JP5426068B2 - Method for operating internal combustion engine and internal combustion engine - Google Patents

Method for operating internal combustion engine and internal combustion engine Download PDF

Info

Publication number
JP5426068B2
JP5426068B2 JP2006183151A JP2006183151A JP5426068B2 JP 5426068 B2 JP5426068 B2 JP 5426068B2 JP 2006183151 A JP2006183151 A JP 2006183151A JP 2006183151 A JP2006183151 A JP 2006183151A JP 5426068 B2 JP5426068 B2 JP 5426068B2
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
combustion engine
correction
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006183151A
Other languages
Japanese (ja)
Other versions
JP2007016783A (en
Inventor
フスリーク ファビアン
ミュラー ハラルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel GmbH
Original Assignee
MAN B&W Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37575365&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5426068(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MAN B&W Diesel GmbH filed Critical MAN B&W Diesel GmbH
Publication of JP2007016783A publication Critical patent/JP2007016783A/en
Application granted granted Critical
Publication of JP5426068B2 publication Critical patent/JP5426068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、請求項1の前文に記載の内燃機関の運転方法に関する。また本発明は、請求項11の前文に記載の内燃機関にも関する。   The invention relates to a method for operating an internal combustion engine according to the preamble of claim 1. The invention also relates to an internal combustion engine according to the preamble of claim 11.

実際に公知のコモンレール式内燃機関は、各シリンダに対し少なくとも1つの燃料噴射器を備え、各燃料噴射器は噴射ノズルと電磁弁を有している。電磁弁は未給電ないし無電流状態では閉じられており、噴射ノズルを経て内燃機関の対応したシリンダに燃料は送られない。これに対し電磁弁が給電されると、該電磁弁が開いて対応したシリンダへの燃料噴射が始まる。電磁弁の開時間は、内燃機関の燃料圧力と共に、内燃機関のシリンダへの燃料噴射量を決定し、コモンレール式内燃機関の場合、燃料圧力は全シリンダ、それ故全燃料噴射器に対し同一である。即ちコモンレール式内燃機関の場合、燃料圧力はポンプで発生され、共通の圧力分配器(レール)を経て各燃料噴射器に供給される。実際に内燃機関を運転すべく、燃料圧力と噴射量および内燃機関の燃料噴射器の特性に関係して、内燃機関の全電磁弁、従って全燃料噴射器に対し同じ開時間を求めることが公知である。その際、全シリンダに対し同一の燃料噴射器開時間から、内燃機関の各シリンダに対し個々の補正特性図を基礎として、燃料噴射器、従って電磁弁のシリンダ毎の開時間が求められる。このため、内燃機関の各シリンダへの燃料噴射量を個々に合わせることと、内燃機関の複数のシリンダにわたり所期の負荷分配を保証することができる。   A known common rail internal combustion engine actually includes at least one fuel injector for each cylinder, and each fuel injector has an injection nozzle and a solenoid valve. The solenoid valve is closed in an unpowered or no-current state, and no fuel is sent to the corresponding cylinder of the internal combustion engine via the injection nozzle. On the other hand, when the solenoid valve is supplied with power, the solenoid valve opens and fuel injection into the corresponding cylinder starts. The opening time of the solenoid valve determines the fuel injection amount into the cylinder of the internal combustion engine together with the fuel pressure of the internal combustion engine. In the case of a common rail internal combustion engine, the fuel pressure is the same for all cylinders and hence for all fuel injectors. is there. That is, in the case of a common rail internal combustion engine, fuel pressure is generated by a pump and supplied to each fuel injector through a common pressure distributor (rail). In order to actually operate an internal combustion engine, it is known to obtain the same open time for all solenoid valves of the internal combustion engine, and hence all the fuel injectors, in relation to the fuel pressure and the injection amount and the characteristics of the fuel injector of the internal combustion engine. It is. At that time, the opening time for each cylinder of the fuel injector, and hence the solenoid valve, is obtained from the same fuel injector opening time for all the cylinders based on the individual correction characteristic diagrams for each cylinder of the internal combustion engine. For this reason, it is possible to individually match the fuel injection amount to each cylinder of the internal combustion engine and to guarantee the desired load distribution over a plurality of cylinders of the internal combustion engine.

実際に、各シリンダに対する個々の補正特性図は、典型的には内燃機関の全運転期間にわたり一定、即ち常に同じである。しかし、シリンダの特性が例えば異なる摩耗のために内燃機関の運転期間にわたり変化するので、常に同じシリンダ毎補正特性図を利用した場合、内燃機関の複数のシリンダにわたる所望の負荷分配に偏差が生ずる欠点がある。   In practice, the individual correction characteristic diagrams for each cylinder are typically constant, i.e. always the same, over the entire operating period of the internal combustion engine. However, since the characteristics of the cylinder change over the operation period of the internal combustion engine due to, for example, different wear, there is a disadvantage that a deviation occurs in a desired load distribution over a plurality of cylinders of the internal combustion engine when the same cylinder-specific correction characteristic diagram is always used. There is.

この点から出発し、本発明の課題は、内燃機関の新しい運転方法および相応した内燃機関を提供することにある。   Starting from this point, the object of the present invention is to provide a new method of operating an internal combustion engine and a corresponding internal combustion engine.

