JP5420078B2 - JOINT BODY, SEMICONDUCTOR DEVICE EQUIPPED WITH SAME, JOINING METHOD AND MANUFACTURING METHOD USING SAME - Google Patents

JOINT BODY, SEMICONDUCTOR DEVICE EQUIPPED WITH SAME, JOINING METHOD AND MANUFACTURING METHOD USING SAME Download PDF

Info

Publication number
JP5420078B2
JP5420078B2 JP2012523476A JP2012523476A JP5420078B2 JP 5420078 B2 JP5420078 B2 JP 5420078B2 JP 2012523476 A JP2012523476 A JP 2012523476A JP 2012523476 A JP2012523476 A JP 2012523476A JP 5420078 B2 JP5420078 B2 JP 5420078B2
Authority
JP
Japan
Prior art keywords
porous body
metal porous
porosity
semiconductor element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012523476A
Other languages
Japanese (ja)
Other versions
JPWO2012004876A1 (en
Inventor
晃 前田
朗 山田
建一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2012004876A1 publication Critical patent/JPWO2012004876A1/en
Application granted granted Critical
Publication of JP5420078B2 publication Critical patent/JP5420078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Description

この発明は、パワーモジュールなどの半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device such as a power module and a manufacturing method thereof.

近年、電子モジュールに対する信頼性の要求は益々高まり、特に熱膨張係数差の大きい半導体素子と基板との接合部に対する耐ヒートサイクル特性や、半導体素子と電極間をアルミなどのワイヤで接合した際の、半導体素子とアルミワイヤとの接合部に関する断続通電試験耐性(耐断続通電試験特性)の向上が強く求められている。また、次世代省エネルギーデバイスや高性能デバイスの実現も要請されており、特にシリコンと比較して高温動作が可能なSiCデバイスの開発が活発になっている。そのため、確保すべきヒートサイクルの温度範囲は拡大し、断続通電試験の最高温度は上昇しており、さらに耐ヒートサイクル特性および耐断続通電特性に優れた接合部の開発が熱望されている。   In recent years, the demand for reliability of electronic modules has been increasing, especially in heat cycle resistance for the joint between a semiconductor element and a substrate having a large difference in thermal expansion coefficient, and when the semiconductor element and the electrode are joined with a wire such as aluminum. Therefore, there is a strong demand for improvement in intermittent current test resistance (intermittent current resistance test characteristics) regarding the junction between the semiconductor element and the aluminum wire. In addition, the realization of next-generation energy-saving devices and high-performance devices is also demanded, and development of SiC devices that can operate at a higher temperature than silicon is particularly active. For this reason, the temperature range of the heat cycle to be secured has been expanded, the maximum temperature of the intermittent current test has increased, and further development of a joint having excellent heat cycle resistance and intermittent current resistance has been eagerly desired.

このような要求に対して、例えば、半導体素子および回路基板に相当する線膨張係数の比較的小さい第1の部材と、放熱板および冷却器に相当する第1の部材よりも線膨張係数の大きい第2の部材との間を接合するための接合部材として、厚さ方向に第2の部材側から第1の部材側に向かって気孔率が大きくなるように形成された導電性多孔質体にはんだを含浸させた接合部材を用いることにより、応力を緩和する手法が開示されている(特許文献1:特開2009−277856号公報)。   In response to such a requirement, for example, the first member having a relatively small linear expansion coefficient corresponding to a semiconductor element and a circuit board and the first member corresponding to a heat sink and a cooler have a larger linear expansion coefficient. As a joining member for joining between the second member and the conductive porous body formed so that the porosity increases from the second member side toward the first member side in the thickness direction. A technique for relieving stress by using a joining member impregnated with solder is disclosed (Patent Document 1: Japanese Patent Application Laid-Open No. 2009-277856).

ところが、特許文献1に記載の多孔質体は、半導体素子の主面と平行な方向に高気孔率層が形成されており、ワイヤと接合される部分が全て金属密度の低い高気孔率層であるため、ワイヤボンド強度が低下することが問題であった。   However, the porous body described in Patent Document 1 has a high-porosity layer formed in a direction parallel to the main surface of the semiconductor element, and all the portions bonded to the wire are high-porosity layers having a low metal density. Therefore, the problem is that the wire bond strength is reduced.

これを解決するために、例えば、タングステン(W)の多孔質体の細孔内に銅(Cu)が溶浸されたCu−W合金から成る半導体放熱用基板において、該W多孔質体の累積比表面積が95%での細孔直径が0.3μm以上、かつ累積比表面積が5%での細孔直径が30μm以下であることを特徴とする半導体用放熱基板が開示されている(特許文献2:特開2003−152145号公報)。これは、半導体用放熱基板の中央部をWの少ない(Cuが多い)高熱伝導高熱膨張領域とし、周辺部をWが多い(Cuが少ない)低熱伝導低熱膨張部とすることにより、半導体素子と半導体用放熱基板との接合信頼性を向上させたものである。   In order to solve this problem, for example, in a semiconductor heat dissipation substrate made of a Cu—W alloy in which copper (Cu) is infiltrated into pores of a tungsten (W) porous body, the accumulation of the W porous body is performed. There is disclosed a semiconductor heat dissipation substrate characterized in that the pore diameter when the specific surface area is 95% is 0.3 μm or more and the pore diameter when the cumulative specific surface area is 5% is 30 μm or less (Patent Document) 2: JP 2003-152145 A). This is because the central portion of the semiconductor heat dissipation substrate is a low thermal conductive and low thermal expansion region with low W (high Cu) and high thermal conductivity and high thermal expansion region at the periphery and low thermal conductive and low thermal expansion portion with high W (low Cu). This improves the reliability of bonding with the semiconductor heat dissipation substrate.

ところが、特許文献2の半導体用放熱基板においては、細孔内が埋められてしまうため細孔による応力緩和能が失われて応力緩和効果がほとんど得られなくなるという問題があった。   However, in the semiconductor heat dissipation substrate of Patent Document 2, since the inside of the pore is filled, the stress relaxation ability by the pore is lost, and there is a problem that the stress relaxation effect is hardly obtained.

