of the membrane surface increases. If this is retained as it is, the osmotic pressure on the raw water side will rise as much as possible and filtration will not be possible, so it is necessary to continuously discharge water in which salts and impurities are concentrated (referred to as “concentrated water”). Therefore, in the reverse osmosis method, the whole amount of raw water cannot be filtered out.

逆浸透法では、原水の塩濃度が高いほど、また、濃縮水を減らそうとするほど、原水に高い操作圧をかけて濾過する必要がある。例えば、平均的な塩濃度3.5%の海水から日本の飲料水基準に適合する塩濃度0.01%の淡水を、水の回収率40%(残りの60%は濃縮水として捨てる。)で得る場合、近年の技術水準では約5.5〜6.5MPa程度の操作圧が必要とされている。   In the reverse osmosis method, as the salt concentration of the raw water is higher and the concentrated water is reduced, it is necessary to apply a higher operating pressure to the raw water for filtration. For example, from a seawater with an average salt concentration of 3.5%, fresh water with a salt concentration of 0.01% that meets Japanese drinking water standards is 40% water recovery (the remaining 60% is discarded as concentrated water). In the recent technical level, an operation pressure of about 5.5 to 6.5 MPa is required.

原水に高い操作圧をかけるには、高圧ポンプを運転するための大きな動力エネルギーが必要になり、特にこれが処理コストを押し上げる。現実的には、逆浸透法による海水の淡水化処理において、処理コストの半分程度が高圧ポンプを運転するための電気使用料によって占められると言われている。   In order to apply a high operating pressure to the raw water, a large amount of power energy is required to operate the high-pressure pump, and this particularly increases the processing cost. In reality, it is said that in the desalination treatment of seawater by the reverse osmosis method, about half of the treatment cost is occupied by the electricity usage fee for operating the high-pressure pump.

そこで、例えば特許文献1〜3には、逆浸透膜を収容したモジュールユニットを多段に設けて直列的に接続し、前段の逆浸透膜モジュールユニットから得られる濃縮水をさらに昇圧して後段の逆浸透膜モジュールユニットに供給することにより、ポンプの運転エネルギーを節約して処理コストを低減させようとする技術が提案されている。   Therefore, for example, in Patent Documents 1 to 3, module units containing reverse osmosis membranes are provided in multiple stages and connected in series, and the concentrated water obtained from the previous reverse osmosis membrane module unit is further boosted to reverse the latter stage. There has been proposed a technique for saving the operating energy of the pump and reducing the processing cost by supplying it to the osmotic membrane module unit.

また、特許文献4には、逆浸透膜モジュールユニットの上流側で原水中に微細気泡を混合することにより膜面近傍の原水を攪拌し、その攪拌作用によって膜面に懸濁物質が付着するのを防ぎ、あるいは膜面に付着した懸濁物質を除去して、膜処理効率を向上させようとする技術が提案されている。   In Patent Document 4, the raw water near the membrane surface is agitated by mixing fine bubbles in the raw water upstream of the reverse osmosis membrane module unit, and the suspended substance adheres to the membrane surface by the agitation action. There has been proposed a technique for preventing membrane suspension or removing suspended substances adhering to the membrane surface to improve membrane treatment efficiency.

特開平9−276663号公報JP-A-9-276663 特開2000−051663号公報Japanese Unexamined Patent Publication No. 2000-056163 特開2001−252659号公報JP 2001-252659 A 実開昭58−53203号公報Japanese Utility Model Publication No. 58-53203

しかしながら、上記特許文献1〜3に記載されたように逆浸透膜モジュールユニットを多段配置するとなると、必然的に処理装置全体が大型化、複雑化せざるを得ない。また、逆浸透膜モジュールユニットを多段配置しても、後段のモジュールユニットには一層大きな操作圧(上記文献記載の実施例では7〜9MPa程度)が作用することになるので、上記特許文献3でも指摘されている逆浸透膜モジュールユニットの耐圧負担といった問題は十分に解決されない。   However, if the reverse osmosis membrane module units are arranged in multiple stages as described in Patent Documents 1 to 3, the entire processing apparatus is inevitably increased in size and complexity. Further, even if the reverse osmosis membrane module unit is arranged in multiple stages, a larger operating pressure (about 7 to 9 MPa in the embodiment described in the above document) acts on the subsequent module unit. Problems such as the pressure-resistant burden of the reverse osmosis membrane module unit pointed out cannot be solved sufficiently.

上記特許文献4に記載された原水中に微細気泡を生成する膜処理方法も、本出願人らの検証実験によると、微細気泡の攪拌作用によって膜面における懸濁物質の付着状態が多少は改善されるものの、透過流量の増大や、操作圧の低下によるポンプ運転エネルギーの節約といったコスト改善効果が、十分満足できる程度に得られるとは言い難い。   According to the verification experiment conducted by the present applicants, the membrane treatment method for generating fine bubbles in the raw water described in Patent Document 4 also improves the adhesion of suspended substances on the membrane surface to some extent due to the stirring action of the fine bubbles. However, it is difficult to say that cost improvement effects such as an increase in permeate flow rate and a saving in pump operation energy due to a decrease in operating pressure can be obtained to a satisfactory degree.