この課題は請求項1に記載の内燃機関の運転方法によって解決される。本発明では、シリンダ毎の補正特性図を、内燃機関の運転中に各シリンダについて測定した排気ガス温度に基づき自動的に適合させる。   This problem is solved by the operation method of the internal combustion engine according to claim 1. In the present invention, the correction characteristic diagram for each cylinder is automatically adapted based on the exhaust gas temperature measured for each cylinder during operation of the internal combustion engine.

本発明は、シリンダ毎の補正特性図を、内燃機関の運転中に各シリンダに関し測定した排気ガス温度に基づき自動的に適合させることを提案する。この結果、内燃機関の各シリンダについて自己学習的又は適応的な補正特性図が生じ、内燃機関の全運転期間にわたり内燃機関の各シリンダに所望の負荷配分を維持できる。シリンダの補正特性図はシリンダの実際状態に適合され、該適合は、シリンダで測定された排気ガス温度を基礎とし、自動的又は自発的に実施される。このため内燃機関の運転を著しく改善できる。   The present invention proposes to automatically adapt the correction characteristic diagram for each cylinder based on the exhaust gas temperature measured for each cylinder during operation of the internal combustion engine. As a result, a self-learning or adaptive correction characteristic diagram is generated for each cylinder of the internal combustion engine, and a desired load distribution can be maintained in each cylinder of the internal combustion engine over the entire operation period of the internal combustion engine. The correction characteristic diagram of the cylinder is adapted to the actual state of the cylinder, and the adaptation is performed automatically or spontaneously based on the exhaust gas temperature measured in the cylinder. For this reason, the operation of the internal combustion engine can be remarkably improved.

本発明の有利な実施態様では、内燃機関が定常運転状態にあるとき、各シリンダの排気ガス温度を測定し、このシリンダ毎の排気ガス温度から温度平均値を求め、各シリンダに対し、測定したシリンダ毎の排気ガス温度と前記温度平均値とのシリンダ毎の温度差を計算し、各シリンダに対しシリンダ毎の温度差に応じて、各燃料噴射器の開時間の補正値を求め、この補正値を基に対応するシリンダ毎の補正値特性図を自動的に適合させる。   In an advantageous embodiment of the present invention, when the internal combustion engine is in a steady operation state, the exhaust gas temperature of each cylinder is measured, and an average temperature value is obtained from the exhaust gas temperature of each cylinder, and measured for each cylinder. Calculate the temperature difference for each cylinder between the exhaust gas temperature for each cylinder and the temperature average value, and find the correction value for the open time of each fuel injector for each cylinder according to the temperature difference for each cylinder. Based on the value, the corresponding correction value characteristic diagram for each cylinder is automatically adapted.

本発明に基づく内燃機関を請求項11に規定している。   An internal combustion engine according to the invention is defined in claim 11.

本発明の有利な実施態様を、従属請求項と以下の説明から明らかにする。次に図を参照して本発明の実施例を詳細に説明するが、本発明はこれに限定されるものではない。   Advantageous embodiments of the invention emerge from the dependent claims and the following description. Next, examples of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these.

以下図1を参照し本発明を詳細に説明する。図1は、多気筒形内燃機関の本発明に基づく運転方法のブロック図ないし信号流れ図である。内燃機関は、好適にはコモンレール式ディーゼルエンジンである。本発明の方法は原理的に、以下個々に詳細に説明する3つの主ステップ10、11、12に分けられる。主ステップ10、11は従来公知の内燃機関の運転処置であり、主ステップ12は内燃機関の本発明に基づく運転方法の細目を含む。   Hereinafter, the present invention will be described in detail with reference to FIG. FIG. 1 is a block diagram or signal flow diagram of a method for operating a multi-cylinder internal combustion engine according to the present invention. The internal combustion engine is preferably a common rail diesel engine. The method according to the invention is divided in principle into three main steps 10, 11, 12 which will be described in detail below. The main steps 10 and 11 are conventionally known operation procedures of the internal combustion engine, and the main step 12 includes details of the operation method of the internal combustion engine according to the present invention.

本発明による方法の主ステップ10のステップ13で作動サイクル毎の燃料噴射量、ステップ14で内燃機関の燃料圧力を各々照会する。ステップ13、14で照会した内燃機関の運転パラメータ、即ち作動サイクル毎の燃料噴射量と燃料圧力は、全シリンダに関し同じであり、内燃機関の燃料噴射器の特性図15に入力量として供給される。燃料噴射機の特性図15は、全シリンダに対し同一である作動サイクル毎の燃料噴射量と燃料圧力を基礎として、ステップ16で、内燃機関の燃料噴射器の開時間を与える。この開時間は、全シリンダ、従って全燃料噴射器ないし各燃料噴射器の電磁弁に対し同じである。   In step 13 of the main step 10 of the method according to the invention, the fuel injection quantity for each operating cycle is queried, and in step 14 the fuel pressure of the internal combustion engine is queried. The operating parameters of the internal combustion engine inquired in steps 13 and 14, that is, the fuel injection amount and the fuel pressure for each operating cycle are the same for all the cylinders, and are supplied as input amounts to the characteristic diagram 15 of the fuel injector of the internal combustion engine. . FIG. 15 of the fuel injector gives the open time of the fuel injector of the internal combustion engine in step 16 based on the fuel injection quantity and fuel pressure for each operating cycle which is the same for all cylinders. This open time is the same for all cylinders, and thus for all fuel injectors or for the solenoid valve of each fuel injector.

