以下、本発明の一実施形態の医用画像処理装置について説明する。
第1の実施形態
第1の実施形態の医用画像処理装置10について図1〜図6を用いて説明する。本実施形態の医用画像処理装置は、心臓に関する画像を表示する装置である。
本実施形態の医用画像処理装置10の構成について、図1を用いて説明する。図1は、医用画像処理装置10を示すブロック図である。
医用画像処理装置10は、取得部101、座標系検出部102、境界検出部103、表示部104、3次元左心室境界モデル(以下、単に「境界モデル」という)を記憶した記憶部110とを備えている。
取得部101は、心臓に関する3次元のボリュームデータを取得し、座標系検出部102、境界検出部103、表示部104にそのデータを送る。
座標系検出部102は、ボリュームデータから左心室座標系を検出し、境界検出部103と表示部104にそのデータを送る。
境界検出部103は、記憶部110に記憶された境界モデルを用いて3次元の左心室境界を検出し、表示部104にそのデータを送る。
表示部104は、ボリュームデータ、左心室座標系、左心室境界を表示する。
次に、医用画像処理装置10の動作について図1と図2を用いて説明する。図2は、医用画像処理装置10の動作を示すフローチャートである。
まず、ステップ1では、取得部101が、外部の撮像装置などから心臓が撮像されたボリュームデータを取得する。
「ボリュームデータ」とは、空間方向に3次元の広がりをもつ濃淡画像を意味する。心臓の3次元のボリュームデータは、一般にX線CT装置、MRI装置、超音波診断装置、核医学診断装置などの医用画像診断装置によって撮像可能であるが、これら撮像装置で撮像されたボリュームデータに限定されない。また、ボリュームデータは撮像装置から直接取得することも可能であるし、撮像データが保存されているサーバー、パソコン、HDD、DVDなどの外部メディアから取得することも可能である。
取得部101で取得したボリュームデータは、座標系検出部102、境界検出部103、表示部104に送られる。このとき、各処理ステップに適するようにボリュームデータに対してノイズ除去処理、コントラスト強調処理、画像の拡大縮小処理がなされても良い。但し、画像の拡大縮小処理を行う場合は、それぞれに渡すボリュームデータ間の縮尺関係を記憶しておく。
次に、ステップ2では、座標系検出部102が、取得部101より送られてきたボリュームデータから左心室座標系を検出する。
「左心室座標系」とは、左心室長軸(以下、単に「長軸」という)を少なくとも含む3つの軸からなる3次元座標系である。図3〜図6に左心室座標系とボリュームデータ座標系の関係を示す。図3は人体を基準にしてボリュームデータ座標系を表した図、図4はボリュームデータ座標系の軸に垂直な断面像を示す図、図5はボリュームデータ座標系と左心室座標系を重ねて表した図、図6は左心室座標系の軸に垂直な断面像を示す図である。
ボリュームデータは、撮像装置の座標系を基準としたボリュームデータ座標系により保存されるのが一般的である。図3に示すように、ボリュームデータ座標系は、例えばCT装置でボリュームデータを撮像した場合、人体の体軸方向(z軸)、背腹方向(y軸)と左右方向(x軸)からなる。図4に示すように、これらの軸方向に直交する断面像をアキシャルビュー(Axial View)、サジタルビュー(Sagittal View)、コロナルビュー(Coronal View)と呼ぶ。
心臓を撮像したボリュームデータは、ボリュームデータ内部での心臓の存在位置、方向、及び、その大きさは、個人差、呼吸、心拍、撮像時の装置、人体の相対的位置関係によって変化する。そのため、心臓の位置、姿勢はボリュームデータ内で特定する必要がある。
左心室座標系の検出は、ボリュームデータ内の左心室の位置、方向を設定するために行う。左心室座標系の第1の検出方法としては、例えば、非特許文献1(坂田幸辰 他、「ランダム木を用いた心エコーボリュームデータからの診断用基準断面自動検出」、画像センシングシンポジウム予稿集、第16回画像センシングシンポジウム、IS3−24)に示された方法がある。その第1の検出方法を図5〜図8を用いて説明する。図7は、第1の検出方法のフローチャートである。
まず、ステップ101では、座標系検出部102が、図5に示すように、左心室座標系を長軸(u軸)、四腔断面像が観察できる断面が設定される左心室に直交する軸(v軸)、2軸に直交する軸(w軸)を予め設定すると共に、図5に示すように、左心室の中心pで構成される左心室座標系を基準にした左心室断面像パターンを予め作成する。なお、「左心室断面像パターン」とは、パターン照合で用いる左心室断面像を意味する。
次に、ステップ102では、座標系検出部102が、ボリュームデータに対して左心室断面像パターンを当てはめながら、最も良く照合される位置、姿勢、スケールを探索することにより、ボリュームデータから図8に示すように左心室座標系を設定する。
左心室座標系の第2の検出方法を図9のフローチャートと図10を用いて説明する。3次元座標系は、3次元空間中で一直線上に乗らない3点で設定できる。
まず、ステップ111では、座標系検出部102が、ボリュームデータから心尖位置、僧帽弁位置、右室角点を検出する。この検出方法は、座標系検出部102が、ボリュームデータと、予め学習した心尖位置の周辺の画像パターンとをパターン照合して心尖位置を検出する。なお、「画像パターン」とは、パターン照合に用いる画像を意味する。また、同様に、座標系検出部102は、僧帽弁位置、右室角点も、ボリュームデータと、僧帽弁位置周辺の画像パターン、右室角点周辺の画像パターンとのパターン照合によって検出する。
次に、ステップ112では、座標系検出部102が、ボリュームデータから心尖位置と僧帽弁位置との中点を原点pと設定する。
次に、ステップ113では、座標系検出部102が、原点pから心尖位置までのベクトルを長軸(u軸)と設定する(図10参照)。
次に、ステップ114では、座標系検出部102が、長軸(u軸)に直交するベクトルで、かつ、右室角点を通る方向を第2の軸(v軸)と設定する(図10参照)。なお、右室角点は、検出した長軸に直交する断面内において、予め学習した画像パターンとの照合によって検出できる。
次に、ステップ115では、座標系検出部102が、長軸(u軸)と第2の軸(v軸)にそれぞれ直交する方向を第3の軸(w軸)と設定する(図10参照)。
なお、心臓内の他の1点は右室角点に限らず、例えば、三尖弁位置、左室流出路位置なども同様の方法で検出することにより、左心室座標系を設定できる。
また、左心室座標系の検出方法については、これらに限定する必要はなく、長軸を構成要素の一つとする3次元の座標系が設定できる検出方法であればよい。
また、本実施形態で明らかなように、左心室座標系の検出には、後段で検出する左心室境界上の点や、左心室境界によって設定される点を使う必要はない。
次に、ステップ3では、境界検出部103が、座標系検出部102で得られる左心室座標系及び記憶部110に記憶している境界モデルを使って、取得部101より得られるボリュームデータから左心室境界を検出する。
境界検出部103で検出する左心室境界とは、図6に示すように、左心室を取り囲む心筋(図6中で実線で囲まれている灰色の領域)と左心室内腔(白い領域)の境界である内膜境界、左心室を取り囲む心筋と左心室外の境界である外膜境界のどちらか一方、又は、その両方の境界を意味する。図6(a)は短軸断面像(Short Axis View:v−w平面図)、(b)は4腔断面像(4chamber View:u−v平面図)、(c)は2腔断面像(2chamber View:w−u平面図)である。なお、本実施形態では、内側境界(心筋内側境界)のみを左心室境界として検出する場合について述べる。
左心室の内膜境界は、心尖位置を頂点とするお椀型の境界モデルで近似できる。境界モデルは、左心室座標系が検出されていることを前提にすることで、例えば、図11に示すように、長軸(u軸)を中心軸とする2次曲面で近似できる。図11の境界モデルを式(1)に示す。
但し、u<a4である。この境界モデルは4つの変数a1、a2、a3、a4があり、左心室座標系上に凸状の回転放物面を定義できる。よって、本実施形態における境界検出とは、3次元の左心室座標系が得られているボリュームデータ中で境界モデルの変数(パラメータ)a1、a2、a3、a4を求めることになる。図11の境界モデルは、a1=1、a2=1、a3=0、a4=100である。
変数a1〜a4を求める方法は、境界モデルとボリュームデータの間で計算できるエネルギーを定義し、変数に初期値を与え、定義したエネルギーが小さくなるように、変数を繰り返し最適化していく。このようなエネルギーの最小化に基づく境界モデルの当てはめは、一般的な方法であり、スネークスや動的輪郭モデルの当てはめ方法として用いられる。
但し、本実施形態は、境界モデルが左心室座標系の検出を前提としていることが特徴である。すなわち、左心室座標系を検出することにより、3次元形状が式(1)のような簡単な形で表現できるだけでなく、それぞれの変数の事前分布を求めておくことにより、変数の値域を限定するなどの工夫が可能となる。また、左心室座標系が検出されていれば、側壁、前壁、下壁、中隔など大まかな左心室心筋の部位が特定できるため、特定部位に対して別のエネルギーを定義するなど、部位に応じた処理による精度向上の工夫も可能となる。
境界検出部103は、3次元の境界上の点で法線方向の輝度の微分量が大きくなるまで変数a1〜a4を更新する。法線方向は、当然3次元となるため、ボリュームデータ中の3次元方向の微分量(差分量)を計算することによりエネルギーの計算が可能となる。エネルギー最小化に必要なモデルパラメータの更新方法は、グリーディアルゴリズム、シミュレーテッドアニーリング、遺伝アルゴリズムなどの一般的なサーチアルゴリズムが利用可能である。
最後に、ステップ4では、表示部104は、取得部101で得られるボリュームデータ、座標系検出部102で得られた左心室座標系、境界検出部103で得られた3次元左心室境界を、ディスプレイ、プロジェクタ、プリンタなどの表示デバイスに表示する。表示部104は、ボリュームデータの断面像と、検出した境界が表示できればよく、前述したデバイスに限定されない。
表示部104で表示するボリュームデータの断面は、左心室座標系に基づいて決定する。左心室座標系の長軸(u軸)方向に直交する断面は、ユーザ(医療従事者)にとって一般的な左心室短軸像となる。ここに、同断面位置での左心室境界を表示することによって、ユーザにとって心臓の位置、姿勢が認識しやすい断面像上で境界検出結果を確認できる。
また、左心室座標系として長軸(u軸)方向と四腔断面像を定義できる方向(v軸方向)を検出しておけば、短軸像に加えて四腔断面像と断面上の左心室境界を表示することが可能となり、3次元境界の検出結果や左心室座標系検出結果の全体像がさらに把握しやすくなる。同様に、三腔断面像や二腔断面像を定義する方向としてv軸を検出しておくことによっても同様の効果が得られる。
また、検出する左心室座標系を直交座標系にして設定し、この座標系の原点pを、推定した左心室中心としておくことで、u=0、v=0、w=0で表される3断面は左心室中心を断面像の中心にして、長軸を含む2断面と短軸断面となる。それら断面像は互いに直交関係となるため、位置関係の把握が容易であり、検出した左心室境界と共に左心室座標系が正しいかどうかの確認も容易になる。
本実施形態によれば、座標系検出部102で左心室座標系を検出し、左心室座標系に基づいて境界検出部103で左心室境界を検出することで高精度の境界検出が可能となり、表示部104で境界検出結果の確認をわかりやすく表示できる。
第2の実施形態
第2の実施形態の医用画像処理装置10について図12のブロック図を用いて説明する。本実施形態の医用画像処理装置10は、第1の実施形態の医用画像処理装置10の第1の変更例である。
本実施形態の医用画像処理装置10では、座標系検出部102が、取得部101で得られたボリュームデータを、検出した左心室座標系に座標変換して、後の作業を簡単化している。
座標系検出部102が、座標変換後の画像を境界検出部103、表示部104に与えることによって、取得部101からボリュームデータを与える必要がなくなり、図12に示すようにデータフローを簡単化できる。
第3の実施形態
第3の実施形態の医用画像処理装置10について説明する。本実施形態の医用画像処理装置10は、第1の実施形態の医用画像処理装置10の第2の変更例である。
第1の実施形態では、境界検出部103において左心室の内膜境界(心筋内側境界)を検出する方法について述べたが、外膜境界(心筋外側境界)の検出であっても同じように対応できる。
すなわち、本実施形態では、内膜境界に関する境界モデルと外膜境界に関する境界モデルを記憶部110がそれぞれ記憶することによって、境界検出部103が内膜と外膜の境界検出を独立に行うことが可能となり、並列コンピュータの利用によって、境界検出にかかる時間を短縮できる。
また、内膜境界と外膜境界とを組み合わせた一体の境界モデルを記憶部110が記憶することによって、境界検出部103が、内膜境界と外膜境界の検出を一体に行ってもよい。
第4の実施形態
第4の実施形態の医用画像処理装置20について図13〜図17を用いて説明する。
本実施形態の医用画像処理装置20の構成について、図13を用いて説明する。図13は、医用画像処理装置20を示すブロック図である。
医用画像処理装置20は、ボリュームデータを取得する取得部201、左心室座標系を検出する座標系検出部202、左心室の境界を検出する境界検出部203、検出した左心室境界を評価する評価部204、評価結果を表示する表示部205、境界モデルを記憶した第1記憶部210、境界パターンモデルを記憶した第2記憶部220とを備えている。
まず、本実施形態における「境界モデル」について説明する。境界モデルは、予め収集された複数のボリュームデータに教示した3次元境界を、主成分分析することによって得られる複数の基底ベクトルと、平均形状の線形和で表現されている。この表現方法は、動的形状モデル(Active Shape Model)と呼ばれる非特許文献2(T.F.Cootes and C.J. Taylor, ”Statistical Models of Appearance for Computer Vision”, http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Models/app_models.pdf)で開示されている。この表現方法は、内外境界上の点の座標を1本のベクトルとして扱うことによって、内外境界を同時に扱うことができる。但し、本実施形態では、左心室座標系が検出されていることを前提とすることで、左心室座標系を用いたアライメントが行える。境界モデルを学習する際は、予め収集された複数のボリュームデータに対して、左心室座標系と3次元境界を教示しておく。複数のボリュームデータに教示された境界は,それぞれ独立な3次元の画像座標系で表現されているため,仮に2つの境界が全く同じ形状であっても,各画像上での位置が異なれば,境界の形状ベクトルは異なる値を持つ。そこで,左心室座標系を用いた境界の形状の正規化を行い,境界の形状ベクトルの座標系の差異を吸収する。正規化は、各ボリュームデータ内の左心室座標系に境界上の点を座標変換することで行う。境界モデルを、ボリュームデータ上で使う際は、ボリュームデータから検出された左心室座標系に境界モデルを座標変換する。図15は、このようにして学習した境界モデルの図であって、長軸、短軸方向を18点で表現した左心室の境界モデルである。
次に、「境界パターンモデル」について説明する。境界パターンモデルは、3次元の境界周辺の画像パターンである。第2記憶部220は、予め収集された複数の学習用ボリュームデータに教示した3次元の境界周辺の境界パターンを収集し、境界パターンモデルとして学習する。図16と図17に基づいて境界パターンモデルの学習について説明する。
図16は、心臓のv−w平面図である。図17のグラフは、縦軸は画素値(例えば、輝度値)、横軸は内外境界を貫く直線を複数の点(図では30点)で区切ったものであり、各点にそれぞれ番号(図では1〜30)が付与されている。すなわち、図16において、心臓の心筋領域の内側の点が、図17における10番であり、外側の点が20番である。また、図16のv−w断面図において、原点pを中心として周方向(矢印が示す方向)に等角度毎に18個に分割し、各分割位置における直線上にある30点のプロファイルした画素値のパターンが、図17の系列1〜18を意味している。そして、図17における各系列で表される画素値のパターンは、複数の学習用ボリュームデータから収集した各系列の画素値のパターンを平均化したパターン(以下、これを「境界パターン」という)である。そして、この平均化したパターン(境界パターン)は、長軸(u軸)方向の境界上の点の数(18点)だけあるので、これらの境界パターンをまとめて境界パターンモデルという。
すなわち、複数の学習用ボリュームデータから、図16に示すような、同一点番号(同じ系列番号)の2点を通る直線状の画像に関するプロファイルを保存しておく。同一点番号(同じ系列番号)の2点を通る直線状の画像に関するプロファイルは、複数の学習用ボリュームデータの数だけあるので、これらプロファイルの各画素値を、図17に示すように平均化した境界パターンを作成する。境界パターンは、u軸方向の境界上の点の数だけあるので、これらをまとめて境界パターンモデルと呼ぶ。
医用画像処理装置20の動作について図13と図14を用いて説明する。図14は、医用画像処理装置20の動作を示すフローチャートである。
まず、ステップ21では、取得部201が、心臓が撮像されたボリュームデータを取得する。
次に、ステップ22では、座標系検出部202が、取得部201から得られたボリュームデータを用いて左心室座標系を検出する。この検出方法は、第1の実施形態と同様である。
次に、ステップ23では、境界検出部203が、座標系検出部202で得られる左心室座標系、第1記憶部210に記憶された境界モデル、第2記憶部220に記憶された境界パターンモデルを用いて、取得部201より得られるボリュームデータから左心室境界を検出する。本実施形態の境界検出部203は、以下のように左心室の内膜境界と外膜境界を検出する。
第1に、境界検出部203が、動的形状モデルで表された境界モデルをボリュームデータに当てはめる。
第2に、境界検出部203が、ボリュームデータに当てはめた境界モデルの位置における境界パターン(以下、「入力境界パターン」という)を求める。入力境界パターンは、ボリュームデータ中の画素値によって表現されている。
第3に、境界検出部203が、境界の検出に必要なエネルギーを求める。このエネルギーは、入力境界パターンと、上記で説明した境界パターンモデルとの誤差を求める。「誤差」としては、例えば、二乗誤差、絶対和、入力境界パターンの各画素の輝度値と境界パターンモデルにおける各画素の輝度値の差などである。
第4に、境界検出部203が、前記エネルギーを低下させるように、動的形状モデルで表された境界モデルを変形させる。変形は、例えば、動的形状モデルを表す平均形状の線形和の重みを変化させる。エネルギーを低下させることは、境界パターンモデルに類似するように境界モデルを変形させることに等しい。
第5に、境界検出部203は、前記エネルギー(境界パターンと境界パターンモデルとの誤差)が、最小になるように変形した境界モデルを求める。そして、この境界モデルによって検出された左心室の内膜境界と外膜境界とが、最終的に検出する内膜境界と外膜境界である。
次に、ステップ24では、評価部204が、最小になったエネルギー(以下、「最終エネルギー」という)を、予め定めた閾値との比較を行う。表示部205は閾値との比較結果(すなわち評価結果)を表示してもよい。ここでは閾値より低いか否かを評価し、その結果によって次のように行う。最終エネルギーが閾値以下である場合には、ステップ25に進む(Yesの場合)。最小エネルギーが閾値より高い場合には、ステップ26に進む(Noの場合)。
ステップ25では、最小エネルギーが前記閾値以下であるので、表示部205は、左心室座標系、左心室境界、ボリュームデータを使って断面画像と境界検出結果を表示する。
ステップ26では、最小エネルギーが前記閾値より高いので、表示部205は、境界検出が正確でない可能性が高いことをユーザに通知する。すなわち、最終エネルギーが高いということは、境界パターンモデルと異なるパターンを示す位置で左心室境界が検出されたことを意味する。この場合、左心室座標系の検出が誤っているため、正しい境界位置を検出できなかったと判断できるため、左心室境界を検出できない旨を表示する。この場合、再度、条件を変えて左心室座標系の検出を行うなどの対応を自動的に行うことが可能となる。
本実施形態によれば、座標系検出部202で左心室座標系を検出し、左心室座標系に基づいて境界検出部203で左心室境界を検出することで高精度の境界検出が可能となり、表示部205で境界検出結果の確認をわかりやすくすることが可能となる上、境界検出結果の可否を判定して表示する、又は、再度処理をやり直すなどのフェールセーフ機能を提供できる。