そこで、本発明は、低い操作圧でも従来以上の膜処理効率を得ることができる、より効率的な脱塩処理方法を提供し、処理コストをさらに低減させようとするものである。   Therefore, the present invention provides a more efficient desalting treatment method that can achieve a membrane treatment efficiency higher than that of conventional membranes even at a low operating pressure, and further aims to further reduce the treatment cost.

水中に存在する微細気泡は、その表面にマイナスの電荷を帯びて、プラスの電荷を帯びたイオンを周囲に引き寄せることが知られている。本発明者らは、この現象に着目し、膜分離する原水中に微細気泡を発生させると、微細気泡の周囲にプラスの電荷を持つイオンが集合して部分的にイオン濃度が高まり、反対に微細気泡から離れた位置ではイオン濃度が相対的に低下して、その低濃度部分が濾過膜近傍での浸透圧を低下させるのに寄与することを見出した。そして、この作用効果は、微細気泡の表面電位がプラスマイナスゼロから乖離するほど大きくなることを検証した。   It is known that fine bubbles existing in water have a negative charge on the surface and attract positively charged ions to the surroundings. When the present inventors pay attention to this phenomenon and generate microbubbles in the raw water for membrane separation, ions having a positive charge gather around the microbubbles to partially increase the ion concentration. It has been found that the ion concentration is relatively lowered at a position away from the fine bubbles, and the low concentration portion contributes to lowering the osmotic pressure in the vicinity of the filtration membrane. And it verified that this effect became so large that the surface potential of a microbubble deviated from plus or minus zero.

すなわち、本発明の脱塩処理方法は、塩類を含む原水中に直径数十μm以下のマイクロバブル又は直径1μm以下のナノバブルからなる微細気泡を生成させ、該微細気泡を含んだ原水を逆浸透膜により膜分離して水を得脱塩処理方法において、該微細気泡の表面近傍におけるゼータ電位が−40mV〜−100mVとなるように、該微細気泡をマイナス帯電させて前記原水の浸透圧を低下させることを特徴とする。 That is, the desalination treatment method of the present invention generates microbubbles composed of microbubbles having a diameter of several tens of μm or less or nanobubbles having a diameter of 1 μm or less in the raw water containing salts, and the raw water containing the microbubbles is converted into a reverse osmosis membrane. in membrane separation desalted method water Ru obtained by, as the zeta potential in the vicinity of the surface of the fine air bubbles become -40mV~-100mV, lower the osmotic pressure of the raw water to the fine air bubbles by negatively charged It is characterized by making it.

微細気泡の表面電位は、電気泳動法などを利用してゼータ電位を測定・算出することにより確認される。ゼータ電位とは、水中に分散している微粒子の周囲に形成される電気二重層中の「すべり面」(不動層と拡散層との間に存在する境界)における電位をいうが、微細気泡については気泡と共に移動する水の層が極めて薄いため、ゼータ電位の値をもって気泡表面の電気的特性を論じても特に大きな問題はない。   The surface potential of the microbubbles is confirmed by measuring and calculating the zeta potential using electrophoresis or the like. The zeta potential is the potential at the “slip surface” (boundary between the immobile layer and the diffusion layer) in the electric double layer formed around the fine particles dispersed in water. Since the layer of water that moves with the bubbles is extremely thin, there is no particular problem in discussing the electric characteristics of the bubble surface with the zeta potential value.

かかるゼータ電位を、特にマイナス帯電の強い−10mV〜−150mV(より好ましくは−40mV〜−100mV)の範囲に誘導すると、微細気泡の近傍にプラスの電荷を帯びたイオンが効率よく引き寄せられて、その結果、相対的にイオン濃度の低下した部分が優先的に濾過膜を透過することとなる。こうして、系全体では、従来よりも低い操作圧でも実質的に十分な有効圧が膜面に作用して、従来と同等以上の淡水回収率を得たり、あるいは従来と同等の操作圧で従来以上の淡水回収率を得たりすることが可能になる。   When this zeta potential is induced in a range of −10 mV to −150 mV (more preferably −40 mV to −100 mV), which is particularly negatively charged, positively charged ions are efficiently attracted in the vicinity of the fine bubbles, As a result, the portion where the ion concentration is relatively lowered preferentially permeates the filtration membrane. Thus, in the entire system, a substantially sufficient effective pressure acts on the membrane surface even at a lower operating pressure than before, and a fresh water recovery rate equal to or higher than that of the conventional one is obtained, or at the same operating pressure as that of the conventional one. It is possible to obtain a fresh water recovery rate.

微細気泡のゼータ電位は、原水の水質によって変化し、特に原水の水素イオン濃度指数(pH)に大きく影響される。そこで、本発明の脱塩処理方法は、微細気泡の表面近傍におけるゼータ電位を−40mV〜−100mVとなるように帯電させる方法として、原水の水素イオン濃度指数をpH8〜pH12の範囲に調整することをさらなる特徴とする。
The zeta potential of the fine bubbles varies depending on the quality of the raw water, and is greatly affected by the hydrogen ion concentration index (pH) of the raw water. Therefore, in the desalting method of the present invention, the hydrogen ion concentration index of the raw water is adjusted to the range of pH 8 to pH 12 as a method of charging the zeta potential in the vicinity of the surface of the fine bubbles to be −40 mV to −100 mV. Is a further feature.

原水の水素イオン濃度指数をpH8〜pH12の範囲に調整する手段としては、水質や濾過膜に悪影響を及ぼさない範囲で、公知一般のpH調整剤を添加する方法が利用できる。pH値を大きくするほど膜処理効率を上げることができるが、回収された淡水のアルカリ処理が面倒になるおそれもあるので、実用面では、水素イオン濃度指数の調整範囲をpH8〜pH10程度とするのが好ましい。なお、pH処理としては、微細気泡を発生させ続けることでpHを中性に近づけることも可能なので、この方法を回収後の水の中和に利用してもよい。   As a means for adjusting the hydrogen ion concentration index of the raw water to a range of pH 8 to pH 12, a method of adding a known general pH adjuster can be used within a range that does not adversely affect the water quality and the filtration membrane. The membrane treatment efficiency can be increased as the pH value is increased, but the alkali treatment of the collected fresh water may be troublesome. Therefore, in practical terms, the adjustment range of the hydrogen ion concentration index is about pH 8 to pH 10. Is preferred. In addition, as pH treatment, it is possible to bring the pH close to neutral by continuing to generate fine bubbles, so this method may be used for neutralization of water after recovery.

また、本発明の脱塩処理方法は、微細気泡をマイナス帯電させるのに適した気泡生成手段として、原水中に配置した本体パイプ内に気体供給管を接続し、本体パイプ内に送り込む原水の流速によって生じる負圧を利用して上記気体供給管から本体パイプ内の原水中に気体を混入し、その気液混合体中の気体塊を本体パイプ内の流路変化による気液界面でのせん断効果によって粉砕しつつ、本体パイプに形成した複数箇所のスリットから微細気泡を放出させるように構成した気泡生成装置を推奨する。
Further, the desalting method of the present invention is a bubble generating means suitable for negatively charging fine bubbles, connecting a gas supply pipe to a main pipe disposed in the raw water, and a flow rate of the raw water fed into the main pipe Using the negative pressure generated by the gas, gas is mixed into the raw water in the main pipe from the gas supply pipe, and the gas mass in the gas-liquid mixture is sheared at the gas-liquid interface by the flow path change in the main pipe A bubble generating device configured to discharge fine bubbles from a plurality of slits formed in the body pipe while being crushed by the above is recommended.

かかる気泡生成装置を用いることにより、微細気泡のゼータ電位を、よりマイナス側に帯電させやすくなる。また、この気泡生成装置によれば、例えば旋回流方式など他の方式の気泡生成装置と比較して、気泡吐出部位(本装置にあってはスリット、他方式の装置にあってはノズルなど)を通過する際の圧力損失が小さくなるので、低動力で効率的に微細気泡を発生できる。その結果、微細気泡を高濃度に発生させることが比較的容易にでき、結果的にポンプ運転エネルギーも節約することができる。   By using such a bubble generating device, it becomes easier to charge the zeta potential of the fine bubbles to the minus side. Also, according to this bubble generating device, compared with other types of bubble generating devices such as a swirling flow method, a bubble discharge site (a slit in this device, a nozzle in other devices) Since the pressure loss when passing through becomes small, fine bubbles can be generated efficiently with low power. As a result, it is relatively easy to generate fine bubbles at a high concentration, and as a result, pump operation energy can be saved.

上述のように構成される本発明の脱塩処理方法は、塩類を含む原水中に、ゼータ電位が−10mV〜−150mV、より好ましくは−40mV〜−100mVとなるようなマイナス電荷を帯びた微細気泡を生成させて、その微細気泡を含んだ原水を濾過膜分離すると、プラスの電荷を持つイオンが微細気泡の周囲に引き寄せられて、膜面近傍における浸透圧を実質的に低下させる、という作用を利用するものである。この作用により、膜面近傍における実質的な有効圧が上昇し、従来よりも低い操作圧で従来と同等以上の淡水回収率を得たり、あるいは従来と同等の操作圧で従来以上の淡水回収率を得たりすることが可能になる。また、実質的な有効圧が上昇することから、ポンプ運転エネルギーの節約や濾過膜の耐圧負担の軽減など、処理コストの改善効果も得られることとなる。 The desalinization treatment method of the present invention configured as described above is a finely charged negative charge such that the zeta potential is -10 mV to -150 mV, more preferably -40 mV to -100 mV , in the raw water containing salts. When bubbles are generated and the raw water containing the fine bubbles is separated by filtration membrane, positively charged ions are attracted around the fine bubbles and the osmotic pressure near the membrane surface is substantially reduced. Is to be used. As a result, the effective effective pressure in the vicinity of the membrane surface increases, and a fresh water recovery rate equal to or higher than that of the conventional level can be obtained at a lower operating pressure than the conventional level. It becomes possible to get. In addition, since the effective effective pressure increases, an effect of improving the processing cost such as saving of pump operation energy and reduction of the pressure-resistant load of the filtration membrane can be obtained.

そして、かかる脱塩処理方法は、濾過膜分離の直前に、マイナス電荷を帯びた微細気泡を原水中に生成させるのみで実質的な有効圧を上昇させることができるので、貯留された原水を加圧して膜モジュールを透過させるように構成された従来一般の濾過膜分離装置においても、濾過膜分離工程の上流側に気泡生成手段を追加するだけで経済的に実施することができる。   Such a desalination treatment method can increase the effective effective pressure just by generating fine bubbles having a negative charge in the raw water just before the separation of the filtration membrane, so that the stored raw water is added. Even in a conventional general filtration membrane separation device configured to pass through the membrane module under pressure, it can be economically implemented simply by adding a bubble generating means upstream of the filtration membrane separation step.

本発明の検証に使用した実験装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the experimental apparatus used for verification of this invention. 図1の実験装置における圧力容器の内部構成を示す概略図である。It is the schematic which shows the internal structure of the pressure vessel in the experimental apparatus of FIG. 圧力容器内に収容される気泡生成装置の要部断面図である。It is principal part sectional drawing of the bubble production | generation apparatus accommodated in a pressure vessel. 微細気泡のゼータ電位を測定する方法の例を示す概略図である。It is the schematic which shows the example of the method of measuring the zeta potential of a microbubble. 本発明の検証実験における透過率の時間変化を示すグラフである。It is a graph which shows the time change of the transmittance | permeability in the verification experiment of this invention. 本発明の検証実験におけるpHとゼータ電位との関係を示すグラフである。It is a graph which shows the relationship between pH and zeta potential in the verification experiment of this invention. 本発明の検証実験におけるpHの相違と透過率との関係を示すグラフである。It is a graph which shows the relationship between the difference in pH and the transmittance | permeability in the verification experiment of this invention.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の脱塩処理方法に利用される濾過膜としては、逆浸透膜(RO膜又はNF膜)が特に好適である。また、本発明の脱塩処理方法にて好適に利用される微細気泡とは、直径数十μm以下のマイクロバブル、又はマイクロバブルよりもさらに小径(1μm以下)のナノバブルである。気泡の直径が数十μm以下であれば、短時間では上昇して消泡することなく、原水中に長時間残存するので、より好ましい。   First, a reverse osmosis membrane (RO membrane or NF membrane) is particularly suitable as a filtration membrane used in the desalting treatment method of the present invention. Further, the fine bubbles preferably used in the desalting method of the present invention are microbubbles having a diameter of several tens of μm or less, or nanobubbles having a smaller diameter (1 μm or less) than the microbubbles. If the diameter of the bubbles is several tens of μm or less, it is more preferable because it remains in the raw water for a long time without rising and defoaming in a short time.

図1は、本発明の検証に使用した実験装置の概略構成を示す。実験装置は、後述する気泡生成装置6を内部に収容した圧力容器1、この圧力容器1に窒素ガスを用いて圧力をかける加圧制御ユニット2、圧力容器1の一端に接続された高圧ポンプ3、圧力容器1の他端に接続された膜モジュールユニット4、及び濾過膜付近の塩濃度の上昇を防ぐためのスターラー(攪拌装置)5等で構成される。   FIG. 1 shows a schematic configuration of an experimental apparatus used for verification of the present invention. The experimental apparatus includes a pressure vessel 1 in which a bubble generating device 6 described later is housed, a pressurization control unit 2 that applies pressure to the pressure vessel 1 using nitrogen gas, and a high-pressure pump 3 connected to one end of the pressure vessel 1. A membrane module unit 4 connected to the other end of the pressure vessel 1 and a stirrer (stirring device) 5 for preventing an increase in salt concentration near the filtration membrane.

図2は、圧力容器1の内部の概略構成を示す。また、図3は、圧力容器1内に収容される気泡生成装置6の要部断面を示す。例示の気泡生成装置6は、高圧ポンプ3を介して加圧された原水(処理水)を送り込む原水供給管61に接続された本体パイプ62と、この本体パイプ62に接続された気体供給管63と、この気体供給管63よりも下流側にて本体パイプ62に形成した複数箇所のスリット64と、スリット64よりもさらに下流側にて本体パイプ62の端部を閉じる衝突壁65とを備えている。本体パイプ62は、原水中に沈められた状態で配置される。気体供給管63は、本体パイプ62の上流端寄りに、本体パイプ62と略直交する向きに接続されている。気体供給管63の先端部は本体パイプ62の中心付近まで進入しており、その側面には、本体パイプ62の下流側に向かって開口する気体放出孔66が形成されて、気体供給管63に送り込まれる気体(例示形態では窒素、但し空気でも可)が、この気体放出孔66から本体パイプ62内へと放出される。気体放出孔66の形状については、図示のようなスリット状、あるいは丸孔状、矩形孔状、または単純に管端部が閉塞されることなく解放された形状などを適宜選択することができる。   FIG. 2 shows a schematic configuration inside the pressure vessel 1. FIG. 3 shows a cross section of the main part of the bubble generating device 6 accommodated in the pressure vessel 1. The illustrated bubble generating device 6 includes a main body pipe 62 connected to a raw water supply pipe 61 that feeds pressurized raw water (treated water) through the high-pressure pump 3, and a gas supply pipe 63 connected to the main body pipe 62. A plurality of slits 64 formed in the main body pipe 62 on the downstream side of the gas supply pipe 63, and a collision wall 65 for closing the end of the main body pipe 62 on the further downstream side of the slit 64. Yes. The main body pipe 62 is arranged in a state of being submerged in the raw water. The gas supply pipe 63 is connected near the upstream end of the main body pipe 62 in a direction substantially orthogonal to the main body pipe 62. The distal end of the gas supply pipe 63 has entered the vicinity of the center of the main body pipe 62, and a gas discharge hole 66 that opens toward the downstream side of the main body pipe 62 is formed on the side surface of the gas supply pipe 63. The gas to be fed (in the exemplary embodiment, nitrogen but air may be used) is discharged from the gas discharge hole 66 into the main body pipe 62. As the shape of the gas discharge hole 66, a slit shape as shown in the figure, a round hole shape, a rectangular hole shape, or a shape in which the tube end portion is simply opened without being blocked can be appropriately selected.

本体パイプ62に形成されるスリット64は、本体パイプ62内で生成される微細気泡の吐出部位となる。例示形態にあっては、本体パイプ62の周面の略半分にわたる開口幅を有する10ヶ所のスリット64が、本体パイプ62の長さ方向に沿って略等間隔で、かつ互いに平行となるように形成されている。   The slits 64 formed in the main body pipe 62 serve as discharge portions for fine bubbles generated in the main body pipe 62. In the illustrated embodiment, ten slits 64 having an opening width that covers substantially half of the peripheral surface of the main body pipe 62 are arranged at substantially equal intervals along the length direction of the main body pipe 62 and parallel to each other. Is formed.

上記のように構成される気泡生成装置6の基本的な作用は次のとおりである。すなわち、原水供給管61から本体パイプ62内に加圧状態で送り込まれた原水は、気体供給管63の先端部付近における流速変化によって負圧を生じる。この負圧によって、気体供給管63の先端部に形成された気体放出孔66から原水中に、気体が自吸的に導入される。気体が混入した原水(気液混合体)は本体パイプ62の下流端を塞ぐ衝突壁65に衝突し、その衝撃や流速変化によって気体塊が粉砕され、微小化した気体はスリット64から原水とともに本体パイプ62外に排出される。   The basic operation of the bubble generating device 6 configured as described above is as follows. That is, the raw water fed in a pressurized state from the raw water supply pipe 61 into the main body pipe 62 generates a negative pressure due to a change in flow velocity near the tip of the gas supply pipe 63. Due to this negative pressure, gas is self-primedly introduced into the raw water from the gas discharge hole 66 formed at the tip of the gas supply pipe 63. The raw water mixed with gas (gas-liquid mixture) collides with a collision wall 65 that blocks the downstream end of the main body pipe 62, and the gas mass is pulverized by the impact and flow velocity change. It is discharged out of the pipe 62.

なお、上記の負圧により本体パイプ62内は2相流となり、この2相流はスリット64域に達すると二つの流れに別れる。一つは下流方向への流れであり、もう一つはスリット64への流れであり、この流れの分岐により気泡はせん断力を受け微細化される。さらにスリット64に自体よる絞り効果や、スリット64を通過する時とスリット64から放出された直後の流れの間の速度勾配によるせん断力によっても気泡が微細化される。   The main pipe 62 has a two-phase flow due to the negative pressure, and the two-phase flow is divided into two flows when reaching the slit 64 region. One is a flow in the downstream direction, and the other is a flow to the slit 64. By the branching of this flow, the bubbles are subjected to shearing force and are refined. Further, the bubbles are made finer by the narrowing effect due to the slit 64 itself and the shearing force due to the velocity gradient between the flow after passing through the slit 64 and the flow immediately after being discharged from the slit 64.

上記の構成において、スリット64は、本体パイプ62の軸芯と直交するように形成されてもよいが、該直交状態よりも若干傾斜するほうが、水流の分岐によるせん断作用が強まって気泡の微細化には有利である。具体的には、本体パイプ62の軸心に対するスリット64の上流側の傾斜角θを30°〜80°、より好ましくは50°〜70°程度に設定するとよい。スリット64の個数も気泡の生成状況を見ながら適宜増減されればよいが、スリット64の開口面積の合計を、本体パイプ62の有効断面積の0.5〜3.0倍程度、より好ましくは0.8〜2.0倍程度に設定するとよい。また、気泡の微細化には、本体パイプ62の肉厚を薄くするのも有利である。さらに、スリット64を本体パイプ62の下側に開口させることで、生成した微細気泡が原水中に広く拡散しやすくなる。   In the above configuration, the slit 64 may be formed so as to be orthogonal to the axis of the main body pipe 62. However, if it is slightly inclined as compared to the orthogonal state, the shearing action due to the branching of the water flow is strengthened and the bubbles are made finer. Is advantageous. Specifically, the inclination angle θ on the upstream side of the slit 64 with respect to the axis of the main body pipe 62 may be set to 30 ° to 80 °, more preferably about 50 ° to 70 °. The number of the slits 64 may be appropriately increased or decreased while observing the generation state of the bubbles, but the total opening area of the slits 64 is about 0.5 to 3.0 times the effective sectional area of the main body pipe 62, more preferably. It may be set to about 0.8 to 2.0 times. It is also advantageous to reduce the thickness of the main body pipe 62 in order to make the bubbles finer. Furthermore, by making the slit 64 open to the lower side of the main body pipe 62, the generated fine bubbles are easily diffused widely in the raw water.

かかる気泡生成装置6を用いることにより、効率的に微細気泡を生成することができるとともに、微細気泡のゼータ電位を、よりマイナス側に帯電させやすくなる。また、この気泡生成装置6によれば、例えば旋回流方式など他の方式の気泡生成装置と比較して、気泡吐出部位における圧力損失を小さく抑えることもできる。   By using such a bubble generating device 6, it is possible to efficiently generate fine bubbles and to easily charge the zeta potential of the fine bubbles to the minus side. In addition, according to the bubble generating device 6, it is possible to suppress the pressure loss at the bubble discharge portion as compared with other types of bubble generating devices such as a swirling flow method.

次に、微細気泡のゼータ電位を、電気泳動法を用いて測定、算出する方法について説明する。図4は、該測定方法の一例を示す概略図である。   Next, a method for measuring and calculating the zeta potential of fine bubbles using electrophoresis will be described. FIG. 4 is a schematic view showing an example of the measurement method.

水槽7内に気泡生成装置6を配置して、水槽7内の原水中に微細気泡を発生させ、微細気泡を含んだ原水を電気泳動セル8に導く。電気泳動セル8内には、薄い銀板からなる2つの電極81、82を対向配置し、各電極81、82には定電圧発生装置9を接続して、一定時間(例えば1秒)毎に、パルス的に正負を逆転させた150V程度の直流電圧を両電極81、82間に印加する。電荷を帯びた微細気泡は、この電場内で水平方向に移動する。その動きをハイスピードカメラ101で撮影し、撮影した画像をパソコン102で画像処理して気泡径と移動速度を測定する。こうして測定された水平方向の移動速度から、スモルコフスキー(Smoluchowski )の方程式により、ゼータ電位を算出する。   The bubble generating device 6 is arranged in the water tank 7 to generate fine bubbles in the raw water in the water tank 7, and the raw water containing the fine bubbles is guided to the electrophoresis cell 8. In the electrophoresis cell 8, two electrodes 81, 82 made of thin silver plates are arranged to face each other, and a constant voltage generator 9 is connected to each electrode 81, 82, and every certain time (for example, 1 second). Then, a DC voltage of about 150 V, in which the polarity is reversed in a pulsed manner, is applied between the electrodes 81 and 82. The charged fine bubbles move horizontally in this electric field. The movement is photographed by the high speed camera 101, and the photographed image is processed by the personal computer 102 to measure the bubble diameter and the moving speed. The zeta potential is calculated from the horizontal movement speed measured in this way, according to the Smoluchowski equation.

上記のような実験装置を用いて実施した検証実験の概要は以下の通りである。   The outline of the verification experiment conducted using the above experimental apparatus is as follows.

原水として濃度1%の塩水を使用し、この塩水が入った圧力容器1内を窒素ガスで加圧した。高圧ポンプ3を駆動させて、微細気泡を塩水中に発生させた。そして、3分間毎に回収された真水の重さと塩濃度を同時に測定し、その測定を連続5回繰り返して合計15分間にわたり実施した。   Salt water having a concentration of 1% was used as raw water, and the pressure vessel 1 containing the salt water was pressurized with nitrogen gas. The high pressure pump 3 was driven to generate fine bubbles in the salt water. And the weight and salt concentration of fresh water collected every 3 minutes were measured simultaneously, and the measurement was repeated 5 times continuously for a total of 15 minutes.

透過率の時間変化を図5に示す。ここで「透過率」とは、微細気泡を発生させない状態で回収された真水の重さに対する、微細気泡を発生させた状態で回収された真水の重さの割合と定義する。つまり、透過率とは、微細気泡の作用によって膜処理効率が実質的にどれだけ上昇したかを示す値である。   The time change of the transmittance is shown in FIG. Here, the “permeability” is defined as the ratio of the weight of fresh water collected in a state where fine bubbles are generated to the weight of fresh water collected in a state where fine bubbles are not generated. In other words, the transmittance is a value indicating how much the film processing efficiency is substantially increased by the action of the fine bubbles.

原水の塩濃度1%、圧力0.95MPa、pH=7で実験を行ったところ、最初の3分間は透過率が140%以上にまで上昇し、その後もさらに153%ほどにまで徐々に上昇した。   When the experiment was conducted with a salt concentration of 1% in raw water, a pressure of 0.95 MPa, and a pH = 7, the transmittance increased to 140% or more for the first 3 minutes, and then gradually increased to about 153%. .

続いて、微細気泡の表面電位(ゼータ電位)が透過率に及ぼす影響をみるために、微細気泡のゼータ電位を変化させて、上記と同様の膜濾過を実施した。pHの違いによるゼータ電位の変化を図6に示す。   Subsequently, in order to examine the effect of the surface potential (zeta potential) of the fine bubbles on the transmittance, the membrane filtration was performed in the same manner as described above while changing the zeta potential of the fine bubbles. The change in zeta potential due to the difference in pH is shown in FIG.

pH調整剤には、HClとNaOHを使用した。pHが高くなると、微細気泡は高いマイナスの電荷を帯び、低くなるとプラスの電荷を帯びることがわかる。pH=11の場合、ゼータ電位は−80mV付近であるのに対し、pH=3の場合、ゼータ電位はほぼ0mV付近である。この微細気泡の特性を利用し、pH=3の場合と、pH=11の場合で、透過率に影響が見られるかを調べた。pHの相違による透過率の時間変化を図7に示す。濾過条件は上記pH=7の場合と同じく塩濃度1%、圧力0.95MPaであり、透過率は、pHをそれぞれ同一にして微細気泡を発生させない場合に対しての割合である。   HCl and NaOH were used as the pH adjuster. It can be seen that the microbubbles have a high negative charge when the pH is high, and a positive charge when the pH is low. When pH = 11, the zeta potential is around −80 mV, whereas when pH = 3, the zeta potential is around 0 mV. Using the characteristics of the fine bubbles, it was examined whether the transmittance was affected when pH = 3 and when pH = 11. FIG. 7 shows the change in transmittance over time due to the difference in pH. The filtration conditions are the same as in the case of pH = 7, the salt concentration is 1%, the pressure is 0.95 MPa, and the transmittance is the ratio with respect to the case where fine bubbles are not generated with the same pH.

pH=3の場合、透過率は最初から低く、時間とともに増加はしたものの、最大でも133%にとどまった。一方、pH=11の場合は、最初から透過率が180%を超え、最大で211%ほどにまで上昇した。図5に示したpH=7の場合の透過率と比較しても格段に大きな値となっており、明らかにpH値がアルカリ側に高くなるほど透過率が上昇している。つまり、微細気泡の表面電位がマイナス側に高くなるほど透過率も高くなり、このことから、透過率は微細気泡の表面電位(ゼータ電位)の影響を受けているといえる。   When pH = 3, the transmittance was low from the beginning and increased with time, but remained at a maximum of 133%. On the other hand, in the case of pH = 11, the transmittance exceeded 180% from the beginning and increased to about 211% at the maximum. Compared with the transmittance in the case of pH = 7 shown in FIG. 5, it is a remarkably large value, and clearly the transmittance increases as the pH value becomes higher on the alkali side. That is, the higher the surface potential of the fine bubbles is on the minus side, the higher the transmittance is. Therefore, it can be said that the transmittance is affected by the surface potential (zeta potential) of the fine bubbles.

以上の実験から、原水中に微細気泡を発生させると、発生させない場合よりも膜処理効率が向上することに加え、微細気泡のゼータ電位をマイナス側に高く誘導するほど、上記微細気泡による膜処理効率の向上効果がさらに増大することが裏付けられた。   From the above experiment, when microbubbles are generated in the raw water, the membrane treatment efficiency is improved as compared with the case where the microbubbles are not generated. It was confirmed that the effect of improving the efficiency was further increased.

本発明の脱塩処理方法は、海水の淡水化のほか、湖水、河川水、雨水などの自然水や、種々無機塩類等の混合溶液から水以外の不純物を除去して、工業用、農業用、飲用等の真水を得る技術に幅広く利用することができる。   In addition to seawater desalination, the desalination treatment method of the present invention removes impurities other than water from natural water such as lake water, river water, rainwater, and mixed solutions of various inorganic salts, for industrial and agricultural use. It can be widely used for techniques for obtaining fresh water such as drinking.

1 圧力容器
3 高圧ポンプ
6 気泡生成装置
62 本体パイプ
63 気体供給管
64 スリット
65 衝突壁
DESCRIPTION OF SYMBOLS 1 Pressure vessel 3 High pressure pump 6 Bubble generator 62 Main body pipe 63 Gas supply pipe 64 Slit 65 Collision wall

Claims (2)

塩類を含む原水中に直径数十μm以下のマイクロバブル又は直径1μm以下のナノバブルからなる微細気泡を生成させ、該微細気泡を含んだ原水を逆浸透膜により膜分離して水を得脱塩処理方法において、
前記原水の水素イオン濃度指数をpH8〜pH12の範囲に調整することにより、該微細気泡を、その表面近傍におけるゼータ電位が−40mV〜−100mVとなるようにマイナス帯電させて、前記原水の浸透圧を低下させることを特徴とする脱塩処理方法。
Raw water to thereby produce microbubbles consisting diameter of several tens μm or less of microbubbles or diameter 1μm following nanobubbles, desalted raw water containing the fine bubbles to membrane separation by reverse osmosis membrane Ru obtain a water containing salts In the processing method,
By adjusting the hydrogen ion concentration index of the raw water to a range of pH 8 to pH 12, the fine bubbles are negatively charged so that the zeta potential in the vicinity of the surface becomes −40 mV to −100 mV, and the osmotic pressure of the raw water A desalinization method characterized by lowering the odor.
請求項1記載の脱塩処理方法において、
原水中に微細気泡を生成させる方法が、原水中に配置した本体パイプ内に気体供給管を接続し、本体パイプ内に送り込む原水の流速によって生じる負圧を利用して上記気体供給管から本体パイプ内の原水中に気体を混入し、その気液混合体中の気体塊を本体パイプ内の流路変化による気液界面でのせん断効果によって粉砕しつつ、本体パイプに形成した複数箇所のスリットから微細気泡を放出させることである脱塩処理方法。
The desalinization processing method according to claim 1,
A method for generating fine bubbles in the raw water is to connect the gas supply pipe to the main pipe arranged in the raw water, and to use the negative pressure generated by the flow rate of the raw water fed into the main pipe from the gas supply pipe to the main pipe. Gas is mixed into the raw water in the gas, and the gas lump in the gas-liquid mixture is crushed by the shearing effect at the gas-liquid interface due to the flow path change in the main pipe, and from the multiple slits formed in the main pipe A desalting method which is to release fine bubbles.
JP2009048137A 2009-03-02 2009-03-02 Desalting method Expired - Fee Related JP5435545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048137A JP5435545B2 (en) 2009-03-02 2009-03-02 Desalting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048137A JP5435545B2 (en) 2009-03-02 2009-03-02 Desalting method

Publications (2)

Publication Number Publication Date
JP2010201310A JP2010201310A (en) 2010-09-16
JP5435545B2 true JP5435545B2 (en) 2014-03-05

Family

ID=42963350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048137A Expired - Fee Related JP5435545B2 (en) 2009-03-02 2009-03-02 Desalting method

Country Status (1)

Country Link
JP (1) JP5435545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376166B2 (en) * 2010-02-15 2013-12-25 パナソニック環境エンジニアリング株式会社 Pure water production equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400123B2 (en) * 2003-07-29 2010-01-20 東レ株式会社 Liquid separation membrane and liquid processing method
JP4884693B2 (en) * 2004-04-28 2012-02-29 独立行政法人科学技術振興機構 Micro bubble generator
JP2006272095A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Water tank equipped with fine bubble generator
JP2008272650A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Desalting treatment method and desalting treatment apparatus

Also Published As

Publication number Publication date
JP2010201310A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US9994463B2 (en) Electrocoagulation system
JP2009148673A (en) Membrane separation apparatus and desalination method
WO2008053700A1 (en) Method of desalting, apparatus for desalting, and bubble generator
JP6281274B2 (en) High hardness wastewater treatment device and treatment method
JP5131005B2 (en) Water treatment method and water treatment apparatus
US10029925B2 (en) Apparatus and method for cleaning water
JP6269241B2 (en) Forward osmosis processing system
US20210001273A1 (en) Methods, systems, and compositions for delivery of nanobubbles in water treatment systems
CA2963306C (en) Water treatment process employing dissolved air flotation to remove suspended solids
JP6580338B2 (en) Film processing apparatus and film processing method
JP5435545B2 (en) Desalting method
CN106630311A (en) Desulfurization wastewater zero-discharge treatment method
JP7358675B2 (en) Method for separating and purifying fluids containing valuables
JP2008272650A (en) Desalting treatment method and desalting treatment apparatus
JP2016131937A (en) Seawater desalination system and method
JPH10323674A (en) Organic matter-containing water treatment apparatus
EP3192577A1 (en) Water treatment apparatus and water treatment method
JP6530931B2 (en) Method of desalting, method of cleaning demineralizer and demineralizer
US9682871B2 (en) Apparatus for killing and preventing growth of algae and bacteria in the piping, filtering and pumping components of watermaker systems during periods of non-use
KR101893790B1 (en) Pre-Apparatus and method for Reverse Osmosis Membrane
CN106045137A (en) Seawater desalination method and seawater desalination system
JPH11137971A (en) Electric filter device and its control method
KR20160123864A (en) Water treatment apparatus and operation control method of the same
Kwon et al. Fouling control of a submerged membrane module (YEF) by filtration modes
JP7044848B1 (en) Liquid treatment equipment, pure water production system and liquid treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees