JP5427527B2 - Organic light emitting display device and method for manufacturing organic light emitting display device - Google Patents

Organic light emitting display device and method for manufacturing organic light emitting display device Download PDF

Info

Publication number
JP5427527B2
JP5427527B2 JP2009222898A JP2009222898A JP5427527B2 JP 5427527 B2 JP5427527 B2 JP 5427527B2 JP 2009222898 A JP2009222898 A JP 2009222898A JP 2009222898 A JP2009222898 A JP 2009222898A JP 5427527 B2 JP5427527 B2 JP 5427527B2
Authority
JP
Japan
Prior art keywords
light
layer
display device
emitting display
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009222898A
Other languages
Japanese (ja)
Other versions
JP2011071041A (en
Inventor
義明 坂本
洋介 竹内
宏之 日色
Original Assignee
ユー・ディー・シー アイルランド リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユー・ディー・シー アイルランド リミテッド filed Critical ユー・ディー・シー アイルランド リミテッド
Priority to JP2009222898A priority Critical patent/JP5427527B2/en
Publication of JP2011071041A publication Critical patent/JP2011071041A/en
Application granted granted Critical
Publication of JP5427527B2 publication Critical patent/JP5427527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機発光表示装置及び有機発光表示装置の製造方法に関する。   The present invention relates to an organic light emitting display device and a method for manufacturing the organic light emitting display device.

有機電界発光を用いて、フルカラーで表示する技術が種々開示されている。例えば、特許文献1では、OLEDデバイスにおけるマルチカラーフィルターの応答とより効果的に整合する白色光を生じさせるためのOLEDデバイスが開示されている。このOLEDデバイスでは、有機EL素子に含まれる2種以上のドーパントによって、白色光のスペクトルを変化させ、白色光がカラーフィルタの応答とより効果的に整合するように選択されている。即ち、このOLEDデバイスでは、カラーフィルタの応答性を調整することで、白色光を効率的に発光している。しかしながら、このような構成であると、制御の点で複雑となるという問題がある。また、特定の波長の強度を増大させるなどして光学特性をさらに向上させるには、最適な構成となっていないという問題もある。   Various techniques for displaying in full color using organic electroluminescence have been disclosed. For example, Patent Document 1 discloses an OLED device for producing white light that more effectively matches the response of a multi-color filter in the OLED device. In this OLED device, the spectrum of white light is changed by two or more dopants contained in the organic EL element, and the white light is selected so as to more effectively match the response of the color filter. That is, in this OLED device, white light is efficiently emitted by adjusting the responsiveness of the color filter. However, with such a configuration, there is a problem that the control is complicated. In addition, there is a problem that the configuration is not optimal in order to further improve the optical characteristics by increasing the intensity of a specific wavelength.

このような問題を解決するため、各色の光路長を調整したり、光反射と干渉とを繰り返して特定の波長の強度を増加させる共振構造を採用した技術が種々開示されている。   In order to solve such a problem, various techniques using a resonance structure that increases the intensity of a specific wavelength by adjusting the optical path length of each color or repeating light reflection and interference are disclosed.

特許文献2では、有機薄膜を保護する部分反射機能を有する透明封止板を透過して直接上部に出る直接出力光と、この透明封止板の反射により一度素子側に戻る光を有機薄膜の下部にある基板側に設けられた金属電極兼全反射鏡等の反射膜で反射させ、上記の直接出力光とは別光路で透明封止板の上部に光を出射する構造を有する有機発光表示装置が開示されている。この文献では、有機発光層を有する絶縁基板側の各色の画素毎に段差を設けたり、スペーサーを挿入することで、光学距離を調整する旨が開示されている。このような構成であると、光学距離を調整するのに精度が要求されるという問題がある。また、有機発光層を有する絶縁基板を製造し、さらに段差やスペーサー等を設けるため、工数が増加するという問題がある。   In Patent Document 2, direct output light that passes through a transparent sealing plate having a partial reflection function that protects an organic thin film and directly goes to the upper part, and light that returns to the element side once by reflection of the transparent sealing plate An organic light emitting display having a structure in which light is reflected by a reflective film such as a metal electrode and a total reflection mirror provided on the lower substrate side, and is emitted to the upper part of the transparent sealing plate in a separate optical path from the direct output light. An apparatus is disclosed. This document discloses that the optical distance is adjusted by providing a step for each color pixel on the insulating substrate side having the organic light emitting layer or inserting a spacer. With such a configuration, there is a problem that accuracy is required to adjust the optical distance. Further, since an insulating substrate having an organic light emitting layer is manufactured and further provided with a step, a spacer, etc., there is a problem that man-hours increase.

また、特許文献3では、発光層を有する表示素子であって、発光層を挟んだ第1端部と第2端部との間で共振器構造を有し、この第1端部と発光層との距離、及び上記の第2端部と発光層との距離が所定の数式を満たすように規定された表示素子が開示されている。しかしながら、具体的な構造についての開示がなされていないという問題がある。   Further, Patent Document 3 is a display element having a light emitting layer, having a resonator structure between a first end and a second end sandwiching the light emitting layer, and the first end and the light emitting layer. And a distance between the second end portion and the light emitting layer satisfy a predetermined mathematical formula. However, there is a problem that a specific structure is not disclosed.

特表2007−520060号公報Special table 2007-520060 gazette 特許第3898163号公報Japanese Patent No. 3898163 特許第3703028号公報Japanese Patent No. 3770328

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、簡便な方法で製造でき、特定の波長の強度が増大された、良好な発光特性を有する有機発光表示装置及びこの有機発光表示装置の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide an organic light emitting display device having good light emission characteristics, which can be manufactured by a simple method, has an increased intensity at a specific wavelength, and a method for manufacturing the organic light emitting display device. .

本発明者らは、前記目的を達成すべく鋭意検討を行った結果、所定の形状の凹部を有する光透過層と有機EL層を積層した光反射電極との間で光学共振器を形成するように構成することにより前記課題を解決し得ることを見出し、本発明の完成に至った。即ち、
<1> 基板と、光反射電極と、有機EL層と、光透過電極と、凹部を有する光透過層と、をこの順に有する有機発光表示装置であって、
前記光反射電極と前記凹部における該光反射電極に対向する表面との間で、光学共振器が形成され、
前記光学共振器を経て前記光透過層から透過される光が、赤色、緑色及び青色の少なくとも1つの色の光である有機発光表示装置である。
<2> 光透過層が一部材で形成されている前記<1>に記載の有機発光表示装置である。
<3> 一部材の材料が、光硬化性樹脂、熱可塑性樹脂又は熱硬化性樹脂である前記<2>に記載の有機発光表示装置である。
<4> 光透過層の凹部形成面に、光半透過反射層を有する前記<1>から<3>のいずれかに記載の有機発光表示装置である。
<5> 光透過層の凹部の屈折率が、光透過電極の屈折率と等しい前記<1>から<4>のいずれかに記載の有機発光表示装置である。
<6> 光透過層の凹部に接着剤を充填してなる前記<5>に記載の有機発光表示装置である。
<7> 光透過層の複数の凹部の深さが、赤色、緑色及び青色の少なくとも1つの光を出射するように、異なっている前記<1>から<6>のいずれかに記載の有機発光表示装置である。
<8> 光反射電極が、同一平面上に存在する前記<1>から<7>のいずれかに記載の有機発光表示装置である。
<9> 有機EL層が、白色発光する前記<1>から<8>のいずれかに記載の有機発光表示装置である。
<10> 光透過層の光出射側にカラーフィルタ層をさらに有する前記<1>から<9>のいずれかに記載の有機発光表示装置である。
<11> 基板上に光反射電極、有機EL層及び光透過電極を順次積層する工程と、
前記基板とは異なる光透過性基板上に、凹部を有する光透過層を形成する工程と、
前記光反射電極と前記凹部における該光反射電極に対向する表面との間で、赤色、緑色及び青色の少なくとも1つの色の光を出射する光学共振器が形成されるように、前記光透過層と前記光透過電極とを対向して固定する工程と、
を含む有機発光表示装置の製造方法である。
<12> 前記光透過層の凹部を形成する工程は、型転写により行われる前記<11>に記載の有機発光表示装置の製造方法である。
<13> 前記の光透過層と光透過電極とを対向して固定する工程は、カップリング剤を用いて行われる前記<11>から<12>のいずれかに記載の有機発光表示装置の製造方法である。
<14> 前記の光透過層と光透過電極とを対向して固定する工程は、光透過層の凹部に接着剤を充填して行われる前記<11>から<13>のいずれかに記載の有機発光表示装置の製造方法である。
<15> 光透過層の凹部の屈折率が、光透過電極の屈折率よりも小さい前記<1>から<10>のいずれかに記載の有機発光表示装置である。
<16> 光透過層の凹部が、空隙である前記<15>に記載の有機発光表示装置である。
<17> 光透過層と光透過電極との間に、接着部が形成されてなる前記<1>から<10>及び<15>から<16>のいずれかに記載の有機発光表示装置である。
<18> 光学共振器の光学共振長Lが、出射光のピーク波長λの半波長の倍数((λ/2)×m;mは、自然数)である前記<1>から<10>及び<15>から<17>のいずれかに記載の有機発光表示装置である。
<19> 有機EL層の発光層が、光反射電極から光学長L’=(λ/4)×(2n−1)(λは、出射光のピーク波長;nは、自然数)の距離に配置されている前記<1>から<10>及び<15>から<18>のいずれかに記載の有機発光表示装置である。
<20> 光反射電極が、複数あり、
前記各光反射電極に電流を供給するスイッチング駆動回路が、基板と光反射電極との間に配置されている前記<1>から<10>及び<15>から<19>のいずれかに記載の有機発光表示装置である。
<21> 有機EL層が、燐光材料を含有する前記<1>から<10>及び<15>から<20>のいずれかに記載の有機発光表示装置である。
<22> 複数の画素からなり、
1つの画素が、3原色の赤、青、緑に対応して点灯制御される副画素を含む前記<1>から<10>及び<15>から<21>のいずれかに記載の有機発光表示装置である。
<23> 1つの画素が、3原色の赤、青、緑に対応する副画素と、白色に対応して点灯制御される副画素とを含む前記<22>に記載の有機発光表示装置である。
<24> 基板及び光透過層の少なくとも一方が、可撓性を有する前記<1>に記載の有機発光表示装置である。
<25> 接着剤が、塗布、印刷又はインクジェット法により凹部に配置される前記<14>に記載の有機発光表示装置の製造方法である。
As a result of intensive studies to achieve the above object, the inventors of the present invention form an optical resonator between a light transmitting layer having a recess having a predetermined shape and a light reflecting electrode in which an organic EL layer is laminated. It has been found that the above-mentioned problems can be solved by configuring the present invention, and the present invention has been completed. That is,
<1> An organic light-emitting display device having a substrate, a light reflection electrode, an organic EL layer, a light transmission electrode, and a light transmission layer having a recess in this order,
An optical resonator is formed between the light reflecting electrode and the surface of the recess facing the light reflecting electrode,
In the organic light emitting display device, light transmitted from the light transmission layer through the optical resonator is light of at least one of red, green, and blue.
<2> The organic light-emitting display device according to <1>, wherein the light transmission layer is formed as a single member.
<3> The organic light-emitting display device according to <2>, wherein the material of one member is a photocurable resin, a thermoplastic resin, or a thermosetting resin.
<4> The organic light-emitting display device according to any one of <1> to <3>, wherein the light-transmitting layer includes a light semi-transmissive reflective layer on a concave surface.
<5> The organic light-emitting display device according to any one of <1> to <4>, wherein the refractive index of the concave portion of the light transmission layer is equal to the refractive index of the light transmission electrode.
<6> The organic light-emitting display device according to <5>, wherein the concave portion of the light transmission layer is filled with an adhesive.
<7> The organic light-emitting device according to any one of <1> to <6>, wherein the depths of the plurality of concave portions of the light transmission layer are different so as to emit at least one light of red, green, and blue It is a display device.
<8> The organic light-emitting display device according to any one of <1> to <7>, wherein the light reflecting electrode exists on the same plane.
<9> The organic light-emitting display device according to any one of <1> to <8>, wherein the organic EL layer emits white light.
<10> The organic light-emitting display device according to any one of <1> to <9>, further including a color filter layer on a light emission side of the light transmission layer.
<11> a step of sequentially laminating a light reflecting electrode, an organic EL layer, and a light transmitting electrode on a substrate;
Forming a light transmissive layer having a recess on a light transmissive substrate different from the substrate;
The light transmission layer is formed such that an optical resonator that emits light of at least one of red, green, and blue is formed between the light reflection electrode and a surface of the recess facing the light reflection electrode. And fixing the light transmitting electrode opposite to each other;
Is a method for manufacturing an organic light emitting display device.
<12> The step of forming the concave portion of the light transmission layer is the method for manufacturing the organic light emitting display device according to <11>, wherein the step is performed by mold transfer.
<13> The step of fixing the light transmissive layer and the light transmissive electrode so as to face each other is performed using a coupling agent. Production of an organic light emitting display device according to any one of <11> to <12> Is the method.
<14> The step of fixing the light transmitting layer and the light transmitting electrode so as to face each other is performed by filling a concave portion of the light transmitting layer with an adhesive, and the method according to any one of <11> to <13>. It is a manufacturing method of an organic light emitting display device.
<15> The organic light emitting display device according to any one of <1> to <10>, wherein the refractive index of the concave portion of the light transmission layer is smaller than the refractive index of the light transmission electrode.
<16> The organic light-emitting display device according to <15>, wherein the concave portion of the light transmission layer is a gap.
<17> The organic light-emitting display device according to any one of <1> to <10> and <15> to <16>, wherein an adhesive portion is formed between the light transmission layer and the light transmission electrode. .
<18> The optical resonance length L of the optical resonator is a multiple of a half wavelength of the peak wavelength λ of the emitted light ((λ / 2) × m; m is a natural number). The organic light emitting display device according to any one of 15> to <17>.
<19> The light emitting layer of the organic EL layer is disposed at a distance of optical length L ′ = (λ / 4) × (2n−1) (λ is a peak wavelength of emitted light; n is a natural number) from the light reflecting electrode. The organic light-emitting display device according to any one of <1> to <10> and <15> to <18>.
<20> There are a plurality of light reflecting electrodes,
The switching drive circuit for supplying a current to each light reflecting electrode is any one of the items <1> to <10> and <15> to <19> arranged between the substrate and the light reflecting electrode. An organic light emitting display device.
<21> The organic light-emitting display device according to any one of <1> to <10> and <15> to <20>, wherein the organic EL layer contains a phosphorescent material.
<22> Consists of a plurality of pixels,
The organic light-emitting display according to any one of <1> to <10> and <15> to <21>, wherein one pixel includes subpixels that are controlled to be lit in correspondence with the three primary colors red, blue, and green Device.
<23> The organic light emitting display device according to <22>, wherein one pixel includes subpixels corresponding to the three primary colors red, blue, and green and subpixels that are controlled to be lit in response to white. .
<24> The organic light-emitting display device according to <1>, wherein at least one of the substrate and the light transmission layer has flexibility.
<25> The method for producing an organic light-emitting display device according to <14>, wherein the adhesive is disposed in the concave portion by coating, printing, or an inkjet method.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、簡便な方法で製造でき、特定の波長の強度が増大された、良好な発光特性を有する有機発光表示装置及びこの有機発光表示装置の製造方法を提供することができる。   According to the present invention, it is possible to solve the above-mentioned problems in the prior art, achieve the above-mentioned object, and can be manufactured by a simple method, and an organic light-emitting display having good light-emitting characteristics with increased intensity of a specific wavelength. A device and a method for manufacturing the organic light emitting display device can be provided.

図1は、本発明による有機発光表示装置の一例を示す断面概略図である。FIG. 1 is a schematic cross-sectional view illustrating an example of an organic light emitting display device according to the present invention. 図2は、本発明による有機発光表示装置の一例を示す断面概略図である。FIG. 2 is a schematic cross-sectional view illustrating an example of an organic light emitting display device according to the present invention. 図3は、本発明による有機発光表示装置の一例を示す断面概略図である。FIG. 3 is a schematic cross-sectional view illustrating an example of an organic light emitting display device according to the present invention. 図4は、本発明による有機発光表示装置の一例を示す断面概略図である。FIG. 4 is a schematic cross-sectional view illustrating an example of an organic light emitting display device according to the present invention. 図5は、本発明による有機発光表示装置の実施例1の発光出力特性図である。FIG. 5 is a light emission output characteristic diagram of Example 1 of the organic light emitting display device according to the present invention. 図6は、本発明による有機発光表示装置の実施例2の発光出力特性図である。FIG. 6 is a light emission output characteristic diagram of Example 2 of the organic light emitting display device according to the present invention. 図7は、比較例における有機発光表示装置の発光出力特性図である。FIG. 7 is a light emission output characteristic diagram of an organic light emitting display device according to a comparative example. 図8は、本発明の実施例及び比較例に用いたカラーフィルターの光学特性図である。FIG. 8 is an optical characteristic diagram of the color filter used in Examples and Comparative Examples of the present invention. 図9は、本発明の実施例及び比較例に用いたOLED基板の発光出力特性図である。FIG. 9 is a light emission output characteristic diagram of the OLED substrate used in Examples and Comparative Examples of the present invention.

(有機発光表示装置)
本発明による有機発光表示装置は、基板と、光反射電極と、有機EL層と、光透過電極と、凹部を有する光透過層とを有し、必要に応じてその他の部材を有する。
(Organic light emitting display)
The organic light-emitting display device according to the present invention includes a substrate, a light reflection electrode, an organic EL layer, a light transmission electrode, and a light transmission layer having a recess, and includes other members as necessary.

有機発光表示装置の形状、構造、大きさは、上記の構成であれば、特に制限はなく、目的に応じて適宜選択すればよい。有機発光表示装置の態様の一例について、図面を参照して説明する。   The shape, structure, and size of the organic light-emitting display device are not particularly limited as long as they have the above-described configuration, and may be appropriately selected depending on the purpose. An example of the aspect of the organic light emitting display device will be described with reference to the drawings.

図1〜4は、本発明による有機発光表示装置の一例を示す断面概略図である。有機発光表示装置100は、光源であるOLED基板20と、凸部14と凹部15とからなる凹凸部を表面に有する光学部材10とを有する。   1 to 4 are schematic cross-sectional views illustrating an example of an organic light emitting display device according to the present invention. The organic light emitting display device 100 includes an OLED substrate 20 that is a light source, and an optical member 10 having a concavo-convex portion including a convex portion 14 and a concave portion 15 on the surface.

光学部材10は、後述のOLED基板20の基板22とは異なる、光透過性を有する光透過性基板19と、光透過性基板19上に積層された光透過層12とを有し、光透過層12の上面に凸部14と凹部15とからなる凹凸部を有する。   The optical member 10 includes a light-transmitting substrate 19 having light transmittance, which is different from a substrate 22 of an OLED substrate 20 described later, and a light-transmitting layer 12 laminated on the light-transmitting substrate 19. The upper surface of the layer 12 has a concavo-convex portion including a convex portion 14 and a concave portion 15.

OLED基板20は、ガラス等からなる基板22と、基板22上に積層された光反射性を有する光反射電極24と、光反射電極24上に積層された光を発生する有機EL層26と、有機EL層26上に積層された光透過性を有する光透過電極28とを有する。   The OLED substrate 20 includes a substrate 22 made of glass or the like, a light reflecting electrode 24 having light reflectivity stacked on the substrate 22, an organic EL layer 26 that generates light stacked on the light reflecting electrode 24, and A light transmissive electrode 28 having a light transmissive property laminated on the organic EL layer 26.

なお、図1〜4において、符号32は、電極の通電等を制御する画素回路を、符号34は、コンタクトホールを、符号36は、隣り合う電極を電気的に分離して1画素又は1副画素を確定する絶縁層をそれぞれ示す。また、R、G、B及びWで示した矢印は、有機発光表示装置からの光の出射方向を示す。また、光学部材10とOLED基板20とが離れているように記載しているが、これは、有機発光表示装置の構成を説明するために便宜的に記載したものである。   1 to 4, reference numeral 32 denotes a pixel circuit that controls the energization of electrodes, reference numeral 34 denotes a contact hole, and reference numeral 36 denotes one pixel or one sub-electrode by electrically separating adjacent electrodes. Each of the insulating layers defining the pixels is shown. In addition, arrows indicated by R, G, B, and W indicate the emission direction of light from the organic light emitting display device. Further, the optical member 10 and the OLED substrate 20 are described as being separated from each other, but this is described for convenience in order to explain the configuration of the organic light emitting display device.

<接着部>
有機発光表示装置100において、光学部材10とOLED基板20とは、光透過電極28と光透過層12との間で、接着部30を介して対向して固定される。対向の態様としては、特に制限はなく、目的に応じて適宜すればよく、例えば、光学部材10の光透過層12の凸部14とOLED基板20の光透過電極28とを対向させてもよい。対向して固定する方法としては、図1及び図3のように、接着部30を介して、光透過層12の凸部14とOLED基板20の光透過電極28とを対向して固定してもよい。また、図2及び図4のように、光学部材10の凹部15に充填された接着部30の材料を介して、光透過層12の凸部14と、OLED基板20の光透過電極28とを対向して固定してもよい。このように構成することで、光学部材10とOLED基板20とで有機発光表示装置100を形成する。
<Adhesive part>
In the organic light emitting display device 100, the optical member 10 and the OLED substrate 20 are fixed to be opposed to each other through the bonding portion 30 between the light transmission electrode 28 and the light transmission layer 12. The facing mode is not particularly limited and may be appropriately determined depending on the purpose. For example, the convex portion 14 of the light transmitting layer 12 of the optical member 10 and the light transmitting electrode 28 of the OLED substrate 20 may face each other. . As a method of fixing them facing each other, as shown in FIGS. 1 and 3, the convex portions 14 of the light transmitting layer 12 and the light transmitting electrodes 28 of the OLED substrate 20 are fixed facing each other via the adhesive portion 30. Also good. Further, as shown in FIGS. 2 and 4, the convex portion 14 of the light transmission layer 12 and the light transmission electrode 28 of the OLED substrate 20 are connected via the material of the adhesive portion 30 filled in the concave portion 15 of the optical member 10. You may fix facing. With this configuration, the organic light emitting display device 100 is formed by the optical member 10 and the OLED substrate 20.

図1及び図3の構成において、接着部30を介して光透過層12の凸部14とOLED基板20の光透過電極28とを対向して固定する方法としては、特に制限はなく、目的に応じて適宜選択すればよいが、OLED基板から発光された光の有機発光表示装置における光路長などの光学的距離を調節しやすい点で、分子レベルで結合させる手段であることが好ましく、例えば、シランカップリング剤などを用いた結合が挙げられる。   In the configuration of FIGS. 1 and 3, there is no particular limitation on the method of fixing the convex portion 14 of the light transmission layer 12 and the light transmission electrode 28 of the OLED substrate 20 opposite to each other via the bonding portion 30. It may be appropriately selected according to the above, but is preferably a means for bonding at the molecular level in terms of easy adjustment of the optical distance such as the optical path length in the organic light emitting display device of the light emitted from the OLED substrate. Examples include bonding using a silane coupling agent.

図2及び図4の構成において、光学部材10の凹部15に充填された接着部30の材料を介して、光透過層12の凸部14と、OLED基板20の光透過電極28とを対向して固定する方法としては、特に制限はなく、目的に応じて適宜選択すればよい。例えば、光学部材10の凹部15にアクリル系、エポキシ系、ポリビニルアルコールなどの接着剤を充填し、これを介して光学部材10とOLED基板20とを接着する方法であってもよい。接着剤を充填する方法としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、塗布、印刷又はインクジェット法が挙げられる。なかでも、所望の量を所定の箇所に簡便な方法で充填し得る点で、インクジェット法であることが好ましい。   2 and 4, the convex portion 14 of the light transmission layer 12 and the light transmission electrode 28 of the OLED substrate 20 are opposed to each other through the material of the adhesive portion 30 filled in the concave portion 15 of the optical member 10. The fixing method is not particularly limited and may be appropriately selected depending on the purpose. For example, a method of filling the concave portion 15 of the optical member 10 with an adhesive such as acrylic, epoxy, or polyvinyl alcohol and bonding the optical member 10 and the OLED substrate 20 through the adhesive may be used. There is no restriction | limiting in particular as a method of filling an adhesive agent, What is necessary is just to select suitably according to the objective, For example, application | coating, printing, or the inkjet method is mentioned. Among these, the inkjet method is preferable because a desired amount can be filled into a predetermined portion by a simple method.

インクジェット法に従って凹部に接着剤を充填する量としては、特に制限はなく、目的に応じて適宜選択すればよいが、形成された凹部の容積に応じて、接着剤が凹部から漏出しないように接着剤の充填量を調節してもよい。充填量の調節の例としては、下記の通りである。即ち、画素サイズが200μm×50μmであって、R、G、B各色の凹部深さが、R部=33〜60nm、G部=17〜30nm、B部=6〜10nmであるとき、R、G、B各色の凹部の容積はR部=0.33〜0.6pl、G部=0.17〜0.3pl、B部=0.06〜0.1plである。したがって、この量が各凹部に充填されるように、調節すればよい。   The amount of the adhesive filled in the recess according to the inkjet method is not particularly limited and may be appropriately selected depending on the purpose. However, the adhesive is bonded so that the adhesive does not leak from the recess depending on the volume of the formed recess. The filling amount of the agent may be adjusted. Examples of the adjustment of the filling amount are as follows. That is, when the pixel size is 200 μm × 50 μm and the recess depths of the R, G, and B colors are R part = 33 to 60 nm, G part = 17 to 30 nm, and B part = 6 to 10 nm, The volumes of the concave portions of the G and B colors are R part = 0.33 to 0.6 pl, G part = 0.17 to 0.3 pl, and B part = 0.06 to 0.1 pl. Therefore, the amount may be adjusted so that this amount is filled in each recess.

インクジェット法に従って凹部に接着剤を充填する態様としては、特に制限はなく、目的に応じて適宜選択すればよいが、形成された各色画素に対応する凹部が同列に隣接して配置されているときは、連続する同色の画素に対応する凹部間で同じ量の接着剤を充填すればよい。この際、例えば100画素分の凹部を連通させると、上記の例で言えば、各凹部の容積はR部=33〜60pl、G部=17〜30pl、B部=6〜10plである。この量の接着剤を、インクジェットの塗出量に応じて、適当な回数吐出させればよい。単位吐出当たり1plのインクジェットの場合、各凹部にてR部=33〜60回、G部=17〜30回、B部=6〜10回の吐出を行うことで、各凹部の容積に適合した接着剤を充填することができる。このように、各画素凹部容積が接着剤液滴の最小単位の倍数になるように、各画素凹部を同色列でその倍数分だけ凹部を連通させればよい。   The aspect of filling the concave portion with the adhesive according to the ink jet method is not particularly limited and may be appropriately selected depending on the purpose, but when the concave portion corresponding to each formed color pixel is arranged adjacent to the same row. May be filled with the same amount of adhesive between the recesses corresponding to successive pixels of the same color. In this case, for example, if the recesses for 100 pixels are communicated, the volume of each recess is R part = 33 to 60 pl, G part = 17 to 30 pl, and B part = 6 to 10 pl. This amount of adhesive may be ejected an appropriate number of times according to the amount of ink jet applied. In the case of an inkjet of 1 pl per unit discharge, the R part = 33 to 60 times, the G part = 17 to 30 times, and the B part = 6 to 10 times in each concave part, so that it fits the volume of each concave part. Adhesive can be filled. In this way, it is only necessary to connect the pixel recesses in the same color row by the multiple of the pixel recesses so that each pixel recess volume is a multiple of the minimum unit of the adhesive droplet.

−光学共振器−
有機発光表示装置100には、光学部材10において光透過層12に形成された凹部15において光透過電極28と対向する表面と、OLED基板20の光透過電極28との間で、OLED基板20からの発光の反射/干渉により生じる、いわゆる光学共振器構造(マイクロキャビティー構造)が形成される。光学共振器としては、OLED基板からの光を反射/干渉し得るものであれば、特に制限はなく、目的に応じて適宜選択すればよいが、例えば、OLED基板20の基板22上に積層された光反射電極24と、光学部材10の光透過層12上の凹部15に形成された後述の光半透過反射層16との間で、形成されてもよい。なかでも、特定の波長の発光強度をより増加させ得る点で、光学共振器の光学共振長Lが、出射光のピーク波長λの半波長の倍数((λ/2)×m;mは、自然数)であることが好ましい。これにより、多重干渉による色強度が増大し、より高い光強度を出射し得る有機発光表示装置が得られる。このように光学共振器が形成されることで、赤色、緑色及び青色などの特定の色の少なくとも1つの色の光が、光学共振器を経て光透過層から透過され、有機発光表示装置の光出射方向に出射されることとなる。
-Optical resonator-
In the organic light emitting display device 100, the OLED substrate 20 extends from the surface facing the light transmitting electrode 28 in the recess 15 formed in the light transmitting layer 12 in the optical member 10 and the light transmitting electrode 28 of the OLED substrate 20. A so-called optical resonator structure (microcavity structure) generated by the reflection / interference of the emitted light is formed. The optical resonator is not particularly limited as long as it can reflect / interfer light from the OLED substrate, and may be appropriately selected according to the purpose. For example, the optical resonator is laminated on the substrate 22 of the OLED substrate 20. The light reflecting electrode 24 may be formed between the light reflecting electrode 24 and the light semi-transmissive reflecting layer 16 described later formed in the recess 15 on the light transmitting layer 12 of the optical member 10. Among them, the optical resonance length L of the optical resonator is a multiple of a half wavelength of the peak wavelength λ of the emitted light ((λ / 2) × m; m A natural number). As a result, the color intensity due to multiple interference increases, and an organic light emitting display device capable of emitting higher light intensity is obtained. By forming the optical resonator in this manner, light of at least one specific color such as red, green, and blue is transmitted from the light transmission layer through the optical resonator, and the light of the organic light emitting display device The light is emitted in the emission direction.

<光学部材>
光学部材は、本発明による有機発光表示装置における光出射側に配置される部材であって、上述のOLED基板20の基板22とは異なる光透過性基板と、この光透過性基板上に形成された凹部15を有する光透過層12とを有し、必要に応じてその他の部材を有する。
<Optical member>
The optical member is a member disposed on the light emitting side in the organic light emitting display device according to the present invention, and is formed on the light transmissive substrate different from the substrate 22 of the OLED substrate 20 described above. The light transmission layer 12 having the recessed portion 15 and other members as necessary.

光学部材の構造、形状、大きさ等については、上述の有機発光表示装置に用い得るものであれば、特に制限はなく、目的に応じて適宜選択すればよい。光学部材について、光学部材の用途の一態様である有機発光表示装置を記載した図1及び2を参照して、説明する。光学部材10において、光透過層上には、図1及び2の符号14及び15で示すように、凸部及び凹部とで構成される凹凸部を有する。   The structure, shape, size, and the like of the optical member are not particularly limited as long as they can be used in the above-described organic light emitting display device, and may be appropriately selected according to the purpose. The optical member will be described with reference to FIGS. 1 and 2 that describe an organic light-emitting display device that is one embodiment of the use of the optical member. In the optical member 10, on the light transmission layer, as shown by reference numerals 14 and 15 in FIGS.

凹部の形状としては、各画素に対応するように設けられれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、光学部材の幅方向及び/又は長さ方向に沿って一列に形成されたものであってもよく、光学部材の幅方向及び/又は長さ方向に対してジグザグに形成されたものであってもよい。凸部14の高さ又は凹部15の深さとしては、特に制限はなく、目的に応じて適宜選択すればよいが、上述のOLED基板からの光の強度を最適化し、特定の波長の発光強度をより増強させる点で、赤色、緑色及び青色の少なくとも1つの光を出射するように、異なっていることが好ましい。   The shape of the concave portion is not particularly limited as long as it is provided so as to correspond to each pixel, and can be appropriately selected according to the purpose. For example, the concave portion is arranged in a row along the width direction and / or the length direction of the optical member. It may be formed in a zigzag manner with respect to the width direction and / or the length direction of the optical member. The height of the convex portion 14 or the depth of the concave portion 15 is not particularly limited and may be appropriately selected according to the purpose. However, the light intensity from the above-mentioned OLED substrate is optimized, and the light emission intensity at a specific wavelength. It is preferable that they are different so as to emit at least one light of red, green and blue.

有機発光表示装置において、光学部材の光透過層の凹部の構成としては、有機発光表示装置の有機EL層からの発光の光学特性に与えないものであれば、特に制限はなく、目的に応じて適宜選択すればよいが、光学共振長Lを形成する凹部深さの加工精度を緩和する点で、光透過層の凹部の屈折率が、光透過電極の屈折率よりも小さいことが好ましく、後述の光学共振器を安定に形成することができる点で、屈折率段差がなくなるように、光透過層の凹部の屈折率が、光透過電極の屈折率と等しいことが好ましい。有機発光表示装置において、光学部材の光透過層の凹部の構成としては、光学共振長Lを形成する凹部深さの加工精度を緩和し、光学部材を通過する出射光の屈折反射損を低減する点で、光透過層の凹部が出射側の空気の屈折率1と同等の空隙であることが好ましい。この空気の屈折率1と同等の範囲としては、特に制限はなく、適宜選択すればよいが、光学部材表裏の屈折率差を抑える点で、1.0〜1.1であることが好ましい。なお、前記屈折率は、エリプソメトリ法により、例えば、アッベ屈折率計(アタゴ(株)製)などを用いて測定される。   In the organic light emitting display device, the configuration of the concave portion of the light transmission layer of the optical member is not particularly limited as long as it does not affect the optical characteristics of light emission from the organic EL layer of the organic light emitting display device. The refractive index of the concave portion of the light transmission layer is preferably smaller than the refractive index of the light transmission electrode in terms of relaxing processing accuracy of the depth of the concave portion forming the optical resonance length L. It is preferable that the refractive index of the concave portion of the light transmitting layer is equal to the refractive index of the light transmitting electrode so that the optical resonator can be formed stably. In the organic light emitting display device, the concave portion of the light transmission layer of the optical member has a processing accuracy of the depth of the concave portion forming the optical resonance length L, and reduces the refractive reflection loss of the outgoing light passing through the optical member. In this respect, it is preferable that the concave portion of the light transmission layer is a void equivalent to a refractive index 1 of air on the emission side. The range equivalent to the refractive index 1 of air is not particularly limited and may be appropriately selected, but is preferably 1.0 to 1.1 from the viewpoint of suppressing the refractive index difference between the front and back of the optical member. The refractive index is measured by ellipsometry using, for example, an Abbe refractometer (manufactured by Atago Co., Ltd.).

凹部の形成方法としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、モールド(型、版)を用いた出射成型法、型転写法、インプリント法が挙げられる。なかでも、精度が高く加工性が良好である点で、モールドを用いたインプリント法が好ましい。凹部を形成する態様としては、特に制限はなく、目的に応じて適宜選択すればよいが、例えば、上記のモールドを用いたインプリント法により行う場合には、後述の光透過性基板又はカラーフィルタ層上に形成された光透過層又は光半透過反射層上に、後述の凹凸部形成用モールドを押圧して、所望の凹凸形状を形成するものであってもよく、また、このようにして形成された凹凸形状を有する光透過層を適当な条件(例えば、UV照射、加熱)で硬化させてもよい。特に、光学部材の光透過性基板は光透過性を有することから、この光透過性基板を介してUV照射を行うことで、硬化してもよい。光学部材がカラーフィルタ層を有する場合には、カラーフィルタ層18を構成する赤色フィルタ部、緑色フィルタ部、青色フィルタ部及び白色フィルタ部に対応するように位置決めを行って、所定の凹部が形成されるようにしてもよい。   There is no restriction | limiting in particular as a formation method of a recessed part, What is necessary is just to select suitably according to the objective, For example, the injection | emission molding method using a mold (mold | die, plate | version | printing), the mold transfer method, and the imprint method are mentioned. Among these, an imprint method using a mold is preferable in terms of high accuracy and good workability. The form for forming the recess is not particularly limited and may be appropriately selected depending on the purpose. For example, when the imprint method using the above-described mold is performed, a light-transmitting substrate or a color filter described later is used. On the light transmission layer or light semi-transmissive reflection layer formed on the layer, a concave / convex portion forming mold described later may be pressed to form a desired concave / convex shape. The formed light-transmitting layer having an uneven shape may be cured under appropriate conditions (for example, UV irradiation, heating). In particular, since the light-transmitting substrate of the optical member is light-transmitting, it may be cured by performing UV irradiation through this light-transmitting substrate. When the optical member has a color filter layer, positioning is performed so as to correspond to the red filter portion, the green filter portion, the blue filter portion, and the white filter portion constituting the color filter layer 18, and a predetermined recess is formed. You may make it do.

−凹凸部用モールド−
光学部材における凹部の形成に用いる凹凸部形成用モールドの形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子ビーム(EB)リソグラフィ及びエッチング、レーザー描画、などが挙げられる。なかでも、光透過性基板のUV透過特性に依らずモールド側からのUV照射を得る点で、石英基板へのリソグラフィ法及びドライエッチング法であることが好ましい。これらの方法は、1種単独又は2種以上を組み合わせてもよい。
-Mold for uneven parts-
There is no restriction | limiting in particular as a formation method of the uneven | corrugated | grooved part formation mold used for formation of the recessed part in an optical member, According to the objective, it can select suitably, For example, electron beam (EB) lithography and etching, laser drawing, etc. Is mentioned. Among these, the lithography method and the dry etching method for the quartz substrate are preferable in that UV irradiation from the mold side is obtained regardless of the UV transmission characteristics of the light-transmitting substrate. These methods may be used alone or in combination of two or more.

凹凸部形成用モールドを形成する方法の一例としては、例えば、石英基板に感光性レジストを用いたフォトリソ工程によって、所定位置の石英基板面を開口させ、ドライエッチングによって、所定深さまでエッチングする方法であってもよい。2つ以上の深さを有するように光学部材に凹部を形成する場合、上記のようにフォトリソ工程によって石英基板面を開口させた後、ドライエッチングの条件を調節することにより、エッチング深さを調節してもよい。例えば、図1及び2に記載の光学部材のように多段の凹凸部を形成する場合、凹凸部形成用モールドにおいて、緑色位置の凹部に相当する部位については、石英基板表面から16〜30nmエッチングし、青色位置の凹部に相当する部位については、石英基板表面から27〜50nmエッチングし、画素間を仕切る凸部に相当する部位については、石英基板表面から33〜60nmエッチングし、赤色位置の凹部に相当する部位については、石英基板表面をエッチングせずに残存させてもよい。また、白色位置の凹部に相当する部分については、赤色位置の凹部よりも深い凹部とするか、凹部を設けないものであってもよい。赤色位置の凹部よりも深い場合には、石英基板表面がそのまま残ることとなる。また、凹部がない場合には、画素間を仕切る凸部に相当する部位に同様に加工処理してもよい。このようにして、凹凸部形成用モールドが得られる。なお、この凹凸部形成用モールドを用いて光学部材をインプリントした後に凹部及び凸部を形成する部分は、凹凸部形成用モールドでは、それぞれ、石英基板面に形成された凸部及び凹部にそれぞれ対応する。   As an example of a method for forming a mold for forming an uneven portion, for example, a method is used in which a quartz substrate surface at a predetermined position is opened by a photolithography process using a photosensitive resist on a quartz substrate, and etching is performed to a predetermined depth by dry etching. There may be. When forming a recess in the optical member so as to have two or more depths, the etching depth is adjusted by adjusting the dry etching conditions after opening the quartz substrate surface by the photolithography process as described above. May be. For example, in the case of forming a multi-stage uneven portion like the optical member shown in FIGS. 1 and 2, in the uneven portion forming mold, the portion corresponding to the concave portion in the green position is etched by 16 to 30 nm from the surface of the quartz substrate. The portion corresponding to the concave portion at the blue position is etched from 27 to 50 nm from the quartz substrate surface, and the portion corresponding to the convex portion separating the pixels is etched from 33 to 60 nm from the quartz substrate surface to form the concave portion at the red position. For the corresponding portion, the quartz substrate surface may be left without being etched. Moreover, about the part corresponded to the recessed part of a white position, it may be set as a recessed part deeper than the recessed part of a red position, or a recessed part may not be provided. If it is deeper than the concave portion in the red position, the surface of the quartz substrate remains as it is. In addition, when there is no concave portion, processing may be similarly performed on a portion corresponding to a convex portion that partitions pixels. In this way, a mold for forming an uneven portion is obtained. In addition, the part which forms a recessed part and a convex part after imprinting an optical member using this uneven | corrugated | grooved part formation mold WHEREIN: In the uneven | corrugated | grooved part formation mold, respectively, the convex part and recessed part formed in the quartz substrate surface, respectively Correspond.

<<光透過層>>
光学部材において、光透過層としては、後述のOLED基板から出射された光を透過するものであれば、特に制限はなく、目的に応じて適宜選択すればよい。光透過層は、ひとつの部材で形成されていることが好ましい。このように構成することで、凸部と凹部とが一体で形成されることとなり、凹凸部各々の配置及び段差寸法を制御し易くなるという製造の容易性の点で、好ましい。光透過層の厚みとしては、特に制限はなく、目的に応じて適宜選択すればよく、1μm〜数μmであってもよい。特に、後述の凹凸部を形成するためのモールドの凹凸の最大段差よりも厚いものであればよい。
<< light transmission layer >>
In the optical member, the light transmission layer is not particularly limited as long as it transmits light emitted from an OLED substrate described later, and may be appropriately selected according to the purpose. The light transmission layer is preferably formed of one member. With this configuration, the convex portion and the concave portion are integrally formed, which is preferable from the viewpoint of ease of manufacturing in that the arrangement of the concave and convex portions and the step size can be easily controlled. There is no restriction | limiting in particular as thickness of a light transmissive layer, What is necessary is just to select suitably according to the objective, and 1 micrometer-several micrometers may be sufficient. In particular, what is necessary is just to be thicker than the maximum step of the unevenness of the mold for forming the uneven portion described later.

光透過層の材料としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、各種光硬化性樹脂、各種熱可塑性樹脂、各種熱硬化性樹脂、などが挙げられる。光硬化性樹脂としては、不飽和ポリエステル樹脂、ポリエステルアクリレート樹脂、ウレタンアクリレート樹脂、シリコーンアクリレート樹脂、エポキシアクリレート樹脂が挙げられ、熱可塑性樹脂としては、ポリエチレン、ポリエステル、ポリスチレン、ポリカーボネートが挙げられ、熱硬化性樹脂としては、シリコーン系樹脂、フェノキシ樹脂、エポキシ樹脂が挙げられる。光透過層の材料としては、その他、重合開始剤を有する材料を用いてもよい。   There is no restriction | limiting in particular as a material of a light transmissive layer, What is necessary is just to select suitably according to the objective, For example, various photocurable resins, various thermoplastic resins, various thermosetting resins, etc. are mentioned. Examples of the photocurable resin include unsaturated polyester resin, polyester acrylate resin, urethane acrylate resin, silicone acrylate resin, and epoxy acrylate resin. Examples of the thermoplastic resin include polyethylene, polyester, polystyrene, and polycarbonate. Examples of the functional resin include silicone resins, phenoxy resins, and epoxy resins. As the material for the light transmission layer, other materials having a polymerization initiator may be used.

光学部材において、光透過層の製造方法としては、上記の要件を満たすものであれば、特に制限はなく、目的に応じて適宜選択すればよい。例えば、後述の光透過性基板上又は後述のカラーフィルタ層上に後述の光透過層を、スピンコート、エクストルージョン塗布、バー塗布、グラビア塗布、ロール塗布により積層し、この光透過層上に、凹凸部を形成する方法であってもよい。   In the optical member, the method for producing the light transmission layer is not particularly limited as long as it satisfies the above requirements, and may be appropriately selected according to the purpose. For example, a light transmitting layer described later is laminated on a light transmitting substrate described later or a color filter layer described later by spin coating, extrusion coating, bar coating, gravure coating, roll coating, and on this light transmitting layer, A method of forming an uneven portion may be used.

<<光透過性基板>>
光学部材において、光透過性基板としては、後述のOLED基板から出射された光を透過するものであれば、特に制限はなく、目的に応じて適宜選択すればよい。光透過性基板としては、この目的を満たす限り、特に制限はなく、その形状、構造、大きさ等を適宜選択すればよい。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。基板は、無色透明であっても、有色透明であってもよいが、OLED基板から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。また、利便性の点で、可撓性を有するものであることが好ましい。
<< light transmissive substrate >>
In the optical member, the light transmissive substrate is not particularly limited as long as it transmits light emitted from an OLED substrate, which will be described later, and may be appropriately selected according to the purpose. The light-transmitting substrate is not particularly limited as long as this purpose is satisfied, and the shape, structure, size, and the like may be appropriately selected. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members. The substrate may be colorless and transparent or may be colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the OLED substrate. Moreover, it is preferable that it is flexible from the point of convenience.

光透過性基板の配置位置としては、光透過層を支持し、同層上面に凹凸を構成する限りは、特に制限はない。なかでも、OLED基板と光透過層の凹部とからなる光学共振器の光路の外部であって、発光層からの光の特性に影響を及ぼさない点で、光学部材の光透過層からみて、有機発光表示装置からの光の出射方向に配置されることが好ましい。   The arrangement position of the light-transmitting substrate is not particularly limited as long as the light-transmitting layer is supported and unevenness is formed on the upper surface of the layer. Especially, it is outside the optical path of the optical resonator composed of the OLED substrate and the concave portion of the light transmission layer, and does not affect the characteristics of the light from the light emitting layer. It is preferable that the light emitting display device is disposed in the light emitting direction.

光透過性基板の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、その具体例としては、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、及びポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。   The material of the light-transmitting substrate is not particularly limited and can be appropriately selected according to the purpose. Specific examples thereof include inorganic materials such as glass, polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate. Examples include organic materials such as polyester, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).

例えば、光透過性基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性及び加工性に優れていることが好ましい。   For example, when glass is used as the light-transmitting substrate, it is preferable to use alkali-free glass for the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation and workability.

熱可塑性基板を用いる場合には、さらに必要に応じて、バリアフィルム基板などの、ハードコート層、アンダーコート層などを設けてもよい。   When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like such as a barrier film substrate may be further provided as necessary.

<<その他の部材>>
<<<光半透過反射層>>>
光学部材において、後述のOLED基板からみて上述の有機発光表示装置の光出射方向に向かう光のうち、一部を透過し、他の一部を反射する光半透過反射層を、光学部材の光透過層の表面に設けてもよい。即ち、図1及び2の符号16で示すように、光半透過反射層は、凸部14及び凹部15からなる凹凸部を有する光透過層12の表面に設けられてもよい。光半透過反射層の構造、形状、大きさ等は、特に制限はなく、目的に応じて適宜選択すればよく、光半透過反射層の材料としては、上記の態様を満たすものであれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、薄膜のAg、Alが挙げられる。光半透過反射層の厚みとしては、特に制限はなく、目的に応じて適宜選択すればよいが、透過率と反射率のバランスの点で、10nm〜30nmであることが好ましい。光半透過反射層を設ける方法としては、本技術分野公知の方法であれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、及びスプレー法等が挙げられる。なかでも、均一な膜厚制御をする点で、乾式製膜法であることが好ましく、光透過層へのダメージレスの点で、蒸着法であることがより好ましい。
<< Other parts >>
<<< Light transflective layer >>>
In the optical member, a light transflective layer that transmits a part of the light traveling in the light emitting direction of the organic light-emitting display device as viewed from the OLED substrate, which will be described later, and reflects the other part is used as the light of the optical member. You may provide in the surface of a permeation | transmission layer. That is, as indicated by reference numeral 16 in FIGS. 1 and 2, the light semi-transmissive reflective layer may be provided on the surface of the light transmissive layer 12 having a concavo-convex portion including the convex portion 14 and the concave portion 15. The structure, shape, size, and the like of the light transflective layer are not particularly limited and may be appropriately selected depending on the purpose. There is no restriction | limiting in particular, What is necessary is just to select suitably according to the objective, For example, Ag and Al of a thin film are mentioned. The thickness of the light transflective layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 30 nm in terms of the balance between transmittance and reflectance. The method for providing the light transflective layer is not particularly limited as long as it is a known method in this technical field, and may be appropriately selected according to the purpose. For example, a dry film forming method such as a vapor deposition method or a sputtering method, Examples thereof include a transfer method, a printing method, a coating method, an ink jet method, and a spray method. Among these, a dry film forming method is preferable from the viewpoint of uniform film thickness control, and a vapor deposition method is more preferable from the viewpoint of less damage to the light transmission layer.

<<カラーフィルタ層>>
光学部材において、後述のOLED基板からみて上述の有機発光表示装置の光出射方向に向かう光のうち、特定波長を有する光を透過させるカラーフィルタ層を設けてもよい。カラーフィルタ層の形状、構造、大きさ等としては、特に制限はなく、目的に応じて適宜選択すればよいが、例えば、図1〜4の符号18で示すように層状のものが挙げられる。カラーフィルタ層の厚みとしては、特に制限はなく、目的に応じて適宜選択すればよいが、色濃度調節の点で、10nm〜10μmであることが好ましい。カラーフィルタ層を設ける位置としては、特に制限はなく、目的に応じて適宜選択すればよいが、カラーフィルタ層の保護構造及び製造性の点で、光学部材の光透過性基板と光透過層との間に設けることが好ましい。カラーフィルタ層を形成する方法としては、特に制限はなく、目的に応じて適宜選択すればよく、上記の光学部材の光透過性基板上に、感光性組成物を露光、現像することにより微細パターンを形成するフォトリソグラフィー法、インクジェット法が挙げられる。
<< Color filter layer >>
In the optical member, there may be provided a color filter layer that transmits light having a specific wavelength out of light traveling in the light emitting direction of the organic light emitting display device as viewed from the OLED substrate described later. There is no restriction | limiting in particular as a shape, a structure, a magnitude | size, etc. of a color filter layer, What is necessary is just to select suitably according to the objective, For example, as shown by the code | symbol 18 of FIGS. The thickness of the color filter layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 10 μm in terms of color density adjustment. The position where the color filter layer is provided is not particularly limited and may be appropriately selected depending on the purpose. However, in terms of the protective structure of the color filter layer and manufacturability, the light transmissive substrate and the light transmissive layer of the optical member It is preferable to provide between. The method for forming the color filter layer is not particularly limited and may be appropriately selected according to the purpose. The fine pattern is obtained by exposing and developing the photosensitive composition on the light-transmitting substrate of the optical member. Examples thereof include a photolithography method and an ink jet method.

有機発光表示装置の構成としては、フルカラーで表示し得る点で、複数の画素からなるのが好ましい。この複数の画素のうちの1つの画素の構成としては、特に制限はなく、目的に応じて適宜選択すればよく、3原色である赤色、青色及び緑色に対応する副画素を含んでもよく、また3原色である赤色、青色及び緑色に対応する副画素と、白色に対応する副画素とを含んでもよい。カラーフィルタ層の構成としては、特に制限はなく、目的に応じて適宜選択すればよく、上記の画素の構成に対応するように、構成してもよく、例えば、図1〜4に示すように、赤色フィルタ部18r、緑色フィルタ部18g、青色フィルタ部18b及び白色フィルタ部18wを有する構成であってもよい。   The configuration of the organic light emitting display device is preferably composed of a plurality of pixels in that it can be displayed in full color. The configuration of one of the plurality of pixels is not particularly limited and may be appropriately selected depending on the purpose, and may include sub-pixels corresponding to the three primary colors red, blue, and green. Sub-pixels corresponding to the three primary colors red, blue and green, and sub-pixels corresponding to white may be included. There is no restriction | limiting in particular as a structure of a color filter layer, What is necessary is just to select suitably according to the objective, You may comprise so that it may respond | correspond to the structure of said pixel, for example, as shown to FIGS. Further, the configuration may include a red filter portion 18r, a green filter portion 18g, a blue filter portion 18b, and a white filter portion 18w.

<OLED基板>
OLED基板は、基板上に光反射電極、有機EL層及び光透過電極を順次積層してなり、必要に応じて、その他の部材を有する。なお、本発明において、「OLED基板」とは、光反射電極と有機EL層とを少なくとも有する、有機発光表示装置において発光を行う層を有する基板を総称する用語であって、上述の光学部材とは異なる部材をいう。
<OLED substrate>
The OLED substrate is formed by sequentially laminating a light reflecting electrode, an organic EL layer, and a light transmitting electrode on the substrate, and has other members as necessary. In the present invention, the “OLED substrate” is a general term for substrates having at least a light reflecting electrode and an organic EL layer and having a layer that emits light in an organic light emitting display device. Means different members.

<<有機EL層>>
有機EL層としては、電界を印加して発光するものであれば、特に制限はなく、目的に応じて適宜選択すればよい。特に、ホワイトバランスを調整する必要がなく、製造が容易な点で、白色光を発光する有機EL層であることが好ましい。
<< Organic EL layer >>
The organic EL layer is not particularly limited as long as it emits light by applying an electric field, and may be appropriately selected according to the purpose. In particular, an organic EL layer that emits white light is preferable because it is not necessary to adjust the white balance and is easy to manufacture.

有機EL層は、有機発光材料からなるものであっても、無機発光材料からなるものであってもよいが、なかでも、発光効率、装置の大型化が可能、低電圧駆動、低温製造プロセスの点で、有機発光材料が好ましい。以下、有機発光材料を用いた発光層を有する有機化合物層について、説明する。   The organic EL layer may be made of an organic light emitting material or an inorganic light emitting material. Among them, the light emitting efficiency, the size of the apparatus can be increased, the low voltage driving, the low temperature manufacturing process can be performed. In this respect, an organic light emitting material is preferable. Hereinafter, an organic compound layer having a light emitting layer using an organic light emitting material will be described.

−有機化合物層−
有機発光材料を用いた有機発光層を有する有機化合物層としては、有機化合物層の積層の形態として、陽極側から、正孔輸送層、有機発光層、電子輸送層の順に積層されている態様が好ましい。さらに、正孔輸送層と陽極との間に正孔注入層を、及び/又は有機発光層と電子輸送層との間に電子輸送性中間層を、有してもよい。また、有機発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けてもよい。各層は複数の二次層に分かれていてもよい。なお、陽極と陰極、及び有機発光層以外の各層は前記その他の層/部材に、それぞれ対応する。
-Organic compound layer-
As an organic compound layer having an organic light emitting layer using an organic light emitting material, an aspect in which a hole transport layer, an organic light emitting layer, and an electron transport layer are stacked in this order from the anode side as a stacked form of the organic compound layer. preferable. Further, a hole injection layer may be provided between the hole transport layer and the anode, and / or an electron transporting intermediate layer may be provided between the organic light emitting layer and the electron transport layer. In addition, a hole transporting intermediate layer may be provided between the organic light emitting layer and the hole transport layer, and similarly, an electron injection layer may be provided between the cathode and the electron transport layer. Each layer may be divided into a plurality of secondary layers. Each layer other than the anode, the cathode, and the organic light emitting layer corresponds to the other layer / member.

有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、及びスプレー法等いずれによっても好適に形成することができる。なかでも、素子寿命及びスループット性の点で、蒸着法であることが好ましい。   Each layer constituting the organic compound layer can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, transfer methods, printing methods, coating methods, ink jet methods, and spray methods. Of these, the vapor deposition method is preferable in terms of device life and throughput.

蒸着法による有機発光層の製造としては、上記の通りの構成を達成し得るものであれば、特に制限はなく、目的に応じて適宜選択すればよい。蒸着の条件としては、特に制限はなく、目的に応じて適宜選択すればよいが、蒸着速度が8nm/秒以上であることが好ましく、10nm/秒以上であることがより好ましく、15nm/秒以上であることが特に好ましい。8nm/秒未満であると、有機発光層におけるキャリアのトラップ量が少なくなり、外部量子効率及び半減寿命が低下してしまう。   The production of the organic light emitting layer by the vapor deposition method is not particularly limited as long as the above-described configuration can be achieved, and may be appropriately selected according to the purpose. The deposition conditions are not particularly limited and may be appropriately selected depending on the purpose. However, the deposition rate is preferably 8 nm / second or more, more preferably 10 nm / second or more, and 15 nm / second or more. It is particularly preferred that If it is less than 8 nm / second, the amount of trapped carriers in the organic light emitting layer is reduced, and the external quantum efficiency and the half-life are reduced.

有機発光表示装置は、有機発光層を含む少なくとも一層の有機化合物層を有しており、有機発光層以外の他の有機化合物層としては、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、等の各層が挙げられる。   The organic light emitting display device has at least one organic compound layer including an organic light emitting layer, and other organic compound layers other than the organic light emitting layer include a hole transport layer, an electron transport layer, a hole block layer, Examples thereof include an electron blocking layer, a hole injection layer, and an electron injection layer.

有機発光表示装置において、有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式等いずれによっても好適に形成することができる。   In the organic light emitting display device, each layer constituting the organic compound layer can be suitably formed by any of a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, a printing method, and an ink jet method. .

有機発光層は、電界印加時に、陽極、正孔注入層又は正孔輸送層から正孔を受け取り、陰極、電子注入層又は電子輸送層から電子を受け取り、正孔と電子との再結合の場を提供して発光させる機能を有する層である。   When an electric field is applied, the organic light emitting layer receives holes from the anode, hole injection layer or hole transport layer, receives electrons from the cathode, electron injection layer or electron transport layer, and recombines holes with electrons. It is a layer which has the function to provide and to emit light.

有機発光層は、発光材料のみで構成されていてもよく、ホスト材料とドーパント材料の混合層とした構成でもよい。ドーパント材料としては、発光性ドーパントであってもよく、発光性ドーパントは蛍光発光材料でも燐光発光材料であってもよく、2種以上であってもよい。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は1種単独であっても2種以上であってもよく、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料とを混合した構成が挙げられる。さらに、有機発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。   The organic light emitting layer may be composed of only a light emitting material, or may be a mixed layer of a host material and a dopant material. The dopant material may be a light-emitting dopant, and the light-emitting dopant may be a fluorescent light-emitting material or a phosphorescent light-emitting material, or two or more kinds. The host material is preferably a charge transport material. The host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed. Furthermore, the organic light emitting layer may contain a material that does not have charge transporting properties and does not emit light.

また、有機発光層は、1層単独であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。なかでも、有機EL層の発光層を構成する各層は、良好な発光効率を達成し得る点で、OLED基板の光反射電極からの光学長L’が、下記の式を満たす距離に配置されていることが好ましい。
L’=(λ/4)×(2n−1)
(λは、出射光のピーク波長;nは、自然数)
Further, the organic light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors. Especially, each layer which comprises the light emitting layer of an organic electroluminescent layer is arrange | positioned in the distance which optical length L 'from the light reflection electrode of an OLED board | substrate satisfy | fills the following formula by the point which can achieve favorable luminous efficiency. Preferably it is.
L ′ = (λ / 4) × (2n−1)
(Λ is the peak wavelength of the emitted light; n is a natural number)

光学長L’が上記の関係を満たすように構成するには、特に制限はなく、目的に応じて適宜選択すればよいが、OLED基板を構成する有機EL層の厚みを適宜調整すればよく、例えば、正孔注入層の膜厚や各発光層の膜厚を調整してもよい。   There are no particular limitations on the configuration so that the optical length L ′ satisfies the above relationship, and it may be appropriately selected according to the purpose, but the thickness of the organic EL layer constituting the OLED substrate may be appropriately adjusted. For example, the thickness of the hole injection layer and the thickness of each light emitting layer may be adjusted.

前記発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパント(燐光発光性ドーパント、蛍光発光性ドーパント)として用いることができる。   As the luminescent dopant, any of a phosphorescent luminescent material, a fluorescent luminescent material, and the like can be used as a dopant (phosphorescent dopant, fluorescent luminescent dopant).

有機発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することもできる。前記発光性ドーパントは、さらに前記ホスト化合物との間で、イオン化ポテンシャルの差(ΔIp)と電子親和力の差(ΔEa)が、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすドーパントであることが駆動耐久性の観点で好ましい。   The organic light emitting layer can also contain two or more kinds of luminescent dopants in order to improve color purity or extend the light emission wavelength region. The luminescent dopant further has an ionization potential difference (ΔIp) and an electron affinity difference (ΔEa) of 1.2 eV> ΔIp> 0.2 eV and / or 1.2 eV> with the host compound. A dopant satisfying the relationship of ΔEa> 0.2 eV is preferable from the viewpoint of driving durability.

前記燐光発光性ドーパントとしては、特に制限はなく、目的に応じて適宜選択することができ、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。   There is no restriction | limiting in particular as said phosphorescent dopant, According to the objective, it can select suitably, The complex containing a transition metal atom or a lanthanoid atom can be mentioned.

前記遷移金属原子としては、特に制限はなく、目的に応じて適宜選択することができるが、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、及び白金が好ましく、レニウム、イリジウム、及び白金がより好ましく、イリジウム、白金が特に好ましい。   The transition metal atom is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, gold, silver, copper, and platinum, and rhenium. , Iridium, and platinum are more preferable, and iridium and platinum are particularly preferable.

ランタノイド原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテシウムが挙げられる。なかでも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。   The lanthanoid atom is not particularly limited and may be appropriately selected according to the purpose.For example, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and Lutesium. Of these, neodymium, europium, and gadolinium are preferable.

錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。   Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Examples include ligands described in Yersin's "Photochemistry and Photophysics of Coordination Compounds" published by Springer-Verlag 1987, Akio Yamamoto "Organic Metal Chemistry-Fundamentals and Applications-" .

配位子としては、ハロゲン配位子(塩素配位子が好ましい)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、ナフチルアニオンなどが挙げられ、炭素数5〜30が好ましく、炭素数6〜30がより好ましく、炭素数6〜20がさらにより好ましく、炭素数6〜12が特に好ましい)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、フェナントロリンなどが挙げられ、炭素数5〜30が好ましく、炭素数6〜30がより好ましく、炭素数6〜20がさらにより好ましく、炭素数6〜12が特に好ましい)、ジケトン配位子(例えば、アセチルアセトンなどが挙げられる)、カルボン酸配位子(例えば、酢酸配位子などが挙げられ、炭素数2〜30が好ましく、炭素数2〜20がより好ましく、炭素数2〜16が特に好ましい)、アルコラト配位子(例えば、フェノラト配位子などが挙げられ、炭素数1〜30が好ましく、炭素数1〜20がより好ましく、炭素数6〜20がさらに好ましい)、シリルオキシ配位子(例えば、トリメチルシリルオキシ配位子、ジメチル−tert−ブチルシリルオキシ配位子、トリフェニルシリルオキシ配位子などが挙げられ、炭素数3〜40が好ましく、炭素数3〜30がより好ましく、炭素数3〜20が特に好ましい)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子、リン配位子(例えば、トリフェニルフォスフィン配位子などが挙げられ、炭素数3〜40が好ましく、炭素数3〜30がより好ましく、炭素数3〜20がさらにより好ましく、炭素数6〜20が特に好ましい)、チオラト配位子(例えば、フェニルチオラト配位子などが挙げられ、炭素数1〜30が好ましく、炭素数1〜20がより好ましく、炭素数6〜20が特に好ましい)、フォスフィンオキシド配位子(例えば、トリフェニルフォスフィンオキシド配位子などが挙げられ、炭素数3〜30が好ましく、炭素数8〜30がより好ましく、炭素数18〜30が特に好ましくい)が好ましく、含窒素ヘテロ環配位子がより好ましい。   Examples of the ligand include a halogen ligand (preferably a chlorine ligand), an aromatic carbocyclic ligand (for example, a cyclopentadienyl anion, a benzene anion, a naphthyl anion, etc.). Preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 to 12 carbon atoms), a nitrogen-containing heterocyclic ligand (for example, phenylpyridine, benzoquinoline, quinolinol, Bipyridyl, phenanthroline, etc. are mentioned, C5-C30 is preferable, C6-C30 is more preferable, C6-C20 is still more preferable, C6-C12 is especially preferable, and diketone ligand ( Examples thereof include acetylacetone and the like, and carboxylic acid ligands (for example, acetic acid ligands and the like, preferably having 2 to 30 carbon atoms). C2-20 is more preferable, C2-16 is particularly preferable), an alcoholate ligand (for example, a phenolate ligand, etc.), C1-30 is preferable, and C1-20. Are more preferable, and those having 6 to 20 carbon atoms are more preferable), silyloxy ligands (for example, trimethylsilyloxy ligand, dimethyl-tert-butylsilyloxy ligand, triphenylsilyloxy ligand, etc.) 3 to 40 carbon atoms are preferable, 3 to 30 carbon atoms are more preferable, and 3 to 20 carbon atoms are particularly preferable), carbon monoxide ligand, isonitrile ligand, cyano ligand, phosphorus ligand (for example, , Triphenylphosphine ligand and the like, preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, still more preferably 3 to 20 carbon atoms, And a thiolato ligand (e.g., a phenylthiolato ligand), preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and 6 to 20 carbon atoms. Particularly preferred), phosphine oxide ligands (for example, triphenylphosphine oxide ligands, etc.), 3 to 30 carbon atoms are preferred, 8 to 30 carbon atoms are more preferred, and 18 to 30 carbon atoms are particularly preferred. Is preferable, and a nitrogen-containing heterocyclic ligand is more preferable.

上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。   The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

これらのなかでも、発光性ドーパントとしては、例えば、US6,303,238B1、US6,097,147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001−247859、特開2002−302671、特開2002−117978、特開2003−133074、特開2002−235076、特開2003−123982、特開2002−170684、EP1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−256999、特開2007−19462、特開2007−84635、特開2007−96259等の特許文献に記載の燐光発光化合物などが挙げられる。なかでも、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、Ce錯体が好ましく、Ir錯体、Pt錯体、Re錯体がより好ましい。なかでも、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、Re錯体が、さらにより好ましい。さらに、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、Re錯体が特に好ましい。   Among these, as the luminescent dopant, for example, US 6,303,238B1, US 6,097,147, WO00 / 57676, WO00 / 70655, WO01 / 08230, WO01 / 39234A2, WO01 / 41512A1, WO02 / 02714A2, WO02 / 15645A1, WO02 / 44189A1, WO05 / 19373A2, JP2001-247859, JP2002-302671, JP2002-117978, JP2003-133074, JP2002-235076, JP2003-123982, JP2002 -170684, EP12112257, JP2002-226495, JP2002-234894, JP2001247478, JP2001-298470, JP2002 173674, JP 2002-203678, JP 2002-203679, JP 2004-357799, JP 2006-256999, JP 2007-19462, JP 2007-84635, JP 2007-96259, and the like. Examples include phosphorescent light emitting compounds. Among them, Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Gd complex, Dy complex, and Ce complex are preferable, and Ir complex, Pt complex and Re complex are more preferable. Among these, Ir complexes, Pt complexes, and Re complexes containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond are even more preferable. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity, etc., an Ir complex, a Pt complex, and a Re complex containing a tridentate or higher multidentate ligand are particularly preferable.

前記蛍光発光性ドーパントとしては、特に制限はなく、目的に応じて適宜選択することができ、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、及びこれらの誘導体などが挙げられる。   The fluorescent light emitting dopant is not particularly limited and may be appropriately selected depending on the intended purpose. Benzoxazole, benzimidazole, benzothiazole, styrylbenzene, polyphenyl, diphenylbutadiene, tetraphenylbutadiene, naphthalimide, coumarin , Pyran, perinone, oxadiazole, aldazine, pyralidine, cyclopentadiene, bisstyrylanthracene, quinacridone, pyrrolopyridine, thiadiazolopyridine, cyclopentadiene, styrylamine, aromatic dimethylidin compound, condensed polycyclic aromatic compound (anthracene, Phenanthroline, pyrene, perylene, rubrene, or pentacene), 8-quinolinol metal complexes, various metal complexes represented by pyromethene complexes and rare earth complexes, polythiol Emissions, polyphenylene, polyphenylene vinylene polymer compounds such as organosilanes, and the like derivatives thereof.

発光性ドーパントとしては、例えば下記のものが挙げられるが、これらに制限されるものではない。   Examples of the luminescent dopant include the following, but are not limited thereto.

有機発光層中の発光性ドーパントは、有機発光層中に一般的に有機発光層を形成する全化合物質量に対して、0.1質量%〜50質量%含有されるが、耐久性、外部量子効率の観点から1質量%〜50質量%含有されることが好ましく、2質量%〜40質量%含有されることがより好ましい。   The light-emitting dopant in the organic light-emitting layer is contained in an amount of 0.1% by mass to 50% by mass with respect to the total compound mass generally forming the organic light-emitting layer in the organic light-emitting layer. From the viewpoint of efficiency, the content is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 40% by mass.

有機発光層の厚さは、特に制限されるものではないが、通常、2nm〜500nmであるのが好ましく、なかでも、外部量子効率の観点で、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが特に好ましい。   The thickness of the organic light-emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm from the viewpoint of external quantum efficiency. 100 nm is particularly preferred.

前記ホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。   As the host material, a hole-transporting host material having excellent hole-transporting property (may be described as a hole-transporting host) and an electron-transporting host compound having excellent electron-transporting property (described as an electron-transporting host) May be used).

有機発光層内の正孔輸送性ホストとしては、例えば、以下の材料が挙げられる。即ち、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及び、それらの誘導体等が挙げられる。   Examples of the hole transporting host in the organic light emitting layer include the following materials. Pyrrole, indole, carbazole, azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone Hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, aromatic dimethylidin compound, porphyrin compound, polysilane compound, poly (N-vinylcarbazole), aniline copolymer, thiophene oligomer, Examples thereof include conductive polymer oligomers such as polythiophene, organic silanes, carbon films, and derivatives thereof.

なかでも、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体であることが好ましく、分子内にカルバゾール基を有するものがより好ましく、t−ブチル置換カルバゾール基を有する化合物が特に好ましい。   Of these, indole derivatives, carbazole derivatives, aromatic tertiary amine compounds, and thiophene derivatives are preferable, those having a carbazole group in the molecule are more preferable, and compounds having a t-butyl-substituted carbazole group are particularly preferable.

有機発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが特に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが特に好ましい。   The electron transporting host in the organic light emitting layer preferably has an electron affinity Ea of 2.5 eV or more and 3.5 eV or less from the viewpoint of improving durability and lowering driving voltage, and is 2.6 eV or more and 3.4 eV or less. More preferably, it is 2.8 eV or more and 3.3 eV or less. Further, from the viewpoint of improving durability and reducing driving voltage, the ionization potential Ip is preferably 5.7 eV or more and 7.5 eV or less, more preferably 5.8 eV or more and 7.0 eV or less, and 5.9 eV or more. It is particularly preferable that it is 6.5 eV or less.

このような電子輸送性ホストとしては、具体的には、例えば、以下の材料が挙げられる。即ち、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、及びそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等が挙げられる。   Specific examples of such an electron transporting host include the following materials. Pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyryl Metal complexes of pyrazine, fluorine-substituted aromatic compounds, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanines, and derivatives thereof (which may form condensed rings with other rings), 8-quinolinol derivatives And various metal complexes represented by metal complexes having metal phthalocyanine, benzoxazole or benzothiazol as a ligand.

電子輸送性ホストとしては、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)が好ましく、なかでも、耐久性の点から、金属錯体化合物がより好ましい。金属錯体化合物(A)は、金属に配位する窒素原子、酸素原子及び硫黄原子の少なくともいずれかを有する配位子を有する金属錯体が好ましい。   As the electron transporting host, metal complexes, azole derivatives (benzimidazole derivatives, imidazopyridine derivatives, etc.), and azine derivatives (pyridine derivatives, pyrimidine derivatives, triazine derivatives, etc.) are preferable. Compounds are more preferred. The metal complex compound (A) is preferably a metal complex having a ligand having at least one of a nitrogen atom, an oxygen atom and a sulfur atom coordinated to a metal.

金属錯体中の金属イオンは、特に制限はなく、目的に応じて適宜選択することができるが、ベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、又はパラジウムイオンであることが好ましく、ベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、又はパラジウムイオンがより好ましく、アルミニウムイオン、亜鉛イオン、又はパラジウムイオンが特に好ましい。   The metal ion in the metal complex is not particularly limited and can be appropriately selected depending on the purpose, but beryllium ion, magnesium ion, aluminum ion, gallium ion, zinc ion, indium ion, tin ion, platinum ion, or Palladium ions are preferable, beryllium ions, aluminum ions, gallium ions, zinc ions, platinum ions, or palladium ions are more preferable, and aluminum ions, zinc ions, or palladium ions are particularly preferable.

前記金属錯体中に含まれる配位子としては、種々の公知の配位子であればよく、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。   The ligand contained in the metal complex may be any of various known ligands. For example, “Photochemistry and Photophysics of Coordination Compounds”, Springer-Verlag, H.C. Examples include the ligands described in Yersin, published in 1987, “Organometallic Chemistry: Fundamentals and Applications”, Sakai Hanafusa, Yamamoto Akio, published in 1982, and the like.

前記配位子としては、含窒素ヘテロ環配位子(炭素数1〜30が好ましく、炭素数2〜20がより好ましく、炭素数3〜15が特に好ましい)が好ましい。また、前記配位子としては、単座配位子であっても2座以上の配位子であってもよいが、2座以上6座以下の配位子であることが好ましい。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。   As said ligand, a nitrogen-containing heterocyclic ligand (C1-C30 is preferable, C2-C20 is more preferable, C3-C15 is especially preferable). Further, the ligand may be a monodentate ligand or a bidentate or more ligand, but is preferably a bidentate or more and a hexadentate or less ligand. Also preferred are bidentate to hexadentate ligands and monodentate mixed ligands.

前記配位子としては、例えば、アジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(例えば、メトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられ、炭素数1〜30が好ましく、炭素数1〜20がより好ましく、炭素数1〜10が特に好ましい。)、アリールオキシ配位子(例えば、フェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられ、炭素数6〜30が好ましく、炭素数6〜20がより好ましく、炭素数6〜12が特に好ましい)などが挙げられる。   Examples of the ligand include an azine ligand (for example, a pyridine ligand, a bipyridyl ligand, a terpyridine ligand, etc.), a hydroxyphenylazole ligand (for example, hydroxyphenylbenzimidazole). Ligands, hydroxyphenylbenzoxazole ligands, hydroxyphenylimidazole ligands, hydroxyphenylimidazopyridine ligands, etc.), alkoxy ligands (eg, methoxy, ethoxy, butoxy, 2-ethylhexyl). Siloxy etc. are mentioned, C1-C30 is preferable, C1-C20 is more preferable, C1-C10 is especially preferable.), An aryloxy ligand (for example, phenyloxy, 1-naphthyloxy, 2-naphthyloxy, 2,4,6-trimethylphenyloxy, 4- Such as phenyloxy and the like, 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms) and the like.

ヘテロアリールオキシ配位子(例えば、ピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられ、炭素数1〜30が好ましく、炭素数1〜20がより好ましく、炭素数1〜12が特に好ましい。)、アルキルチオ配位子(例えば、メチルチオ、エチルチオなどが挙げられ、炭素数1〜30が好ましく、炭素数1〜20がより好ましく、炭素数1〜12が特に好ましい。)、アリールチオ配位子(例えば、フェニルチオなどが挙げられ、炭素数6〜30が好ましく、炭素数6〜20がより好ましく、炭素数6〜12が特に好ましい。)、ヘテロアリールチオ配位子(例えば、ピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられ、炭素数1〜30が好ましく、炭素数1〜20がより好ましく、炭素数1〜12が特に好ましい。)、シロキシ配位子(例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、トリイソプロピルシロキシ基などが挙げられ、炭素数1〜30が好ましく、炭素数3〜25がより好ましく、炭素数6〜20が特に好ましい。)、芳香族炭化水素アニオン配位子(例えば、フェニルアニオン、ナフチルアニオン、及びアントラニルアニオンなどが挙げられ、炭素数6〜30が好ましく、炭素数6〜25がより好ましく、炭素数6〜20が特に好ましい。)、芳香族ヘテロ環アニオン配位子(例えば、ピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、及びベンゾチオフェンアニオンなどが挙げられ、炭素数1〜30が好ましく、炭素数2〜25がより好ましく、炭素数2〜20が特に好ましい。)、インドレニンアニオン配位子などが挙げられ、含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、シロキシ配位子などが好ましく、含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、芳香族ヘテロ環アニオン配位子などがさらに好ましい。   Heteroaryloxy ligands (for example, pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. are mentioned, preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms). Alkylthio ligands (for example, methylthio, ethylthio and the like are mentioned, preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms), arylthio ligands (for example, Phenylthio etc. are mentioned, C6-C30 is preferable, C6-C20 is more preferable, C6-C12 is especially preferable,) heteroarylthio ligand (for example, pyridylthio, 2-benzimidazole). Ruthio, 2-benzoxazolylthio, 2-benzthiazolylthio and the like, and those having 1 to 30 carbon atoms More preferably, carbon number 1-20 is more preferable, and carbon number 1-12 is particularly preferable.), Siloxy ligand (for example, triphenylsiloxy group, triethoxysiloxy group, triisopropylsiloxy group, etc.) Numbers 1 to 30 are preferred, carbon numbers 3 to 25 are more preferred, and carbon numbers 6 to 20 are particularly preferred.), Aromatic hydrocarbon anion ligands (eg, phenyl anion, naphthyl anion, anthranyl anion, etc.) 6 to 30 carbon atoms, more preferably 6 to 25 carbon atoms, and particularly preferably 6 to 20 carbon atoms), an aromatic heterocyclic anion ligand (for example, a pyrrole anion, a pyrazole anion, a pyrazole anion, Triazole anion, oxazole anion, benzoxazole anion, thiazole anio Benzothiazole anion, thiophene anion, benzothiophene anion, etc., preferably having 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, and particularly preferably 2 to 20 carbon atoms.), Indolenine anion coordination Preferred are nitrogen-containing heterocyclic ligands, aryloxy ligands, heteroaryloxy groups, siloxy ligands, etc., nitrogen-containing heterocyclic ligands, aryloxy ligands, siloxy coordination More preferred are a child, an aromatic hydrocarbon anion ligand, an aromatic heterocyclic anion ligand, and the like.

金属錯体電子輸送性ホストの例としては、例えば、特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。   Examples of the metal complex electron transporting host include, for example, JP-A-2002-2335076, JP-A-2004-214179, JP-A-2004-221106, JP-A-2004-221105, JP-A-2004-221068, JP-A-2004-327313, etc. And the compounds described.

有機発光層において、前記ホスト材料の三重項最低励起準位(T1)が、前記燐光発光材料のT1より高いことが色純度、発光効率、駆動耐久性の点で好ましい。   In the organic light emitting layer, the triplet lowest excitation level (T1) of the host material is preferably higher than T1 of the phosphorescent light emitting material in terms of color purity, light emission efficiency, and driving durability.

また、ホスト化合物の含有量は、特に制限されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。   In addition, the content of the host compound is not particularly limited, but may be 15% by mass or more and 95% by mass or less with respect to the total compound mass forming the light emitting layer from the viewpoint of luminous efficiency and driving voltage. preferable.

−−正孔注入層、正孔輸送層−−
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔(ホール)を受け取り陰極側に輸送する機能を有する層である。これらの層に用いる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。
--- Hole injection layer, hole transport layer-
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. The hole injection material and the hole transport material used for these layers may be a low molecular compound or a high molecular compound.

具体的には、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、等を含有する層であることが好ましい。   Specifically, pyrrole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl Anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organosilane derivatives, carbon, And the like.

有機電界発光素子の正孔注入層又は正孔輸送層には、電子受容性ドーパントを含有させることができる。正孔注入層、又は正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。   An electron-accepting dopant can be contained in the hole injection layer or the hole transport layer of the organic electroluminescence device. As the electron-accepting dopant introduced into the hole-injecting layer or the hole-transporting layer, an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.

具体的には、無機化合物としては、塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、及び三酸化モリブデンなどの金属酸化物などが挙げられる。   Specifically, examples of the inorganic compound include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride, metal oxides such as vanadium pentoxide, and molybdenum trioxide. .

有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。   In the case of an organic compound, a compound having a nitro group, halogen, cyano group, trifluoromethyl group or the like as a substituent, a quinone compound, an acid anhydride compound, fullerene, or the like can be preferably used.

この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等に記載の化合物を好適に用いることができる。   In addition, JP-A-6-212153, JP-A-11-111463, JP-A-11-251067, JP-A-2000-196140, JP-A-2000-286054, JP-A-2000-315580, JP-A-2001-102175, JP-A-2001-2001. -160493, JP2002-252085, JP2002-56985, JP2003-157981, JP2003-217862, JP2003-229278, JP2004-342614, JP2005-72012, JP20051666667 The compounds described in JP-A-2005-209643 and the like can be preferably used.

このうち、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、又はフラーレンC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、又は2,3,5,6−テトラシアノピリジンがより好ましく、テトラフルオロテトラシアノキノジメタンが特に好ましい。   Among these, hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, 1,2,4,5-tetracyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene O-dinitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1,3-dinitronaphthalene, 1,5-dinitronaphthalene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole 2,4,7-trinitro-9 Fluorenone, 2,3,5,6-tetracyanopyridine, or fullerene C60 is preferable, and hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p- Chloranil, p-bromanyl, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, 2,3-dichloronaphthoquinone, 1,2,4,5-tetracyanobenzene, 2,3-dichloro-5,6-dicyano Benzoquinone or 2,3,5,6-tetracyanopyridine is more preferred, and tetrafluorotetracyanoquinodimethane is particularly preferred.

これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることがさらに好ましく、0.1質量%〜10質量%であることが特に好ましい。   These electron-accepting dopants may be used alone or in combination of two or more. Although the usage-amount of an electron-accepting dopant changes with kinds of material, it is preferable that it is 0.01 mass%-50 mass% with respect to hole transport layer material, and it is 0.05 mass%-20 mass%. More preferably, it is especially preferable that it is 0.1 mass%-10 mass%.

正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが特に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが特に好ましい。   The thicknesses of the hole injection layer and the hole transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage. The thickness of the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm. Further, the thickness of the hole injection layer is preferably 0.1 nm to 200 nm, more preferably 0.5 nm to 100 nm, and particularly preferably 1 nm to 100 nm.

正孔注入層、正孔輸送層は、上述した材料の1種単独又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the above materials, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. Good.

−−電子注入層、電子輸送層−−
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は、低分子化合物であっても高分子化合物であってもよい。
--Electron injection layer, electron transport layer--
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. The electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.

具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。   Specifically, pyridine derivatives, quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthalene, perylene and other aromatic ring tetracarboxylic acid anhydrides, phthalocyanine derivatives, 8-quinolinol derivative metal complexes, Metal phthalocyanines, various metal complexes represented by metal complexes with benzoxazole and benzothiazole as ligands, organosilane derivatives represented by siloles Body, or the like is preferably a layer containing.

本発明による有機電界発光素子の電子注入層又は電子輸送層には、電子供与性ドーパントを含有させることができる。電子注入層、又は電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、及びYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。   The electron injection layer or the electron transport layer of the organic electroluminescence device according to the present invention may contain an electron donating dopant. The electron-donating dopant introduced into the electron-injecting layer or the electron-transporting layer is not limited as long as it has an electron-donating property and has a property of reducing an organic compound. Alkali metals such as Li and alkaline-earth metals such as Mg Transition metals including rare earth metals and reducing organic compounds are preferably used. As the metal, a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd , And Yb. Examples of the reducing organic compound include nitrogen-containing compounds, sulfur-containing compounds, and phosphorus-containing compounds.

この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等に記載の材料を用いることができる。   In addition, materials described in JP-A-6-212153, JP-A-2000-196140, JP-A-2003-68468, JP-A-2003-229278, JP-A-2004-342614, and the like can be used.

これらの電子供与性ドーパントは、1種単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることがさらに好ましく、2.0質量%〜70質量%であることが特に好ましい。   These electron donating dopants may be used alone or in combination of two or more. The amount of the electron donating dopant varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, and 1.0% by mass to 80% by mass with respect to the electron transport layer material. Is more preferable, and 2.0 mass% to 70 mass% is particularly preferable.

電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが特に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが特に好ましい。   The thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage. The thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm. Further, the thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.2 nm to 100 nm, and particularly preferably 0.5 nm to 50 nm.

電子注入層、電子輸送層は、上述した材料の1種単独又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The electron injection layer and the electron transport layer may have a single-layer structure composed of one or more of the materials described above, or a multilayer structure composed of a plurality of layers having the same composition or different compositions.

−−正孔ブロック層−−
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通り抜けることを防止する機能を有する層である。発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
--Hole blocking layer--
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. As the organic compound layer adjacent to the light emitting layer on the cathode side, a hole blocking layer can be provided.

正孔ブロック層を構成する化合物の例としては、ビス−(2−メチル−8−キノニルフェノレート)アルミニウム(BAlq)等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。   Examples of the compound constituting the hole blocking layer include aluminum complexes such as bis- (2-methyl-8-quinonylphenolate) aluminum (BAlq), triazole derivatives, phenanthroline derivatives such as BCP, and the like.

正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが特に好ましい。   The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm.

正孔ブロック層は、上述した材料の1種単独又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The hole blocking layer may have a single-layer structure composed of one or more of the materials described above, or a multilayer structure composed of a plurality of layers having the same composition or different compositions.

−−電子ブロック層−−
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通り抜けることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機化合物層として、電子ブロック層を設けることができる。
--Electronic block layer--
The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side. In the present invention, an electron blocking layer can be provided as the organic compound layer adjacent to the light emitting layer on the anode side.

電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。   As examples of the compound constituting the electron blocking layer, for example, those mentioned as the hole transport material described above can be applied.

電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが特に好ましい。   The thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm.

正孔ブロック層は、上述した材料の1種単独又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The hole blocking layer may have a single-layer structure composed of one or more of the materials described above, or a multilayer structure composed of a plurality of layers having the same composition or different compositions.

発光層は、さらに発光効率を向上させるため、複数の発光層の間に電荷発生層が設けた構成をとることができる。   In order to further improve the light emission efficiency, the light emitting layer can have a structure in which a charge generation layer is provided between a plurality of light emitting layers.

電荷発生層は、電界印加時に電荷(正孔及び電子)を発生する機能を有すると共に、発生した電荷を電荷発生層と隣接する層に注入させる機能を有する層である。   The charge generation layer is a layer having a function of generating charges (holes and electrons) when an electric field is applied and a function of injecting the generated charges into a layer adjacent to the charge generation layer.

電荷発生層を形成する材料は、上記の機能を有する材料であれば、特に制限はなく、単一化合物で形成されていても、複数の化合物で形成されていてもよい。   The material for forming the charge generation layer is not particularly limited as long as the material has the above function, and may be formed of a single compound or a plurality of compounds.

具体的には、導電性を有するものであっても、ドープされた有機層のように半導電性を有するものであっても、また、電気絶縁性を有するものであってもよく、特開平11−329748や、特開2003−272860や、特開2004−39617に記載の材料が挙げられる。   Specifically, it may be a conductive material, a semiconductive material such as a doped organic layer, or an electrically insulating material. 11-329748, Unexamined-Japanese-Patent No. 2003-272860, and the material of Unexamined-Japanese-Patent No. 2004-39617 are mentioned.

さらに、具体的には、ITO、IZO(インジウム亜鉛酸化物)などの透明導電材料、C60等のフラーレン類、オリゴチオフェン等の導電性有機物、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等などの導電性有機物、Ca、Ag、Al、Mg:Ag合金、Al:Li合金、Mg:Li合金などの金属材料、正孔伝導性材料、電子伝導性材料、及びそれらを混合させたものが挙げられる。   More specifically, transparent conductive materials such as ITO and IZO (indium zinc oxide), fullerenes such as C60, conductive organic materials such as oligothiophene, metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, Conductive organic materials such as metal porphyrins, metal materials such as Ca, Ag, Al, Mg: Ag alloy, Al: Li alloy, Mg: Li alloy, hole conductive materials, electron conductive materials, and mixtures thereof Can be mentioned.

前記正孔伝導性材料は、例えば、4,4’,4’’−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATA)、N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(NPD)などの正孔輸送有機材料にF2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(4−TCNQ)、TCNQ、FeClなどの電子求引性を有する酸化剤をドープさせたものや、P型導電性高分子、P型半導体などが挙げられ、前記電子伝導性材料は電子輸送有機材料に4.0eV未満の仕事関数を有する金属若しくは金属化合物をドープしたものや、N型導電性高分子、N型半導体が挙げられる。N型半導体としては、N型Si、N型CdS、N型ZnSなどが挙げられ、P型半導体としては、P型Si、P型CdTe、P型CuOなどが挙げられる。 Examples of the hole conductive material include 4,4 ′, 4 ″ -tris (2-naphthylphenylamino) triphenylamine (2-TNATA), N′-dinaphthyl-N, N′-diphenyl- [1. , 1′-biphenyl] -4,4′-diamine (NPD) and the like, F2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (4 -TCNQ), TCNQ, those doped with an oxidant having an electron withdrawing property such as FeCl 3 , P-type conductive polymers, P-type semiconductors, etc., and the electron conductive material is an electron transport organic material And those doped with a metal or metal compound having a work function of less than 4.0 eV, N-type conductive polymers, and N-type semiconductors. Examples of the N-type semiconductor include N-type Si, N-type CdS, and N-type ZnS. Examples of the P-type semiconductor include P-type Si, P-type CdTe, and P-type CuO.

また、前記電荷発生層として、Vなどの電気絶縁性材料を用いることもできる。 Further, an electrically insulating material such as V 2 O 5 can be used for the charge generation layer.

前記電荷発生層は、単層でも複数積層させたものでもよい。複数積層させた構造としては、透明伝導材料や金属材料などの導電性を有する材料と正孔伝導性材料、又は、電子伝導性材料を積層させた構造、上記の正孔伝導性材料と電子伝導性材料を積層させた構造の層などが挙げられる。   The charge generation layer may be a single layer or a stack of a plurality of layers. As a structure in which a plurality of layers are stacked, a conductive material such as a transparent conductive material or a metal material and a hole conductive material, or a structure in which an electron conductive material is stacked, the above hole conductive material and electron conductive And a layer having a structure in which a functional material is laminated.

前記電荷発生層は、一般に、可視光の透過率が50%以上になるよう、膜厚・材料を選択することが好ましい。また膜厚は、特に制限はなく、目的に応じて適宜選択することができるが、0.5〜200nmが好ましく、1〜100nmがより好ましく、3〜50nmがさらに好ましく、5〜30nmが特に好ましい。   In general, it is preferable to select a film thickness and a material for the charge generation layer so that the visible light transmittance is 50% or more. The film thickness is not particularly limited and can be appropriately selected according to the purpose, but is preferably 0.5 to 200 nm, more preferably 1 to 100 nm, further preferably 3 to 50 nm, and particularly preferably 5 to 30 nm. .

電荷発生層の形成方法は、特に制限されるものではなく、前述した有機化合物層の形成方法を用いることができる。   The method for forming the charge generation layer is not particularly limited, and the method for forming the organic compound layer described above can be used.

電荷発生層は前記二層以上の発光層間に形成するが、電荷発生層の陽極側及び陰極側には、隣接する層に電荷を注入する機能を有する材料を含んでいてもよい。陽極側に隣接する層への電子の注入性を上げるため、例えば、BaO、SrO、LiO、LiCl、LiF、MgF、MgO、CaFなどの電子注入性化合物を電荷発生層の陽極側に積層させてもよい。 The charge generation layer is formed between the two or more light emitting layers, and the anode side and the cathode side of the charge generation layer may include a material having a function of injecting charges into adjacent layers. In order to improve the electron injection property to the layer adjacent to the anode side, for example, an electron injection compound such as BaO, SrO, Li 2 O, LiCl, LiF, MgF 2 , MgO, and CaF 2 is added to the anode side of the charge generation layer. May be laminated.

以上で挙げられた内容以外にも、特開2003−45676号公報、米国特許第6,337,492号、同第6,107,734号、同第6,872,472号等に記載を元にして、電荷発生層の材料を選択することができる。   In addition to the contents mentioned above, the descriptions are based on JP 2003-45676 A, US Pat. No. 6,337,492, US Pat. No. 6,107,734, US Pat. No. 6,872,472, etc. Thus, the material for the charge generation layer can be selected.

<<電極>>
本発明において、電極としては、発光層に電界を印加し得るものであれば、特に制限はない。電極の配置位置としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、図1及び2に記載のように、光学共振器を形成する光反射性を有する電極が、同一平面上に存在することが好ましい。電極は、有機発光表示装置への配置の形態に応じて、透明若しくは半透明又は光反射性若しくは光透過性の陽極又は陰極等、適宜選択すればよい。
<< Electrode >>
In the present invention, the electrode is not particularly limited as long as an electric field can be applied to the light emitting layer. The arrangement position of the electrodes is not particularly limited and may be appropriately selected depending on the purpose. For example, as shown in FIGS. 1 and 2, the electrodes having light reflectivity forming the optical resonator are in the same plane. It is preferably present above. The electrodes may be appropriately selected from transparent, translucent, light-reflective or light-transmissive anodes and cathodes, etc., depending on the form of arrangement in the organic light-emitting display device.

−陽極−
陽極は、通常、有機化合物層を構成する有機発光層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、有機電界発光素子の用途、目的に応じて、公知の電極材料のなかから適宜選択することができる。前述のごとく、陽極は、通常、透明陽極として設けられる。
-Anode-
The anode usually has a function as an electrode for supplying holes to the organic light emitting layer constituting the organic compound layer, and there is no particular limitation on the shape, structure, size, etc. Organic electroluminescence According to the use and purpose of the element, it can be appropriately selected from known electrode materials. As described above, the anode is usually provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。このなかで好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   Suitable examples of the material for the anode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof. Specific examples of the anode material include conductive metals such as tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, a conductive metal oxide is preferable, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などのなかから、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD method and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明において、陽極の配置位置としては、有機化合物層に接するように設けられれば、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、陽極は、有機化合物層における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the present invention, the arrangement position of the anode is not particularly limited as long as it is provided so as to be in contact with the organic compound layer, and can be appropriately selected according to the use and purpose of the organic electroluminescence device. It may be formed on the entire surface of one of the compound layers, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition or sputtering with a mask overlapped. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を出射するためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to emit light from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明導電膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   The transparent anode is detailed in Yutaka Sawada's “New Development of Transparent Conductive Film” published by CMC (1999), and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

−陰極−
陰極は、通常、上述の有機化合物層を構成する有機発光層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、有機電界発光素子の用途、目的に応じて、公知の電極材料のなかから適宜選択することができる。
-Cathode-
The cathode usually has a function as an electrode for injecting electrons into the organic light emitting layer constituting the organic compound layer described above, and there is no particular limitation on the shape, structure, size, etc. According to the use and purpose of the light emitting element, it can be appropriately selected from known electrode materials.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(例えば、Li、Na、K、Cs等)、アルカリ土類金属(例えばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、及びイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, magnesium. -Rare earth metals such as silver alloys, indium and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらのなかでも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。   Among these, the material constituting the cathode is preferably an alkali metal or an alkaline earth metal from the viewpoint of electron injection, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability. The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy). Etc.).

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの公報に記載の材料は、本発明においても適用することができる。   The cathode materials are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these publications can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などのなかから、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種単独又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。   There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out. For example, the above-described cathode is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the material of the cathode, one kind or two or more kinds thereof can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極の配置位置は、発光層に電界を印加し得るように設けられれば、特に制限はなく、発光層上の全部に形成されていてもよく、その一部に形成されていてもよい。   In the present invention, the arrangement position of the cathode is not particularly limited as long as it is provided so that an electric field can be applied to the light emitting layer, and may be formed on the entire light emitting layer or a part thereof. Also good.

また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層とみることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。   Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic compound layer with a thickness of 0.1 nm to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。   The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.

また、陰極は、透明であってもよいし、半透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、さらにITOやIZO等の透明な導電性材料を積層することにより形成することができる。   Further, the cathode may be transparent, translucent, or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 nm to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

<<基板>>
OLED基板において、基板としては、その形状、構造、大きさ及び材料等、目的に応じて適宜選択すればよく、一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。基板は、無色透明であっても、有色透明であってもよいが、発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。また、利便性の点で、可撓性を有するものであることが好ましい。OLED基板の材料としては、上記の光学部材の光透過性基板と同様のものであってもよい。OLED基板の配置の態様としては、OLED基板からの発光及び光の透過に影響を及ぼさない態様であれば、目的に応じて適宜選択すればよいが、OLED基板からの光の光路上に配置されないように、光反射電極からみて、有機EL層の反対側に配置されてもよい。
<< Board >>
In the OLED substrate, the shape, structure, size, material, and the like of the substrate may be appropriately selected according to the purpose. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members. The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the light emitting layer. Moreover, it is preferable that it is flexible from the point of convenience. The material of the OLED substrate may be the same as the light transmissive substrate of the optical member described above. As an aspect of the arrangement of the OLED substrate, as long as it does not affect the light emission and light transmission from the OLED substrate, it may be appropriately selected according to the purpose, but it is not arranged on the optical path of the light from the OLED substrate. Thus, it may be arranged on the opposite side of the organic EL layer as seen from the light reflecting electrode.

<駆動>
有機発光表示装置は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
<Drive>
The organic light emitting display device can obtain light emission by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. it can.

有機発光表示装置の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5,828,429号、同6,023,308号の各明細書、等に記載の駆動方法を適用することができる。   Regarding the driving method of the organic light emitting display device, JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234485, and JP-A-8-2441047, The driving methods described in Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6,023,308, etc. can be applied.

(有機発光表示装置の製造方法)
本発明による有機発光表示装置の製造方法は、基板上に光反射電極、有機EL層及び光透過電極を順次積層する工程と、前記基板とは異なる光透過性基板上に、凹部を有する光透過層を形成する工程と、前記光反射電極と前記凹部における該光反射電極に対向する表面との間で、赤色、緑色及び青色の少なくとも1つの色の光を出射する光学共振器が形成されるように、前記光透過層と前記光透過電極とを対向して固定する工程とを含み、その他必要に応じて他の工程を含む。
(Method for manufacturing organic light-emitting display device)
The method for manufacturing an organic light emitting display device according to the present invention includes a step of sequentially laminating a light reflecting electrode, an organic EL layer, and a light transmitting electrode on a substrate, and a light transmission having a recess on a light transmitting substrate different from the substrate. An optical resonator that emits light of at least one color of red, green, and blue is formed between the step of forming a layer and the light-reflecting electrode and the surface of the recess facing the light-reflecting electrode. As described above, a step of fixing the light transmission layer and the light transmission electrode to face each other is included, and other steps are included as necessary.

前記の基板上に光反射電極、有機EL層及び光透過電極を順次積層する工程としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、上記の<OLED基板>の項で言及した方法により行えばよい。前記の光透過性基板上に凹部を有する光透過層を形成する工程としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、上記の<光学部材>の項で言及した方法により行えばよい。前記の光透過層と光透過電極とを対向して固定する工程としては、特に制限はなく、目的に応じて適宜選択すればよく、例えば、上記の<接着部>の項で言及した方法により行えばよい。   There is no restriction | limiting in particular as a process of laminating | stacking a light reflection electrode, an organic electroluminescent layer, and a light transmissive electrode in order on the said board | substrate, What is necessary is just to select suitably according to the objective, For example, in said <OLED board | substrate> The method mentioned may be performed. The step of forming the light-transmitting layer having a recess on the light-transmitting substrate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the method mentioned in the above section <Optical member> It may be performed by. The step of fixing the light transmissive layer and the light transmissive electrode so as to face each other is not particularly limited and may be appropriately selected depending on the purpose. For example, by the method mentioned in the section of <Adhesion> above Just do it.

次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example.

(実施例1)
<光学部材の作成>
<<光学部材用モールドの作成>>
石英基板上に、スピンコート法により、感光性レジストを塗布し、これに、赤色、緑色、青色及び白色のいずれかの副画素からなる画素に対応するように、パターン露光し、フォトリソ工程によって、所定位置の石英基板面を開口させた。その後、ドライエッチングによって開口部をさらに所定量エッチングした。また、他の副画素、画素間に対応するようにレジストパターニングとドライエッチングとを繰り返した。緑色画素に相当する凹部を石英基板表面から98nm、青色画素に相当する凹部を石英基板表面から258nm、画素間を仕切る凸部に相当する箇所と白色画素に相当する位置を石英基板表面から278nmエッチングし、赤色画素に相当する凹部については、エッチングしなかった。このようにして、凹凸部の形成用に用いるモールドを得た。なお、得た凹凸部形成用モールドの凹部深さは、下記の通りである。
Example 1
<Creation of optical member>
<< Creation of mold for optical member >>
A photosensitive resist is applied onto a quartz substrate by a spin coating method, and pattern exposure is performed on the quartz substrate so as to correspond to a pixel composed of any one of red, green, blue, and white sub-pixels. A quartz substrate surface at a predetermined position was opened. Thereafter, the opening was further etched by a predetermined amount by dry etching. Further, resist patterning and dry etching were repeated so as to correspond to other subpixels and pixels. Etching the concave portion corresponding to the green pixel from the quartz substrate surface to 98 nm, the concave portion corresponding to the blue pixel from the quartz substrate surface to 258 nm, the portion corresponding to the convex portion separating the pixels and the position corresponding to the white pixel from the quartz substrate surface by etching at 278 nm. However, the recess corresponding to the red pixel was not etched. Thus, the mold used for formation of an uneven part was obtained. In addition, the recessed part depth of the obtained mold for uneven | corrugated | grooved part formation is as follows.

[光学部材用モールドの凹部深さ]
赤色相当部:深さ0nm
緑色相当部:深さ98nm
青色相当部:深さ258nm
白色相当部及び画素間:深さ278nm
[Recess depth of mold for optical member]
Red equivalent part: depth 0nm
Green equivalent part: depth 98nm
Blue equivalent part: Depth 258nm
White equivalent part and between pixels: depth 278 nm

<<光学部材>>
<<<カラーフィルタ層を有する光透過性基板>>>
ブラックカラーレジストCK−8400(富士フイルムエレクトロニクスマテリアルズ(株)製)を カラーフィルタ作製用のガラス基板の上にスピンコーターを用いて乾燥膜厚が1.0μmとなるように塗布し、120℃で2分間乾燥させて黒色の均一な塗膜を形成した。
<< Optical member >>
<<< Light-transmissive substrate having a color filter layer >>>
Black color resist CK-8400 (manufactured by FUJIFILM Electronics Materials Co., Ltd.) was applied onto a glass substrate for color filter production using a spin coater so that the dry film thickness was 1.0 μm, and at 120 ° C. It was dried for 2 minutes to form a black uniform coating film.

次に、露光装置を使用して、塗膜に365nmの波長で100μmのマスクを通して300mJ/cmの露光量で照射した。照射後、10%CD−1(富士フイルム エレクトロニクスマテリアルズ(株)製)現像液を使用して、26℃で90秒間現像した。引き続き、流水で20秒間リンスした後、エアナイフで乾燥させ、220℃で60分間熱処理を行なってブラックマトリックスのパターン像を形成した。 Next, using an exposure apparatus, the coating film was irradiated with an exposure dose of 300 mJ / cm 2 through a 100 μm mask at a wavelength of 365 nm. After irradiation, the film was developed at 26 ° C. for 90 seconds using a 10% CD-1 (Fuji Film Electronics Materials Co., Ltd.) developer. Subsequently, the substrate was rinsed with running water for 20 seconds, dried with an air knife, and heat-treated at 220 ° C. for 60 minutes to form a black matrix pattern image.

次に、下記3色の硬化性組成物を、サンドミルで一昼夜分散した。なお、緑色、赤色及び青色のそれぞれで得た分散液を、それぞれ、分散液(A−1)、(A−2)及び(A−3)とも称する。   Next, the following three color curable compositions were dispersed with a sand mill all day and night. The dispersions obtained in green, red, and blue are also referred to as dispersions (A-1), (A-2), and (A-3), respectively.

[緑色:分散液(A−1)]
ベンジルメタクリレート/メタクリル酸共重合体 80質量部
(重量平均分子量30,000、酸価120)
プロピレングリコールモノメチルエーテルアセテート 500質量部
銅フタロシアニン顔料 33質量部
C.I.ピグメントイエロー185 67質量部
[Green: Dispersion (A-1)]
80 parts by mass of benzyl methacrylate / methacrylic acid copolymer (weight average molecular weight 30,000, acid value 120)
Propylene glycol monomethyl ether acetate 500 parts by weight Copper phthalocyanine pigment 33 parts by weight C.I. I. Pigment Yellow 185 67 parts by mass

[赤色:分散液(A−2)]
ベンジルメタクリレート/メタクリル酸共重合体 80質量部
(重量平均分子量30,000、酸価120)
プロピレングリコールモノメチルエーテルアセテート 500質量部
ピグメントレッド254 50質量部
ピグメントレッドPR177 50質量部
[Red: Dispersion (A-2)]
80 parts by mass of benzyl methacrylate / methacrylic acid copolymer (weight average molecular weight 30,000, acid value 120)
Propylene glycol monomethyl ether acetate 500 parts by mass Pigment Red 254 50 parts by mass Pigment Red PR177 50 parts by mass

[青色:分散液(A−3)]
ベンジルメタクリレート/メタクリル酸共重合体 80質量部
(重量平均分子量30,000、酸価120)
プロピレングリコールモノメチルエーテルアセテート 500質量部
ピグメントブルー15:6 95質量部
ピグメントバイオレット23 5質量部
[Blue: Dispersion (A-3)]
80 parts by mass of benzyl methacrylate / methacrylic acid copolymer (weight average molecular weight 30,000, acid value 120)
Propylene glycol monomethyl ether acetate 500 parts by mass Pigment Blue 15: 6 95 parts by mass Pigment Violet 23 5 parts by mass

次いで、上記の各色用の硬化性組成物(即ち、分散液(A−1)、(A−2)及び(A−3))60質量部に、下記の成分を添加して、各色用の組成物を得た。   Next, the following components are added to 60 parts by mass of the curable composition for each color (that is, dispersions (A-1), (A-2) and (A-3)), and A composition was obtained.

ジペンタエリスリトールヘキサアクリレ−ト(DPHA) 80質量部
4−[o−ブロモ−p−N,N−ジ(エトキシカルボニル)アミノフェニル]2、6−ジ(トリクロロメチル)−S−トリアジン 5質量部
7−[{4−クロロ−6−(ジエチルアミノ)−S−トリアジン−2−イル}アミノ]−3−フェニルクマリン 2質量部
ハイドロキノンモノメチルエーテル 0.01質量部
プロピレングリコールモノメチルエーテルアセテート 500質量部
Dipentaerythritol hexaacrylate (DPHA) 80 parts by mass 4- [o-bromo-pN, N-di (ethoxycarbonyl) aminophenyl] 2,6-di (trichloromethyl) -S-triazine 5 parts by mass 7-[{4-Chloro-6- (diethylamino) -S-triazin-2-yl} amino] -3-phenylcoumarin 2 parts by mass Hydroquinone monomethyl ether 0.01 parts by mass Propylene glycol monomethyl ether acetate 500 parts by mass

上記の通り添加して得た各色用の組成物を均一に混合した後、孔径5μmのフィルターで濾過し、本発明の3色の硬化性組成物を得た。このうち緑色の硬化性組成物をブラックマトリックスを作成したガラス基板の上にスピンコーターを用いて乾燥膜厚が1.0μmとなるように塗布し、120℃で2分間乾燥させて緑色の均一な塗膜を形成した。   The composition for each color obtained by adding as described above was uniformly mixed and then filtered through a filter having a pore diameter of 5 μm to obtain the three-color curable composition of the present invention. Among these, the green curable composition was applied on a glass substrate on which a black matrix was formed using a spin coater so that the dry film thickness was 1.0 μm, and dried at 120 ° C. for 2 minutes to obtain a uniform green color. A coating film was formed.

次に、露光装置を使用して、塗膜に365nmの波長で100μmのマスクを通して300mJ/cmの露光量で照射した。照射後、10%CD−1(富士フイルム エレクトロニクスマテリアルズ(株)製)現像液を使用して、26℃で60秒間現像した。引き続き、流水で20秒間リンスした後、エアナイフで乾燥させ、220℃で60分間熱処理を行なって緑色のパターン像(緑色画素)を形成した。この操作を赤色の硬化性組成物と青色の硬化性組成物についても同様に、同一のガラス基板に対して行い、順次赤色のパターン像(赤色画素)及び青色のパターン像(青色画素)を形成した。このカラーフィルター基板の光学特性を図8に示す。 Next, using an exposure apparatus, the coating film was irradiated with an exposure dose of 300 mJ / cm 2 through a 100 μm mask at a wavelength of 365 nm. After irradiation, development was performed at 26 ° C. for 60 seconds using a 10% CD-1 (Fuji Film Electronics Materials Co., Ltd.) developer. Subsequently, after rinsing with running water for 20 seconds, it was dried with an air knife, and heat-treated at 220 ° C. for 60 minutes to form a green pattern image (green pixel). This operation is similarly performed on the same glass substrate for the red curable composition and the blue curable composition, and a red pattern image (red pixel) and a blue pattern image (blue pixel) are sequentially formed. did. The optical characteristics of this color filter substrate are shown in FIG.

<<<光透過層>>>
次に、このようにして形成したカラーフィルタ層を有する光透過性基板上に、下記の成分を、スピンコート法により塗布し、光透過層(膜厚1,000nm)を形成した。
<<< Light Transmission Layer >>>
Next, on the light transmissive substrate having the color filter layer thus formed, the following components were applied by spin coating to form a light transmissive layer (thickness: 1,000 nm).

[光透過層]
PAK−02(東洋合成社製)を用いて作製した。
[Light transmission layer]
It was prepared using PAK-02 (Toyo Gosei Co., Ltd.).

上記の通りに得た光透過層上に、上記の通り得た凹凸部形成用モールドを用いて、転写法により、凹凸部を形成した。モールドを光透過層に押圧し、石英基板からなるモールド側からUV照射して、光透過層の材料を硬化させ、同層表面に凹部を形成した。   On the light transmission layer obtained as described above, an uneven portion was formed by a transfer method using the uneven portion forming mold obtained as described above. The mold was pressed against the light transmission layer, and UV irradiation was performed from the mold side made of a quartz substrate to cure the material of the light transmission layer, thereby forming a recess on the surface of the same layer.

このようにして得た光透過層の凹凸面上に、Agを真空蒸着法により堆積させて、光半透過反射層(膜厚10nm)を形成し、光学部材を得た。   On the uneven surface of the light transmissive layer thus obtained, Ag was deposited by a vacuum vapor deposition method to form a light semi-transmissive reflective layer (film thickness 10 nm) to obtain an optical member.

[光半透過反射層の形成条件]
一般的なAgの真空蒸着法で、必要範囲に成膜されるようにメタルマスクによって選択的に成膜する。特に、白色の副画素は光源のスペクトルを出射するため、光学共振器構造とならないように光半透過反射層を形成しない。また、図1及び図3のように光学部材の光透過層に形成した凸部を後述するカップリング剤で結合する構成の場合、接着面である凸部頂面に有機材料を残存させるため、当該箇所も光透過層を露出させて光半透過反射層を形成しない。
[Conditions for forming a light transflective layer]
A general Ag vacuum deposition method is used to selectively form a film with a metal mask so that the film is formed in a necessary range. In particular, since the white sub-pixel emits the spectrum of the light source, a light transflective layer is not formed so as not to have an optical resonator structure. In addition, in the case of a configuration in which the convex portions formed on the light transmission layer of the optical member as shown in FIGS. 1 and 3 are combined with a coupling agent described later, the organic material remains on the convex portion top surface, which is an adhesive surface. The light-transmitting layer is also exposed at the location, and the light transflective layer is not formed.

光学部材の凸部における光透過層の表面と凹部における光半透過反射層の表面との段差が光学共振長の一部として作用する。この段差量を凹部深さ寸法として以下に示す。   A step between the surface of the light transmission layer in the convex portion of the optical member and the surface of the light semi-transmissive reflection layer in the concave portion acts as a part of the optical resonance length. This step amount is shown below as a recess depth dimension.

[光学部材凹部]
赤色相当部:深さ268nm
緑色相当部:深さ170nm
青色相当部:深さ 10nm
白色相当部及び画素間:深さ 0nm
[Optical member recess]
Red part: depth 268nm
Green equivalent part: depth 170nm
Blue equivalent part: Depth 10nm
White equivalent part and between pixels: Depth 0 nm

<OLED基板の作成>
Alからなる反射電極が形成された基板上に、順次、有機層の真空蒸着成膜及び透明電極のイオンプレーティング成膜を行うことによって、OLED基板を作成した。このOLED基板の発光特性を図9に示す。
<Creation of OLED substrate>
On the substrate on which the reflective electrode made of Al was formed, an OLED substrate was prepared by sequentially performing vacuum deposition film formation of an organic layer and ion plating film formation of a transparent electrode. The light emission characteristics of this OLED substrate are shown in FIG.

[電子注入層]
材料: LiF
蒸着速度: 0.1Å/sec
成膜時間: 100sec
膜厚: 10Å=1nm
[Electron injection layer]
Material: LiF
Deposition rate: 0.1 liter / sec
Deposition time: 100 sec
Film thickness: 10 mm = 1 nm

[電子輸送層]
材料: BAlq
蒸着速度: 1Å/sec
成膜時間: 100sec
膜厚: 100Å=10nm
[Electron transport layer]
Material: BAlq
Deposition rate: 1cm / sec
Deposition time: 100 sec
Film thickness: 100 mm = 10 nm

[発光層(青色)]
材料: mCP(ホスト)と発光材(上記D−24)(ゲスト)の共蒸着
蒸着速度: mCP=0.9Å/sec、発光材B=0.1Å/sec
成膜時間: 100sec
膜厚: 100Å=10nm
[Light emitting layer (blue)]
Material: Co-evaporation of mCP (host) and luminescent material (D-24) (guest) Deposition rate: mCP = 0.9 Å / sec, luminescent material B = 0.1 Å / sec
Deposition time: 100 sec
Film thickness: 100 mm = 10 nm

[発光層(緑色)]
材料: mCP(ホスト)と発光材(上記D−22)(ゲスト)の共蒸着
蒸着速度: mCP=0.9Å/sec、発光材G=0.1Å/sec
成膜時間: 150sec
膜厚: 150Å=15nm
[Light emitting layer (green)]
Material: Co-evaporation of mCP (host) and luminescent material (above D-22) (guest) Deposition rate: mCP = 0.9 Å / sec, luminescent material G = 0.1 Å / sec
Deposition time: 150 sec
Film thickness: 150mm = 15nm

[発光層(赤色)]
材料: BAlq(ホスト)と発光材(上記D−7)(ゲスト)の共蒸着
蒸着速度: BAlq=0.9Å/sec、発光材R=0.1Å/sec
成膜時間: 200sec
膜厚: 200Å=20nm
[Light emitting layer (red)]
Material: Co-evaporation of BAlq (host) and luminescent material (above D-7) (guest) Deposition rate: BAlq = 0.9 Å / sec, luminescent material R = 0.1 Å / sec
Deposition time: 200 sec
Film thickness: 200mm = 20nm

[正孔輸送層]
材料: a−NPD
蒸着速度: 1Å/sec
成膜時間: 100sec
膜厚: 100Å=10nm
[Hole transport layer]
Material: a-NPD
Deposition rate: 1cm / sec
Deposition time: 100 sec
Film thickness: 100 mm = 10 nm

[正孔注入層]
材料: 2−TNATA(ホスト)とF4−TCNQ(ゲスト)の共蒸着
蒸着速度: 2−TNATA=2Å/sec、F4−TCNQ=0.1Å/sec
成膜時間: 48sec
膜厚: 100Å=10nm
[Hole injection layer]
Material: Co-evaporation of 2-TNATA (host) and F4-TCNQ (guest) Deposition rate: 2-TNATA = 2Å / sec, F4-TCNQ = 0.1Å / sec
Deposition time: 48 sec
Film thickness: 100 mm = 10 nm

[透明電極層]
材料: ITO
蒸着速度: 50Å/sec
成膜時間: 200sec
膜厚: 1,000Å=100nm
[Transparent electrode layer]
Material: ITO
Deposition rate: 50cm / sec
Deposition time: 200 sec
Film thickness: 1,000 mm = 100 nm

<光学部材とOLED基板との接着>
[化合物Aの合成]
光学部材とOLED基板とを接着するための化合物Aを、下記の通り合成した。なお、この合成は、以下の2つのステップにより行った。
<Adhesion between optical member and OLED substrate>
[Synthesis of Compound A]
Compound A for bonding the optical member and the OLED substrate was synthesized as follows. This synthesis was performed by the following two steps.

1.ステップ1(化合物aの合成)
DMAc50gとTHF50gの混合溶媒に1−ヒドロキシシクロヘキシルフェニルケトン24.5g(0.12モル)を溶解し、氷浴下でNaH(60% in oil) 7.2g(0.18モル)を徐々に加えた。そこに、11−ブロモ−1−ウンデセン(95%)44.2g(0.18モル)を滴下し、室温で1時間反応を行った。反応溶液を氷水中に投入し、酢酸エチルで抽出し、黄色溶液状の化合物aを含む混合物を得た。この混合物37gをアセトニトリル370mLに溶かし、水7.4gを加えた。p−トルエンスルホン酸一水和物1.85gを加え、室温で20分間撹拌した。酢酸エチルで有機相を抽出し、溶媒を留去した。カラムクロマトグラフィー(充填剤:ワコーゲルC−200、展開溶媒:酢酸エチル/ヘキサン=1/80)で化合物aを単離した。この合成スキームは、下記の通りである。
1. Step 1 (Synthesis of Compound a)
24.5 g (0.12 mol) of 1-hydroxycyclohexyl phenyl ketone is dissolved in a mixed solvent of DMAc 50 g and THF 50 g, and 7.2 g (0.18 mol) of NaH (60% in oil) is gradually added in an ice bath. It was. Thereto, 44.2 g (0.18 mol) of 11-bromo-1-undecene (95%) was added dropwise and reacted at room temperature for 1 hour. The reaction solution was poured into ice water and extracted with ethyl acetate to obtain a mixture containing compound a in the form of a yellow solution. 37 g of this mixture was dissolved in 370 mL of acetonitrile, and 7.4 g of water was added. 1.85 g of p-toluenesulfonic acid monohydrate was added and stirred at room temperature for 20 minutes. The organic phase was extracted with ethyl acetate and the solvent was distilled off. Compound a was isolated by column chromatography (filler: Wakogel C-200, developing solvent: ethyl acetate / hexane = 1/80). This synthesis scheme is as follows.

H NMR(300MHz CDCl
δ=1.2−1.8(mb,24H),2.0(q,2H),3.2(t,J=6.6,2H),4.9−5.0(m,2H)5.8(ddt,J=24.4,J=10.5,J=6.6,1H.),7.4(t,J=7.4,2H),7.5(t,J=7.4,1H),8.3(d,1H)
1 H NMR (300 MHz CDCl 3 )
δ = 1.2-1.8 (mb, 24H), 2.0 (q, 2H), 3.2 (t, J = 6.6, 2H), 4.9-5.0 (m, 2H) 5.8 (ddt, J = 24.4, J = 10.5, J = 6.6, 1H.), 7.4 (t, J = 7.4, 2H), 7.5 (t, J = 7.4, 1H), 8.3 (d, 1H)

2.ステップ2(化合物aのハイドロシリル化による化合物Aの合成)
5.0gの化合物a(0.014モル)にSpeir catalyst(HPtCl・6HO/2−PrOH、0.1モル/L)を2滴加え、氷浴下でトリクロロシラン2.8g(0.021モル)を滴下して撹拌した。さらに1時間後にトリクロロシラン1.6g(0.012モル)を滴下してから室温に戻した。3時間後に反応が終了した。反応終了後、未反応のトリクロロシランを減圧留去し、化合物Aを得た。
合成スキームを以下に示す。
2. Step 2 (Synthesis of Compound A by Hydrosilylation of Compound a)
Compounds of 5.0 g a (0.014 mol) in Speir catalyst (H 2 PtCl 6 · 6H 2 O / 2-PrOH, 0.1 mol / L) 2 drops of trichlorosilane 2.8g in an ice bath (0.021 mol) was added dropwise and stirred. After 1 hour, 1.6 g (0.012 mol) of trichlorosilane was added dropwise, and the temperature was returned to room temperature. The reaction was complete after 3 hours. After completion of the reaction, unreacted trichlorosilane was distilled off under reduced pressure to obtain Compound A.
A synthesis scheme is shown below.

H NMR(300MHz CDCl
δ=1.2−1.8(m,30H),3.2(t,J=6.3,2H),7.3−7.7(m,3H),8.3(d,2H)
1 H NMR (300 MHz CDCl 3 )
δ = 1.2−1.8 (m, 30H), 3.2 (t, J = 6.3, 2H), 7.3-7.7 (m, 3H), 8.3 (d, 2H) )

(OLED基板への塗布工程)
12.5質量%の化合物Aの脱水トルエン溶液をOLED基板の透明電極層表面に塗布し、室温乾燥(風乾)した。
(Coating process to OLED substrate)
A dehydrated toluene solution of 12.5% by mass of Compound A was applied to the surface of the transparent electrode layer of the OLED substrate and dried at room temperature (air-dried).

(光学部材との接着)
下記の1.又は2.の手法で接着するが、特に、接着部へUV照射できない(カラーフィルタで陰になる等)場合は2.の手法で接着する。カラーフィルタ層内のブラックマトリックスを構成しない場合は、1.の手法により、光学部材の光透過性基板側から同基板及び光透過層を通してUV照射し、接着する。
(Adhesion with optical members)
The following 1. Or 2. In particular, when UV irradiation cannot be applied to the bonded part (shadowed by a color filter, etc.) Glue by the method of. When the black matrix in the color filter layer is not configured, By this method, UV irradiation is performed from the light-transmitting substrate side of the optical member through the substrate and the light-transmitting layer and bonded.

1.化合物Aを塗布したOLED基板の透明電極面(無機材料面)と光学部材の光透過層の凸部頂面(有機材料面)を密着させてUV露光し、結合させる。
2.光学部材の光透過層の凸部頂面(有機材料面)に0.1%AIBN(アゾビスブチロニトリル)メタノール溶液を塗布し、化合物Aを塗布したOLED基板の透明電極面(無機材料面)を密着させ、80℃で12時間反応させて、結合させる。
1. The transparent electrode surface (inorganic material surface) of the OLED substrate coated with Compound A and the convex top surface (organic material surface) of the light transmission layer of the optical member are brought into close contact with each other, UV-exposed and bonded.
2. Transparent electrode surface (inorganic material surface) of OLED substrate coated with 0.1% AIBN (azobisbutyronitrile) methanol solution on the top surface (organic material surface) of the light transmission layer of the optical member and compound A ), And reacted at 80 ° C. for 12 hours to bond.

(実施例2)
実施例1において、カップリング剤を用いて光学部材とOLED基板とを接着したことに代えて、下記の条件で行ったこと以外は、実施例1と同様に行って、有機発光表示装置を得た。
(Example 2)
In Example 1, it replaced with having bonded the optical member and the OLED board | substrate using the coupling agent, and it carried out similarly to Example 1 except having performed on the following conditions, and obtained the organic light emitting display apparatus. It was.

光学部材の光透過層に凹部を形成するのに、下記の寸法の凹部深さを有する光学部材用モールドを用い、下記の寸法の凹部深さを有する光学部材を得た。   In order to form the recesses in the light transmission layer of the optical member, an optical member having the recess dimensions of the following dimensions was obtained using a mold for optical members having the recess dimensions of the following dimensions.

[光学部材用モールド凹部]
赤色相当部:深さ0nm
緑色相当部:深さ97nm
青色相当部:深さ293nm
白色相当部及び画素間:深さ313nm
[Mold recess for optical member]
Red equivalent part: depth 0nm
Green equivalent part: depth 97nm
Blue equivalent part: Depth 293nm
White equivalent part and between pixels: Depth 313 nm

[光学部材の凹部深さ]
赤色相当部:深さ303nm
緑色相当部:深さ206nm
青色相当部:深さ 10nm
白色相当部及び画素間:深さ 0nm
[Recess depth of optical member]
Red equivalent part: Depth 303nm
Green equivalent part: depth 206nm
Blue equivalent part: Depth 10nm
White equivalent part and between pixels: Depth 0 nm

得た光学部材の凹部に、インクジェット法に従って、SiN粒子を分散してOLED基板の透明電極層と屈折率を同等としたエポキシ系接着剤を充填した。充填の条件としては、形成された凹部の底部と、形成された凸部で規定される光学部材の表面とで規定される容積に前記接着剤が充填されるように行った。   An epoxy adhesive having a refractive index equivalent to that of the transparent electrode layer of the OLED substrate was dispersed in the recesses of the obtained optical member in accordance with an ink jet method. The filling conditions were such that the adhesive was filled into a volume defined by the bottom of the formed recess and the surface of the optical member defined by the formed protrusion.

(比較例)
OLED基板に、光透過層を形成しない光学部材、即ち単純なカラーフィルタ基板を重ねて一体化して有機発光表示装置を得た。OLED基板及びカラーフィルタは共に、前記と同様の構成及び特性を有する。
(Comparative example)
An organic light emitting display device was obtained by superimposing an optical member that does not form a light transmission layer on the OLED substrate, that is, a simple color filter substrate. Both the OLED substrate and the color filter have the same configuration and characteristics as described above.

<評価>
実施例1及び2並びに比較例で得た有機発光表示装置を用いて、各画素出射光の正面強度スペクトルを、下記の条件で測定した。その結果を、図5、図6及び図7に示す。ここで、白色(W)の最大強度(ピーク強度)を1として正面強度を正規化して比較する。
<Evaluation>
Using the organic light emitting display devices obtained in Examples 1 and 2 and the comparative example, the front intensity spectrum of the light emitted from each pixel was measured under the following conditions. The results are shown in FIG. 5, FIG. 6 and FIG. Here, the maximum intensity (peak intensity) of white (W) is set to 1, and the front intensity is normalized and compared.

比較例では、光源の白色光をカラーフィルタで波長選択しているが、青色(B)、緑色(G)、赤色(R)の各色の最大透過率は1以下のため、各色の正面強度は1以下であり、その波長分布はカラーフィルタの特性に従って広帯域になっている。即ち、強度が弱く、色味が悪い出力となっている。   In the comparative example, the wavelength of white light from the light source is selected by a color filter, but the maximum transmittance of each color of blue (B), green (G), and red (R) is 1 or less, so the front intensity of each color is 1 or less, and the wavelength distribution is a wide band according to the characteristics of the color filter. That is, the output is weak and the color is poor.

これに対して各実施例では、光学共振器の構造によって、青色(B)、緑色(G)、赤色(R)を所定波長で強め、狭帯域化している。即ち、強度が強く、色味が良い出力となっており、本発明による光学部材を用いることによって、表示特性を高めた有機発光表示装置が得られた。   On the other hand, in each embodiment, blue (B), green (G), and red (R) are strengthened at a predetermined wavelength to narrow the band by the structure of the optical resonator. In other words, the output is strong and has a good color, and an organic light-emitting display device with improved display characteristics can be obtained by using the optical member according to the present invention.

本発明による有機発光表示装置は、高精彩なフルカラー表示が可能であるため、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、又は一般照明を含む幅広い分野に好適に利用可能である。   Since the organic light emitting display device according to the present invention is capable of high-definition full-color display, it can be used in a wide range of fields including mobile phone displays, personal digital assistants (PDAs), computer displays, automobile information displays, TV monitors, or general lighting. It can be suitably used.

10 光学部材
12 光透過層
14 凸部
15 凹部
16 光半透過反射層
18 カラーフィルタ層
18r 赤色フィルタ部
18g 緑色フィルタ部
18b 青色フィルタ部
18w 白色フィルタ部
19 光透過性基板
20 OLED基板
22 基板
24 光反射電極
26 有機EL層
28 光透過電極
30 接着部
32 画素回路
34 コンタクトホール
36 絶縁層
100 有機発光表示装置
DESCRIPTION OF SYMBOLS 10 Optical member 12 Light transmissive layer 14 Convex part 15 Concave 16 Light semi-transmissive reflective layer 18 Color filter layer 18r Red filter part 18g Green filter part 18b Blue filter part 18w White filter part 19 Light transmissive substrate 20 OLED substrate 22 Substrate 24 Light Reflective electrode 26 Organic EL layer 28 Light transmissive electrode 30 Adhesion part 32 Pixel circuit 34 Contact hole 36 Insulating layer 100 Organic light emitting display device

Claims (13)

基板と、光反射電極と、有機EL層と、光透過電極と、上面に凹部と凸部を有する光透過層と、をこの順に有する有機発光表示装置であって、
前記光透過層の前記凹部の屈折率が前記光透過電極の屈折率と等しくて、
前記光透過層の前記凸部と前記光透過電極が対向して固定されており、
前記光反射電極と前記凹部における該光反射電極に対向する表面との間で、光学共振器が形成され、
前記光学共振器を経て前記光透過層から透過される光が、赤色、緑色及び青色の少なくとも1つの色の光であることを特徴とする有機発光表示装置。
An organic light-emitting display device having a substrate, a light reflection electrode, an organic EL layer, a light transmission electrode, and a light transmission layer having a concave portion and a convex portion on the upper surface in this order,
The refractive index of the concave portion of the light transmission layer is equal to the refractive index of the light transmission electrode,
The convex portion of the light transmission layer and the light transmission electrode are fixed to face each other,
An optical resonator is formed between the light reflecting electrode and the surface of the recess facing the light reflecting electrode,
An organic light emitting display device, wherein light transmitted from the light transmission layer through the optical resonator is light of at least one of red, green, and blue.
光透過層が一部材で形成されている請求項1に記載の有機発光表示装置。   The organic light emitting display device according to claim 1, wherein the light transmission layer is formed of a single member. 一部材の材料が、光硬化性樹脂、熱可塑性樹脂又は熱硬化性樹脂である請求項2に記載の有機発光表示装置。   The organic light emitting display device according to claim 2, wherein the material of one member is a photocurable resin, a thermoplastic resin, or a thermosetting resin. 光透過層の凹部形成面に、光半透過反射層を有する請求項1から3のいずれかに記載の有機発光表示装置。   The organic light-emitting display device according to any one of claims 1 to 3, further comprising a light semi-transmissive reflective layer on a concave surface of the light transmissive layer. 光透過層の凹部に接着剤を充填してなる請求項4に記載の有機発光表示装置。The organic light-emitting display device according to claim 4, wherein the concave portion of the light transmission layer is filled with an adhesive. 光透過層の複数の凹部の深さが、赤色、緑色及び青色の少なくとも1つの光を出射するように、異なっている請求項1から5のいずれかに記載の有機発光表示装置。6. The organic light emitting display device according to claim 1, wherein the depth of the plurality of concave portions of the light transmission layer is different so that at least one light of red, green and blue is emitted. 光反射電極が、同一平面上に存在する請求項1から6のいずれかに記載の有機発光表示装置。The organic light emitting display device according to claim 1, wherein the light reflecting electrode is present on the same plane. 有機EL層が、白色発光する請求項1から7のいずれかに記載の有機発光表示装置。The organic light emitting display device according to claim 1, wherein the organic EL layer emits white light. 光透過層の光出射側にカラーフィルタ層をさらに有する請求項1から8のいずれかに記載の有機発光表示装置。The organic light emitting display device according to claim 1, further comprising a color filter layer on a light emitting side of the light transmission layer. 基板上に光反射電極、有機EL層及び光透過電極を順次積層する工程と、A step of sequentially laminating a light reflecting electrode, an organic EL layer and a light transmitting electrode on a substrate;
前記基板とは異なる光透過性基板上に、上面に凹部と凸部を有する光透過層を形成する工程と、Forming a light transmissive layer having a concave portion and a convex portion on an upper surface on a light transmissive substrate different from the substrate;
前記光反射電極と前記凹部における該光反射電極に対向する表面との間で、赤色、緑色及び青色の少なくとも1つの色の光を出射する光学共振器が形成されるように、前記光透過層の前記凸部と前記光透過電極とを対向して固定する工程と、The light transmission layer is formed such that an optical resonator that emits light of at least one of red, green, and blue is formed between the light reflection electrode and a surface of the recess facing the light reflection electrode. A step of fixing the convex portion and the light transmitting electrode opposite to each other,
を含むことを特徴とする有機発光表示装置の製造方法。A method for manufacturing an organic light emitting display device, comprising:
前記光透過層の凹部を形成する工程は、型転写により行われる請求項10に記載の有機発光表示装置の製造方法。The method of manufacturing an organic light emitting display device according to claim 10, wherein the step of forming the concave portion of the light transmission layer is performed by mold transfer. 前記の光透過層と光透過電極とを対向して固定する工程は、カップリング剤を用いて行われる請求項10から11のいずれかに記載の有機発光表示装置の製造方法。The method of manufacturing an organic light emitting display device according to claim 10, wherein the step of fixing the light transmission layer and the light transmission electrode so as to face each other is performed using a coupling agent. 前記の光透過層と光透過電極とを対向して固定する工程は、光透過層の凹部に接着剤を充填して行われる請求項10から12のいずれかに記載の有機発光表示装置の製造方法。The manufacturing of the organic light emitting display device according to any one of claims 10 to 12, wherein the step of fixing the light transmitting layer and the light transmitting electrode so as to face each other is performed by filling a concave portion of the light transmitting layer with an adhesive. Method.
JP2009222898A 2009-09-28 2009-09-28 Organic light emitting display device and method for manufacturing organic light emitting display device Active JP5427527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222898A JP5427527B2 (en) 2009-09-28 2009-09-28 Organic light emitting display device and method for manufacturing organic light emitting display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222898A JP5427527B2 (en) 2009-09-28 2009-09-28 Organic light emitting display device and method for manufacturing organic light emitting display device

Publications (2)

Publication Number Publication Date
JP2011071041A JP2011071041A (en) 2011-04-07
JP5427527B2 true JP5427527B2 (en) 2014-02-26

Family

ID=44016120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222898A Active JP5427527B2 (en) 2009-09-28 2009-09-28 Organic light emitting display device and method for manufacturing organic light emitting display device

Country Status (1)

Country Link
JP (1) JP5427527B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166511A1 (en) * 2015-07-14 2018-06-14 Sharp Kabushiki Kaisha Display device and method for manufacturing display device
JP2017147059A (en) * 2016-02-15 2017-08-24 セイコーエプソン株式会社 Electro-optic device and electronic device
KR20210006409A (en) * 2018-05-11 2021-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device, display module, and electronic device
KR20210153171A (en) * 2020-06-09 2021-12-17 삼성디스플레이 주식회사 Display apparatus and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420399B2 (en) * 1995-07-28 2003-06-23 キヤノン株式会社 Light emitting element
JP4127114B2 (en) * 2003-05-09 2008-07-30 株式会社豊田自動織機 New display element
JP3898163B2 (en) * 2003-07-02 2007-03-28 株式会社日立製作所 Organic light emitting display
JP4742639B2 (en) * 2005-03-25 2011-08-10 セイコーエプソン株式会社 Light emitting device
JP2008210665A (en) * 2007-02-27 2008-09-11 Canon Inc Organic light-emitting element, and display device using the same

Also Published As

Publication number Publication date
JP2011071041A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5427528B2 (en) Optical member
JP5288967B2 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY HAVING THE LIGHT EMITTING ELEMENT
JP4833106B2 (en) Organic light emitting device
WO2010058716A1 (en) Organic electroluminescent element
US20110062476A1 (en) Light-extraction member, organic el element, and method for producing the organic el element
JP5288966B2 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY HAVING THE LIGHT EMITTING ELEMENT
JP2010182449A (en) Organic electroluminescent display device
JP2009016579A (en) Organic electroluminescent element and manufacturing method
JP2011060549A (en) Optical member for organic el device, and organic el device
JP5586254B2 (en) Organic electroluminescent device, organic electroluminescent device manufacturing method, display device and lighting device
US20100246191A1 (en) Optical sheet and method for producing the same
JP5256171B2 (en) Organic electroluminescence device
JP5349921B2 (en) Organic electroluminescence device
JP5473506B2 (en) Color filter and light emitting display element
JP5427527B2 (en) Organic light emitting display device and method for manufacturing organic light emitting display device
JP2011077024A (en) Organic electroluminescent element, manufacturing method of organic electroluminescent element, display device, and illumination device
JP5898398B2 (en) Method for manufacturing organic electroluminescent light emitting device
JP2008108709A (en) Organic electroluminescent element
JP2008311076A (en) Organic electroluminescent element and manufacturing method therefor
JP2010078813A (en) Light emitting element, display with the light emitting element, and manufacturing method thereof
JP2011060552A (en) Organic el element
JP2010102918A (en) Light-emitting element, and display equipped with light-emitting element
JP2011054747A (en) Organic electroluminescent element, method for manufacturing the same, display device and illumination apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130925

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250