また、本発明に基づく方法の主ステップ11のステップ13、14で、作動サイクル毎の燃料噴射量並びに内燃機関の燃料圧力を各々照会し、その内燃機関の照会した運転パラメータは、全シリンダについて同じであり、シリンダ毎の補正特性図171〜17Nに供給する。ここでNは、内燃機関のシリンダ数、従って各シリンダの補正特性図の数に相当する。各シリンダ毎の補正特性図171〜17Nは、ステップ13、14で照会した全シリンダに関し同一の運転パラメータを基礎として、ステップ18で、対応したシリンダの燃料噴射器ないし各燃料噴射器の開時間に対するシリンダ毎の補正値を与える。主ステップ10のステップ16で用意した全燃料噴射器において同じ開時間に、ステップ18で用意した対応した燃料噴射器の開時間に対するシリンダ毎の補正値を合算し、かくしてステップ19で全燃料噴射器に対しシリンダ毎の開時間を用意する。それに応じ、ステップ19の結果として、各シリンダの各燃料噴射器ないし各電磁弁に対しシリンダ毎の開時間を提供し、かくして各シリンダに対する燃料噴射時間を個々に決定し、内燃機関の複数のシリンダにわたり所定の負荷配分を設定する。 Further, in steps 13 and 14 of the main step 11 of the method according to the present invention, the fuel injection amount for each operating cycle and the fuel pressure of the internal combustion engine are respectively inquired, and the inquired operating parameters of the internal combustion engine are the same for all cylinders. And supplied to the correction characteristic diagrams 17 1 to 17 N for each cylinder. Here, N corresponds to the number of cylinders of the internal combustion engine, and hence the number of correction characteristic diagrams of each cylinder. The correction characteristic diagrams 17 1 to 17 N for each cylinder are based on the same operating parameters for all cylinders inquired in steps 13 and 14, and in step 18, the fuel injectors of the corresponding cylinders or the opening of each fuel injector are Gives the correction value for each cylinder with respect to time. In all fuel injectors prepared in step 16 of main step 10, the correction values for each cylinder with respect to the open times of the corresponding fuel injectors prepared in step 18 are added to the same open time, and thus in step 19, all fuel injectors are added. For each cylinder. Accordingly, as a result of step 19, an open time for each cylinder is provided to each fuel injector or solenoid valve of each cylinder, thus determining the fuel injection time for each cylinder individually, and a plurality of cylinders of the internal combustion engine. A predetermined load distribution is set.

なお言及しておくに、一般に、一定数の特性運転点に対する各シリンダの補正特性図171〜17Nは、各々対応したシリンダの各燃料噴射器の開時間に対するシリンダ毎の記録ないし補正値を有している。その特性運転点は、作動サイクル毎の所定の燃料噴射量と燃料圧力により規定する。ステップ13、14で、補正特性図内に特性運転点によって描かれていない運転パラメータが照会されたとき、該運転パラメータに対し、補正特性図内に描かれた特性運転点についての補間又は補外を行う。 It should be noted that, in general, the correction characteristic diagrams 17 1 to 17 N for each cylinder with respect to a certain number of characteristic operating points indicate the recording or correction value for each cylinder with respect to the open time of each fuel injector of the corresponding cylinder. Have. The characteristic operating point is defined by a predetermined fuel injection amount and fuel pressure for each operation cycle. When an operation parameter not drawn by a characteristic operation point in the correction characteristic diagram is inquired in steps 13 and 14, interpolation or extrapolation is performed on the characteristic operation point drawn in the correction characteristic diagram with respect to the operation parameter. I do.

即ちシリンダの燃料噴射器に対する各シリンダの開時間を求めるべく、既述のように、主ステップ10で、作動サイクル毎の燃料噴射量、燃料圧力並びに内燃機関の燃料噴射機の特性図を基礎として、全燃料噴射器に対し同一の開時間を求める。この開時間は、主ステップ11で、作動サイクル毎の燃料噴射量、燃料圧力並びにシリンダ毎の補正特性図を基礎として決定したシリンダ毎の補正値で計算する。   That is, in order to obtain the opening time of each cylinder with respect to the fuel injector of the cylinder, as described above, the main step 10 is based on the fuel injection amount for each operating cycle, the fuel pressure, and the characteristic diagram of the fuel injector of the internal combustion engine. Find the same open time for all fuel injectors. This open time is calculated in the main step 11 using the correction value for each cylinder determined based on the fuel injection amount for each operation cycle, the fuel pressure, and the correction characteristic diagram for each cylinder.

本発明は、内燃機関の運転方法の主ステップ12で、内燃機関の運転中に各シリンダで測定した排気ガス温度を基礎とし、シリンダ毎の補正特性図171〜17Nを自動的に適合させることを提案する。この結果、適応的ないし自己学習的なシリンダ毎の補正特性図171〜17Nが生じ、これは、内燃機関の全運転期間中、内燃機関の複数のシリンダにわたる所望の作動分配の維持を保証する。 The present invention automatically adapts the correction characteristic diagrams 17 1 to 17 N for each cylinder based on the exhaust gas temperature measured in each cylinder during the operation of the internal combustion engine in the main step 12 of the operation method of the internal combustion engine. Propose that. This results in an adaptive or self-learning cylinder-specific correction characteristic diagram 17 1 to 17 N which ensures the maintenance of the desired distribution of operation across the cylinders of the internal combustion engine during the entire operation of the internal combustion engine. To do.

主ステップ12のステップ20で、内燃機関が定常運転状態にあるか否かを検査する。そのためステップ21で、内燃機関の燃料噴射上重要な運転パラメータを照会する。内燃機関の燃料噴射上重要な運転パラメータは、特に作動サイクル毎の燃料噴射量、燃料圧力および内燃機関の回転数の少なくとも1つである。ステップ20で、燃料噴射上重要な運転パラメータが所定の時間にわたりほぼ一定し、又は所定の限界値内にあるか否かを検査する。これが当てはまると、内燃機関が定常運転状態にあると判断し、主ステップ12のステップ22に進む。   In step 20 of the main step 12, it is checked whether the internal combustion engine is in a steady operation state. Therefore, in step 21, the operation parameters important for fuel injection of the internal combustion engine are inquired. The operating parameters important for fuel injection of the internal combustion engine are at least one of the fuel injection amount, the fuel pressure, and the rotational speed of the internal combustion engine, particularly for each operation cycle. In step 20, it is checked whether the operating parameters important for fuel injection are substantially constant over a predetermined time or within a predetermined limit value. When this is true, it is determined that the internal combustion engine is in a steady operation state, and the routine proceeds to step 22 of the main step 12.

ステップ23と24で照会ないし検出した内燃機関の特性量を、ステップ22に入力量として供給する。即ちステップ23で内燃機関の全シリンダの各排気ガス温度を求め、相応したシリンダ毎の排気ガス温度をステップ22に入力量として供給する。ステップ24では、ステップ23で測定した全シリンダ毎の排気ガス温度から、温度平均値を求める。この平均値をシリンダ毎の排気ガス温度と同様にステップ22に入力量として供給する。ステップ22で、ステップ23で照会したシリンダ毎の排気ガス温度と、ステップ24で計算した温度平均値とのシリンダ毎の温度差を検出する。   The characteristic quantity of the internal combustion engine inquired or detected in steps 23 and 24 is supplied to step 22 as an input quantity. That is, in step 23, the exhaust gas temperatures of all cylinders of the internal combustion engine are obtained, and the corresponding exhaust gas temperatures of the respective cylinders are supplied to step 22 as input amounts. In step 24, the temperature average value is obtained from the exhaust gas temperature for every cylinder measured in step 23. This average value is supplied as an input amount to step 22 in the same manner as the exhaust gas temperature for each cylinder. In step 22, the temperature difference for each cylinder between the exhaust gas temperature for each cylinder inquired in step 23 and the temperature average value calculated in step 24 is detected.

各シリンダに対し計算したこの温度偏差から、主ステップ12のステップ25で、内燃機関の各シリンダに対し、対応した燃料噴射器の開時間に対する補正値を求め、その際、このためにシリンダ毎の温度偏差を、ステップ26で照会した比例率で計算する。この比例率は、好適には全シリンダで同じであるが、シリンダ毎に異ならせてもよい。対応した燃料噴射器の開時間に対する、ステップ25で決定したシリンダ毎の補正値は、特に作動サイクル毎の燃料噴射量および/又は燃料圧力によって決定し、ステップ20、21で確認した対応する定常運転点に対し有効である。   From this temperature deviation calculated for each cylinder, a correction value for the corresponding open time of the fuel injector is obtained for each cylinder of the internal combustion engine in step 25 of the main step 12, and for this purpose, for each cylinder The temperature deviation is calculated with the proportionality queried in step 26. This proportionality is preferably the same for all cylinders, but may be different for each cylinder. The correction value for each cylinder determined in step 25 for the corresponding open time of the fuel injector is determined in particular by the fuel injection amount and / or the fuel pressure for each operating cycle, and the corresponding steady operation confirmed in steps 20 and 21. Valid for points.

対応した燃料噴射器の開時間に対する、ステップ25で求めたこのシリンダ毎の補正値は、好適にはステップ27でシリンダ毎の補正値平均値に関係づけ、このステップ25で計算したシリンダ毎の補正値平均値を、主ステップ12のステップ28で提供ないし照会する。それに応じ、ステップ27で、ステップ25で計算した燃料噴射器に対する開時間のシリンダ毎の補正値と、ステップ28で用意したシリンダ毎の補正値平均値とのシリンダ毎の補正値偏差を検出する。このシリンダ毎の補正値偏差に関係して、シリンダ毎の補正特性図171〜17Nを自動的に適合させる。 The correction value for each cylinder obtained in step 25 for the corresponding open time of the fuel injector is preferably related to the correction value average value for each cylinder in step 27, and the correction for each cylinder calculated in this step 25. The average value is provided or queried at step 28 of the main step 12. Accordingly, in step 27, a correction value deviation for each cylinder between the correction value for each cylinder of the open time for the fuel injector calculated in step 25 and the correction value average value for each cylinder prepared in step 28 is detected. In relation to the correction value deviation for each cylinder, the correction characteristic diagrams 17 1 to 17 N for each cylinder are automatically adapted.

シリンダ毎の補正特性図171〜17Nを適合させるべく、ステップ27で用意した補正値平均値からのシリンダ毎の補正値偏差およびステップ20、21で決定した内燃機関の運転点を基礎とし、逆補間ないし逆補外を実施する。かくして、シリンダ毎の補正特性図171〜17Nの記録を自動的に適合させる。即ち、上述の如く、所定の燃料圧力および作動サイクル毎の所定の燃料噴射量で規定された或る特性運転点数に対するシリンダ毎の補正特性図171〜17Nに、対応したシリンダの燃料噴射器の開時間に対するシリンダ毎の補正値として用いる情報を記録する。しかし、主ステップ12で求めたシリンダ毎の補正値又は補正値偏差は、通常、補正特性図171〜17Nに描かれていない運転点に対し求められる。逆補間又は逆補外の場合、主ステップ12で、対応したシリンダ毎の補正値ないし補正値偏差が求められる運転点に隣接するシリンダ毎の補正特性図171〜17Nの特性運転点に対する記録ないし補正値を適合させる。 Based on the correction value deviation for each cylinder from the correction value average value prepared in Step 27 and the operating point of the internal combustion engine determined in Steps 20 and 21, in order to adapt the correction characteristic diagrams 17 1 to 17 N for each cylinder, Perform reverse interpolation or reverse extrapolation. Thus, the recording of the correction characteristic diagrams 17 1 to 17 N for each cylinder is automatically adapted. That is, as described above, the correction characteristic diagrams 17 1 to 17 N for each cylinder with respect to a certain characteristic operating point defined by the predetermined fuel pressure and the predetermined fuel injection amount for each operation cycle, the corresponding fuel injectors of the cylinders The information used as a correction value for each cylinder with respect to the open time is recorded. However, the correction value or correction value deviation for each cylinder obtained in the main step 12 is usually obtained for operating points not drawn in the correction characteristic diagrams 17 1 to 17 N. In the case of reverse interpolation or reverse extrapolation, in the main step 12, the correction characteristic for each cylinder or the correction value deviation is recorded for the characteristic operation point in the correction characteristic diagrams 17 1 to 17 N for each cylinder adjacent to the operation point for which the correction value or correction value deviation is obtained. Or adjust the correction value.

逆補間や逆補外の際、主ステップ12の運転点の近くに位置する、かかる特性運転点の記録ないし補正値は、一層離れて位置する特性運転点の記録ないし補正値よりも強く適合ないし変更させる。この逆補間ないし逆補外は、主ステップ12のステップ29で実行する。かくして、最終的に補正特性図171〜17Nの記録ないし補正値を自動的に適合させる。なおここで言及しておくに、逆補間ないし逆補外時、ステップ29で、運転パラメータ、即ち作動サイクル毎の燃料噴射量並びに燃料圧力の、フィルタにかけた値を利用する。そのためには、運転パラメータがほぼ一定しているか、所定の限界値内に位置しているステップ21で考慮する時間帯にわたり、この運転パラメータの平均値を求める。 When performing reverse interpolation or extrapolation, the recorded or corrected value of the characteristic operating point that is located near the operating point of the main step 12 is more strongly matched than the recorded or corrected value of the characteristic operating point that is located further away. Change it. This reverse interpolation or reverse extrapolation is executed in step 29 of the main step 12. Thus, finally, the recorded or corrected values in the correction characteristic diagrams 17 1 to 17 N are automatically adapted. It should be noted that at the time of reverse interpolation or extrapolation, step 29 uses the filtered values of operating parameters, that is, the fuel injection amount and fuel pressure for each operating cycle. For this purpose, an average value of the operating parameters is obtained over the time zone considered in step 21 where the operating parameters are substantially constant or located within a predetermined limit value.

本発明に基づく方法の主ステップ12のステップ30で、シリンダ毎の排気ガス温度の検出に用いるセンサの状態を照会する。それに続くステップ31で、対応したセンサが正常に作動しているか否かを検査する。その際、ステップ29でのシリンダ毎の補正特性図171〜17Nの適合は、ステップ31でセンサが正常に作動しているのを確認したときのみ行う。他の場合には、補正特性図171〜17Nの適合は行わない。 In step 30 of the main step 12 of the method according to the invention, the state of the sensor used for detecting the exhaust gas temperature for each cylinder is queried. In subsequent step 31, it is checked whether or not the corresponding sensor is operating normally. At this time, the adjustment of the correction characteristic diagrams 17 1 to 17 N for each cylinder in step 29 is performed only when it is confirmed in step 31 that the sensor is operating normally. In other cases, the correction characteristic diagrams 17 1 to 17 N are not adapted.

本発明方法の主ステップ12のステップ25で、ステップ25で求めた補正値に対し、好適には、最大値ないし限界値を考慮し、詳しくは補正値が各最大値を超過した際、該最大値を補正値として利用する。この最大値又は限界値は、内燃機関の全運転状態にわたり一定している。しかしステップ25で、運転点ないし運転負荷および従って燃料噴射量に関係する限界値ないし最大値を考慮すると有利である。   In the step 25 of the main step 12 of the present invention, the correction value obtained in the step 25 is preferably considered in terms of a maximum value or a limit value. Specifically, when the correction value exceeds each maximum value, the maximum value The value is used as a correction value. This maximum or limit value is constant over the entire operating state of the internal combustion engine. However, in step 25 it is advantageous to take into account the limit value or maximum value relating to the operating point or operating load and thus the fuel injection quantity.

本発明では、ステップ23で測定したシリンダの排気ガス温度にオフセットを与える。内燃機関のシリンダに対するかかるオフセットは、ステップ32で用意し、ステップ23で測定した、対応するシリンダの排気ガス温度に合算する。このオフセットは、内燃機関の全シリンダに対し種々の大きさを有し得る。   In the present invention, the cylinder exhaust gas temperature measured in step 23 is offset. Such an offset for the cylinder of the internal combustion engine is prepared in step 32 and added to the exhaust gas temperature of the corresponding cylinder measured in step 23. This offset can have various magnitudes for all cylinders of the internal combustion engine.

従って、本発明の方法により、内燃機関の運転時、シリンダ毎の補正特性図を、内燃機関の運転中に各シリンダに対し測定した排気ガス温度を基礎として、適応の意味で自動的にないし自発的に適合させる。このため、内燃機関のシリンダ毎の構成要素の、内燃機関の運転中に生ずる種々の摩耗を補償でき、かくして、全運転中にわたり内燃機関の複数のシリンダに関し所望の負荷分配を維持できる。その際、一方では内燃機関の全シリンダにわたって一様な負荷配分が、他方では各シリンダ毎に変化する負荷配分が設定できる。シリンダの範囲における負荷が大きくなればなる程、多量の燃料がシリンダに注入され、シリンダで生ずる排気ガス温度が高くなる。   Therefore, according to the method of the present invention, during the operation of the internal combustion engine, the correction characteristic diagram for each cylinder is automatically or spontaneously applied in an adaptive sense based on the exhaust gas temperature measured for each cylinder during the operation of the internal combustion engine. Adapt. For this reason, it is possible to compensate for the various wears that occur during operation of the internal combustion engine of the components for each cylinder of the internal combustion engine, thus maintaining the desired load distribution for the multiple cylinders of the internal combustion engine throughout the operation. In that case, a uniform load distribution can be set on the one hand over all the cylinders of the internal combustion engine, and on the other hand, a load distribution can be set which varies for each cylinder. The greater the load in the cylinder range, the more fuel is injected into the cylinder and the higher the exhaust gas temperature generated in the cylinder.

主ステップ10、11における内燃機関のシリンダの燃料噴射器のシリンダ毎の開時間の検出並びに主ステップ12におけるシリンダ毎の補正特性図の適応ないし適合を、互いに別個に、しかし並列ないし同時に行う。これによって、一方では内燃機関の変化する条件ないし状態への補正特性図の連続した適応を実現し、他方では非定常運転条件のときも燃料噴射器のシリンダ毎の開時間の迅速な検出が可能である。   The detection of the open time for each cylinder of the fuel injector of the cylinder of the internal combustion engine in the main steps 10 and 11 and the adaptation or adaptation of the correction characteristic diagram for each cylinder in the main step 12 are performed separately from each other but in parallel or simultaneously. This allows continuous adaptation of the correction characteristic diagram to changing conditions or states of the internal combustion engine on the one hand, and rapid detection of the open time for each cylinder of the fuel injector on the other hand even under unsteady operating conditions. It is.

本発明に基づく内燃機関の運転方法のブロック図。The block diagram of the operating method of the internal combustion engine based on this invention.

符号の説明Explanation of symbols

10〜12 主ステップ、13、14、16、18〜32 ステップ、15 燃料噴射機の特性図 10-12 main steps, 13, 14, 16, 18-32 steps, 15 Fuel injector characteristic diagram

Claims (6)

各シリンダに少なくとも1つの燃料噴射器が付設され、
燃料噴射量、燃料圧力および内燃機関の燃料噴射器の特性図に関係して、全燃料噴射器に対して同じ開時間が求められ、全燃料噴射器における同じ開時間、燃料噴射量、燃料圧力および各シリンダに対する個々の補正特性図を基礎として、燃料噴射器のシリンダ毎の開時間が求められ、
内燃機関の燃料噴射上重要な運転パラメータである、作動サイクル毎の燃料噴射量、燃料圧力および内燃機関の回転数の少なくとも1つが、所定の時間にわたってほぼ一定し、ないしは所定の限界値内に存在するとき、内燃機関が定常運転状態にあると判断し、
内燃機関が定常運転状態にあるとき、各シリンダの排気ガス温度を測定し、この測定した排気ガス温度に基づき、シリンダ毎の補正特性図を自動的に適合させ、
測定したシリンダ毎排気ガス温度の温度平均値を求め、測定したシリンダ毎の排気ガス温度と前記温度平均値とのシリンダ毎の温度偏差を計算し、各シリンダに対しシリンダ毎の温度偏差に関係して、燃料噴射器の開時間の補正値を求め、この補正値を基礎としてシリンダ毎の補正特性図を自動的に適合させ
補正値における最大値ないし限界値を決定し、補正値が最大値を超過したとき、その最大値を補正値として利用し、該限界値ないし最大値が燃料噴射量に関係していることを特徴とするコモンレール式多気筒型内燃機関の運転方法。
At least one fuel injector is attached to each cylinder;
In relation to the fuel injection amount, fuel pressure and the characteristic diagram of the fuel injector of the internal combustion engine, the same open time is obtained for all fuel injectors, and the same open time, fuel injection amount, fuel pressure in all fuel injectors And based on the individual correction characteristic diagram for each cylinder, the open time for each cylinder of the fuel injector is obtained,
At least one of the fuel injection amount per operation cycle, the fuel pressure, and the rotation speed of the internal combustion engine, which are important operating parameters for fuel injection of the internal combustion engine, is substantially constant over a predetermined time or within a predetermined limit value. When determining that the internal combustion engine is in a steady operation state,
When the internal combustion engine is in a steady operation state, the exhaust gas temperature of each cylinder is measured, and the correction characteristic diagram for each cylinder is automatically adapted based on the measured exhaust gas temperature,
Determine the average temperature of the exhaust gas temperature for each measured cylinder, measured the temperature deviation for each cylinder of the temperature mean value and exhaust gas temperature of each cylinder is calculated and related to the temperature deviation of each cylinder for each cylinder Then, the correction value of the open time of the fuel injector is obtained, and the correction characteristic diagram for each cylinder is automatically adapted based on this correction value ,
The maximum value or limit value in the correction value is determined, and when the correction value exceeds the maximum value, the maximum value is used as the correction value, and the limit value or maximum value is related to the fuel injection amount. A common rail type multi-cylinder internal combustion engine operating method.
全シリンダの補正値の平均値を求め、補正値と前記平均値とのシリンダ毎の補正値偏差を計算し、該補正値偏差に関係して、シリンダ毎の補正特性図を自動的に適合させることを特徴とする請求項記載の方法。 An average value of correction values of all cylinders is obtained, a correction value deviation between the correction value and the average value is calculated for each cylinder, and a correction characteristic diagram for each cylinder is automatically adapted in relation to the correction value deviation. The method of claim 1 wherein: シリンダ毎の補正特性図を適合させるために、シリンダ毎の補正値ないし補正値偏差並びに求めた燃料噴射量および燃料圧力を基礎として、逆補間および逆補外を実施することを特徴とする請求項1又は2に記載の方法。 The reverse interpolation and the extrapolation are performed on the basis of the correction value or correction value deviation for each cylinder and the obtained fuel injection amount and fuel pressure in order to adapt the correction characteristic diagram for each cylinder. The method according to 1 or 2 . シリンダ毎の補正値ないし補正値偏差を求めた運転点の近くに位置するような特性運転点におけるシリンダ毎の補正特性図の記録ないし補正値を、より離れて位置する特性運転点における記録ないし補正値より強く適合させることを特徴とする請求項記載の方法。 Records or corrects the correction characteristic diagram for each cylinder at the characteristic operating point that is located close to the operating point for which the correction value or correction value deviation for each cylinder was obtained, and records or corrects it at the characteristic operating point that is located further away. 4. A method as claimed in claim 3 , characterized in that the fit is stronger than the value. シリンダ毎の排気ガス温度を検出するためのセンサが正常に作動しているか否かを検査し、該センサが正常に作動しているときだけ、シリンダ毎の補正特性図を適用することを特徴とする請求項1からの1つに記載の方法。 It is characterized by checking whether or not the sensor for detecting the exhaust gas temperature for each cylinder is operating normally, and applying the correction characteristic chart for each cylinder only when the sensor is operating normally. The method according to one of claims 1 to 4 . 少なくとも1つのシリンダに対して、測定した排気ガス温度にオフセットを与えることを特徴とする請求項1からの1つに記載の方法。

For at least one cylinder, the method according to one of claims 1 to 5, characterized in that providing a measured offset in the exhaust gas temperature.

JP2006183151A 2005-07-06 2006-07-03 Method for operating internal combustion engine and internal combustion engine Expired - Fee Related JP5426068B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031591.7 2005-07-06
DE102005031591.7A DE102005031591B4 (en) 2005-07-06 2005-07-06 Method for operating an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007016783A JP2007016783A (en) 2007-01-25
JP5426068B2 true JP5426068B2 (en) 2014-02-26

Family

ID=37575365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183151A Expired - Fee Related JP5426068B2 (en) 2005-07-06 2006-07-03 Method for operating internal combustion engine and internal combustion engine

Country Status (5)