なお、上記では境界パターンモデルに関して、複数の学習用ボリュームデータを平均化したパターンで説明したが、複数の学習用ボリュームデータから画像に関するプロファイルを集めておけば、境界パターン間の標準偏差、共分散、部分空間、又は、収集した境界に関するプロファイルと、境界とは無関係なプロファイルとを使って学習される識別器など、既知のパターン認識技術を利用し境界パターンモデルを構築できる。
第5の実施形態
第5の実施形態の医用画像処理装置20について説明する。
本実施形態の医用画像処理装置20は、第4の実施形態の医用画像処理装置20の第1の変更例である。
本実施形態では、自動検出処理に対してフェールセーフ機能を提供する。例えば、取得部201で取得するボリュームデータが、心臓全体が十分に捉えられていない場合や、実際には心臓を撮像したものでない場合など、ボリュームデータ自体の内容によっては、左心室座標系の検出が失敗する場合がある。左心室座標系の検出に失敗した場合は、表示部205において左心室座標系が検出できないことをユーザに通知する。そして、画像座標系を基準としてボリュームデータを表示することにより、左心室座標系の検出に使ったボリュームデータが適切であったかをユーザに確認させる機構を備えることにより、作業ミスを軽減できる。
また、第4の実施形態のステップ26に示すように、境界検出処理後に行う最終評価で、検出された左心室境界での最終エネルギーと前記閾値との評価により、境界検出失敗の通知をユーザに与えることができる。この際、検出された境界は表示せずに、ボリュームデータのみを表示することによって、ユーザは、ボリュームデータが適切であったかをチェックしやすくできる。
また、ボリュームデータは適切であったものの、正しい左心室座標系の検出ができなかった場合は、予め定めた異なる条件で左心室座標系を再度検出できる。ここで異なる条件とは、左心室座標系を探索する範囲、探索時に使用する乱数、又は、使用する境界モデル等を変えることである。
また、医用画像処理装置20が、正しい左心室座標系が検出できなかった場合は、ユーザに左心室座標系を設定させてもよい。この場合、ユーザが左心室座標系を指示するユーザインターフェースを備え、教示が完了した後に、境界検出処理を再度実行させればよい。
以上のように、全自動検出に伴う失敗に対して、フェールセーフ機能を与えることができる。
第6の実施形態
第6の実施形態の医用画像処理装置30について図18〜図35を用いて説明する。
まず、第6の実施形態に係る医用画像処理装置30が設置される画像処理システムの構成例について説明する。図18は、第6の実施形態に係る医用画像処理装置30が設置される画像処理システムの構成例を示す図である。
図18に示す画像処理システムは、医用画像診断装置100と、画像保管装置200と、医用画像処理装置30とを有する。図18に例示する各装置は、例えば、病院内に設置された院内LAN(Local Area Network)により、直接的、又は間接的に相互に通信可能な状態となっている。例えば、画像処理システムにPACS(Picture Archiving and Communication System)が導入されている場合、各装置は、DICOM(Digital Imaging and Communications in Medicine)規格に則って、医用画像等を相互に送受信する。
医用画像診断装置100は、X線診断装置、X線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置、超音波診断装置、又はこれらの装置群等である。医用画像診断装置100により撮影される医用画像は、2次元の画像データや、3次元の画像データ(ボリュームデータ)である。または、医用画像診断装置100により撮影される医用画像は、これらの画像データが時系列に沿って撮影された2次元の動画データや3次元の動画データである。以下、医用画像診断装置100の一例であるX線CT装置が行なう撮影について、簡単に説明する。
X線CT装置は、X線を照射するX線管球と被検体を透過したX線を検出するX線検出器とを対向する位置に支持して回転可能な回転フレームを有する。X線CT装置は、X線管球からX線を照射させながら回転フレームを回転させることで、投影データを収集し、投影データからX線CT画像を再構成する。X線CT画像は、X線管球とX線検出器との回転面(アキシャル面)における断層像となる。ここで、X線検出器は、チャンネル方向に配列されたX線検出素子である検出素子列が、被検体の体軸方向に沿って複数列配列されている。例えば、検出素子列が16列配列されたX線検出器を有するX線CT装置は、回転フレームが1回転することで収集された投影データから、被検体の体軸方向に沿った複数枚(例えば16枚)のX線CT画像を再構成する。
また、X線CT装置は、回転フレームを回転させるとともに、被検体を載せた天板を移動させるヘリカルスキャンにより、例えば、心臓全体を網羅した500枚のX線CT画像をボリュームデータとして再構成することができる。或いは、例えば、検出素子列が320列配列されたX線検出器を有するX線CT装置では、回転フレームを1回転させるコンベンショナルスキャンを行なうだけで、心臓全体を網羅したボリュームデータを再構成することができる。また、X線CT装置は、ヘリカルスキャンやコンベンショナルスキャンを連続して行なうことで、X線CT画像を時系列に沿って撮影可能である。
なお、MRI装置は、位相エンコード用傾斜磁場、スライス選択用傾斜磁場及び周波数エンコード用傾斜磁場を変化させることで収集したMR信号から、任意の1断面のMRI画像や、任意の複数断面のMRI画像(ボリュームデータ)を再構成することができる。また、超音波診断装置は、超音波の2次元走査を行なう超音波プローブの位置を操作者が調整することで、任意の断面の超音波画像を生成することができる。また、超音波診断装置は、メカニカルスキャンプローブや2Dプローブを用いることで、超音波の3次元走査を行なって、3次元の超音波画像(ボリュームデータ)を生成することができる。また、X線診断装置は、X線管球とX線検出器とを支持するCアームの位置を固定した状態で撮影を行なうことで、2次元のX線画像を生成する。また、X線診断装置は、Cアームを回転させることで、3次元のX線画像(ボリュームデータ)を生成することができる。
画像保管装置200は、医用画像を保管するデータベースである。具体的には、画像保管装置200は、医用画像診断装置100から送信された医用画像を自装置の記憶部に格納し、保管する。画像保管装置200に保管された医用画像は、例えば、患者ID、検査ID、装置ID、シリーズID等の付帯情報と対応付けて保管される。
医用画像処理装置30は、例えば、病院内に勤務する医師や検査技師が医用画像の読影に用いるワークステーションやPC(Personal Computer)等である。医用画像処理装置30の操作者は、患者ID、検査ID、装置ID、シリーズID等を用いた検索を行なうことで、必要な医用画像を画像保管装置200から取得することができる。また、第6の実施形態に係る医用画像処理装置30は、医用画像を読影用に表示する他に、医用画像に対して各種画像処理を行なう装置である。具体的には、第6の実施形態に係る医用画像処理装置30は、画像診断を支援するための各種画像処理を行なう機能を有する。
なお、上述した画像処理システムは、PACSが導入されている場合にその適用が限られるものではない。例えば、画像処理システムは、医用画像が添付された電子カルテを管理する電子カルテシステムが導入されている場合にも、同様に適用される。この場合、画像保管装置200は、電子カルテを保管するデータベースである。また、例えば、画像処理システムは、HIS(Hospital Information System)、RIS(Radiology Information System)が導入されている場合にも、同様に適用される。また、画像処理システムは、上述した構成例に限られるものではない。各装置が有する機能やその分担は、運用の形態に応じて適宜変更されてよい。また、医用画像処理装置30は、医用画像を、医用画像診断装置100から直接的に取得する場合や、DVD等の記憶媒体により取得する場合であっても良い。
そして、第6の実施形態に係る医用画像処理装置30は、画像診断支援用の画像処理として、被検体の心臓を含んで撮影された入力画像において、心筋の境界を検出する。例えば、第6の実施形態に係る医用画像処理装置30は、造影剤注入後の被検体の心臓を含んで撮影された医用画像である入力画像において、心筋の境界を検出する。
ここで、入力画像は、2次元空間又は3次元空間において、心臓の形状及び造影剤による各部位の染影が、輝度値の大小により濃淡で描出された画像データである。また、心筋パフュージョン検査を行なう場合、入力画像は、連続撮影された時系列に沿った複数の造影画像データとなる。なお、以下では、心臓の心腔の中で、心機能解析を行なう上で重要となる左心室周りの心筋の境界を検出する場合について説明する。かかる場合、入力画像は、造影剤を注入後に撮影され、左心室周りの心筋の一部が少なくとも描出されていれば良い。
以下、第6の実施形態に係る医用画像処理装置30が行なう画像処理について、図19等を用いて説明する。図19は、第6の実施形態に係る医用画像処理装置30の構成例を示す図である。第6の実施形態に係る医用画像処理装置30は、図19に示すように、入力部11と、表示部12と、通信部13と、記憶部14と、制御部15とを有する。
入力部11は、マウス、キーボード、トラックボール等であり、医用画像処理装置30に対する各種操作の入力を操作者から受け付ける。具体的には、第6の実施形態に係る入力部11は、画像処理の対象となる医用画像を画像保管装置200から取得するための情報の入力を受け付ける。例えば、入力部11は、患者ID、検査ID、装置ID、シリーズID等の入力を受け付ける。また、第6の実施形態に係る入力部11は、後述する制御部15により行なわれる各種処理の条件の入力を受け付ける。また、入力部11は、心臓の3次元のボリュームデータを取得する取得部の役割も行う。
表示部12は、例えば、モニタであり、各種情報を表示する。具体的には、第6の実施形態に係る表示部12は、操作者から各種操作を受け付けるためのGUI(Graphical User Interface)や、医用画像等を表示する。
通信部13は、NIC(Network Interface Card)等であり、他の装置との間で通信を行う。例えば、通信部13は、入力部11が受け付けた患者ID等の情報を画像保管装置200に送信し、画像保管装置200から医用画像を受信する。
記憶部14は、ハードディスク、半導体メモリ素子等であり、各種情報を記憶する。具体的には、第6の実施形態に係る記憶部14は、後述する制御部15により行なわれる各種処理に用いられる情報を記憶する。より具体的には、第6の実施形態に係る記憶部14は、図19に示すように、画像記憶部141と、部位別テンプレート記憶部142と、境界パターンモデル記憶部143と、境界モデル記憶部144とを有する。
画像記憶部141は、通信部13を介して画像保管装置200から取得した医用画像や、制御部15の処理結果等を記憶する。具体的には、画像記憶部141は、心筋の境界検出対象として画像保管装置200から取得した入力画像を記憶する。例えば、画像記憶部141は、入力画像として、造影剤により染影された心臓の四腔断面像や、三腔断面像、二腔断面像、又は、造影剤により染影された心臓全体のボリュームデータを記憶する。
部位別テンプレート記憶部142は、心臓の各部位をパターンマッチングにより検出するためのテンプレートを、部位ごとに対応付けて記憶する。境界パターンモデル記憶部143は、心臓を含み、造影剤により染影された画像における心筋及び心筋境界周辺の輝度値のパターンが学習によりモデル化された境界パターンモデルを記憶する。例えば、境界パターンモデル記憶部143は、造影剤により染影された心臓を含む医用画像における心筋及び心筋境界周辺の輝度値のパターンが学習によりモデル化された境界パターンモデルを記憶する。境界モデル記憶部144は、境界パターンモデルの学習に用いられた画像における心筋の境界形状が学習によりモデル化された境界モデルを記憶する。例えば、境界モデル記憶部144は、境界パターンモデルの学習に用いられた医用画像における心筋の境界形状が学習によりモデル化された境界モデルを記憶する。なお、部位別テンプレート、境界パターンモデル及び境界モデルについては、後に詳述する。
制御部15は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の電子回路、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路であり、医用画像処理装置30の全体制御を行なう。
例えば、第6の実施形態に係る制御部15は、表示部12に対するGUIの表示や医用画像等の表示を制御する。また、例えば、制御部15は、画像保管装置200との間で通信部13を介して行なわれる送受信を制御する。また、例えば、制御部15は、医用画像等の各種データの記憶部14への格納や読み込み等を制御する。
また、例えば、制御部15は、医用画像に対して、各種画像処理を行なう。画像処理の一例として、制御部15は、ボリュームデータである医用画像を表示部12に表示するための各種レンダリング処理を行なう。制御部15は、レンダリング処理として、ボリュームデータの3次元情報を反映した2次元画像を生成するボリュームレンダリング処理や、断面再構成法(MPR:Multi Planer Reconstruction)により、ボリュームデータからMPR画像を再構成する処理を行なう。
例えば、X線CT装置が撮影したボリュームデータであり、造影剤により染影された心臓を含むボリュームデータにおいて、心臓の四腔断面像を心筋の境界検出対象とする場合、入力画像は、4つの心腔が描出される断面でボリュームデータを切断した断面像となる。このため、操作者は、入力部11を介して、例えば、ボリュームデータの直交3断面(アキシャル面、コロナル面、サジタル面)の表示要求を入力する。制御部15は、ボリュームデータから直交3断面を生成し、表示部12に表示させる。操作者は、直交3断面を参照して、右心房、右心室、左心房及び左心室の心腔が全て描出される断面を設定する。制御部15は、設定された断面を用いて四腔断面像(MPR画像)を再構成し、再構成した四腔断面像を入力画像として、画像記憶部141に格納する。ここで、操作者により設定される断面は、例えば、表示されたコロナル面に平行な断面や、オブリーク断面となる。図20は、入力画像の一例を示す図である。
図20に例示する入力画像は、X線CT画像により撮影されたボリュームデータにおける心臓の四腔断面像である。図20に示すように、入力画像には、心筋で囲まれた4つの心腔である右心房、右心室、左心房及び左心室が含まれ、更に、右心房と右心室との境界に位置する三尖弁や、左心房と左心室との間に位置する僧帽弁等が含まれている。
そして、第6の実施形態に係る制御部15は、図19に示すように、座標系検出部151と、部位領域検出部152と、算出部153と、補正部154と、境界検出部155とを有し、これら処理部の機能により、入力画像における心筋の境界を検出する。例えば、第6の実施形態に係る制御部15は、図20に示す入力画像である四腔断面像における左心室周囲の心筋の境界を検出する。以下では、境界検出に用いられる境界パターンモデル及び境界モデルについて詳細に説明した後、座標系検出部151、部位領域検出部152、算出部153、補正部154及び境界検出部155の処理について詳細に説明する。
境界パターンモデル及び境界モデルは、境界検出を行なうために、同一の学習用画像群を用いて事前に作成され、記憶部14に格納される。具体的には、学習用画像群から境界モデルが作成され、その後、学習用画像群及び境界モデルを用いて境界パターンモデルが作成される。なお、本実施形態では、制御部15が境界パターンモデル及び境界モデルを作成し、記憶部14に格納する場合について説明する。但し、本実施形態は、医用画像処理装置30以外の装置が境界パターンモデル及び境界モデルを作成する場合であっても良い。かかる場合、例えば、制御部15は、通信部13を介して境界パターンモデル及び境界モデルを受信し、記憶部14に格納する。或いは、例えば、制御部15は、記憶媒体が記憶する境界パターンモデル及び境界モデルを読み込んで、記憶部14に格納する。図21は、学習用画像群の一例を示す図である。
例えば、学習用画像群は、図21に示すように、心臓の造影CT検査により撮影された複数の被検体それぞれの四腔断面像である。
かかる場合、第6の実施形態に係る境界パターンモデルは、図21に示す四腔断面像群における左心室周囲の心筋及び心筋境界周辺の輝度値のパターンが学習によりモデル化されたデータとなる。また、第6の実施形態に係る境界モデルは、図21に示す四腔断面像群における左心室周囲の心筋の境界形状が学習によりモデル化されたデータとなる。図22は、境界モデルの作成例を示す図であり、図23は、境界パターンモデルの作成例を示す図である。
例えば、境界モデルでは、心筋境界として、左心室の内膜と外膜との2つの境界が合わせて表現される。ここで、第6の実施形態に係る境界モデルでは、学習用画像が2次元データであることから、各境界が2次元の点群で表される。例えば、モデル作成者は、図22の上図に示すように、学習用画像群を構成する四腔断面像それぞれで、左心室の内膜上の点と左心室の外膜上の点とをペアとし、かかるペアを心筋に沿って複数設定する。各学習用画像上で設定されたペア数を「N」とすると、学習用画像それぞれの左心室の内膜形状は、「N」個のベクトルで表現され、学習用画像それぞれの左心室の外膜形状は、「N」個のベクトルで表現される。すなわち、学習用画像ごとの「2N」個のベクトルが、境界形状を学習するための境界ベクトル群となる。
但し、図21に示すように、学習用画像群を構成する四腔断面像それぞれの大きさや方向は、異なる。このため、各境界ベクトル群で表現される形状は、それぞれ異なる画像座標系により表現されたものとなる。そこで、境界モデルの作成では、各学習用画像で求められる左心室座標系を用いた形状の正規化を行なう。
境界モデルの作成では、制御部15は、左心室の長軸と、左心室中心と、長軸に直交する短軸とを各学習用画像で求める。例えば、制御部15は、僧帽弁の位置と左心室の心尖部とを結ぶ線分を長軸とし、かかる線分の中点を左心室中心位置する。そして、制御部15は、例えば、長軸方向に直交し、右心室に向かう方向を短軸方向とする。これにより、各学習用画像において、図22の左下図に示すように、中心位置ベクトルと、中心位置を原点とする長軸ベクトル及び短軸ベクトルとで定義される左心室の直交座標系が求められる。そして、制御部15は、各学習画像で求められた左心室座標系のスケールを、左心室中心位置から左心室の心尖部までの長さを「1」とすることで、正規化直交座標系を求める。そして、制御部15は、学習画像ごとに、正規化直交座標系により境界ベクトル群の座標系を変換する。これにより、制御部15は、正規化直交座標系により正規化された学習用境界ベクトル群を求める。
そして、制御部15は、例えば、学習用境界ベクトル群から、統計的形状学習方法である「Active Shape Model」による形状モデルにより任意の形状を表現するための平均形状及び形状基底ベクトルを求める。制御部15は、平均形状及び形状基底ベクトルを境界モデルとして境界モデル記憶部144に格納する。例えば、境界モデルとしての平均形状は、図22の右下図において2つの点線で示すように、左心室の内膜形状と外膜形状の平均的な形状を表現するベクトル群となる。
なお、「Active Shape Model」による形状モデルでは、平均形状を「xバー」とし、形状基底ベクトルを「Φ」とし、重み付け係数を「b」とすると、任意の形状「x」を、以下の式(2)により生成することができる。
また、境界パターンモデルを作成する場合、制御部15は、ペアとして設定されている内膜境界点及び外膜境界点を通る線分上における輝度値プロファイルの切り出しを各学習用画像で行なう。制御部15は、内膜境界点及び外膜境界点のペアが複数設定されていることから、1つの学習用画像から複数の輝度値プロファイルを切り出す。そして、制御部15は、各学習用画像それぞれから切り出した複数の輝度値プロファイルを用いて、輝度値のパターン学習を行なう。例えば、制御部15は、図22の上図に示した学習用画像に設定された2点(内膜境界点及び外膜境界点)のペアを用いて、輝度値プロファイルの切り出しを行なう。
輝度値プロファイルに用いられる線分は、例えば、図23の左上図に示すように設定される。まず、制御部15は、内膜境界点及び外膜境界点を結ぶ線分を内側(左心室内腔側)及び外側(左心室外側)に延長した直線を設定する。そして、制御部15は、設定した直線において、内外膜間の距離と同じ距離分だけ内側に位置する点(内側点)と、内外膜間の距離と同じ距離分だけ外側に位置する点(外側点)とを設定する。そして、制御部15は、図23の左上図に示すように、内側点と外側点とを結ぶ線分上の輝度値プロファイルを切り出す。ここで、図23の左上図に示すように、内側点と内膜境界点との間は、左心室内腔に対応し、内膜境界点及び外膜境界点との間は、心筋に対応し、外膜境界点と外側点との間は、左心室外に対応する。制御部15は、例えば、内側点から外側点に向かう方向で輝度値プロファイルを切り出す。
ここで、制御部15は、1つの学習用画像において内側点と外側点とを結ぶ線分を複数設定する。これにより、制御部15は、図23の右上図に示す2つの一点鎖線で囲まれる範囲の輝度値を、心筋境界周辺領域における輝度値パターンとして取得する。そして、制御部15は、各学習用画像における心筋境界周辺領域における輝度値パターンを学習することで、境界パターンモデルを作成する。
例えば、制御部15は、各学習用画像の左心室座標系を正規化直交座標系に変換することで、学習用画像間で対応するペアを特定する。そして、例えば、制御部15は、特定したペア間で、輝度値プロファイルの平均値を算出することで、境界パターンモデルを作成する。或いは、制御部15は、境界パターンモデルとして、輝度値プロファイルの平均値及び標準偏差を算出する。
図23の下図は、上述した処理により作成される境界パターンモデルの一例を示す。境界パターンモデルは、ペア(P)ごとに、左心室内腔から心筋を経て左心室外へと向かう方向で画素の輝度値を配列した輝度値列となる。また、制御部15は、輝度値列において、各輝度値の画素が位置する部位「左心室内腔、心筋、左心室外」を対応付ける。また、例えば、制御部15は、輝度値列の配列順(ペアの配列順)を「側壁、心尖部、中隔へと向かう順」とする。
これにより、例えば、境界パターンモデルは、図23の下図に示すように、「P:1」の輝度値列として、左心室内腔を構成する10個の画素の輝度値「a1〜a10」と、心筋を構成する10個の画素の輝度値「a11〜a20」と、左心室外を構成する10個の画素の輝度値「a21〜a30」とを記憶する。なお、図23の下図に示すように、境界パターンモデルでは、左心室外の部位が心臓外であるのか、右心室内腔であるのかも対応付けても良い。図23の下図に示す一例では、左心室外を構成する10個の画素の輝度値「a21〜a30」は、「心臓外」として対応付けられる。
また、内外膜間の距離が一定でないことから、輝度値列長は、ペア(P)ごとに異なる。例えば、境界パターンモデルは、「P:200」の輝度値列として、左心室内腔を構成する13個の画素の輝度値と、心筋を構成する13個の画素の輝度値と、左心室外を構成する13個の画素の輝度値とを記憶する。もしくは、輝度値列長を固定にし、輝度値列を作成するために取得する画素の間隔を内外膜間の距離に応じて異なるようにしても良い。かかる場合、例えば、「P:1」と「P:2」とで各輝度値列を構成する画素数は同じであり、「P:1」の輝度値「a1」と「a2」とが取得される間隔と、「P:2」の輝度値「a31」と「a32」とが取得される間隔は異なる。制御部15は、図23の下図に例示した境界パターンモデルを、境界パターンモデル記憶部143に格納する。制御部15は、後段の処理において、「P:1」の輝度値列の1番目の画素が輝度値「a1」の左心室領域の画素であり、15番目の画素が輝度値「a15」の心筋領域の画素であるといった情報を境界パターンモデルから取得することができる。
そして、図19に示す座標系検出部151と、部位領域検出部152と、算出部153と、補正部154と、境界検出部155とは、事前に格納された境界パターンモデルと境界モデルとを用いて、入力画像の心筋の境界を検出する。まず、座標系検出部151は、入力画像から、当該入力画像における心臓の位置姿勢を示す左心室座標系として、少なくとも心臓の長軸を検出する。第6の実施形態では、座標系検出部151は、入力画像から、左心室座標系として、少なくとも左心室の長軸を検出する。また、第6の実施形態では、座標系検出部151は、長軸とともに、入力画像における心臓の短軸を左心室座標系として検出する。
以下、座標系検出部151が行なう情報検出方法を第1の情報検出方法及び第2の情報検出方法の2つに大別して説明する。第1の情報検出方法を行なう場合、座標系検出部151は、入力画像から僧帽弁の位置と心尖部の位置とを検出し、僧帽弁の位置と心尖部の位置とを結ぶ線分の中点を左心室中心位置とする。そして、座標系検出部151は、左心室中心位置から心尖部位置までのベクトルを長軸として検出する。具体的には、座標系検出部151は、上述した部位別テンプレート記憶部142に予め格納されたパターンマッチング用の部位ごとのテンプレートを用いる。
図24は、部位別テンプレートの一例を示す図である。例えば、部位別テンプレート記憶部142は、図24に示すように、予め学習された心尖部(図中の点線丸を参照)の周辺の輝度パターンを心尖部テンプレートとして記憶する。また、例えば、部位別テンプレート記憶部142は、図24に示すように、予め学習された僧帽弁(図中の点線丸を参照)の周辺の輝度パターンを僧帽弁テンプレートとして記憶する。
座標系検出部151は、入力画像と、僧帽弁テンプレートとをパターン照合して、僧帽弁位置を検出する。同様にして、座標系検出部151は、入力画像と、心尖部テンプレートとをパターン照合して、心尖部の位置を検出する。図25は、左心室座標系の一例を示す図である。座標系検出部151は、図25に示すように、左心室の中心位置と、長軸とを左心室座標系として検出する。これにより、座標系検出部151は、入力画像の左心室座標系における原点と長軸ベクトルとを検出する。
また、第1の情報検出方法を行なう場合、座標系検出部151は、更に、入力画像である四腔断面像における短軸を検出する。具体的には、座標系検出部151は、長軸検出と同様に、部位別テンプレートを用いる。例えば、座標系検出部151は、部位別テンプレートとして右心室の角点テンプレートを用いる。図26は、短軸検出に用いられる部位の一例を示す図である。ここで、右心室の角点とは、具体的には、図26に例示するように、左心室及び右心室が描出された二腔断面像において、右心室外周で最も外側に位置する点のことである。座標系検出部151は、入力画像と、角点テンプレートとをパターン照合して、右心室の角点の位置を検出する。座標系検出部151は、右心室の角点から長軸に直交する線分を求め、求めた線分を原点まで平行移動させることで、図25に示すように、短軸を設定する。これにより、座標系検出部151は、入力画像の左心室座標系における短軸ベクトルを検出する。
なお、第1の情報検出方法で四腔断面像の短軸を検出する場合、座標系検出部151は、右心室の角点の他に、三尖弁の位置を、三尖弁テンプレートを用いて検出しても良い。なお、第1の情報検出方法で三腔断面像の短軸を検出する場合、座標系検出部151は、左心室から大動脈へと血液が流れ込む左心室流出路を検出する。また、第1の情報検出方法で二腔断面像の短軸を検出する場合、座標系検出部151は、前壁点を検出する。
一方、第2の情報検出方法で長軸を検出する場合、座標系検出部151は、予め学習した長軸周辺の輝度パターンである長軸テンプレートと、入力画像とをパターン照合して長軸を検出する。なお、上記の「長軸周辺」とは、長軸から一意に定まる矩形領域を示す。また、第2の情報検出方法で短軸を検出する場合、座標系検出部151は、予め学習した短軸周辺の輝度パターンである短軸テンプレートと、入力画像とをパターン照合して短軸を検出する。
なお、第6の実施形態は、上述した方法以外の方法により長軸及び短軸が左心室座標系として検出される場合であっても良い。また、第6の実施形態は、長軸の情報だけが左心室座標系として検出される場合であっても良い。また、左心室座標系を検出する方法は、上述した方法に限定されるものではなく、任意の方法を用いることができる。
そして、部位領域検出部152は、左心室座標系を用いて、入力画像における所定の部位領域を検出する。具体的には、部位領域検出部152は、所定の部位領域として、心室、心房、左室流出路、弁輪、乳頭筋、心筋及び冠動脈の少なくとも1つを含む領域を検出する。更に、第6の実施形態では、部位領域検出部152は、左心室座標系を用いて、複数の部位領域を検出する。第6の実施形態では、部位領域検出部152が、左心室座標系を用いて、左心室領域(左心室内腔領域)と、心筋領域と、右心室領域(右心室内腔領域)とを検出する場合について説明する。なお、部位領域には、少なくとも1つの画素が含まれる。図27〜図31は、部位領域の検出方法を示す図である。
まず、部位領域検出部152は、入力画像において、左心室座標系に含まれる長軸により定まる所定の範囲を部位領域として検出する。左心室領域の検出では、例えば、図27に示すように、部位領域検出部152は、長軸の一部の範囲を左心室領域として検出する。図27で例示する方法では、部位領域検出部152は、長軸上の実線部分を左心室領域として検出する。或いは、部位領域検出部152は、長軸を含む所定サイズの矩形を左心室領域として検出する。なお、上記の長軸上の一部の範囲や矩形のサイズは、統計的に求められる値であり、かかる値は、予め部位領域検出部152に設定される。
右心室の検出は、長軸を用いる第1検出法と、長軸及び短軸を用いる第2検出法とがある。右心室領域の第1検出法では、部位領域検出部152は、例えば、図28の斜線部分で示す長軸から所定の距離に位置する所定の範囲内の領域を右心室領域として検出する。図28で例示する方法では、左心室中心と心尖部との線分の中点を始点とし、中点から画像上、左側に向かって所定の距離に終点が位置する「ベクトルL1」が設定される。図28で例示する方法では、「ベクトルL1」は、長軸に直交するベクトルである。そして、例えば、部位領域検出部152は、「ベクトルL1」の終点を基準に、「ベクトルL1」に直交する2本の線分が長辺となり、「ベクトルL1」に平行な2本の線分が短辺となる所定サイズの矩形を左心室領域として検出する。なお、中点から終点までの距離及び矩形のサイズの値は、統計的に求められる値であり、かかる値は、予め部位領域検出部152に設定される。また、入力画像における左右方向は、例えば、DICOM規格に則って、医用画像に付帯情報として付与されている医用画像診断装置100の座標系及び被検体の体位等の情報から取得可能である。
右心室領域の第2検出法は、短軸に関する情報が左心室座標系として検出されている場合に行なわれる。すなわち、第2検出法では、部位領域検出部152は、入力画像において、長軸の方向と短軸の方向とにより定まる所定の範囲を部位領域(右心室領域)として検出する。例えば、右心室領域の第2検出法では、部位領域検出部152は、図29において実線で示すように、短軸ベクトルに平行であり、左心室中心と心尖部との線分の中点を始点とする「ベクトルL2」上の線分を右心室領域として検出する。或いは、部位領域検出部152は、「ベクトルL2」を含む所定サイズの矩形を右心室領域として検出する。なお、「ベクトルL2」の始点位置や、「ベクトルL2」上の線分の位置及び長さや、矩形のサイズは、統計的に求められる値であり、かかる値は、予め部位領域検出部152に設定される。
心筋領域の検出は、長軸を用いる第1検出法と、上述した境界モデルを用いる第2検出法とがある。心筋領域の第1検出法では、部位領域検出部152は、例えば、図30において斜線の矩形で示すように、長軸から所定の距離に位置する所定サイズの領域を心筋領域して検出する。図30で例示する方法では、左心室中心から長軸上で所定の距離に位置する点を始点とし、始点から画像上、右側に向かって所定の距離に終点が位置する「ベクトルL3」が設定される。図30で例示する方法では、「ベクトルL3」は、長軸に直交するベクトルである。そして、例えば、部位領域検出部152は、「ベクトルL3」の終点を基準に、「ベクトルL3」に直交する2本の線分が長辺となり、「ベクトルL3」に平行な2本の線分が短辺となる所定サイズの矩形を心筋領域として検出する。なお、始点及び終点の位置及び矩形のサイズは、統計的に求められる値であり、かかる値は、予め部位領域検出部152に設定される。また、入力画像における左右方向は、上述したように、医用画像の付帯情報から取得可能である。
また、心筋領域の第2検出法では、部位領域検出部152は、図31で2本の点線で示す境界モデル(平均形状)を、入力画像の左心室座標系に変換する。そして、部位領域検出部152は、変換後の境界モデルを左心室座標系(左心室の中心位置及び心尖部の位置)に基づいて、入力画像に当てはめる。境界モデルは、例えば、長軸を中心とした椀状であり、入力画像の長軸の情報と、変換後の境界モデルの長軸の情報とを用いることで、一意に当てはめることができる。そして、部位領域検出部152は、当てはめた境界モデルの中心線(図31に示す実線の曲線を参照)を求め、当該中心線の一部を心筋領域として検出する。なお、上記の処理により決定される心筋領域はおおまかな領域であり、第6の実施形態は、中心線以外にも、当てはめた境界モデル内の矩形等が心筋領域として検出される場合であっても良い。また、心筋領域の第2検出法を行なう場合、部位領域検出部152は、後段の境界検出部155が繰り返して実行する境界モデルの当てはめ処理における途中段階の処理結果から、心筋領域を検出する場合であっても良い。
また、例えば、複数の境界モデルが格納されている場合、部位領域検出部152は、複数の境界モデルの中から、入力画像の左心室座標系と最も一致する境界モデルを選択し、選択した境界モデルを用いて、心筋領域を検出しても良い。
なお、心筋領域の第3検出法として、部位領域検出部152は、短軸の情報を用いる場合であっても良い。例えば、部位領域検出部152は、短軸ベクトルに平行な直線上で、統計的に心筋とされる所定の範囲が心筋領域として検出する場合であっても良い。
また、部位領域を検出する方法は、上述した方法に限定されるものではなく、左心室座標系を用いて部位領域を特定できる方法であれば、任意の方法を用いることができる。
そして、算出部153は、左心室座標系に基づいて、所定の部位領域の造影剤濃度を示す染影度を算出する。第6の実施形態では、算出部153は、部位領域検出部152により検出された部位領域を用いて染影度算出処理を行なう。なお、第6の実施形態は、例えば、長軸から左心室領域が一意に特定されることから、部位領域検出部152の処理を行なわず、算出部153の処理が行なわれる場合であっても良い。
入力画像中において造影剤の濃度は輝度値と相関があり、例えば、造影剤の濃度が大きいほど輝度値は大きくなるので、染影度は、入力画像中の輝度値から算出可能である。
従って、算出部153は、部位領域を構成する複数の画素の輝度値列における統計的な代表値を、当該部位領域の染影度として算出する。例えば、算出部153は、部位領域を構成する全画素の輝度値を輝度値列として設定する。或いは、例えば、算出部153は、部位領域を構成する全画素の中から、所定数の画素をランダムに選択し、選択した複数画素の輝度値を輝度値列として設定する。そして、算出部153は、例えば、輝度値列の中央値を染影度とする。
なお、統計的な代表値は、中央値に限定されるものではなく、例えば、輝度値列の最頻値、最大値、最小値、平均値、又は、標準偏差等の値であっても良い。また、染影度とする代表値は、画像中のノイズの影響を除去するために、輝度値列を輝度値の順にソートし、ソートした輝度値列における上位N番目の値として算出される場合であっても良い。また、染影度とする代表値は、例えば、平均値及び標準偏差といったように、複数の代表値の組み合わせであっても良い。
そして、補正部154は、部位領域の染影度を用いて、入力画像の輝度値と境界パターンモデルの輝度値とが当該部位領域において近接する補正を行なう。具体的には、第6の実施形態に係る補正部154は、染影度を用いた補正処理を境界パターンモデルに対して行なって、補正境界パターンモデルを生成する。より具体的には、第6の実施形態に係る補正部154は、部位領域の染影度に基づいて、当該部位領域の境界パターンモデルの輝度値を、当該部位領域の入力画像の輝度値に近接させる補正を行なって、補正境界パターンモデルを生成する。
境界パターンモデルの補正方法は、補正対象の部位領域ごとに異なる。以下、左心室領域、右心室領域、心筋領域の順に、境界パターンモデルの補正方法について説明する。図32は、第6の実施形態に係る補正処理を説明するための図である。以下では、境界パターンモデルの「i」番目の画素の輝度値が「ai」であり、補正部154が「ai」を補正した値を「pi」として説明する。
まず、境界パターンモデルの「i」番目の画素が左心室内腔の画素である場合、補正部154は、例えば、以下の式(3)により、「pi」を算出する。
ここで、式(3)において、「dl」は、左心室領域の染影度である。また、「al」は、境界パターンモデル内で、「ai」と同じ輝度値列において左心室内腔として対応付けられている全画素の輝度値の代表値(例えば、平均値)である。また、「an」は、図32の(A)に示すように、「ai」と同じペアの輝度値列において、心筋の中でも内膜境界点として対応付けられている画素の輝度値である。なお、補正部154は、「ai」と同じペアの輝度値列において、心筋として対応付けられている画素の中で、先頭の画素を内膜境界点として、「an」を取得することができる。
例えば、図32の(A)に示すように、「ai」が「dl」より大きい場合、補正部154は、式(3)による演算処理を行なうことで、「an」を基準として、「ai」が「dl」に近接した値となるように、「ai」の値を小さくした値「pi」を算出する。
また、境界パターンモデルの「i」番目の画素が左心室外であり右心室内腔の画素である場合、補正部154は、例えば、以下の式(4)により、「pi」を算出する。
ここで、式(4)において、「dr」は、右心室領域の染影度である。また、「ar」は、境界パターンモデル内で、「ai」と同じ輝度値列において右心室内腔として対応付けられている全画素の輝度値の代表値(例えば、平均値)である。また、「ap」は、図32の(B)に示すように、「ai」と同じペアの輝度値列において、心筋の中でも外膜境界点として対応付けられている画素の輝度値である。なお、補正部154は、「ai」と同じペアの輝度値列において、心筋として対応付けられている画素の中で、最後尾の画素を外膜境界点として、「ap」を取得することができる。
例えば、図32の(B)に示すように、「ai」が「dr」より大きい場合、補正部154は、式(4)による演算処理を行なうことで、「ap」を基準として、「ai」が「dr」に近接した値となるように、「ai」の値を小さくした値「pi」を算出する。なお、境界パターンモデルにて左心室外の部位が心臓外であるのか、右心室内腔であるのかが対応づけられていない場合、補正部154は、「ai」の輝度値と閾値とを比較することで、「i」番目の画素が心臓外の画素であるのか、右心室内腔の画素であるのかを判別する。ここで、閾値は、統計的に求められる値である。
また、境界パターンモデルの「i」番目の画素が心筋の画素である場合、補正部154は、例えば、以下の式(5)により、「pi」を算出する。
ここで、式(5)において、「dm」は、心筋領域の染影度である。また、「am」は、境界パターンモデル内で、「ai」と同じ輝度値列において心筋として対応付けられている全画素の輝度値の代表値(例えば、平均値)である。
例えば、図32の(C)に示すように、「ai」が「dm」より小さい場合、補正部154は、式(5)による演算処理を行なうことで、「ai」が「dm」に近接した値となるように、「ai」の値を大きくした値「pi」を算出する。
上記の式(3)〜(4)による演算処理により、補正部154は、補正境界パターンモデルを生成する。図35は、境界パターンモデルの補正例を示す図である。図35に例示する輝度値プロファイルは、左心室内腔の画素から右心室内腔の画素に向かう輝度値プロファイルであり、左心室周囲の心筋である中隔の周辺の輝度値をプロットしたものである。図35に示す一例では、補正前の境界パターンモデルの輝度値プロファイルと、補正後の境界パターンモデルの輝度値プロファイルとで、輝度値の値が左心室、心筋及び右心室それぞれで、大きくなっていることを示している。これは、入力画像の染影度が、学習用画像群の染影度と比較して、高かったことを示すものである。
なお、上述した境界パターンモデルの補正方法では、境界パターンモデルの輝度値を染影度によりラウンディング処理する場合であっても良い。また、境界パターンモデルを補正する方法は、上記の式(3)〜式(5)による演算処理に限定されるものではない。染影度を用いた補正処理を、加算処理、減算処理、乗算処理、除算処理、又はラウンディング処理の組み合わせにより行なうことで、境界パターンモデルの輝度値が入力画像の輝度値に近接するように補正を行なうことが可能であるならば、補正部154は、任意の演算処理を行なっても良い。
そして、境界検出部155は、補正部154による補正後のデータを用いて、入力画像における心筋の境界を検出する。すなわち、第6の実施形態に係る境界検出部155は、補正境界パターンモデルを用いて、入力画像における心筋の境界を検出する。具体的には、第6の実施形態に係る境界検出部155は、補正境界パターンモデル及び境界モデルを用いて、入力画像における心筋の境界を検出する。より具体的には、第6の実施形態に係る境界検出部155は、補正境界パターンモデル及び境界モデルを用いて、入力画像における左心室周辺の心筋の境界を検出する。
例えば、境界検出部155は、境界モデルを様々に変化させながら入力画像に当てはめた際の境界周辺の輝度パターンと、補正境界パターンモデルとのマッチングを行なう。そして、境界検出部155は、境界モデルを変化させた境界形状の中で、補正境界パターンモデルと最もマッチングした輝度パターンが得られた境界形状を探索することで、入力画像における左心室周辺の心筋の境界を検出する。
まず、境界検出部155は、式(2)で説明した「b」を初期的に「0」とし、初期エネルギーの値を無限大とする(処理1)。そして、境界検出部155は、現在の「b」により形状「x」を生成する(処理2)。そして、境界検出部155は、生成した形状「x」の座標系を、座標系検出部151の処理により求められた入力画像の左心室座標系に変換する(処理3)。
そして、境界検出部155は、座標変換後の形状「x」を、入力画像の左心室座標系を用いて入力画像に当てはめて、境界周辺の輝度パターンを切り出す(処理4)。そして、境界検出部155は、切り出した輝度パターンと補正境界パターンモデルとの誤差(例えば、正規化二乗誤差)を算出して、現在のエネルギーを計算する(処理5)。そして、境界検出部155は、現在のエネルギーと前回のエネルギーとの大小関係を判定する(処理6)。境界検出部155は、処理6の結果、現在のエネルギーが前回のエネルギーより大きければ、処理を終了する。
一方、現在のエネルギーが前回のエネルギーより小さければ、境界検出部155は、現在の「b」の値を更新する(処理7)。1回目では、現在のエネルギーが初期エネルギーより小さくなるので、処理7が行なわれる。境界検出部155は、処理2から処理7までの処理を繰り返し行なう。そして、境界検出部155は、処理6にて、現在のエネルギーが前回のエネルギーより大きいと判定した場合、前回のエネルギーを与えた「b」をエネルギーが最小となる「b」として求める。
そして、境界検出部155は、エネルギーが最小となる「b」を用いて処理3で生成した座標変換後の形状「x」を、入力画像の左心室周辺の心筋の境界として検出する。図34は、第6の実施形態に係る境界検出部による検出例を示す図である。
例えば、第6の実施形態に係る境界検出部155は、図34に示すように、入力画像である四腔断面像の左心室の心筋境界を検出し、表示部12に表示させる。
例えば、制御部15は、時系列に沿った複数の入力画像それぞれで、上述した処理を行なう。そして、例えば、制御部15は、心筋パフュージョン検査において、各入力画像で検出された左心室周辺の心筋の境界を用いて、心筋の造影剤濃度(染影度)の経時的変化を求め、心筋の血流動態を解析可能なパフュージョン画像を生成する。制御部15は、心筋境界の検出結果及びパフュージョン画像を画像記憶部141に格納し、パフュージョン画像を表示部12に表示させる。或いは、制御部15は、各入力画像で検出された左心室周辺の心筋の境界を用いて、例えば、左心室の駆出率(EF:Ejection Fraction)等、心壁運動の指標値を算出しても良い。
次に、図35を用いて、第6の実施形態に係る医用画像処理装置30の処理について説明する。図35は、第6の実施形態に係る医用画像処理装置30の処理例を示すフローチャートである。
図35に示すように、第6の実施形態に係る医用画像処理装置30は、入力画像に対する心筋境界の検出要求を受け付けたか否かを判定する(ステップS101)。ここで、心筋境界の検出要求を受け付けない場合(ステップS101否定)、医用画像処理装置30は、検出要求を受け付けるまで待機する。
一方、検出要求を受け付けた場合(ステップS101肯定)、座標系検出部151は、入力画像における心臓の左心室座標系を検出し(ステップS102)、部位領域検出部152は、左心室座標系から部位領域を検出する(ステップS103)。例えば、座標系検出部151は、入力画像における左心室の長軸及び短軸を検出し、部位領域検出部152は、入力画像の左心室領域、右心室領域及び心筋領域を検出する。
そして、算出部153は、部位領域の染影度を算出し(ステップS104)、補正部154は、染影度を用いて境界パターンモデルを補正し、補正境界パターンモデルを生成する(ステップS105)。そして、境界検出部155は、入力画像、補正境界パターンモデル及び境界モデルから、入力画像の心筋境界を検出し(ステップS106)、処理を終了する。
上述してきたように、第6の実施形態では、染影度に応じて境界パターンモデルを補正し、補正後の境界パターンモデルを用いて入力画像における心筋の境界検出を行なう。従来では、入力画像の心臓の左心室座標系を用いて、当該入力画像の心筋境界周辺の輝度パターンと境界パターンモデルとのマッチングを行なっていた。しかし、入力画像における心臓の各部位の染影度は、造影剤注入後からの経過時間や、各個人の脈拍等により異なり、境界パターンモデルは、かかる染影度のバリエーションを網羅したモデルデータではない。このため、従来の方法では、入力画像の心筋境界輝度パターンと境界パターンモデルとのマッチング精度が低下し、境界検出精度が低下する場合があった。
一方、第6の実施形態では、境界検出を行なう入力画像の各部位領域の染影度に応じて、当該部位領域における境界パターンモデルが、当該部位領域における入力画像の輝度値に近づくように補正を行なう。そして、第6の実施形態では、入力画像の心筋境界周辺の輝度パターンとのマッチングを、補正境界パターンモデルに対して行なう。これにより、第6の実施形態では、入力画像の造影剤の染影度のバリエーションの影響を軽減して、マッチング精度を向上させることができる。その結果、第6の実施形態では、心筋の境界検出精度を向上することができる。
なお、上記では、複数の部位領域それぞれの染影度により補正境界パターンモデルを生成する場合について説明したが、第6の実施形態は、1つの部位領域の染影度により補正境界パターンモデルを生成する場合であっても適用可能である。
例えば、第6の実施形態は、算出部153が長軸から特定される入力画像の左心室領域の染影度を算出し、補正部154が、左心室領域の染影度を用いて補正境界パターンモデルを生成する場合であっても良い。かかる場合の補正境界パターンモデルは、左心室領域の染影度に基づいて、左心室内腔の画素の輝度値が補正されたデータであっても、左心室内腔、心筋及び左心室外の輝度値全てが補正されたデータであっても良い。また、第6の実施形態は、境界検出部155の検出結果を用いて、再度、部位領域検出部152、算出部153及び補正部154の処理を行ない、再生成された補正境界パターンモデルを用いて、境界検出部155による境界の再検出が行なわれる場合であっても良い。部位領域検出部152、算出部153、補正部154及び境界検出部155の処理が繰り返される場合の繰り返し回数は、例えば、「3回」等の数値が、操作者により手動設定される。もしくは、部位領域検出部152、算出部153、補正部154及び境界検出部155の処理は、境界検出部155にて計算されるエネルギーが最小となるまで繰り返されても良い。
また、上記では、境界パターンモデル及び境界モデルが、四腔断面像における左心室周囲の心筋の境界検出を行なうために、四腔断面像群から作成される場合について説明した。しかし、第6の実施形態は、境界パターンモデル及び境界モデルが、二腔断面像や三腔断面像における左心室周囲の心筋の境界検出を行なうために、二腔断面像群や三腔断面像群から作成される場合であっても良い。また、境界パターンモデル及び境界モデルは、左心室だけでなく、4つの心腔それぞれで作成される場合であっても良い。かかる場合、制御部15は、入力画像において、右心房の心筋の境界や、右心室の心筋の境界、左心房の心筋の境界も検出することができる。
また、境界パターンモデル及び境界モデルは、ボリュームデータ群を学習用画像群として用いることで、3次元の情報として作成される場合であっても良い。かかる場合、境界検出の対象となる入力画像は、ボリュームデータを用いることができる。また、境界検出の対象となる入力画像が断面像である場合、制御部15は、3次元境界パターンモデル及び3次元境界モデルから、対応する断面の情報を抽出することで、境界検出を行なうことができる。
また、第6の実施形態は、学習用画像群の心位相それぞれが異なる場合であっても、例えば、拡張期に統一されている場合であっても良い。また、第6の実施形態は、学習用画像群の心位相を揃えることで、心位相ごとの境界パターンモデル及び境界モデルが作成される場合であっても良い。更に、第6の実施形態は、被検体の年齢、性別、身長及び体重等の身体的特徴ごとにグループ化して、境界パターンモデル及び境界モデルが作成される場合であっても良い。
また、第6の実施形態は、境界パターンモデル及び境界モデルを医用画像の種別ごとに作成しておくことで、X線画像やMRI画像、超音波画像を入力画像として用いることができる。
第7の実施形態
第7の実施形態の医用画像処理装置40について図36〜図37を用いて説明する。
第7の実施形態では、第6の実施形態で説明した補正処理とは異なる補正処理が行なわれる場合について、図36、図37を用いて説明する。図36は、第7の実施形態に係る医用画像処理装置40の構成例を示す図である。
図36に例示するように、第7の実施形態に係る画像処理システムは、図18を用いて説明した第6の実施形態に係る画像処理システムと同様に、医用画像診断装置100と、画像保管装置200とを有する。そして、図36に例示するように、第7の実施形態に係る画像処理システムは、第6の実施形態に係る医用画像処理装置30の代わりに、第7の実施形態に係る医用画像処理装置40を有する。
第7の実施形態に係る医用画像処理装置40は、図36に示すように、入力部21と、表示部22と、通信部23と、記憶部24と、制御部25とを有する。また、記憶部24は、図36に示すように、画像記憶部241と、部位別テンプレート記憶部242と、境界パターンモデル記憶部243と、境界モデル記憶部244とを有する。また、制御部25は、図36に示すように、座標系検出部251と、部位領域検出部252と、算出部253と、補正部254と、境界検出部255とを有し、これら処理部の機能により、入力画像における心筋の境界を検出する。
なお、図36に示す入力部21と、表示部22と、通信部23とは、図19を用いて説明した入力部11と、表示部12と、通信部13と同様の機能を有する。また、図36に示す記憶部24が有する画像記憶部241と、部位別テンプレート記憶部242と、境界パターンモデル記憶部243と、境界モデル記憶部244とは、図19に示す画像記憶部141と、部位別テンプレート記憶部142と、境界パターンモデル記憶部143と、境界モデル記憶部144と同様のデータを記憶する。
また、図36に示す制御部25が有する座標系検出部251と、部位領域検出部252と、算出部253とは、図19に示す座標系検出部151と、部位領域検出部152と、算出部153と同様の処理を行なう。また、入力部21は、心臓の3次元のボリュームデータを取得する取得部の役割も行う。
しかし、第7の実施形態において、補正部254は、補正部154とは異なり、以下の補正処理を行なう。補正部254は、染影度を用いた補正処理を入力画像に対して行なって、補正入力画像を生成する。具体的には、第6の実施形態に係る補正部254は、部位領域の染影度に基づいて、当該部位領域の入力画像の輝度値を、当該部位領域の境界パターンモデルの輝度値に近接させる補正を行なって、補正入力画像を生成する。
以下、第7の実施形態で、補正部254が行なう補正処理の一例について説明する。以下では、入力画像の「i」番目の画素の輝度値が「Ii」であり、補正部254が「Ii」」を補正した補正後の値を「I’i」として説明する。
まず、補正部254は、境界パターンモデルの画素の中で、入力画像の「i」番目の画素が位置する部位に対応する部位の画素の輝度値の平均値である「a’」を算出する。そして、補正部254は、入力画像の「i」番目の画素が位置する部位の染影度「d’」を、算出部253の処理結果から取得する。
ここで、補正部254は、例えば、算出部253が算出した部位領域の染影度において、「Ii」に最も近い染影度が算出された部位領域を、入力画像の「i」番目の画素が位置する部位であると特定する。
そして、補正部254は、以下の式(6)により「I’i」を算出する。
或いは、補正部254は、以下の式(7)により「I’i」を算出する。
かかる処理を、入力画像の全画素において行なうことで、補正部254は、補正入力画像を生成する。
なお、上述した入力画像の補正方法では、入力画像の輝度値を染影度によりラウンディング処理する場合であっても良い。また、入力画像を補正する方法は、上記の式(6)や式(7)による演算処理に限定されるものではない。染影度を用いた補正処理を、加算処理、減算処理、乗算処理、除算処理、又はラウンディング処理の組み合わせにより行なうことで、入力画像の輝度値が境界パターンモデルの値に近接するように補正を行なうことが可能であるならば、補正部254は、任意の演算処理を行なっても良い。
そして、第7の実施形態において、境界検出部255は、境界検出部155と異なり、境界パターンモデルを用いて、補正入力画像における心筋の境界を検出する。具体的には、境界検出部255は、境界パターンモデル及び境界モデルを用いて、補正入力画像における心筋の境界を検出する。
例えば、境界検出部255は、境界モデルを様々に変化させながら補正入力画像に当てはめた際の境界周辺の輝度パターンと、境界パターンモデルとのマッチングを行なう。そして、境界検出部255は、境界モデルを変化させた境界形状の中で、境界パターンモデルと最もマッチングした輝度パターンが得られた境界形状を探索することで、補正入力画像、すなわち、入力画像における左心室周辺の心筋の境界を検出する。
なお、境界検出部255が行なう補正処理の詳細は、第6の実施形態で説明した境界検出部155が行なう処理1〜処理7において、入力画像の代わりに補正入力画像を用い、補正境界パターンモデルの代わりに境界パターンモデルを用いる以外は、同様であるので説明を省略する。
次に、図37を用いて、第7の実施形態に係る医用画像処理装置40の処理について説明する。図37は、第7の実施形態に係る医用画像処理装置40の処理例を示すフローチャートである。
図37に示すように、第7の実施形態に係る医用画像処理装置40は、入力画像に対する心筋境界の検出要求を受け付けたか否かを判定する(ステップS201)。ここで、心筋境界の検出要求を受け付けない場合(ステップS201否定)、医用画像処理装置40は、検出要求を受け付けるまで待機する。
一方、検出要求を受け付けた場合(ステップS201肯定)、座標系検出部251は、入力画像における心臓の左心室座標系を検出し(ステップS202)、部位領域検出部252は、左心室座標系から部位領域を検出する(ステップS203)。
そして、算出部253は、部位領域の染影度を算出し(ステップS204)、補正部254は、染影度を用いて入力画像を補正し、補正入力画像を生成する(ステップS205)。そして、境界検出部255は、補正入力画像、境界パターンモデル及び境界モデルから、入力画像の心筋境界を検出し(ステップS206)、処理を終了する。
上述してきたように、第7の実施形態では、染影度に応じて入力画像を補正し、補正後の入力画像を境界パターンモデルのマッチング対象とすることで、入力画像における心筋の境界検出を行なう。これにより、第7の実施形態でも、入力画像の造影剤の染影度のバリエーションの影響を軽減して、マッチング精度を向上させることができる。その結果、第7の実施形態では、心筋の境界検出精度を向上することができる。
なお、補正部254は、例えば、第6の実施形態に係る部位領域検出部152の処理で説明した統計的な値を用いて、長軸や短軸の情報から入力画像の「i」番目の画素が位置する部位を特定する場合であっても良い。かかる場合、補正部254は、心腔や心壁を所定の範囲で特定することとなるので、入力画像の一部を補正した補正入力画像を生成することとなる。このため、第7の実施形態では、補正部254が、境界検出部255の検出結果を用いて、例えば、所定の範囲を拡大して、再度、補正入力画像を生成し、境界検出部255が再度、境界検出を行なう場合であっても良い。かかる場合、心筋の境界検出精度を向上するため、第7の実施形態では、補正部254による部位の再特定及び補正入力画像の再生成と、境界検出部255の境界再検出とを所定の回数繰り返して行なうことが望ましい。
また、第7の実施形態は、上述した染影度を用いた部位特定を行なう場合であっても、部位特定を一部の画素において行なって、入力画像の一部を補正した補正入力画像を生成しても良い。かかる場合も、補正部254による部位の再特定及び補正入力画像の再生成と、境界検出部255の境界再検出とを繰り返して行なうことで、心筋の境界検出精度を向上することができる。
また、第7の実施形態は、「補正対象が入力画像であり、境界検出が補正入力画像及び境界パターンモデルを用いて行なわれる」点以外、第6の実施形態で説明した内容を適用することが可能である。
以上のように、第6の実施形態及び第7の実施形態では、所定の部位領域の値が、境界パターンモデルと入力画像とで近接するように補正を行ない、補正後のデータを用いて心筋の境界検出を行なう。
ところで、上述した第6の実施形態及び第7の実施形態では、境界パターンモデル及び境界モデルを用いて、心筋の境界検出が行なわれる場合について説明した。しかし、第6の実施形態及び第7の実施形態は、境界モデルを用いずに、心筋の境界検出を行なう場合であっても良い。
ここで、境界パターンモデルは、上述したように、心臓の部位の情報が対応付けられた画素の輝度値列が複数配列された情報である。また、境界パターンモデルにおいて、輝度値列内での画素の配列順と、輝度値列の配列順とには、心臓の空間的な情報が含まれている。よって、第6の実施形態において、境界検出部155は、左心室座標系及び補正境界パターンモデルにおける心臓の空間的な情報により限定される条件下で、例えば、補正境界パターンモデルにおける画素間の距離を変動させながら補正境界パターンモデルと入力画像とを総当りでマッチングすることで、心筋の境界を検出することができる。
また、第7の実施形態において、境界検出部255は、左心室座標系及び境界パターンモデルにおける心臓の空間的な情報により限定される条件下で、例えば、補正境界パターンモデルにおける画素間の距離を変動させながら境界パターンモデルと補正入力画像とを総当りでマッチングすることで、心筋の境界を検出することができる。
また、上述した第6の実施形態及び第7の実施形態で説明した画像処理方法は、医用画像診断装置100において実行される場合であっても良い。
また、第6の実施形態の医用画像処理装置30や、第7の実施形態の医用画像処理装置40で実行される画像処理プログラムは、ROM等に予め組み込まれて提供される。
第6の実施形態の医用画像処理装置30や、第7の実施形態の医用画像処理装置40で実行される画像処理プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。
更に、第6の実施形態の医用画像処理装置30や、第7の実施形態の医用画像処理装置40で実行される画像処理プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、第6の実施形態の医用画像処理装置30や、第7の実施形態の医用画像処理装置40で実行される画像処理プログラムを、インターネット等のネットワーク経由で提供または配布するように構成しても良い。
第6の実施形態の医用画像処理装置30や、第7の実施形態の医用画像処理装置40で実行される画像処理プログラムは、上述した各部(座標系検出部、部位領域検出部、算出部、補正部、境界検出部)を含むモジュール構成となっており、実際のハードウェアとしてはCPUが上記ROMから画像処理プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、座標系検出部、部位領域検出部、算出部、補正部、境界検出部が主記憶装置上に生成されるようになっている。
以上、説明したとおり、第6の実施形態及び第7の実施形態によれば、心筋の境界検出精度を向上することができる。
変更例
なお、上記各実施形態の医用画像処理装置10,20,30,40は、例えば、汎用のコンピュータを基本ハードウェアとして用いることでも実現することが可能である。すなわち、取得部、座標系検出部、部位領域検出部、算出部、補正部、境界検出部及び表示部は、上記のコンピュータに搭載されたプロセッサにプログラムを実行させることにより実現できる。このとき、医用画像処理装置10,20,30,40は、上記のプログラムをコンピュータに予めインストールすることで実現してもよいし、CD−ROMなどの記憶媒体に記憶して、あるいはネットワークを介して上記のプログラムを配布して、このプログラムをコンピュータに適宜インストールすることで実現してもよい。また、取得部、座標系検出部及び境界検出部は、上記のコンピュータに内蔵あるいは外付けされたメモリ、ハードディスクもしくはCD−R、CD−RW、DVD−RAM、DVD−Rなどの記憶媒体などを適宜利用して実現できる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。