一方で、半導体素子上面とアルミワイヤとの接合部近傍において、通電時に生じる半導体素子中央部の温度上昇と、非通電時の冷却との繰り返し応力により、半導体素子上面とアルミワイヤとの接合界面にクラックが発生・進展し、破断に到ることが、接合劣化モードの主な原因となることが知られている。これを抑制し、半導体素子の耐断続通電性を向上させるためには、半導体素子上面中央部の温度上昇集中を緩和することが有効であり、例えば、半導体素子上面にはんだを介して高熱伝導板を接合し、前記高熱伝導板にアルミワイヤを接合する技術が開示されている(例えば、特許文献3:特開2005−116702号公報)。   On the other hand, in the vicinity of the junction between the upper surface of the semiconductor element and the aluminum wire, the joint interface between the upper surface of the semiconductor element and the aluminum wire is caused by repeated stress due to the temperature rise in the center of the semiconductor element that occurs during energization and cooling during non-energization. It is known that the generation and progress of cracks and the occurrence of breakage are the main causes of the bonding deterioration mode. In order to suppress this and improve the intermittent current resistance of the semiconductor element, it is effective to alleviate the temperature rise concentration at the central part of the upper surface of the semiconductor element. And a technique for joining an aluminum wire to the high thermal conductive plate is disclosed (for example, Japanese Patent Application Laid-Open No. 2005-116702).

しかしながら、このような半導体素子と高熱伝導板とのはんだ接合部には、半導体素子と高熱伝導板との熱膨張係数差に起因する熱応力でクラックが発生し、接合劣化が生じるという問題があった。   However, such a solder joint between the semiconductor element and the high thermal conductive plate has a problem that cracks are generated due to thermal stress caused by a difference in thermal expansion coefficient between the semiconductor element and the high thermal conductive plate, resulting in joint deterioration. It was.

これを改善するために、半導体素子と高熱伝導板とを、特許文献1に記載されるような厚さ方向に気孔率を変化させた金属多孔質体を介して、はんだなどの接合材で接合することが考えられる。   In order to improve this, the semiconductor element and the high thermal conductive plate are bonded with a bonding material such as solder through a porous metal body whose porosity is changed in the thickness direction as described in Patent Document 1. It is possible to do.

しかしながら、厚さ方向に気孔率を変化させた金属多孔質体を用いて、半導体素子下面と基板電極とを接合して応力緩和効果を得ることは、半導体素子自体も容易に変位できる状態にすることである。すなわち、半導体素子への応力印加により、半導体素子自体が変位することになる。半導体素子の下に応力緩和効果を持った層(クッションのような層)を形成すると、半導体素子の上からの応力に対し、半導体素子下の応力緩和層が変形するため、半導体素子自体が応力に押されて下に動くことになる。半導体素子のおもて面にワイヤを接合する際に印加する超音波エネルギーや荷重を減衰させることでもある。また、中央部と周辺部とで熱伝導率と熱膨張係数を変化させる接合部材を挿入した場合、応力緩和効果が不足する問題があった。このため、応力緩和効果を十分保ちながら、良好にワイヤボンドが可能な、半導体素子と基板との接合方法、および、半導体素子と基板との接合体が求められていた。   However, using a metal porous body whose porosity is changed in the thickness direction to obtain a stress relaxation effect by joining the lower surface of the semiconductor element and the substrate electrode makes the semiconductor element itself easily displaceable. That is. That is, the semiconductor element itself is displaced by applying stress to the semiconductor element. When a layer having a stress relaxation effect (a layer like a cushion) is formed under the semiconductor element, the stress relaxation layer under the semiconductor element is deformed with respect to the stress from above the semiconductor element. Will move down. It also means attenuating the ultrasonic energy and the load applied when bonding the wire to the front surface of the semiconductor element. Further, when a joining member that changes the thermal conductivity and the thermal expansion coefficient is inserted between the central portion and the peripheral portion, there is a problem that the stress relaxation effect is insufficient. For this reason, there has been a demand for a bonding method between a semiconductor element and a substrate, and a bonded body between the semiconductor element and the substrate, which can satisfactorily perform wire bonding while maintaining a sufficient stress relaxation effect.

特開2009−277856号公報JP 2009-277856 A 特開2003−152145号公報JP 2003-152145 A 特開2005−116702号公報JP-A-2005-116702

本発明は、発泡金属などの金属多孔質体の高い延性による優れた耐ヒートサイクル(応力緩和)特性を保ちながら、ワイヤボンド強度が向上された半導体素子と基板との接合体、接合方法、ならびに、それらを用いた半導体装置およびその製造方法を提供することを目的とする。   The present invention relates to a bonded body of a semiconductor element and a substrate with improved wire bond strength while maintaining excellent heat cycle (stress relaxation) characteristics due to high ductility of a porous metal body such as foam metal, a bonding method, and An object of the present invention is to provide a semiconductor device using them and a method for manufacturing the same.

本発明は、半導体素子と基板とが金属多孔質体を介して接合された接合体であって、前記半導体素子と前記基板との間に前記金属多孔質体が挟まれた状態で、該金属多孔質体の一方の面が接合材を介して前記半導体素子に接合され、該金属多孔質体の他方の面が接合材を介して前記基板に接合されており、前記金属多孔質体の面内方向における中心部の機械的強度が周辺部よりも高いことを特徴とする、接合体である。   The present invention is a joined body in which a semiconductor element and a substrate are joined via a metal porous body, and the metal porous body is sandwiched between the semiconductor element and the substrate. One surface of the porous body is bonded to the semiconductor element via a bonding material, and the other surface of the metal porous body is bonded to the substrate via a bonding material, and the surface of the metal porous body It is a joined body characterized in that the mechanical strength of the central portion in the inward direction is higher than that of the peripheral portion.

前記金属多孔質体の面内方向における中心部の気孔率が周辺部よりも小さいことが好ましい。   It is preferable that the porosity of the central portion in the in-plane direction of the metal porous body is smaller than that of the peripheral portion.

また、本発明は、上記の接合体を備えた半導体装置にも関する。
また、本発明は、半導体素子と基板とを金属多孔質体を介して接合する接合方法であって、前記半導体素子と前記基板との間に前記金属多孔質体が挟まれた状態で、金属多孔質体の一方の面に接合材を介して前記半導体素子を接合し、該金属多孔質体の他方の面に接合材を介して前記基板を接合し、前記金属多孔質体が、面内方向における中心部の機械的強度が周辺部よりも高い金属多孔質体であることを特徴とする、接合方法にも関する。
The present invention also relates to a semiconductor device including the above-described joined body.
Further, the present invention is a bonding method for bonding a semiconductor element and a substrate through a metal porous body, wherein the metal porous body is sandwiched between the semiconductor element and the substrate, The semiconductor element is bonded to one surface of a porous body via a bonding material, the substrate is bonded to the other surface of the metal porous body via a bonding material, and the metal porous body is in-plane The present invention also relates to a joining method, characterized in that the metallic porous body has a higher mechanical strength at the center in the direction than at the periphery.

前記金属多孔質体の面内方向における中心部の気孔率が周辺部よりも小さいことが好ましい。   It is preferable that the porosity of the central portion in the in-plane direction of the metal porous body is smaller than that of the peripheral portion.

また、本発明は、上記の接合方法を用いた半導体装置の製造方法にも関する。   The present invention also relates to a method for manufacturing a semiconductor device using the above bonding method.

ヒートサイクルにおける応力緩和効果を保ちながら、ワイヤボンド強度が向上し、接合信頼性に優れた、高信頼な半導体装置が得られる。   While maintaining the stress relaxation effect in the heat cycle, a highly reliable semiconductor device with improved wire bond strength and excellent bonding reliability can be obtained.

実施の形態1の接合体を示す断面概略図である。FIG. 3 is a schematic cross-sectional view showing the joined body of the first embodiment. 本発明に用いる発泡金属体の一例を示す模式図である。It is a schematic diagram which shows an example of the foam metal body used for this invention. 本発明に用いる発泡金属板の別の例を示す模式図である。It is a schematic diagram which shows another example of the metal foam plate used for this invention. 実施の形態1の接合体のおもて面を説明するための模式図である。3 is a schematic diagram for explaining a front surface of a joined body according to Embodiment 1. FIG. 実施の形態2の接合体を示す模式図である。6 is a schematic diagram showing a joined body of Embodiment 2. FIG. 試験例1のクラック進展度について説明するための図である。6 is a diagram for explaining a crack progress degree of Test Example 1. FIG.

(実施の形態1)
図1は、本実施形態の接合体(Siダイボンドサンプル)の断面概略図を示す。図1を用いて本実施形態の接合体の製造方法を説明する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of the joined body (Si die bond sample) of the present embodiment. The manufacturing method of the joined body of this embodiment is demonstrated using FIG.

図1に示す半導体素子(Siチップ)1は、以下のようにして作ることができる。まず、直径5インチ×厚さ0.35mmのシリコンウエハおもて面に厚さ5μmのアルミニウム膜を、シリコンウエハ裏面にTi/Ni/Au膜(厚さ100/500/50nm)をスパッタで成膜する。次に、そのウエハからダイシングにより7mm□(7mm四方)のSiチップ1を取り出す。ここで用いるシリコンウエハ、スパッタ装置、ダイシング装置は、一般的な装置で問題ない。   The semiconductor element (Si chip) 1 shown in FIG. 1 can be manufactured as follows. First, an aluminum film with a thickness of 5 μm is formed on the front surface of a silicon wafer having a diameter of 5 inches and a thickness of 0.35 mm, and a Ti / Ni / Au film (thickness 100/500/50 nm) is formed on the back surface of the silicon wafer by sputtering. Film. Next, a 7 mm square (7 mm square) Si chip 1 is taken out from the wafer by dicing. The silicon wafer, the sputtering apparatus, and the dicing apparatus used here are common apparatuses and have no problem.

次に、基板2として、10mm□×厚さ1mmの無酸素銅板(Cuブロック)を用意する。なお、Cuブロック2の表面には、厚さ5μmの電解Niめっきが施されている。   Next, an oxygen-free copper plate (Cu block) of 10 mm □ × thickness 1 mm is prepared as the substrate 2. The surface of the Cu block 2 is subjected to electrolytic Ni plating with a thickness of 5 μm.

また、はんだ4a、4bとして、ソルダーペーストM20−374FS(千住金属工業製、合金組成重量比Sn:Cu=1:0.7、推定融点227℃)を用意した。なお、本発明において用いられる接合材としては、はんだ、Ag等の微細金属粒子による焼結接合材、導電性接着剤などが挙げられる。はんだ以外の接合材として、銀ろう、銅ろうなどを用いることもできるが、半導体用途にははんだが最適であり、コスト面にも優れる。   Also, solder paste M20-374FS (manufactured by Senju Metal Industry, alloy composition weight ratio Sn: Cu = 1: 0.7, estimated melting point 227 ° C.) was prepared as solders 4a and 4b. In addition, as a joining material used in this invention, the sintered joining material by fine metal particles, such as solder and Ag, a conductive adhesive, etc. are mentioned. Silver solder, copper solder or the like can be used as a joining material other than solder. However, solder is optimal for semiconductor applications, and is excellent in cost.

基板2の表面に8mm□の開口を有する厚さ0.1mmのステンレスマスクでソルダーペースト(はんだ)4aを印刷した。同様にして、金属多孔質体3の一方の表面にもはんだ4bを印刷した。基板2に印刷されたはんだ4aの表面に、はんだ4bが上側となるように金属多孔質体3を載せ、金属多孔質体3に印刷されたはんだ4bの表面に半導体素子1を搭載し、基板2側から250℃に設定されたホットプレートで50秒間加熱する。その後冷却することにより、本実施形態の接合体(Siダイボンドサンプルと称する)を得ることができる。   Solder paste (solder) 4a was printed with a stainless steel mask having a thickness of 0.1 mm having an opening of 8 mm □ on the surface of the substrate 2. Similarly, the solder 4b was printed also on one surface of the metal porous body 3. The metal porous body 3 is placed on the surface of the solder 4a printed on the substrate 2 so that the solder 4b is on the upper side, and the semiconductor element 1 is mounted on the surface of the solder 4b printed on the metal porous body 3. Heat for 50 seconds on a hot plate set at 250 ° C. from the 2 side. By subsequently cooling, the joined body (referred to as Si die bond sample) of the present embodiment can be obtained.

本発明に用いる金属多孔質体3は、その面内方向における中心部(少なくとも金属多孔質体の中心を含む部分)の機械的強度が周辺部(少なくとも金属多孔質体の周縁を含む部分)よりも高いものであることを特徴としている。このような金属多孔質体を用いることによって、ヒートサイクルにおける応力緩和効果を保ちながら、ワイヤボンド強度(ワイヤ接合強度)が向上し、接合信頼性に優れた接合体を作製することができる。   In the metal porous body 3 used in the present invention, the mechanical strength of the center portion (at least the portion including the center of the metal porous body) in the in-plane direction is higher than the peripheral portion (portion including at least the periphery of the metal porous body). Is also expensive. By using such a metal porous body, it is possible to produce a bonded body with improved wire bond strength (wire bonding strength) and excellent bonding reliability while maintaining the stress relaxation effect in the heat cycle.