Country Link
JP (1) JP5426068B2 (en)
KR (1) KR101283714B1 (en)
CN (1) CN1896477B (en)
DE (1) DE102005031591B4 (en)
FI (1) FI123785B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002593A1 (en) * 2009-04-23 2010-10-28 Robert Bosch Gmbh Method and control device for operating an actuator-operated valve
DE102009003211B4 (en) * 2009-05-19 2019-08-01 Robert Bosch Gmbh Method for controlling injectors in an internal combustion engine
DE102010038630B4 (en) 2010-07-29 2020-07-09 Man Energy Solutions Se Calibration method for an internal combustion engine and internal combustion engine which can be calibrated according to this
US10107214B2 (en) 2013-10-31 2018-10-23 Robert Bosch Gmbh Control system and method using exhaust gas temperatures to adjust an air/fuel mixture for an internal combustion engine
WO2017075588A1 (en) * 2015-10-30 2017-05-04 Robert Bosch Gmbh Mems bolometer sensor for measuring temperature in an exhaust pipe of an automotive vehicle
DE102018214856A1 (en) * 2018-08-31 2020-03-05 Robert Bosch Gmbh Method and computer program product for operating an internal combustion engine with different fuels

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929746A1 (en) * 1989-09-07 1991-03-14 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
DE19700711C2 (en) * 1997-01-10 1999-05-12 Siemens Ag Method for compensating for the systematic error in injection devices for an internal combustion engine
US6021754A (en) * 1997-12-19 2000-02-08 Caterpillar Inc. Method and apparatus for dynamically calibrating a fuel injector
US6289871B1 (en) * 1998-03-06 2001-09-18 Caterpillar Inc. Method for achieving minimum liquid pilot fuel delivery to each cylinder of a dual fuel engine while operating in a dual fuel mode
DE19951096C2 (en) * 1999-10-23 2002-10-31 Daimler Chrysler Ag Engine control system for a turbocharged diesel engine
JP3511492B2 (en) * 1999-12-14 2004-03-29 三菱電機株式会社 Fuel injection control device for in-cylinder injection engine
JP2001342872A (en) * 2000-05-31 2001-12-14 Denso Corp Fuel control device for internal combustion engine
JP2003056389A (en) * 2001-08-10 2003-02-26 Bosch Automotive Systems Corp Method and device for controlling fuel injection amount
DE10248603A1 (en) * 2002-10-17 2004-04-29 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE10253932B4 (en) * 2002-11-19 2013-04-04 Continental Automotive Gmbh Method for determining the injection quantity of an internal combustion engine
KR100588496B1 (en) * 2003-06-09 2006-06-13 현대자동차주식회사 Apparatus of engine start control on vehicle and method thereof
JP2005002796A (en) * 2003-06-09 2005-01-06 Toyota Motor Corp Injection control method for fuel injection valve
DE10330091A1 (en) * 2003-07-03 2005-01-20 Robert Bosch Gmbh Fuel quantity adjustment method of injectors of fuel dosing system of an internal combustion engine, involves calculating a gradient value from two injection quantity values, gradient value is then considered in fuel quantity adjustment

Also Published As

Publication number Publication date
CN1896477A (en) 2007-01-17
FI123785B (en) 2013-10-31
FI20060658A (en) 2007-01-07
KR20070005487A (en) 2007-01-10
KR101283714B1 (en) 2013-07-08
FI20060658A0 (en) 2006-07-05
JP2007016783A (en) 2007-01-25
CN1896477B (en) 2011-10-05
DE102005031591A1 (en) 2007-01-25
DE102005031591B4 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
US9002621B2 (en) Method for correcting injection quantities and/or times of a fuel injector
JP5426068B2 (en) Method for operating internal combustion engine and internal combustion engine
US7392789B2 (en) Method for synchronizing cylinders in terms of quantities of fuel injected in an internal combustion engine
JP5180540B2 (en) Control method for operating method of internal combustion engine
KR20110088582A (en) Method for operating an internal combustion engine
JP2009523945A (en) Control method and control apparatus for internal combustion engine
US20100179744A1 (en) Method and device for determining a control parameter for a fuel injector of an internal combustion engine
US20130180511A1 (en) Method for operating an internal combustion engine having multiple combustion chambers, and internal combustion engine having multiple combustion chambers
US8275536B2 (en) Method for the determination of an injected fuel mass of a preinjection
KR20210020810A (en) Method for adapting a detected camshaft position, control unit for carrying out the method, combustion engine and vehicle
JP2011510225A (en) Internal combustion engine control method, apparatus, and program
KR20140027224A (en) Method and device for controlling a variable valve timing mechanism of an internal combustion engine
CN110778407B (en) Method for operating an internal combustion engine
KR20090004872A (en) Method and device for operating an internal combustion engine having lambda control
US9624842B2 (en) Determination of a value for a valve lift of a valve of an individual cylinder of an internal combustion engine with a plurality of cylinders
US6665607B2 (en) Method and device for controlling an internal combustion engine
US20120046845A1 (en) Method for operating a diesel engine
JP4761072B2 (en) Ignition timing control device for internal combustion engine
CN113006953B (en) Gas amount control method and system for improving oil injection performance
JP3873970B2 (en) Control device for multi-cylinder internal combustion engine
JP5053729B2 (en) Operation method of internal combustion engine
JP2014020205A (en) Control device of internal combustion engine
CN112292518B (en) Method for determining and/or identifying soot deposits in the air intake section of a combustion chamber of an internal combustion engine
JP6008986B2 (en) Method of operating internal combustion engine and control device and / or adjusting device for controlling injection valve of internal combustion engine
CN117916457A (en) Improved pressure drop analysis strategy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110818

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120606

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130809

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130909

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees