JPH11137971A - Electric filter device and its control method - Google Patents

Electric filter device and its control method

Info

Publication number
JPH11137971A
JPH11137971A JP9310106A JP31010697A JPH11137971A JP H11137971 A JPH11137971 A JP H11137971A JP 9310106 A JP9310106 A JP 9310106A JP 31010697 A JP31010697 A JP 31010697A JP H11137971 A JPH11137971 A JP H11137971A
Authority
JP
Japan
Prior art keywords
water
treated
electrode
membrane
electrochemical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9310106A
Other languages
Japanese (ja)
Inventor
Takeo Shigeniwa
竹生 茂庭
Mitsumasa Okada
光正 岡田
Nobuyuki Motoyama
本山  信行
Takayuki Morioka
崇行 森岡
Ryutaro Takahashi
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Fuji Electric Co Ltd
Original Assignee
Tokai University
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Fuji Electric Co Ltd filed Critical Tokai University
Priority to JP9310106A priority Critical patent/JPH11137971A/en
Publication of JPH11137971A publication Critical patent/JPH11137971A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to remove the pollutant larger than membrane pore diameter and the decomposed components smaller than the membrane pore diameter by providing the water to be treated side of the device for filtering the polluting materials of the water to be treated by using the membrane with an electrochemical cell consisting of first and second electrodes facing each other and disposing a filter membrane on the filtrate side of the downstream. SOLUTION: The water to be treated is introduced from a water to be treated inlet 4 and is passed through the electrochemical cell comprising the electrodes 2, 3. The charge particles in the water to be treated are moved from the electrode 2 toward the electrode 3 by the voltage impression between the electrodes 2 and 3 to lower the charge particle concn. in the water to be treated. The water to be treated is thereafter filtered by the filter membrane 1 and the filtrate is discharged from a filtrate outlet 5 and the concd. water from a concd. water outlet 6. A target removal rate is calculated from the measured value of the materials to be removed of the water to be treated and the preset target value of the membrane filtrate and the impression electric power on the electrochemical cell is determined by using the target removal rate. The efficient filtration is made possible by controlling the impressed electric power on the electrodes 2, 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中に含まれる汚
濁物質、特に荷電した粒子および分子やイオンを分離除
去するための全ての水処理を対象とした電気ろ過装置お
よびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrofiltration apparatus for all water treatments for separating and removing pollutants, particularly charged particles, molecules and ions contained in water, and a control method thereof.

【0002】[0002]

【従来の技術】膜を用いた水処理の方法は、分離の対象
とする物質の大きさによって、(1)精密ろ過法、
(2)限外ろ過法、(3)ナノろ過法、(4)逆浸透法
とに大別され、(1)〜(4)の順に、より小さい物質
が除去できる。まず、これら4つの膜処理法の概要を述
べる。
2. Description of the Related Art Water treatment methods using membranes are divided into (1) microfiltration method and
(2) Ultrafiltration, (3) Nanofiltration, and (4) Reverse osmosis, and smaller substances can be removed in the order of (1) to (4). First, the outline of these four film processing methods will be described.

【0003】(1)精密ろ過法では、分離粒径0.01
μm以上の溶液中の微粒子、懸濁物質、細菌類の阻止が
でき、吸引方式の場合には操作圧力が−600kPa以
上、また加圧方式の場合には操作圧力が200kPa以
下で使用される。 (2)限外ろ過法では、分子量1000〜300,00
0の溶液中のコロイド物質や高分子物質の分離ができ、
吸引方式の場合には操作圧力が−600kPa以上、ま
た加圧方式の場合には操作圧力が300kPa以下で使
用される。
(1) In the microfiltration method, the separated particle size is 0.01
Particles, suspended solids and bacteria in a solution of μm or more can be prevented, and the operation pressure is -600 kPa or more in the case of the suction method, and 200 kPa or less in the case of the pressurization method. (2) In the ultrafiltration method, a molecular weight of 1,000 to 300,00
Separation of colloidal substances and polymer substances in the solution of 0,
In the case of the suction method, the operation pressure is -600 kPa or more, and in the case of the pressurization method, the operation pressure is 300 kPa or less.

【0004】(3)ナノろ過法では、分子量最大数百の
溶液中の低分子物質の分離ができ、加圧方式の操作圧力
が200〜1500kPaで使用される。 (4)逆浸透法では、分子量数十の溶液中の塩類やイオ
ン類、低分子物質の分離ができ、加圧方式の操作圧力が
400〜7000kPaで使用される。 これらの膜を用いた水処理方法は、被処理水中の懸濁物
質を確実に除去できること、機械的に動く部分が少なく
容易に自動化が可能なこと、省スペース化が可能である
こと、凝集剤の使用量を低減できること、建設工期の短
縮化ができることなどの多くの長所がある。
(3) In the nanofiltration method, low-molecular substances in a solution having a molecular weight of several hundred at the maximum can be separated, and the operating pressure of the pressurization method is 200 to 1500 kPa. (4) In the reverse osmosis method, salts, ions, and low molecular substances in a solution having a molecular weight of several tens can be separated, and the operating pressure of the pressurization method is 400 to 7000 kPa. The water treatment method using these membranes must be able to reliably remove suspended substances in the water to be treated, to be easily automated with few mechanically moving parts, to be able to save space, and to have a flocculant. There are many advantages, such as the ability to reduce the amount of used and shortening the construction period.

【0005】次に、ろ過膜と電気化学セルを組み合わせ
た電気ろ過法がある。一般的な電気ろ過法では、電気ろ
過の処理空間をろ過膜で仕切り、被処理水の流入する側
のろ過膜と反対側の壁に第二電極を、またろ過膜を通っ
たろ過水の流出側のろ過膜と反対側の壁に第一電極を設
けた構造で、この一対の電極より成る電気化学セルに通
電した状態でろ過を行っている。
Next, there is an electrofiltration method in which a filtration membrane and an electrochemical cell are combined. In a general electrofiltration method, the treatment space for electrofiltration is separated by a filtration membrane, a second electrode is placed on the wall opposite to the filtration membrane on the side where the water to be treated flows, and the filtered water flows out through the filtration membrane. The first electrode is provided on the wall on the opposite side of the filtration membrane on the side, and filtration is performed in a state where power is supplied to the electrochemical cell including the pair of electrodes.

【0006】また、特開平2−245209号公報に記
載されている方法では、第二電極は一般的な電気ろ過法
と同じであるが、第一電極は、ろ過膜と同一面上にある
か、またはろ過膜の下流側すなわちろ過水側にあり、一
体または重なりあって設置された構造で、ろ過を行う方
法である。この公開公報では、上記の構造でろ過を行っ
ており、高濃度の溶液を濃縮する際には、水の電気分解
によって生成する水素ガスまたは酸素ガスの気泡によっ
て、ろ過膜の目詰まりを抑制するという特徴がある。
In the method described in JP-A-2-245209, the second electrode is the same as a general electrofiltration method, but is the first electrode on the same surface as the filtration membrane? , Or on the downstream side of the filtration membrane, that is, on the side of filtered water, and is a method of performing filtration with a structure that is installed integrally or in an overlapping manner. In this publication, filtration is performed with the above structure, and when a highly concentrated solution is concentrated, clogging of the filtration membrane is suppressed by hydrogen gas or oxygen gas bubbles generated by electrolysis of water. There is a feature.

【0007】[0007]

【発明が解決しようとする課題】上水における河川・湖
沼水や下水の二次処理水の溶解成分の除去のためには、
前記の膜による水処理方法のうち、膜孔径と除去対象物
質の大きさから(2)限外ろ過法や(3)ナノろ過法が
利用される。しかしながら、これらの方法は300〜1
500kPa程度の操作圧力を得るために動力の大きい
ポンプ設備が必要であり、またランニングコストが嵩む
という問題があり、ろ過効率の向上による省スペース化
と、省電力化とが求められている。
In order to remove dissolved components of rivers, lakes and marshes water and sewage secondary treatment water in water supply,
Among the water treatment methods using the membrane, (2) ultrafiltration and (3) nanofiltration are used depending on the membrane pore size and the size of the substance to be removed. However, these methods are 300-1
In order to obtain an operation pressure of about 500 kPa, pump equipment with large power is required, and there is a problem that running cost is increased. Therefore, space saving and power saving by improvement of filtration efficiency are required.

【0008】また、ろ過膜と電気化学セルを組み合わせ
た電気ろ過方法では、Caを含有した被処理水をろ過し
た場合、膜側の第一電極を負に帯電させると、凝析によ
りろ過水中にCaが析出し、清澄なろ過水を得ることが
できないという問題が生じる。特開平2−245209
号公報の電気ろ過方法では、この公報で「電導性シー
ト」と記載されている第一電極と、「多孔質または微孔
質」と記載されているろ過膜とは、第一電極とろ過膜と
が同一面上にあるか、第一電極がろ過膜がに対してろ過
水側にあるどちらかの構造になっている。このような構
造の場合、第一電極を負にした状態でCaを含有する被
処理水のろ過を行うと、Caは容易に膜を通じてろ過水
側に流入してしまうため凝析を生じ、同様に、清澄な水
を得ることができなくなるという問題がある。
[0008] In the electrofiltration method using a combination of a filtration membrane and an electrochemical cell, when water to be treated containing Ca is filtered, if the first electrode on the membrane side is negatively charged, coagulation occurs in the filtered water. There is a problem that Ca precipitates and clear filtered water cannot be obtained. JP-A-2-245209
In the electrofiltration method of the publication, the first electrode described as “conductive sheet” in this publication, and the filtration membrane described as “porous or microporous”, the first electrode and the filtration membrane Are located on the same plane, or the first electrode has a structure in which the filtration membrane is on the filtered water side. In the case of such a structure, when the to-be-treated water containing Ca is filtered in a state where the first electrode is negative, Ca easily flows into the filtered water side through the membrane, and coagulation occurs. Another problem is that clear water cannot be obtained.

【0009】さらに、実際の運転時に、除去対象物質の
除去率を達成するための電力の制御方法について、合理
的な方針を明確にする必要があった。
Furthermore, it is necessary to clarify a rational policy on a power control method for achieving a removal rate of a substance to be removed during an actual operation.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では、膜ろ過方式の性能の向上のための装
置構成と、除去対象物質の目標除去率を達成するための
電力の制御方式とを提供する。まず、膜ろ過方式の性能
向上の方式であるが、被処理水を電気化学セルと膜をこ
の順に通過させるために、被処理水側に一対の電極より
成る電気化学セルを置き、その下流側にろ過膜を置く装
置構成とすることとする。
In order to solve the above-mentioned problems, the present invention provides a device configuration for improving the performance of a membrane filtration system and an electric power for achieving a target removal rate of a substance to be removed. And a control method. First, in the method of improving the performance of the membrane filtration method, an electrochemical cell composed of a pair of electrodes is placed on the side of the water to be treated in order to allow the water to be treated to pass through the electrochemical cell and the membrane in this order, and the downstream side thereof. It is assumed that the apparatus has a configuration in which a filtration membrane is placed.

【0011】このろ過方法の装置構成の模式図を図1に
示す。まず、被処理水は被処理水入口4より導入され、
多孔質の第一電極2と第二電極3により構成される電気
化学セルを通過する。その後に、被処理水は第一電極2
の近傍のろ過膜1によってろ過されるが、ここで、ろ過
水はろ過水出口5より、また、ろ過されない分は濃縮水
出口6より送出される。
FIG. 1 shows a schematic diagram of the apparatus configuration of this filtration method. First, the water to be treated is introduced from the treated water inlet 4,
It passes through an electrochemical cell composed of a porous first electrode 2 and a second electrode 3. Thereafter, the water to be treated is the first electrode 2
Is filtered by the filtration membrane 1 in the vicinity of the filter water. Here, filtered water is sent out from the filtered water outlet 5, and unfiltered water is sent out from the concentrated water outlet 6.

【0012】この方法の基本は、電極間への電圧印加に
より、電気泳動を駆動力として水中の荷電粒子を第一電
極から第二電極の方向に移動させて、被処理水中の荷電
粒子濃度を低下させた後に膜ろ過を行うということであ
る。その結果として、荷電粒子の除去効果が向上する。
また第一電極がろ過膜より被処理水側にあるために、凝
析の原因となるCaがろ過水側に流入することを抑制で
きる。この二つの効果で、清澄なろ過水を得ることを可
能なり、従来の問題点を解決できる。
The basic principle of this method is that, by applying a voltage between the electrodes, the charged particles in the water to be treated are moved by moving the charged particles in the water from the first electrode to the second electrode using electrophoresis as a driving force. This means that membrane filtration is performed after the reduction. As a result, the effect of removing charged particles is improved.
In addition, since the first electrode is located on the side of the water to be treated with respect to the filtration membrane, Ca that causes coagulation can be prevented from flowing into the side of the filtration water. With these two effects, it is possible to obtain clear filtered water, and the conventional problems can be solved.

【0013】次に、除去対象物質の目標除去率を達成す
るための電力の制御方式であるが、これは発明者らが、
実験により除去対象物質の除去率と電気化学セルへの印
加電力の平方根とが比例することを見いだしたことに基
づいている。この関係を利用して、電気化学セル通過前
に設けた水質測定装置による被処理中の汚濁物質の測定
値と、あらかじめ設定した膜ろ過水中の汚濁物質の目標
値とから、演算して除去率を算出し、前述の除去率と印
加電力との関係から印加電力を求め、第一電極および第
二電極に印加する電力を制御することとする。この方法
により、合理的な制御を提供することができ、運転時の
省電力が可能になる。
Next, a power control method for achieving a target removal rate of a substance to be removed is described.
It is based on the finding that the removal rate of the substance to be removed is proportional to the square root of the power applied to the electrochemical cell through experiments. By utilizing this relationship, the removal rate is calculated from the measured value of the pollutant being treated by the water quality measurement device provided before passing through the electrochemical cell and the preset target value of the pollutant in the membrane filtration water. Is calculated from the relationship between the removal rate and the applied power, and the power applied to the first electrode and the second electrode is controlled. According to this method, rational control can be provided, and power saving during operation can be achieved.

【0014】[0014]

【発明の実施の形態】本発明を実証するために用いた電
気ろ過装置および制御方法の模式図を図2に示す。被処
理水には、5個所の河川水と湖沼水とを使用した。ま
ず、被処理水タンク8に被処理水を注入し、被処理水ポ
ンプ10により、流量計9を経由して、膜ろ過モジュー
ル7に送水した。ろ過膜1には、気孔径0.2μmのセ
ラミックス膜を用い、第一電極2として平均気孔径5μ
mのカーボン多孔質を、第二電極3として、白金メッキ
チタン板を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a schematic diagram of an electrofiltration apparatus and a control method used to demonstrate the present invention. River water and lake water at five locations were used as the water to be treated. First, the water to be treated was injected into the water tank 8 to be treated, and was sent to the membrane filtration module 7 by the water pump 10 via the flowmeter 9. A ceramic membrane having a pore diameter of 0.2 μm is used for the filtration membrane 1, and an average pore diameter of 5 μm is used as the first electrode 2.
A platinum-plated titanium plate was used as the second electrode 3 using carbon porous material m.

【0015】電源12より、第一電極2を負極、第二電
極3を正極として通電した状態でろ過を行った。この条
件での測定結果を図3に示す。この図で、横軸は印加し
た電力(W)の平方根、縦軸は紫外部吸光度E260で
測定した除去率である。ここで、E260成分は、河川
水、湖沼水ではフミン酸やフルボ酸といった溶解性の有
機物を示す指標の一つである。実験結果から、通常0.
2μmの気孔径のろ過膜では除去困難とされるE260
成分が、本発明の装置では除去が確認され、また、E2
60除去率は、図示のように印加電力の平方根に比例し
て増加することが見出された。
Filtration was carried out in a state where power was supplied from a power source 12 with the first electrode 2 as a negative electrode and the second electrode 3 as a positive electrode. FIG. 3 shows the measurement results under these conditions. In this figure, the horizontal axis represents the square root of the applied power (W), and the vertical axis represents the removal rate measured by ultraviolet absorbance E260. Here, the E260 component is one of indexes indicating soluble organic substances such as humic acid and fulvic acid in river water and lake water. From the experimental results, it is usually 0.
E260, which is considered difficult to remove with a filtration membrane having a pore size of 2 μm
The components were confirmed to be removed by the apparatus of the present invention, and E2
The 60 rejection was found to increase in proportion to the square root of the applied power as shown.

【0016】この発見を基に、図2に示すように水質測
定装置13に紫外部吸光度計を設置して、湖沼水に対し
て目標除去率を設定し、この水質測定装置13によって
得られた濃度の信号を演算器14に送信し、これをもと
に電力調節器15によって、電源12の出力を制御する
ようにして、一定時間ごとに除去率を10%ずつ上昇さ
せるようにした場合のろ過時間とE260除去率の関係
を図4に示す。この結果より、E260除去率と印加電
力の平方根が比例することを用いて、目標除去率に対す
る制御が有効であることがわかる。水質測定装置13と
して、全有機炭素濃度計、濁度計、化学的酸素要求量計
を用いた場合についても、図4と同様の結果が得られて
いる。
Based on this finding, as shown in FIG. 2, an ultraviolet absorption spectrometer was installed in the water quality measuring device 13 to set a target removal rate for lake water, and the water quality was measured by the water quality measuring device 13. A signal of the density is transmitted to the calculator 14, and the output of the power supply 12 is controlled by the power controller 15 based on the signal to increase the removal rate by 10% at regular time intervals. FIG. 4 shows the relationship between the filtration time and the E260 removal rate. From this result, it can be seen that control on the target removal rate is effective using the fact that the E260 removal rate is proportional to the square root of the applied power. When a total organic carbon concentration meter, a turbidity meter, and a chemical oxygen demand meter are used as the water quality measurement device 13, the same results as in FIG. 4 are obtained.

【0017】上記の実施例では、上水における河川・湖
沼水や下水の二次処理水の溶解成分の除去の場合を述べ
たが、本発明の電気化学セルを用いた水処理は、更に広
範囲の水処理の分野に利用できる。すなわちフミン酸や
フルボ酸といった水中で負電荷を持つ物質の除去のみな
らず、例えばアンモニアイオンの様な正電荷を持つ物質
の除去には、第一電極と第二電極の極性を変えることに
より容易に本方式の適用が可能である。
In the above embodiment, the removal of dissolved components of river water, lake water, and sewage secondary water in drinking water has been described. However, water treatment using the electrochemical cell of the present invention is more extensive. Available in the field of water treatment. That is, not only the removal of substances having a negative charge in water such as humic acid or fulvic acid but also the removal of substances having a positive charge such as ammonia ions can be easily achieved by changing the polarity of the first electrode and the second electrode. This method can be applied to

【0018】[0018]

【発明の効果】以上に述べたように、本発明によれば、
被処理水側に対向する第一電極および第二電極による電
気化学セルを置き、その下流のろ過水側にろ過膜を置く
装置構成とし、電気化学セルに通電した状態で通水した
後で、ろ過するによって、膜孔径より大きな濁質と膜孔
径より小さい溶解成分の除去を可能とした。
As described above, according to the present invention,
After placing the electrochemical cell by the first electrode and the second electrode facing the water to be treated, and a device configuration to place a filtration membrane on the side of the filtered water downstream thereof, after passing the water while the electrochemical cell is energized, Filtration made it possible to remove turbid matter larger than the membrane pore size and dissolved components smaller than the membrane pore size.

【0019】また、膜ろ過装置への入力被処理水の除去
対象物質の水質測定装置による測定値と、あらかじめ設
定された膜ろ過水の目標値とから、目標除去率を算出
し、この除去対象物質の除去率と電気化学セルへの印加
電力の平方根とが比例するという関係を用いて印加電力
を求めて、第一電極および第二電極に印加する電力を制
御することによって、効率の良いろ過を可能とした。
Further, a target removal rate is calculated from a measured value of the substance to be removed to be input to the membrane filtration device by the water quality measuring device and a preset target value of the membrane filtration water, and the target removal rate is calculated. Efficient filtration is achieved by determining the applied power using the relationship that the material removal rate is proportional to the square root of the applied power to the electrochemical cell and controlling the power applied to the first and second electrodes. Was made possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気ろ過方法の模式図FIG. 1 is a schematic diagram of the electrofiltration method of the present invention.

【図2】本発明の電気ろ過装置および制御方法の模式図FIG. 2 is a schematic diagram of the electrofiltration apparatus and control method of the present invention.

【図3】5個所の河川水と湖沼水とを使用した場合の電
気化学セルへの印加電力とE260除去率との実験結果
を示す図
FIG. 3 is a graph showing experimental results of the applied power to the electrochemical cell and the E260 removal rate when using river water and lake water at five locations.

【図4】10分間ごとに目標除去率を10%ずつ上昇さ
せるように印加電力を制御した場合のろ過時間とE26
0除去率との実験結果を示す図
FIG. 4 shows the filtration time and E26 when the applied power is controlled so as to increase the target removal rate by 10% every 10 minutes.
The figure which shows the experimental result with 0 removal rate

【符号の説明】[Explanation of symbols]

1: ろ過膜 2: 第一電極 3: 第二電極 4: 被処理水入口 5: ろ過水出口 6: 濃縮水出口 7: 膜ろ過モジュール 8: 被処理水タンク 9: 流量計 10: 被処理水ポンプ 11: ろ過水タンク 12: 電源 13: 水質測定装置 14: 演算器 15: 電力調節器 1: filtration membrane 2: first electrode 3: second electrode 4: treated water inlet 5: filtered water outlet 6: concentrated water outlet 7: membrane filtration module 8: treated water tank 9: flow meter 10: treated water Pump 11: Filtration water tank 12: Power supply 13: Water quality measuring device 14: Operation unit 15: Power controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本山 信行 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 森岡 崇行 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 高橋 龍太郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyuki Motoyama 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. No. 1 Fuji Electric Co., Ltd. (72) Inventor Ryutaro Takahashi No. 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理水の汚濁物質を膜を用いてろ過する
装置において、被処理水を電気化学セルを通過した後に
膜によりろ過を行うために、被処理水側に対向する第一
電極および第二電極より成る電気化学セルを置き、その
下流のろ過水側にろ過膜を置く装置構成としたことを特
徴とする電気ろ過装置。
An apparatus for filtering contaminants of water to be treated using a membrane, wherein the first electrode facing the side of the water to be treated is filtered in order to filter the water to be treated by the membrane after passing through the electrochemical cell. And an electrochemical cell comprising a second electrode and a filtration membrane downstream of the filtered water.
【請求項2】請求項1に記載の装置において、電気化学
セルの第一電極と第二電極のいずれか一方または両方
が、金属メッシュ、あるいはカーボン材の多孔質または
繊維状活性炭、あるいは蒸着または焼成した白金または
白金化合物、であることを特徴とする請求項1に記載の
電気ろ過装置。
2. The apparatus according to claim 1, wherein one or both of the first electrode and the second electrode of the electrochemical cell are made of a metal mesh, a porous or fibrous activated carbon of carbon material, or a vapor-deposited or carbonized material. The electrofiltration device according to claim 1, wherein the electrofiltration device is calcined platinum or a platinum compound.
【請求項3】請求項1に記載の装置において、電気化学
セル通過前に設けた水質測定装置による被処理中の汚濁
物質の測定値と、あらかじめ設定した膜ろ過水中の汚濁
物質の目標値とから、演算して除去率を算出し、この除
去率の計算値と印加電力の平方根が比例するという関係
を用いて印加電力を算出し、第一電極および第二電極に
印加する電力を制御することを特徴とする電気ろ過装置
の制御方法。
3. The apparatus according to claim 1, wherein a measured value of the pollutant during treatment by the water quality measuring device provided before passing through the electrochemical cell, and a preset target value of the pollutant in the membrane filtration water. To calculate the removal rate, calculate the applied power using the relationship that the calculated value of the removal rate is proportional to the square root of the applied power, and control the power applied to the first electrode and the second electrode. A method for controlling an electrofiltration device, comprising:
【請求項4】請求項3に記載の方法において、水質測定
装置の汚濁物質の測定値が、紫外部吸光度計、全有機炭
素濃度、濁度計、化学的酸素要求量計のいずれか一つま
たは複数個を組み合わせた測定値であることを特徴とす
る請求項3に記載の電気ろ過装置の制御方法。
4. The method according to claim 3, wherein the measured value of the pollutant in the water quality measuring device is one of an ultraviolet absorbance meter, a total organic carbon concentration, a turbidity meter, and a chemical oxygen demand meter. 4. The method for controlling an electrofiltration device according to claim 3, wherein the measured value is a combination of a plurality of measured values.
JP9310106A 1997-11-12 1997-11-12 Electric filter device and its control method Withdrawn JPH11137971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9310106A JPH11137971A (en) 1997-11-12 1997-11-12 Electric filter device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9310106A JPH11137971A (en) 1997-11-12 1997-11-12 Electric filter device and its control method

Publications (1)

Publication Number Publication Date
JPH11137971A true JPH11137971A (en) 1999-05-25

Family

ID=18001262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9310106A Withdrawn JPH11137971A (en) 1997-11-12 1997-11-12 Electric filter device and its control method

Country Status (1)

Country Link
JP (1) JPH11137971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1020204C2 (en) * 2002-03-19 2003-09-23 Onstream Holding B V Method for filtering particles from a liquid and liquid filter device.
JP2007268467A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Membrane treatment method of balast water using membrane module and membrane treatment apparatus
JP2011092805A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Filter, water treatment apparatus using the same, and method for controlling the water treatment apparatus
CN104941452A (en) * 2015-07-16 2015-09-30 江苏大学 Method and testing device for reducing membrane pollution through alternate inhomogeneous field
CN109574159A (en) * 2018-12-07 2019-04-05 智造起源科技有限公司 A kind of dielectrophoresis electrode structure
WO2022130489A1 (en) * 2020-12-15 2022-06-23 三菱化工機株式会社 Filtration device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1020204C2 (en) * 2002-03-19 2003-09-23 Onstream Holding B V Method for filtering particles from a liquid and liquid filter device.
WO2003078036A1 (en) * 2002-03-19 2003-09-25 Fluxxion B.V. Method of filtering particules from a liquid, liquid filtering device and membrane
JP2007268467A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Membrane treatment method of balast water using membrane module and membrane treatment apparatus
JP2011092805A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Filter, water treatment apparatus using the same, and method for controlling the water treatment apparatus
CN104941452A (en) * 2015-07-16 2015-09-30 江苏大学 Method and testing device for reducing membrane pollution through alternate inhomogeneous field
CN109574159A (en) * 2018-12-07 2019-04-05 智造起源科技有限公司 A kind of dielectrophoresis electrode structure
WO2022130489A1 (en) * 2020-12-15 2022-06-23 三菱化工機株式会社 Filtration device

Similar Documents

Publication Publication Date Title
Ghernaout et al. Water reuse: Extenuating membrane fouling in membrane processes
JP5909281B2 (en) Water treatment equipment
KR102307286B1 (en) Apparatus for treating concentrated water of reverse osmosis equipment
CN105000755A (en) Wastewater zero-emission industrial sewage treatment system and treatment method
CN203807291U (en) Power plant desulfurization wastewater zero-emission treatment and reusing device
CN102329051B (en) Rubbish percolate treatment device by taking advanced oxidation and comprehensive membrane treatment as cores
Rahimpour et al. Development of pilot scale nanofiltration system for yeast industry wastewater treatment
Zhang et al. The change of NOM in a submerged UF membrane with three different pretreatment processes compared to an individual UF membrane
CA2855013A1 (en) Desalination system and method
CN104529018A (en) Process for treating and recycling printing and dyeing wastewater by virtue of electro-coagulation
US10640401B2 (en) Reactive electrochemical membrane filtration
US20220234930A1 (en) Method for Purifying Contaminated Water
JP6075031B2 (en) Pure water production equipment
JPH11137971A (en) Electric filter device and its control method
KR101786821B1 (en) Water treatment apparatus with gravity-driven type
CN112624451A (en) Photocatalytic multistage membrane separation coupling sewage treatment system
CN209974485U (en) Wastewater treatment system
JPH07963A (en) Pretreatment of ultrahigh treatment of water and device therefor
JPH10323674A (en) Organic matter-containing water treatment apparatus
CN111470703A (en) Method for treating salt water of preserved mustard tuber pickling head
CN209052516U (en) A kind of water treatment facilities for family hemodialysis instrument
JP2017136571A (en) Method for determining amount of flocculant added in water treatment equipment
JP3271744B2 (en) Desalting method using electrodialysis equipment
CN203715430U (en) Electroplating nickel-containing wastewater up-to-standard treatment system for workshops of metallurgical plants
CN215559370U (en) Reverse osmosis filter equipment for raw material purification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041105