金属多孔質体3は、その面内方向における中心部(少なくとも金属多孔質体の中心を含む部分)の気孔率が周辺部(少なくとも金属多孔質体の周縁を含む部分)よりも小さいものであることが好ましい。   The metal porous body 3 has a lower porosity in the central portion (at least including the center of the metal porous body) in the in-plane direction than in the peripheral portion (at least including the periphery of the metal porous body). It is preferable.

このように面内方向における中心部の気孔率が周辺部よりも小さい金属多孔質体3の一例としては、面内方向における中心部から周辺部側に向かって気孔率が減少している金属多孔質体が挙げられる。すなわち、図2に示すように、面内方向の最も中心部に位置する部分31は最も気孔率が小さく、部分32の気孔率はそれよりも大きく、部分33の気孔率はさらに大きく、部分34の気孔率が最も大きくなるような金属多孔質体3が挙げられる。ただし、気孔率は図2に示すように多段階で変化させてもよく、無段階で徐々に変化させるようしてもよい。   Thus, as an example of the metal porous body 3 whose porosity in the central portion in the in-plane direction is smaller than that in the peripheral portion, the metal porosity whose porosity decreases from the central portion in the in-plane direction toward the peripheral portion side. There is a mass. That is, as shown in FIG. 2, the portion 31 located at the center in the in-plane direction has the smallest porosity, the portion 32 has a larger porosity, the portion 33 has a larger porosity, and the portion 34. There is a metal porous body 3 that has the largest porosity. However, the porosity may be changed in multiple steps as shown in FIG. 2, or may be changed gradually in a stepless manner.

このような金属多孔質体3の製造方法としては、例えば、事前に準備した金属多孔質体を、せん断方向から圧縮方向に(面内方向の周辺部側から中心部方向に向かって)ゆっくり力を加えて変形(圧縮)させることにより、気孔率が無段階的に変化したの金属多孔質体を作製する方法が挙げられる。また、発泡源となるウレタンの粒径を中央部では小さく、端部に向かって大きくなるようにして製造してもよい。さらに、気孔率の異なる複数の金属多孔質体を用いて、中央部を気孔率の小さい金属多孔質体(例えば、4mm□以下の正方形の発泡金属板)で形成し、周辺部を気孔率の大きな金属多孔質体(例えば、四角いリング状にくりぬいた発泡金属板)で形成するようにして、段階的に気孔率が変化する金属多孔質体を製造してもよい。   As a manufacturing method of such a metal porous body 3, for example, a metal porous body prepared in advance is slowly applied from the shear direction to the compression direction (from the peripheral side in the in-plane direction toward the central part). There is a method of producing a metal porous body whose porosity has been changed steplessly by applying (decompressing) and adding. Moreover, you may manufacture so that the particle size of the urethane used as a foaming source may be small in the center part, and may become large toward an edge part. Furthermore, using a plurality of metal porous bodies having different porosities, the central portion is formed of a metal porous body having a low porosity (for example, a square foam metal plate of 4 mm □ or less), and the peripheral portion has a porosity of A metal porous body whose porosity changes stepwise may be manufactured by forming it with a large metal porous body (for example, a foamed metal plate hollowed in a square ring shape).

面内方向における中心部の気孔率が周辺部よりも小さい金属多孔質体3の別の例としては、面内方向における最も中心側の部分(中心部)に対して最も周縁側の部分(周辺部)の気孔率が大きく、中心部から周辺部へかけて気孔率が部分的に減少および増大している金属多孔質体が挙げられる。例えば、図3に示すように、2種類の異なる気孔率を有する金属多孔質体(高気孔率の金属多孔質体301および低気孔率発泡金属板302)が交互に組み合わされてなる金属多孔質体が挙げられる。高気孔率の金属多孔質体301としては、例えば、気孔率95%、気孔径(呼び孔径)300μmの銅発泡金属板(三菱マテリアル社製)を用いることができる。低気孔率の金属多孔質体302としては、例えば、気孔率80%、気孔径50μmの銅発泡金属板(三菱マテリアル社製)を用いることができる。   As another example of the metal porous body 3 whose porosity in the central part in the in-plane direction is smaller than that in the peripheral part, a part (periphery) on the most peripheral side with respect to the most central part (central part) in the in-plane direction Part)), and the porosity is partially reduced and increased from the central part to the peripheral part. For example, as shown in FIG. 3, a metal porous body in which two types of porous metal bodies having different porosity (a high porosity metal porous body 301 and a low porosity metal foam plate 302) are alternately combined. The body is mentioned. As the metal porous body 301 having a high porosity, for example, a copper foam metal plate (manufactured by Mitsubishi Materials Corporation) having a porosity of 95% and a pore diameter (nominal pore diameter) of 300 μm can be used. As the low porosity metal porous body 302, for example, a copper foam metal plate (manufactured by Mitsubishi Materials Corporation) having a porosity of 80% and a pore diameter of 50 μm can be used.

なお、金属多孔質体の気孔率、気孔径は、JIS K3832などに準拠して測定することができ、例えば、ポロシメータによる水銀圧入法やバブルポイント法などを用いることができる。また、外形と重量により気孔率を算出する方法を用いることもできる。   The porosity and pore diameter of the metal porous body can be measured in accordance with JIS K3832, etc. For example, a mercury intrusion method using a porosimeter or a bubble point method can be used. Further, a method for calculating the porosity based on the outer shape and the weight can also be used.

本発明に用いる金属多孔質体は、十分なワイヤボンド強度を維持するための相対的に機械的強度が高い金属多孔質体を中心部に備え、端部に耐ヒートサイクル特性(応力緩和特性)を付与するための相対的に機械的強度が低い金属多孔質体を周辺部に備えるものであればよい。   The metal porous body used in the present invention has a metal porous body having relatively high mechanical strength at the center for maintaining sufficient wire bond strength, and heat cycle resistance (stress relaxation characteristics) at the end. What is necessary is just to equip a peripheral part with the metal porous body with relatively low mechanical strength for providing a.

したがって、上述のように面内方向における中心部の気孔率が周辺部よりも小さい金属多孔質体以外にも、例えば、気孔率は一様であるが、面内方向における中心部の気孔径が周辺部よりも小さい金属多孔質体を用いることもできる。また、気孔径および気孔率が一様であるが、中心部の材質がニッケル(相対的に機械的強度の高い材料)であり、周辺部の材質がアルミニウム(相対的に機械的強度の低い材料)であるような金属多孔質体を用いることもできる。   Therefore, in addition to the metal porous body having a porosity in the central portion in the in-plane direction smaller than that in the peripheral portion as described above, for example, the porosity is uniform, but the pore diameter in the central portion in the in-plane direction is A metal porous body smaller than the peripheral part can also be used. Moreover, although the pore diameter and porosity are uniform, the material at the center is nickel (material with relatively high mechanical strength), and the material at the periphery is aluminum (material with relatively low mechanical strength) It is also possible to use a metal porous body such as

(実施の形態2)
本実施形態は、応力緩衝板を備えた本発明の接合体の一形態である。図5は本実施形態の接合体の構造を説明するための、断面概略図である。図5において、Siチップ1、基板2、金属多孔質体3a、3b、はんだ4a、4b、4c、4dは、実施の形態1で用意したものと、同じものを用いることができる。応力緩衝板を備えることにより、電気的な接続信頼性を向上出来るという利点がある。
(Embodiment 2)
This embodiment is one form of the joined body of the present invention provided with a stress buffer plate. FIG. 5 is a schematic cross-sectional view for explaining the structure of the joined body of this embodiment. In FIG. 5, the Si chip 1, the substrate 2, the metal porous bodies 3a and 3b, and the solders 4a, 4b, 4c and 4d can be the same as those prepared in the first embodiment. By providing the stress buffer plate, there is an advantage that the electrical connection reliability can be improved.

本実施の形態では、まず、Siチップ1のおもて面(アルミでメタライズされている)上に、厚さ3μmの無電解Ni−Pめっきを施し、さらにその表面に、無電解Auめっき(厚さ0.05μm狙い)を施す。   In the present embodiment, first, electroless Ni—P plating having a thickness of 3 μm is applied on the front surface (metallized with aluminum) of the Si chip 1, and then electroless Au plating ( (Thickness aimed at 0.05 μm).

次に、応力緩衝板6を用意する。例えば、厚さ0.3mm、7mm□のモリブデン板(株式会社ニラコ社製)を用いることができるが、これに限定されるものではない。また、応力緩衝板6の表面は、例えば、厚さ2μm以上の電解Niめっきを施してもよく、さらに、該めっきの上に厚さ0.05μm以上の電解Auめっきを施してもよい。   Next, the stress buffer plate 6 is prepared. For example, a molybdenum plate (manufactured by Niraco Co., Ltd.) having a thickness of 0.3 mm and 7 mm □ can be used, but is not limited thereto. Further, the surface of the stress buffer plate 6 may be subjected to, for example, electrolytic Ni plating having a thickness of 2 μm or more, and may further be subjected to electrolytic Au plating having a thickness of 0.05 μm or more on the plating.

基板2、金属多孔質体3a、Siチップ1おもて面、金属多孔質体3bの上面において、8mm□の範囲に厚さ0.1mm狙いで、ステンレスマスクを用いてソルダーペーストを印刷する。次に、これらを、鉛直方向下から、基板2(上面にはんだ印刷済み)、金属多孔質体3a(上面にはんだ印刷済み)、Siチップ(上面にはんだ印刷済み)、金属多孔質体3b(はんだ印刷済み)、モリブデン板(応力緩衝板)6の順にを搭載し、280℃に設定したホットプレート上で1分間加熱後、大気放冷したことによって、サンプルを試作した。モリブデン板(応力緩衝板)6の上面には、φ300μmのアルミワイヤ7を、実施の形態1と同様の条件で接合した。   A solder paste is printed using a stainless steel mask on the substrate 2, the metal porous body 3a, the front surface of the Si chip 1, and the upper surface of the metal porous body 3b with a thickness of 0.1 mm in a range of 8 mm □. Next, from below in the vertical direction, the substrate 2 (with solder printed on the upper surface), the metal porous body 3a (with solder printed on the upper surface), the Si chip (with solder printed on the upper surface), the metal porous body 3b ( Solder printed) and molybdenum plate (stress buffer plate) 6 were mounted in this order, heated on a hot plate set at 280 ° C. for 1 minute, and then allowed to cool to the air to produce a sample. An aluminum wire 7 having a diameter of 300 μm was bonded to the upper surface of the molybdenum plate (stress buffer plate) 6 under the same conditions as in the first embodiment.

(実施例1)
実施例1および2は、上記実施の形態1に対応する接合体の具体例である。
Example 1
Examples 1 and 2 are specific examples of joined bodies corresponding to the first embodiment.

事前に購入した厚さ1mm、12mm□の金属多孔質体(気孔率80%、気孔径300μm、三菱マテリアル社製)を、せん断方向から圧縮方向に(面内方向の周辺部側から中心部方向に向かって)ゆっくり力を加えて圧縮することにより、面内方向における中心部から周辺部側に向かって気孔率が無段階的に減少している金属多孔質体気孔率(厚さ1mm、9mm□、気孔率40〜50%、)を作製した。このようにして作製した金属多孔質体を用いた以外は、上記実施の形態1と同様にして本発明の接合体を作製した。   A previously purchased metal porous body with a thickness of 1 mm and 12 mm □ (porosity 80%, pore diameter 300 μm, manufactured by Mitsubishi Materials Corp.) from the shear direction to the compression direction (from the peripheral side in the in-plane direction toward the central part) Porous metal porosity (thickness 1 mm, 9 mm) in which the porosity is steplessly decreased from the center to the peripheral side in the in-plane direction by applying a force slowly □, porosity 40-50%). A joined body of the present invention was produced in the same manner as in Embodiment 1 except that the metal porous body thus produced was used.

(実施例2)
図3に示されるような、2種類の異なる気孔率を有する金属多孔質体(高気孔率の金属多孔質体301および低気孔率発泡金属板302)が交互に組み合わされてなる金属多孔質体を使用した以外は、実施例1と同様にして接合体を作製した。高気孔率の金属多孔質体301としては、例えば、気孔率95%、気孔径(呼び孔径)300μmの銅発泡金属板(三菱マテリアル社製)を用いることができる。低気孔率の金属多孔質体302としては、例えば、気孔率80%、気孔径50μmの銅発泡金属板(三菱マテリアル社製)を用いることができる。
(Example 2)
As shown in FIG. 3, a metal porous body in which two types of porous metal bodies having different porosity (a high porosity metal porous body 301 and a low porosity foamed metal plate 302) are alternately combined. A joined body was produced in the same manner as in Example 1 except that was used. As the metal porous body 301 having a high porosity, for example, a copper foam metal plate (manufactured by Mitsubishi Materials Corporation) having a porosity of 95% and a pore diameter (nominal pore diameter) of 300 μm can be used. As the low porosity metal porous body 302, for example, a copper foam metal plate (manufactured by Mitsubishi Materials Corporation) having a porosity of 80% and a pore diameter of 50 μm can be used.

(比較例1)
金属多孔質体として従来の気孔率が一様であるCu発泡金属板(厚さ1mm、9mm□、気孔径300μ、気孔率95%、三菱マテリアル社製)を用いた以外は、実施例1と同様にして、接合体(Siダイボンドサンプル)を試作した。
(Comparative Example 1)
Example 1 except that a conventional Cu foam metal plate having a uniform porosity (thickness 1 mm, 9 mm □, pore diameter 300 μ, porosity 95%, manufactured by Mitsubishi Materials Corporation) was used as the metal porous body. In the same manner, a joined body (Si die bond sample) was prototyped.

(比較例2)
金属多孔質体を挿入せずに、基板表面に厚さ0.1mmで8mm□のソルダーペーストを印刷し、実施例1と同様の加熱条件で接合体(Siダイボンドサンプル)を試作した。
(Comparative Example 2)
Without inserting the metal porous body, a solder paste having a thickness of 0.1 mm and a thickness of 8 mm □ was printed on the surface of the substrate, and a bonded body (Si die bond sample) was prototyped under the same heating conditions as in Example 1.

<試験例1>
上記実施例1、実施例2、比較例1、比較例2の接合体を各10個作製し、300μm径のアルミニウムワイヤを9本づつ、図4に示すように半導体素子1の上面に設けた9個のボンディングパッド5(最表面の材質:アルミニウムあるいは金)に接合した。このようにしてワイヤボンドが施された接合体について、事前評価にて最適化された条件下で、ワイヤプルテストによるプル強度の最大値と最小値を測定した。
<Test Example 1>
Ten bonded bodies of each of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were prepared, and nine 300 μm diameter aluminum wires were provided on the upper surface of the semiconductor element 1 as shown in FIG. Bonded to nine bonding pads 5 (outermost surface material: aluminum or gold). The maximum value and the minimum value of the pull strength by the wire pull test were measured for the joined body to which the wire bond was applied in this manner under the conditions optimized in the preliminary evaluation.

各実施例、比較例についての最大プル強度、最小プル強度および平均プル強度の9本の平均値を表1に示す。なお、表1中に判定として、発泡金属体を挿入しない比較例2の最小プル強度(637gf/ワイヤ)以上の最小プル強度および平均プル強度が得られている場合に○、得られていない場合に×を記した。   Table 1 shows nine average values of the maximum pull strength, the minimum pull strength, and the average pull strength for each example and comparative example. In Table 1, when the minimum pull strength and the average pull strength equal to or higher than the minimum pull strength (637 gf / wire) of Comparative Example 2 in which the foam metal body is not inserted are obtained, the case is not obtained. X was marked.

<試験例2>
上記実施例1、実施例2、比較例1、比較例2のSiダイボンドサンプルを各10個試作し、―40℃と175℃との間を往復する温度サイクルを500回繰り返すヒートサイクル処理を施した後に、Siチップ下のはんだ接合部について超音波観察を行い、クラック進展率(%)を測定した結果(最大、最小、平均)を表2に示す。ここでクラック進展率は、以下のように算出した。
<Test Example 2>
Ten Si die bond samples of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were prototyped and subjected to a heat cycle treatment in which a temperature cycle reciprocating between −40 ° C. and 175 ° C. was repeated 500 times. Table 2 shows the results (maximum, minimum, average) of the ultrasonic wave observation of the solder joints under the Si chip and the measurement of the crack growth rate (%). Here, the crack growth rate was calculated as follows.

図6は、クラック進展率の算出方法を説明するための、Siチップ下はんだについて超音波探傷装置で得られた画像を示す。(a)は、ヒートサイクル前、(b)はヒートサイクル後の画像である。(a)のように、基本的にはんだ接合部は黒く見え、ボイドのような空隙部は白く見える。(b)において、白い部分がSiチップ端部から中央に向かって進展し、その四隅において、最も白い部分が進行している箇所について、対角線長さxを算出。次いで、接合部全体の対角線長さLを算出。x/L(%)を以って、クラック進展度(%)とした。   FIG. 6 shows an image obtained by the ultrasonic flaw detector for the solder under the Si chip for explaining a method of calculating the crack progress rate. (A) is an image before a heat cycle, (b) is an image after a heat cycle. As in (a), the solder joint portion basically looks black, and the void portion like a void looks white. In (b), the diagonal length x is calculated for the part where the white part progresses from the Si chip end toward the center and the white part advances at the four corners. Next, the diagonal length L of the entire joint is calculated. x / L (%) was used as crack progress (%).

また、ヒートサイクル処理後に、試験例1と同様のワイヤプル強度測定を行った結果を表3に示す。   Table 3 shows the results of wire pull strength measurement similar to Test Example 1 after the heat cycle treatment.

表1〜3の結果から、中央部を低気孔率にした金属多孔質体を用いたSiダイボンドサンプルである実施例1および実施例2は、金属多孔質体の応力緩和効果により、耐ヒートサイクル特性に優れ、アルミワイヤボンド強度も良好であることが確認できる。一方、比較例1の金属多孔質体を挿入したSiダイボンドサンプルは、耐ヒートサイクル特性には優れるものの、比較例2の最小プル強度以上の最小プル強度および平均プル強度が得られていないと判断された。これは、アルミワイヤボンド強度(プル強度)が低く、発泡金属体の挿入により超音波エネルギーが分散して、健全にアルミワイヤボンドが出来なかったためであると推測される。   From the results of Tables 1 to 3, Example 1 and Example 2, which are Si die bond samples using a metal porous body with a low porosity at the center, are resistant to heat cycles due to the stress relaxation effect of the metal porous body. It can be confirmed that the characteristics are excellent and the aluminum wire bond strength is also good. On the other hand, although the Si die bond sample in which the metal porous body of Comparative Example 1 was inserted was excellent in heat cycle resistance, it was determined that the minimum pull strength and the average pull strength above the minimum pull strength of Comparative Example 2 were not obtained. It was done. This is presumably because the aluminum wire bond strength (pull strength) was low and the ultrasonic energy was dispersed by the insertion of the metal foam body, so that the aluminum wire bond could not be made soundly.

なお、金属多孔質体3として、全体が高気孔率の金属多孔質体を使用した場合は、金属多孔質体3を挿入しない場合と比較してワイヤボンド強度に優れるが、耐ヒートサイクル特性が比較例1と比較例2の中間程度となることは、容易に類推できる。   In addition, when a metal porous body having a high porosity as a whole is used as the metal porous body 3, the wire bond strength is excellent as compared with the case where the metal porous body 3 is not inserted, but the heat cycle resistance is excellent. It can be easily analogized that it is about the middle between Comparative Example 1 and Comparative Example 2.

(実施例3)
金属多孔質体3a,3bとして、実施例1と同様の面内方向における中心部の気孔率が周辺部よりも小さい金属多孔質体を用いて、上記実施の形態2に記載される方法により接合体を作製した。なお、応力緩衝板6としては、厚さ0.3mm、7mm□のモリブデン板(株式会社ニラコ社製)に、厚さ3μmの電解Niめっきを成膜し、さらにその上に厚さ0.08μmの電解Auめっきを成膜したものを使用した。
(Example 3)
As the metal porous bodies 3a and 3b, a metal porous body having a porosity in the central portion in the in-plane direction similar to that in Example 1 is smaller than that in the peripheral portion, and bonded by the method described in Embodiment 2 above. The body was made. In addition, as the stress buffer plate 6, an electrolytic Ni plating with a thickness of 3 μm is formed on a molybdenum plate (manufactured by Niraco Co., Ltd.) having a thickness of 0.3 mm and 7 mm □, and a thickness of 0.08 μm is further formed thereon. The one formed by electrolytic Au plating was used.

(実施例4)
金属多孔質体3a,3bとして、実施例2と同様の金属多孔質体を用いた以外は実施例3と同様にして接合体を作製した。
Example 4
A bonded body was manufactured in the same manner as in Example 3 except that the same metal porous body as in Example 2 was used as the metal porous bodies 3a and 3b.

(比較例3)
金属多孔質体3aとして実施例1と同様の金属多孔質体を用い、金属多孔質体3bとして比較例1で用いたものと同様の金属多孔質体(面内方向に気孔率が変化していない従来の発泡金属板)を用いた以外は、実施例3と同様にして接合体を作製した。
(Comparative Example 3)
The same metal porous body as in Example 1 was used as the metal porous body 3a, and the same metal porous body as that used in Comparative Example 1 as the metal porous body 3b (the porosity changed in the in-plane direction). A joined body was produced in the same manner as in Example 3 except that a conventional foam metal plate) was used.

(比較例4)
金属多孔質体3a,3bとして、比較例1で用いたものと同様の金属多孔質体(面内方向に気孔率が変化していない従来の発泡金属板)を用いた以外は、実施例3と同様にして接合体を作製した。
(Comparative Example 4)
Example 3 except that the same metal porous body (conventional foamed metal plate whose porosity does not change in the in-plane direction) used in Comparative Example 1 was used as the metal porous bodies 3a and 3b. A joined body was produced in the same manner as described above.

(比較例5)
発泡金属板3a,3b、はんだ4b,4dを使用せずに実施例3と同様にして接合体を作製した。
(Comparative Example 5)
A joined body was produced in the same manner as in Example 3 without using the metal foam plates 3a and 3b and the solders 4b and 4d.

<試験例3>
上記実施例3、実施例4、比較例3および比較例4のサンプルを各々10個づつ試作し、試験例1と同様にして初期ワイヤプル強度測定を行った結果を表4に示す。また、試験例2と同様にして―40℃と175℃との間を往復する温度サイクルを500回繰り返すヒートサイクル処理を施した後の、ワイヤプル強度の調査結果を表5(チップ下に接合されたワイヤについて)および表6(チップ上面に接合されたワイヤについて)に、クラック進展度の調査結果を表7に示す。
<Test Example 3>
Table 4 shows the results of making 10 samples of each of Example 3, Example 4, Comparative Example 3 and Comparative Example 4 and measuring the initial wire pull strength in the same manner as in Test Example 1. In addition, as in Test Example 2, the results of the wire pull strength investigation after the heat cycle treatment in which the temperature cycle reciprocating between −40 ° C. and 175 ° C. is repeated 500 times are shown in Table 5 (bonded under the chip). Table 7 shows the results of the investigation of the degree of crack progress, and Table 6 (for the wire bonded to the upper surface of the chip).

以上の結果より、挿入している金属多孔質体が全て(金属多孔質体3a,3bのいずれもが)面内方向における中心部の気孔率が周辺部よりも小さいものである実施例3〜5の半導体装置は、全ての試験で判定が○となったが、金属多孔質体3a,3bのいずれか一方を面内方向に気孔率が変化していない従来の発泡金属板とした比較例3〜5の半導体装置は、ワイヤボンド強度が不十分となった。   From the above results, all of the inserted metal porous bodies (both of the metal porous bodies 3a and 3b) have a lower porosity in the central portion in the in-plane direction than in the peripheral portions. The semiconductor device of No. 5 was evaluated as “good” in all the tests, but one of the metal porous bodies 3a and 3b was a comparative foam metal plate in which the porosity did not change in the in-plane direction. In the semiconductor devices of 3 to 5, the wire bond strength was insufficient.

この発明を詳細に説明し示してきたが、これは例示のためのみであって、限定ととってはならず、発明の範囲は添付の請求の範囲によって解釈されることが明らかに理解されるであろう。   Although the invention has been described and shown in detail, it is clearly understood that this is by way of example only and should not be taken as a limitation, the scope of the invention being construed by the appended claims Will.

1 半導体素子(Siチップ)、2 基板(Cuブロック)、3,3a,3b 金属多孔質体(発泡金属板)、301 高気孔率の金属多孔質体、302 低気孔率の金属多孔質体、4a,4b,4c,4d はんだ(接合材)、5 ボンディングパッド、6 応力緩衝板(モリブデン板)、7 ワイヤ。   DESCRIPTION OF SYMBOLS 1 Semiconductor element (Si chip), 2 Substrate (Cu block), 3, 3a, 3b Metal porous body (foamed metal plate), 301 High porosity metal porous body, 302 Low porosity metal porous body, 4a, 4b, 4c, 4d Solder (bonding material), 5 bonding pad, 6 stress buffer plate (molybdenum plate), 7 wire.

Claims (4)

半導体素子と基板とが金属多孔質体を介して接合された接合体であって、
前記半導体素子と前記基板との間に前記金属多孔質体が挟まれた状態で、該金属多孔質体の一方の面が接合材を介して前記半導体素子に接合され、該金属多孔質体の他方の面が接合材を介して前記基板に接合されており、
前記金属多孔質体の面内方向における中心部の気孔率が周辺部よりも小さく、
前記金属多孔質体の面内方向における中心部の機械的強度が周辺部よりも高いことを特徴とする、接合体。
A joined body in which a semiconductor element and a substrate are joined via a metal porous body,
In a state where the metal porous body is sandwiched between the semiconductor element and the substrate, one surface of the metal porous body is bonded to the semiconductor element via a bonding material, and the metal porous body The other surface is bonded to the substrate via a bonding material,
The porosity of the central portion in the in-plane direction of the metal porous body is smaller than the peripheral portion,
The joined body is characterized in that the mechanical strength of the central portion in the in-plane direction of the metal porous body is higher than that of the peripheral portion.
請求項1に記載の接合体を備えた半導体装置。 A semiconductor device comprising the joined body according to claim 1. 半導体素子と基板とを金属多孔質体を介して接合する接合方法であって、
前記半導体素子と前記基板との間に前記金属多孔質体が挟まれた状態で、金属多孔質体の一方の面に接合材を介して前記半導体素子を接合し、該金属多孔質体の他方の面に接合材を介して前記基板を接合し、
前記金属多孔質体の面内方向における中心部の気孔率が周辺部よりも小さく、
前記金属多孔質体が、面内方向における中心部の機械的強度が周辺部よりも高い金属多孔質体であることを特徴とする、接合方法。
A bonding method for bonding a semiconductor element and a substrate through a metal porous body,
In a state where the metal porous body is sandwiched between the semiconductor element and the substrate, the semiconductor element is bonded to one surface of the metal porous body via a bonding material, and the other of the metal porous body Bonding the substrate to the surface of the substrate via a bonding material,
The porosity of the central portion in the in-plane direction of the metal porous body is smaller than the peripheral portion,
The bonding method according to claim 1, wherein the metal porous body is a metal porous body having a mechanical strength at a central portion in an in-plane direction higher than that at a peripheral portion.
請求項3に記載の接合方法を用いた半導体装置の製造方法。 A method for manufacturing a semiconductor device using the bonding method according to claim 3 .
JP2012523476A 2010-07-08 2010-07-08 JOINT BODY, SEMICONDUCTOR DEVICE EQUIPPED WITH SAME, JOINING METHOD AND MANUFACTURING METHOD USING SAME Expired - Fee Related JP5420078B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061611 WO2012004876A1 (en) 2010-07-08 2010-07-08 Bonded body, semiconductor device provided with same, bonding method, and production method using same

Publications (2)

Publication Number Publication Date
JPWO2012004876A1 JPWO2012004876A1 (en) 2013-09-02
JP5420078B2 true JP5420078B2 (en) 2014-02-19

Family

ID=45440877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012523476A Expired - Fee Related JP5420078B2 (en) 2010-07-08 2010-07-08 JOINT BODY, SEMICONDUCTOR DEVICE EQUIPPED WITH SAME, JOINING METHOD AND MANUFACTURING METHOD USING SAME

Country Status (2)

Country Link
JP (1) JP5420078B2 (en)
WO (1) WO2012004876A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066952B2 (en) * 2014-03-20 2017-01-25 三菱電機株式会社 Manufacturing method of semiconductor module
CN105537712A (en) * 2016-01-28 2016-05-04 北京航空航天大学 Ceramic and metal brazing composite component and preparing method thereof
WO2018037992A1 (en) * 2016-08-22 2018-03-01 千住金属工業株式会社 Metallic sintered bonding body and die bonding method
JP6766542B2 (en) * 2016-09-13 2020-10-14 トヨタ自動車株式会社 A bonding material to be bonded to the electrodes of a semiconductor device
CN108520901A (en) * 2018-04-16 2018-09-11 江苏宜兴德融科技有限公司 Thin-film solar cells and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183637A (en) * 2003-12-18 2005-07-07 Toyota Motor Corp Semiconductor device and electrode member to be used therefor
JP2008311273A (en) * 2007-06-12 2008-12-25 Mitsubishi Electric Corp Junction body, and electronic module, and bonding method
JP2009059821A (en) * 2007-08-30 2009-03-19 Toyota Motor Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183637A (en) * 2003-12-18 2005-07-07 Toyota Motor Corp Semiconductor device and electrode member to be used therefor
JP2008311273A (en) * 2007-06-12 2008-12-25 Mitsubishi Electric Corp Junction body, and electronic module, and bonding method
JP2009059821A (en) * 2007-08-30 2009-03-19 Toyota Motor Corp Semiconductor device

Also Published As

Publication number Publication date
WO2012004876A1 (en) 2012-01-12
JPWO2012004876A1 (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP6794732B2 (en) Thermoelectric conversion module and thermoelectric conversion device
JP5718536B2 (en) Connection structure and semiconductor device
JP2019024121A (en) Semiconductor device and method of manufacturing semiconductor device
JP6696214B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
JP6262968B2 (en) Electronic component mounting substrate and manufacturing method thereof
JP6432466B2 (en) Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP5579928B2 (en) Semiconductor device and manufacturing method thereof
JP5420078B2 (en) JOINT BODY, SEMICONDUCTOR DEVICE EQUIPPED WITH SAME, JOINING METHOD AND MANUFACTURING METHOD USING SAME
JP6319643B2 (en) Ceramics-copper bonded body and method for manufacturing the same
JP2016208010A (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP6432465B2 (en) Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP6575386B2 (en) Manufacturing method of joined body, manufacturing method of power module substrate with heat sink, and manufacturing method of heat sink
EP3093882B1 (en) Electronic circuit device
JP6108987B2 (en) Connection structure
JP2008277394A (en) Thermoelectric module
JP7204962B2 (en) Ceramic circuit boards and semiconductor modules
JPWO2016017679A1 (en) Ceramic circuit board and manufacturing method thereof
JP2009231716A (en) Bonding material and method of manufacturing semiconductor module
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
WO2016111206A1 (en) Heat dissipation substrate
JP2002064169A (en) Heat radiating structure
JP6881304B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP7344759B2 (en) electrostatic chuck device
JP2017174853A (en) Manufacturing method of holding device
JP4627839B2 (en) Module and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5420078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees