JP5419962B2 - Swirler and method of manufacturing - Google Patents

Swirler and method of manufacturing Download PDF

Info

Publication number
JP5419962B2
JP5419962B2 JP2011504037A JP2011504037A JP5419962B2 JP 5419962 B2 JP5419962 B2 JP 5419962B2 JP 2011504037 A JP2011504037 A JP 2011504037A JP 2011504037 A JP2011504037 A JP 2011504037A JP 5419962 B2 JP5419962 B2 JP 5419962B2
Authority
JP
Japan
Prior art keywords
swirler
unitary
vane
wall
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011504037A
Other languages
Japanese (ja)
Other versions
JP2011528097A (en
Inventor
マックマスターズ,マリー・アン
ベンジャミン,マイケル・エイ
マンシーニ,アルフレッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority claimed from PCT/US2009/037221 external-priority patent/WO2009126403A2/en
Publication of JP2011528097A publication Critical patent/JP2011528097A/en
Application granted granted Critical
Publication of JP5419962B2 publication Critical patent/JP5419962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/005Repairing turbine components, e.g. moving or stationary blades, rotors using only replacement pieces of a particular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/222Fuel flow conduits, e.g. manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/13Parts of turbine combustion chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2213/00Burner manufacture specifications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00018Means for protecting parts of the burner, e.g. ceramic lining outside of the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14701Swirling means inside the mixing tube or chamber to improve premixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/265Plural outflows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49746Repairing by applying fluent material, e.g., coating, casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Measuring Volume Flow (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Gas Burners (AREA)
  • Pipe Accessories (AREA)

Description

本発明は一般的にスワーラに関し、より詳細には、ガスタービンエンジンで使用する燃料ノズルで燃料と空気の混合を促進するための単体スワーラに関する。   The present invention relates generally to swirlers, and more particularly to a single swirler for promoting fuel and air mixing in a fuel nozzle for use in a gas turbine engine.

タービンエンジンには典型的に、燃料をエンジンの燃焼器に供給するための複数の燃料ノズルが含まれる。燃料は、バーナの前端部で燃料ノズルから非常に細かい噴霧の状態で導入される。圧縮空気は燃料ノズルの周りを流れ、燃料と混合され、混合気を生じ、この混合気がバーナにより点火される。使用可能な燃料圧力が限定されており、所要の燃料流量の範囲が広いので、多くの燃料噴射器にはパイロットノズルおよび主ノズルが含まれ、始動中にはパイロットノズルのみが使用され、高出力作動中には両方のノズルが使用される。主ノズルへの流れは、始動中および低出力作動中には減少または停止する。このような噴射器は、特定の燃焼器要件に合わせて、燃料流をより正確に制御し、燃料噴霧をより正確に導くことができるので、シングルノズルの燃料噴射器よりも効率的かつ清浄に燃焼できる。パイロットノズルおよび主ノズルは、同じノズルアセンブリ内に収容することができ、または別のノズルアセンブリ内で支持することもできる。また、これらのデュアルノズル燃料噴射器は、デュアル燃焼器のために燃料をさらに制御することを可能にするように構成することができ、さらに高い燃料効率と有害な放出物の削減をもたらす。点火した混合気の温度は3500°F(1920°C)より高く達する可能性がある。したがって、燃料供給導管、流路および分配システムは、実質的に漏れがなく、炎および熱から保護されていることが重要である。   A turbine engine typically includes a plurality of fuel nozzles for supplying fuel to an engine combustor. The fuel is introduced in a very fine spray from the fuel nozzle at the front end of the burner. The compressed air flows around the fuel nozzle and is mixed with the fuel to produce a mixture, which is ignited by the burner. Due to the limited fuel pressure available and the wide range of required fuel flow, many fuel injectors include a pilot nozzle and a main nozzle, and only the pilot nozzle is used during start-up and high power Both nozzles are used during operation. The flow to the main nozzle decreases or stops during start-up and low power operation. Such injectors are more efficient and cleaner than single-nozzle fuel injectors because they can control fuel flow more accurately and direct fuel spray more accurately to meet specific combustor requirements. Can burn. The pilot nozzle and the main nozzle can be housed in the same nozzle assembly or can be supported in separate nozzle assemblies. These dual-nozzle fuel injectors can also be configured to allow further control of the fuel for the dual combustor, resulting in higher fuel efficiency and reduced harmful emissions. The temperature of the ignited mixture can reach higher than 3500 ° F. (1920 ° C.). It is therefore important that the fuel supply conduits, flow paths and distribution system are substantially leak free and protected from flame and heat.

さまざまな政府規制機関が、好ましくない大気状態を発生させる主因として特定されている、未燃炭化水素(HC)、一酸化炭素(CO)、および窒素酸化物(NOx)の許容される排出制限を設定してきた。したがって、さまざまな燃焼器設計が、それらの基準を満たすように開発されてきた。たとえば、好ましくないガスタービンエンジン燃焼生成物の排出を最小化する課題に取り組む1つの方法は、多段燃焼を提供することである。この構成では、燃焼生成物の特性をより綿密に制御するように、第1段バーナが低速および低出力条件で利用される燃焼器が提供される。燃焼生成物を放出制限内に維持しようとしつつ、より高い出力条件を求めて、第1段および第2段バーナが組み合わせられる。エンジンの効率的な熱操作を可能にし、一方同時に、好ましくない燃焼生成物の生成を最小化するように、第1および第2段バーナの作動の平衡を保つことが達成し難いことは、理解されよう。その点において、NOxの排出を低下させるために低い燃焼温度で作動させることは、不完全または一部不完全な燃焼をもたらす可能性があり、そのことは、より低出力およびより低い熱効率をもたらすことに加えて、過剰なHCおよびCOの生成に結びつくことがある。他方、高燃焼温度は、熱効率を改善し、HCおよびCOの量を低下させるが、しばしばNOxの排出量がより多くなる。当技術分野で、ガスタービンエンジン燃焼器の好ましくない燃焼生成物成分の生成が、エンジン作動状況全般にわたって最小化される方法の1つは、1次および2次燃料注入ポートを使用して多段燃焼システムを使用することである。   Various government regulatory bodies have identified acceptable emission limits for unburned hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), which have been identified as the main causes of undesirable atmospheric conditions. I have set it. Accordingly, various combustor designs have been developed to meet those standards. For example, one way to address the challenge of minimizing emissions of undesirable gas turbine engine combustion products is to provide multi-stage combustion. In this configuration, a combustor is provided in which the first stage burner is utilized at low speed and low power conditions to more closely control the properties of the combustion products. The first and second stage burners are combined to seek higher power conditions while trying to keep the combustion products within emission limits. It is understood that balancing the operation of the first and second stage burners is difficult to achieve so as to enable efficient thermal operation of the engine while at the same time minimizing the production of undesirable combustion products. Let's be done. In that regard, operating at lower combustion temperatures to reduce NOx emissions can result in incomplete or partially incomplete combustion, which results in lower power and lower thermal efficiency. In addition, it can lead to the production of excess HC and CO. On the other hand, high combustion temperatures improve thermal efficiency and reduce the amount of HC and CO, but often result in higher NOx emissions. In the art, one of the ways in which the generation of undesirable combustion product components in a gas turbine engine combustor is minimized throughout the engine operating situation is to use multistage combustion using primary and secondary fuel injection ports. Is to use the system.

それら好ましくない燃焼生成物成分の生成を最小化するために提案されている別の方法は、注入燃料と燃焼空気のより効果的な混合法を提供することである。その点に関して、燃料と空気の混合を改善するために、長年にわたって、多数のスワーラおよび混合器の設計が提案されてきた。このようにして、混合物全体にわたって一定して燃焼が起こり、不完全燃焼に起因するHCおよびCOのレベルを低下させる。しかし、エンジン作動状況の広い範囲にわたって、好ましくない燃焼生成物の生成を最小化させる必要性がまだある。このような混合を促進するスワーラの設計を使用して燃料ノズルで燃料と空気をより良く混合することは、好ましくない燃焼放出物を減少させるのに有用であろう。   Another method that has been proposed to minimize the production of these undesirable combustion product components is to provide a more effective method of mixing the injected fuel and combustion air. In that regard, numerous swirler and mixer designs have been proposed over the years to improve fuel and air mixing. In this way, constant combustion occurs throughout the mixture, reducing the level of HC and CO due to incomplete combustion. However, there is still a need to minimize the production of undesirable combustion products over a wide range of engine operating conditions. Better mixing of fuel and air at the fuel nozzle using a swirler design that facilitates such mixing would be useful in reducing undesirable combustion emissions.

長い間継続的にタービンエンジンの作動中の高温に曝露されると、導管および燃料ノズルに熱応力が誘発される場合があり、これは導管および燃料ノズルを損傷するおそれがあり、かつ導管および燃料ノズルの作動に悪影響を与えるおそれがある。たとえば、熱応力は、導管内の燃料流の減少を引き起こす場合があり、タービンエンジン内の過剰燃料の不均等分配につながる場合がある。燃料ノズルの導管およびオリフィスを介して流れる燃料が高温に曝されると、燃料のコークス化につながる場合があり、閉塞および不均一な流れにつながる場合がある。低放出物を実現するために、最新の燃料ノズルは、複数の別々の火炎帯を創出するように、多数の複雑な内部空気および燃料回路を必要とする。燃料回路は、コークス化を防ぐために内部空気からの熱シールドを必要とする場合があり、特定の先端領域が冷却され、燃焼ガスから遮蔽されなければならない場合がある。さらに、長い間継続的に損傷した燃料ノズルで作動すると、タービンの効率が低下し、タービン構成部品が損傷し、および/またはエンジン排ガス温度マージンが低下することになるおそれがある。   Exposure to high temperatures during long periods of turbine engine operation may induce thermal stresses in the conduit and fuel nozzle, which may damage the conduit and fuel nozzle, and the conduit and fuel. There is a possibility of adversely affecting the operation of the nozzle. For example, thermal stress can cause a reduction in fuel flow in the conduit and can lead to an uneven distribution of excess fuel in the turbine engine. Exposure of fuel flowing through fuel nozzle conduits and orifices to high temperatures can lead to coking of the fuel, which can lead to blockage and uneven flow. In order to achieve low emissions, modern fuel nozzles require a large number of complex internal air and fuel circuits to create multiple separate flame zones. The fuel circuit may require a heat shield from internal air to prevent coking, and certain tip regions may need to be cooled and shielded from combustion gases. Further, operating with fuel nozzles that have been damaged continuously for a long time may reduce turbine efficiency, damage turbine components, and / or reduce engine exhaust gas temperature margins.

タービンエンジン内に設置した燃料ノズルのライフサイクルを改善すれば、タービンエンジンの寿命を延長することができる。知られている燃料ノズルには、送達システムおよび支持システムが含まれる。流体を輸送するための導管を含む送達システムは、燃料をタービンエンジンに送達し、支持システムによって、タービンエンジン内で支持され、遮蔽される。より詳細には、知られている支持システムは送達システムを囲み、したがって、燃料ノズルを介して流れる流体によって冷却される送達システムより高い温度に曝され、高い作動温度を有する。外側および内側の輪郭および厚さを設定することで、導管および燃料ノズルの熱応力を減少させることができる。   If the life cycle of the fuel nozzle installed in the turbine engine is improved, the life of the turbine engine can be extended. Known fuel nozzles include a delivery system and a support system. A delivery system that includes a conduit for transporting fluid delivers fuel to the turbine engine and is supported and shielded within the turbine engine by a support system. More particularly, the known support system surrounds the delivery system and is therefore exposed to higher temperatures and has a higher operating temperature than the delivery system cooled by the fluid flowing through the fuel nozzle. By setting the outer and inner contours and thicknesses, thermal stresses in the conduit and fuel nozzle can be reduced.

空気/燃料混合器は、スワーラアセンブリを通過する空気を旋回させるスワーラアセンブリを有し、燃焼の前に空気と燃料の混合を促進する。燃焼器で使用されるスワーラアセンブリは、軸方向、半径方向、もしくは円錐形のスワーラまたはそれらの組合せを有する、複雑な構造となることがある。過去には、従来の製造方法を使用し、スワーラ構成部品を有する混合器を製作しており、スワーラ構成部品は、知られている方法を使用して組み立てられまたは接合され、スワーラアセンブリを形成する。たとえば、複雑なベーンを備えたある混合器では、個々のベーンは先ず機械加工され、次にアセンブリにろう付けされる。過去には、インベストメント鋳造方法が、いくつかの燃焼スワーラを製造する際に使用されてきた。他のスワーラは原材料から機械加工されてきた。放電加工(EDM)が、従来のスワーラのベーンを機械加工する手段として使用されてきた。   The air / fuel mixer has a swirler assembly that swirls the air passing through the swirler assembly and facilitates the mixing of air and fuel prior to combustion. The swirler assembly used in the combustor can be a complex structure with axial, radial, or conical swirlers or combinations thereof. In the past, conventional manufacturing methods have been used to produce mixers with swirler components, which are assembled or joined using known methods to form a swirler assembly. . For example, in some mixers with complex vanes, the individual vanes are first machined and then brazed to the assembly. In the past, investment casting methods have been used in making several combustion swirlers. Other swirlers have been machined from raw materials. Electrical Discharge Machining (EDM) has been used as a means of machining conventional swirler vanes.

たとえば、燃料ノズルならびにその関連したスワーラ、導管、分配システムなどの、従来のガスタービンエンジン構成部品は、一般的に、製作および/または修理するのが高価である。というのは、燃料を輸送し、分配し、および空気と混合するための複雑なスワーラ、導管および分配回路を有する従来の燃料ノズル設計には、複雑なアセンブリ、および30点を超える構成部品の接合が含まれるからである。より詳細には、ろう接継手を使用すると、当該構成部品を製作するのに必要な時間が増加することがあり、また、ろう付け合金の配置を可能にする適正な領域の必要性、不要なろう付け合金が流れるのを最小化する必要性、ろう付け品質を検証するための許容される検査技術の必要性、前のろう接継手を再溶融することを防ぐために使用可能ないくつかのろう付け合金を有する必要性を含めて、いくつかの理由のいずれかのために製作プロセスが複雑になることがある。さらに、多数のろう接継手は、構成部品の母材を脆弱にし得る、いくつかのろう付けの流れ(braze run)をもたらす場合がある。多数のろう接継手が存在すると、構成部品の重量および製造コストが増加する場合があり、好ましくない。   For example, conventional gas turbine engine components such as fuel nozzles and their associated swirlers, conduits, distribution systems, etc. are typically expensive to manufacture and / or repair. This is because conventional fuel nozzle designs with complex swirlers, conduits and distribution circuits for transporting, distributing, and mixing fuel have complex assemblies and more than 30 component connections. Is included. More particularly, the use of a brazed joint may increase the time required to produce the component, and the need for a proper area to allow placement of the braze alloy is unnecessary. The need to minimize brazing alloy flow, the need for acceptable inspection techniques to verify brazing quality, and some brazes that can be used to prevent remelting of the previous brazed joint The fabrication process can be complicated for any of several reasons, including the need to have a brazing alloy. In addition, many brazed joints may result in several braze runs that can weaken the matrix of the component. The presence of a large number of brazed joints is undesirable because it may increase the weight and manufacturing costs of the component parts.

したがって、前記の熱曝露からの好ましくない影響を低減するために、単体構造を有する燃料ノズル内で液体燃料と空気を混合するための複雑な形状を有するスワーラを有することが望ましいであろう。コストを削減し、組立てが容易なように、ならびに、悪熱環境からの保護を提供するための、単体構造を備えた複雑な形状を有するスワーラを有することが望ましい。たとえば、燃料ノズルのスワーラシステムなどの、空気を輸送するための複雑な3次元形状を有する単体スワーラに単体構造を提供するための製造する方法を有することが望ましい。   Accordingly, it would be desirable to have a swirler with a complex shape for mixing liquid fuel and air within a fuel nozzle having a unitary structure in order to reduce the undesired effects from the thermal exposure. It would be desirable to have a swirler with a complex shape with a unitary structure to reduce costs, facilitate assembly, and provide protection from a hot environment. For example, it would be desirable to have a manufacturing method for providing a unitary structure to a unitary swirler having a complex three-dimensional shape for transporting air, such as a fuel nozzle swirler system.

上記の必要性は、スワーラ軸とスワーラ軸の周りで円周方向に配列された複数のベーンとを有する本体を含み、単体構造を有する単体スワーラを提供する、例示的実施形態によって満たすことができる。別の実施形態では、単体スワーラは、スワーラ軸と同軸に位置するリム、およびリムの一部とハブの一部の間に延びる壁を有する。別の実施形態では、単体スワーラは、複数のベーンの少なくともいくつかの方へ空気の流れを導くように構成された通路を有するアダプタを有する。別の実施形態では、単体スワーラは、別のベーンと異なる形状を有する少なくとも1つのベーンを有する。別の実施形態では、単体スワーラは、本体内に少なくとも部分的に位置する絶縁用隙間を有する本体を有する。   The need described above can be met by an exemplary embodiment that includes a body having a swirler axis and a plurality of vanes arranged circumferentially around the swirler axis, providing a unitary swirler having a unitary structure. . In another embodiment, the unitary swirler has a rim that is coaxial with the swirler axis and a wall that extends between a portion of the rim and a portion of the hub. In another embodiment, the unitary swirler has an adapter having a passage configured to direct air flow toward at least some of the plurality of vanes. In another embodiment, the unitary swirler has at least one vane having a different shape than another vane. In another embodiment, the unitary swirler has a body with an insulating gap located at least partially within the body.

本発明の別の態様では、スワーラ軸の周りで本体上に円周方向に配列された複数のベーン、およびリムと本体の一部の間に延びる壁を有する単体スワーラの3次元情報を決定するステップと、各スライスが単体スワーラの断面層を定義する複数のスライスに3次元情報を変換するステップと、レーザエネルギーを使用して金属粉末を溶解することによって単体スワーラの各層を次々に形成するステップとを含む、単体スワーラを製作する方法が開示される。迅速製造プロセスを使用して製造される単体スワーラを示す、例示的実施形態が開示される。本発明の一態様では、迅速製造プロセスはレーザ焼結プロセスである。   In another aspect of the invention, three-dimensional information is determined for a single swirler having a plurality of vanes circumferentially arranged on the body about the swirler axis and a wall extending between the rim and a portion of the body. Converting the three-dimensional information into a plurality of slices, each slice defining a cross-sectional layer of the single swirler, and forming each layer of the single swirler one after another by dissolving the metal powder using laser energy A method for making a single swirler is disclosed. An exemplary embodiment is disclosed that illustrates a unitary swirler that is manufactured using a rapid manufacturing process. In one aspect of the invention, the rapid manufacturing process is a laser sintering process.

本発明とみなされる主題は、本明細書の結びの部分で特に指摘され、明確に特許請求されている。しかし、本発明は、添付図面と共に以下の記述を参照すれば最も良く理解できる。   The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, the present invention is best understood by referring to the following description in conjunction with the accompanying drawings.

本発明の例示的実施形態によるスワーラを有する例示的燃料ノズルを含む、ハイバイパスターボファンのガスタービンエンジンの概略図である。1 is a schematic view of a high bypass turbofan gas turbine engine including an exemplary fuel nozzle having a swirler according to an exemplary embodiment of the present invention. FIG. 本発明の例示的実施形態によるスワーラを有する例示的燃料ノズルの等角図である。1 is an isometric view of an exemplary fuel nozzle having a swirler according to an exemplary embodiment of the present invention. FIG. 図2に示した例示的燃料ノズルの例示的ノズル先端部アセンブリの軸方向断面図である。FIG. 3 is an axial cross-sectional view of an exemplary nozzle tip assembly of the exemplary fuel nozzle shown in FIG. 本発明の例示的実施形態によるスワーラの等角図である。2 is an isometric view of a swirler according to an exemplary embodiment of the present invention. FIG. 一部を切り欠いた、図4に示した例示的スワーラの平面図である。FIG. 5 is a plan view of the exemplary swirler shown in FIG. 4 with a portion cut away. 図4に示した例示的スワーラの別の等角図である。FIG. 5 is another isometric view of the exemplary swirler shown in FIG. 4. スワーラの一部を切り欠いた、本発明の代替例示的実施形態によるスワーラの等角図である。FIG. 6 is an isometric view of a swirler according to an alternative exemplary embodiment of the present invention with a portion of the swirler cut away. 一部を切り欠いた、図7に示した代替例示的スワーラの平面図である。FIG. 8 is a plan view of the alternative exemplary swirler shown in FIG. 7 with a portion cut away. スワーラの一部を切り欠いた、本発明の別の代替例示的実施形態によるスワーラの等角図である。FIG. 6 is an isometric view of a swirler according to another alternative exemplary embodiment of the present invention with a portion of the swirler cut away. 一部を切り欠いた、図9に示した代替例示的スワーラの平面図である。FIG. 10 is a plan view of the alternative exemplary swirler shown in FIG. 9 with a portion cut away. 隣接する構成部品との結合を示したスワーラの本発明の別の代替例示的実施形態の軸方向断面図である。FIG. 6 is an axial cross-sectional view of another alternative exemplary embodiment of the present invention of a swirler showing coupling with adjacent components. 隣接する構成部品との結合を示したスワーラの本発明の別の代替例示的実施形態の軸方向断面図である。FIG. 6 is an axial cross-sectional view of another alternative exemplary embodiment of the present invention of a swirler showing coupling with adjacent components. 単体スワーラを製作する方法の例示的実施形態を示す流れ図である。2 is a flow diagram illustrating an exemplary embodiment of a method for making a unitary swirler.

次に、図を通して同じ番号が同じ要素を示す図面を詳細に参照すると、図1は、燃料ノズル100内で空気を燃料と混合するのを促進するために使用されるスワーラ(図面に示し、本明細書に記載の、品目200、300、400など)の例示的実施形態を有する例示的燃料ノズル100を内蔵する例示的ガスタービンエンジン10(ハイバイパスタイプ)を略図形式で示す。例示的ガスタービンエンジン10は、参照目的のためにそこを通る軸方向中心線軸12を有する。エンジン10には望ましくは、全体として数字14で識別されるコアガスタービンエンジンおよびそこから上流に配置されたファンセクション16が含まれる。コアエンジン14には典型的に、環状入口20を画定する全体としてチューブ状の外側ケーシング18が含まれる。外側ケーシング18はさらに、コアエンジン14に入る空気の圧力を第1の圧力レベルまで上昇させるために、ブースタ22を囲み、支持する。高圧の、多段式軸流圧縮器24は、ブースタ22から圧縮空気を受け、さらに空気の圧力を増加させる。圧縮空気は燃焼器26に流れ、そこで、燃料が圧縮空気の流れに注入され、点火し、圧縮空気の温度およびエネルギーレベルを上昇させる。高エネルギー燃焼生成物は、第1(高圧)ドライブシャフト30を介して高圧圧縮器24を駆動するために、燃焼器26から第1(高圧)タービン28に流れ、次に、第1ドライブシャフト30と同軸である第2(低圧)ドライブシャフト34を介してブースタ22およびファンセクション16を駆動するために第2(低圧)タービン32に流れる。タービン28および32のそれぞれを駆動した後、燃焼生成物は、排気ノズル36を介してコアエンジン14から離れ、エンジン10のジェット推進スラストの少なくとも一部を提供する。   Referring now in detail to the drawings in which like numerals indicate like elements throughout the figures, FIG. 1 illustrates a swirler (shown in the figures and illustrated in FIG. 1 illustrates in schematic form an exemplary gas turbine engine 10 (high bypass type) incorporating an exemplary fuel nozzle 100 having an exemplary embodiment of items 200, 300, 400, etc., as described herein. The exemplary gas turbine engine 10 has an axial centerline axis 12 therethrough for reference purposes. Engine 10 desirably includes a core gas turbine engine, generally identified by numeral 14, and a fan section 16 disposed upstream therefrom. The core engine 14 typically includes a generally tubular outer casing 18 that defines an annular inlet 20. The outer casing 18 further surrounds and supports the booster 22 to increase the pressure of air entering the core engine 14 to a first pressure level. The high-pressure, multistage axial compressor 24 receives compressed air from the booster 22 and further increases the pressure of the air. The compressed air flows to the combustor 26 where fuel is injected into the compressed air stream and ignites, increasing the temperature and energy level of the compressed air. The high energy combustion products flow from the combustor 26 to the first (high pressure) turbine 28 to drive the high pressure compressor 24 via the first (high pressure) drive shaft 30, and then the first drive shaft 30. To the second (low pressure) turbine 32 to drive the booster 22 and the fan section 16 via a second (low pressure) drive shaft 34 that is coaxial with the. After driving each of the turbines 28 and 32, the combustion products leave the core engine 14 via the exhaust nozzle 36 and provide at least a portion of the jet propulsion thrust of the engine 10.

ファンセクション16には、環状ファンケーシング40によって囲まれた回転可能な軸流ファンロータ38が含まれる。ファンケーシング40は、実質的に半径方向に延びる、周方向で離間された複数の出口ガイドベーン42によって、コアエンジン14から支持されていることが理解されるであろう。このように、ファンケーシング40は、ファンロータ38およびファンロータブレード44を取り囲む。ファンケーシング40の下流セクション46は、コアエンジン14の外側部分の上に延び、追加のジェット推進スラストを提供する2次的、すなわちバイパス空気流導管48を画定する。   The fan section 16 includes a rotatable axial fan rotor 38 surrounded by an annular fan casing 40. It will be appreciated that the fan casing 40 is supported from the core engine 14 by a plurality of circumferentially spaced outlet guide vanes 42 that extend substantially radially. Thus, the fan casing 40 surrounds the fan rotor 38 and the fan rotor blade 44. The downstream section 46 of the fan casing 40 extends over the outer portion of the core engine 14 and defines a secondary or bypass airflow conduit 48 that provides additional jet propulsion thrust.

流れの観点から、矢印50で表示される初期空気流が、入口52を介しファンケーシング40まで、ガスタービンエンジン10に入ることは理解されるであろう。空気流50はファンブレード44を通過し、導管48を介して移動する第1圧縮空気流(矢印54により表示)と、ブースタ22に入る第2圧縮空気流(矢印56により表示)とに2つに分かれる。   From a flow point of view, it will be appreciated that the initial air flow, indicated by arrow 50, enters gas turbine engine 10 through inlet 52 to fan casing 40. The air flow 50 passes through the fan blade 44 and is divided into a first compressed air flow (indicated by arrow 54) that travels through the conduit 48 and a second compressed air flow (indicated by arrow 56) that enters the booster 22. Divided into

第2圧縮空気流56の圧力は増加し、矢印58により表示されるように、高圧圧縮器24に入る。燃料と混合され、燃焼器26で燃焼した後、燃焼生成物60は燃焼器26から出て、第1タービン28を介して流れる。次に、燃焼生成物60は、第2タービン32を介して流れ、排気ノズル36から出て、ガスタービンエンジン10のスラストの少なくとも一部を提供する。   The pressure of the second compressed air stream 56 increases and enters the high pressure compressor 24 as indicated by arrow 58. After being mixed with fuel and combusted in the combustor 26, the combustion product 60 exits the combustor 26 and flows through the first turbine 28. The combustion product 60 then flows through the second turbine 32 and exits the exhaust nozzle 36 to provide at least a portion of the thrust of the gas turbine engine 10.

燃焼器26には、縦軸12、ならびに入口64および出口66と同軸である環状燃焼室62が含まれる。上記のように、燃焼器26は高圧圧縮器排出出口69からの圧縮空気の環状の流れを受ける。本明細書の図面で番号190により特定される、この圧縮器排出空気(「CDP」空気)の一部は、混合器(図示せず)内に流入する。燃料は燃料ノズル先端部アセンブリから注入され、空気と混合し、燃焼のために燃焼室62に提供される混合気を生じる。混合気の点火は適正な点火装置により達成され、結果として生じる燃焼ガス60は、環状の、第1段タービンノズル72に向かい、その中へ軸方向に流れる。ノズル72は、ガスが角度をなして流れ、第1タービン28の第1段タービンブレードに作用するように、ガスを回転させる複数の、半径方向に延びる周方向で離間されたノズルベーン74を含む、環状流路により画定される。図1に示したように、第1タービン28は望ましくは、第1ドライブシャフト30を介して高圧圧縮器24を回転させる。低圧タービン32は望ましくは、第2ドライブシャフト34を介してブースタ22およびファンロータ38を駆動する。   Combustor 26 includes a longitudinal combustion chamber 12 and an annular combustion chamber 62 that is coaxial with inlet 64 and outlet 66. As described above, the combustor 26 receives an annular flow of compressed air from the high pressure compressor discharge outlet 69. A portion of this compressor exhaust air (“CDP” air), identified by numeral 190 in the drawings herein, flows into a mixer (not shown). Fuel is injected from the fuel nozzle tip assembly and mixes with air, producing an air-fuel mixture that is provided to the combustion chamber 62 for combustion. Ignition of the air-fuel mixture is achieved by a suitable igniter, and the resulting combustion gas 60 flows axially into and into the annular, first stage turbine nozzle 72. The nozzle 72 includes a plurality of radially extending circumferentially spaced nozzle vanes 74 that rotate the gas so that the gas flows at an angle and acts on the first stage turbine blades of the first turbine 28. It is defined by an annular channel. As shown in FIG. 1, the first turbine 28 preferably rotates the high pressure compressor 24 via a first drive shaft 30. The low pressure turbine 32 preferably drives the booster 22 and the fan rotor 38 via the second drive shaft 34.

燃焼室62はエンジン外側ケーシング18内に収容される。燃料は、たとえば図2および3に示した例のように、燃料ノズル100により燃焼室に供給される。液体燃料は、たとえば図3に示すようなステム103内の導管を介して、燃料ノズル先端部アセンブリ68へ輸送される。単体構造を有する導管は、液体燃料を燃料ノズル100の燃料ノズル先端部アセンブリ68に輸送するために使用されてよい。燃料供給導管は、ステム103内に位置し、燃料ディストリビュータ先端部180と結合してよい。パイロット燃料、および主燃料は、たとえば、図2および3に示したように、燃料ノズル先端部アセンブリ68により燃焼器26内に噴射される。タービンエンジンの作動中、当初、パイロット燃料は、始動およびアイドリング運転などの所定のエンジン作動状態の間、たとえば図3の品目102、104として示したようなパイロット燃料通路を介して供給される。パイロット燃料は、パイロット燃料出口162を介して、燃料ディストリビュータ先端部180から排出される。追加出力が要求されるとき、主燃料が主燃料通路105(図3参照)を介して供給され、主燃料は主燃料出口165を使用して噴射される。   The combustion chamber 62 is accommodated in the engine outer casing 18. The fuel is supplied to the combustion chamber by the fuel nozzle 100 as in the example shown in FIGS. Liquid fuel is transported to the fuel nozzle tip assembly 68, for example, via a conduit in the stem 103 as shown in FIG. A conduit having a unitary structure may be used to transport liquid fuel to the fuel nozzle tip assembly 68 of the fuel nozzle 100. A fuel supply conduit may be located in the stem 103 and coupled to the fuel distributor tip 180. Pilot fuel and main fuel are injected into the combustor 26 by a fuel nozzle tip assembly 68, for example, as shown in FIGS. During operation of the turbine engine, initially, pilot fuel is supplied via pilot fuel passages, such as shown as items 102, 104 in FIG. 3, during predetermined engine operating conditions such as starting and idling. Pilot fuel is discharged from the fuel distributor tip 180 via the pilot fuel outlet 162. When additional power is required, main fuel is supplied via the main fuel passage 105 (see FIG. 3) and the main fuel is injected using the main fuel outlet 165.

図4〜6は単体スワーラ200の本発明の例示的実施形態を示す。図2および3は、燃料ノズル100と例示的単体スワーラ200を有する燃料ノズル先端部68の例示的実施形態を示す。図7〜10は単体スワーラ300、400の代替例示的実施形態を示す。用語「単体」は、本明細書に記載のスワーラ200、300、400などの関連構成部品が、製造中に一体成型として製造されることを意味するために、本出願で使用される。したがって、単体構成部品は、その構成部品にとっての一体式構造を有する。図4は、本発明の例示的実施形態による単体スワーラ200の等角図を示す。図4に示した例示的スワーラ200には、ベーンを通過する空気に旋回運動を与える、円周方向で配列されたベーン208が含まれる。図4に示した例示的スワーラ200は、以降に本明細書に記載の方法を使用して製造される単体構造を有してよい。   4-6 illustrate an exemplary embodiment of the present invention of a unitary swirler 200. FIG. FIGS. 2 and 3 illustrate an exemplary embodiment of a fuel nozzle tip 68 having a fuel nozzle 100 and an exemplary unitary swirler 200. FIGS. 7-10 illustrate alternative exemplary embodiments of unitary swirlers 300,400. The term “unitary” is used in this application to mean that related components such as the swirlers 200, 300, 400 described herein are manufactured as a single piece during manufacture. Thus, a single component has an integral structure for that component. FIG. 4 shows an isometric view of a unitary swirler 200 according to an exemplary embodiment of the present invention. The exemplary swirler 200 shown in FIG. 4 includes circumferentially arranged vanes 208 that provide a swirling motion to the air passing through the vanes. The exemplary swirler 200 shown in FIG. 4 may have a unitary structure that is subsequently manufactured using the methods described herein.

図2および3を参照すれば、燃料ディストリビュータ先端部180は、単体ディストリビュータリング171の主燃料通路105およびパイロット燃料通路102、104が、ステム103内に含まれた対応する燃料供給導管と流れ連通して結合されるように、ステム103から延びる。主燃料通路105は、単体ディストリビュータリング171内に画定される主燃料回路に流れ連通して結合される。1次パイロット通路102および2次パイロット通路104は、燃料ノズル(図3参照)内に半径方向で内向きに配置された対応するパイロット噴射器に流れ連通して結合される。ディストリビュータリング171は単体導管(すなわち、単体構造を有する)として本明細書で上述したが、当該技術分野で知られている方法を使用して他の適切な製造構造物を有するディストリビュータリング107を使用することが可能であることは、当業者には明白であろう。単体ディストリビュータリング171は、ろう付けなどの従来の接続手段を使用してステム103に接続される。あるいは、単体ディストリビュータリング171およびステム103は、たとえば、本明細書に記載の直接レーザ金属焼結などの、迅速製造方法によって製造されてよい。   Referring to FIGS. 2 and 3, the fuel distributor tip 180 is configured such that the main fuel passage 105 and the pilot fuel passages 102, 104 of the unitary distributor ring 171 are in flow communication with corresponding fuel supply conduits contained within the stem 103. Extending from the stem 103 to be coupled together. The main fuel passage 105 is coupled in flow communication with a main fuel circuit defined within the unitary distributor ring 171. Primary pilot passage 102 and secondary pilot passage 104 are coupled in flow communication with corresponding pilot injectors disposed radially inward within the fuel nozzle (see FIG. 3). Distributor ring 171 is described herein above as a unitary conduit (ie, having a unitary structure), but uses a distributor ring 107 having other suitable manufacturing structures using methods known in the art. It will be apparent to those skilled in the art that this is possible. The single distributor ring 171 is connected to the stem 103 using conventional connection means such as brazing. Alternatively, the single distributor ring 171 and the stem 103 may be manufactured by a rapid manufacturing method such as, for example, direct laser metal sintering as described herein.

図3は、単体スワーラ200の本発明の例示的実施形態を有する例示的燃料ノズル先端部68の軸方向断面を示す。図3に示した例示的燃料ノズル先端部68は、本明細書で1次パイロット流路102および2次パイロット流路104と呼ぶ、2つのパイロット流路を有する。図3を参照すれば、1次パイロット流路102からの燃料は、1次パイロット燃料噴射器163を介して燃料ノズルから出て、2次パイロット流路104からの燃料は、2次パイロット燃料噴射器167を介して燃料ノズルから出る。ディストリビュータリング171の1次パイロット流路102は、ステム103(図2参照)内に含まれる供給導管の対応するパイロット1次通路と流れ連通する。同様に、ディストリビュータリング171の2次パイロット流路104は、ステム103内に含まれる供給導管の対応するパイロット2次通路と流れ連通する。   FIG. 3 shows an axial cross section of an exemplary fuel nozzle tip 68 having an exemplary embodiment of the present invention of a unitary swirler 200. The exemplary fuel nozzle tip 68 shown in FIG. 3 has two pilot channels, referred to herein as primary pilot channel 102 and secondary pilot channel 104. Referring to FIG. 3, fuel from the primary pilot flow path 102 exits the fuel nozzle via the primary pilot fuel injector 163, and fuel from the secondary pilot flow path 104 is secondary pilot fuel injection. The fuel nozzle exits through the vessel 167. The primary pilot flow path 102 of the distributor ring 171 is in flow communication with the corresponding pilot primary passage of the supply conduit contained within the stem 103 (see FIG. 2). Similarly, the secondary pilot flow path 104 of the distributor ring 171 is in flow communication with a corresponding pilot secondary passage of a supply conduit contained within the stem 103.

前記のように、ガスタービンエンジンで使用される燃料ノズルなどの燃料ノズルは、高温に曝される。高温に対するこのような曝露は、場合によっては、たとえば出口通路164などの燃料通路で、燃料コークス化および閉塞を引き起こす場合がある。ディストリビュータリング171の燃料コークス化および/または閉塞を緩和する1つの方法は、通路(図3に示した品目102、104、105など)を悪熱環境から保護するために、熱シールドを使用することである。図3に示した例示的実施形態では、燃料導管102、104、105は、隙間116およびこれらの導管を少なくとも部分的に囲む熱シールドによって保護されている。隙間116は、悪熱環境からの絶縁を提供することによって、燃料通路に保護を提供する。示した例示的実施形態では、絶縁用隙間116は、約0.015インチ(約0.038cm)と0.025インチ(約0.064cm)の間の幅を有する。熱シールドは、たとえば、一般にガスタービンエンジンで使用されるコバルト基合金およびニッケル基合金などの、高温に耐える能力を備えた任意の適正な材料で製造することができる。図3に示した例示的実施形態では、ディストリビュータリング171は、ディストリビュータリング171、流路102、104、105、燃料出口165、熱シールドおよび隙間116が、一体式構造を有するように形成される、単体構造を有する。   As mentioned above, fuel nozzles such as fuel nozzles used in gas turbine engines are exposed to high temperatures. Such exposure to high temperatures can cause fuel coking and blockage in fuel passages such as, for example, outlet passage 164, in some cases. One way to mitigate fuel coking and / or blockage of the distributor ring 171 is to use heat shields to protect the aisles (items 102, 104, 105, etc. shown in FIG. 3) from a hot environment. It is. In the exemplary embodiment shown in FIG. 3, the fuel conduits 102, 104, 105 are protected by gaps 116 and heat shields that at least partially surround these conduits. The gap 116 provides protection to the fuel passage by providing insulation from a bad heat environment. In the exemplary embodiment shown, the insulating gap 116 has a width between about 0.015 inches and about 0.025 inches. The heat shield can be made of any suitable material with the ability to withstand high temperatures, such as, for example, cobalt and nickel based alloys commonly used in gas turbine engines. In the exemplary embodiment shown in FIG. 3, the distributor ring 171 is formed such that the distributor ring 171, the flow paths 102, 104, 105, the fuel outlet 165, the heat shield and the gap 116 have a unitary structure. It has a single structure.

図4は、本発明の例示的実施形態によるスワーラ200の等角図を示す。例示的スワーラ200は、スワーラ軸11の周りに円周方向で延びる、ハブ205を有する本体201を含む。ハブ205から延びる1列のベーン208は、スワーラ軸11の周りに、ハブ205上で円周方向に配列される。各ベーン208は、ハブ205近くに半径方向に位置する翼根部210と、ハブ205から半径方向に外向きに位置する翼端部220とを有する。各ベーン208は、翼根部210と翼端部220の間に延びる、前縁前縁212および後縁後縁214を有する。ベーン208は、たとえば、前縁212と後縁214の間で、エーロフォイル形などの適正な形状を有する。隣接したベーンは、スワーラ200に入る、図4に品目190として示したCDP空気などの、通過空気のための流路を形成する。ベーン208は、スワーラ200に入る流入空気190に、動作の回転要素を与えるために、スワーラ軸11に対して半径方向および軸方向に傾斜させることができる。これらの傾斜したスワーラベーン208は、燃料ノズル先端部アセンブリ68内で概してらせん状に空気190を旋回させる。本発明の一態様では、ベーン208は、翼根部210とハブ205の間に延びる隅肉226を有する。翼根部210の応力集中が削減するのを助けるのに加えて、隅肉226はスワーラハブ領域の空気の流れを滑らかにする助けもする。隅肉226は、スワーラの空気の滑らかな流れを助けるように設計した滑らかな輪郭形状227を有する。特定のベーン208の輪郭形状および配向は、流体流動解析の知られている方法を使用して設計される。本明細書の図3〜11に示した例示的実施形態では、ベーン208はカンチレバータイプの支持部を有し、ベーンは、ベーン翼端部220が本質的に自由な状態で、翼根部210でハブ205上に構造的に支持される。いくつかの代替のスワーラ設計では、たとえば本発明の代替実施形態を説明する図12に示したように、ベーン208の少なくともいくつかに対して、その先端部領域220で、追加の構造的支持を提供することも可能である。本発明の別の態様では、陥凹部222が、たとえば図4および5に示したように、ベーン228の翼端部220で提供される。陥凹部222は、たとえば図3、11および12に示すように、燃料ノズル100の隣接する構成部品を軸方向に配向させるように、燃料ノズル100の隣接する構成部品と係合する。図4および5に示した例示的実施形態では、陥凹部222はベーン翼端部220に半径の階段状変化を有するステップを含む。陥凹部222にとって、ベーン208上の他の位置または他の幾何学形状を有することが可能であることは、当業者には明白であろう。   FIG. 4 shows an isometric view of a swirler 200 according to an exemplary embodiment of the present invention. The exemplary swirler 200 includes a body 201 having a hub 205 that extends circumferentially about the swirler axis 11. A row of vanes 208 extending from the hub 205 are arranged circumferentially on the hub 205 around the swirler shaft 11. Each vane 208 has a blade root 210 located radially near the hub 205 and a blade tip 220 located radially outward from the hub 205. Each vane 208 has a leading edge leading edge 212 and a trailing edge trailing edge 214 extending between the blade root 210 and the blade tip 220. The vane 208 has a suitable shape, such as an airfoil shape, between the leading edge 212 and the trailing edge 214, for example. Adjacent vanes form a flow path for passing air, such as CDP air, shown as item 190 in FIG. The vane 208 can be tilted radially and axially relative to the swirler shaft 11 to provide a rotational element of motion for the incoming air 190 entering the swirler 200. These inclined swirler vanes 208 swirl the air 190 in a generally spiral manner within the fuel nozzle tip assembly 68. In one aspect of the invention, the vane 208 has a fillet 226 that extends between the blade root 210 and the hub 205. In addition to helping reduce stress concentrations at the blade root 210, the fillet 226 also helps smooth the air flow in the swirler hub region. The fillet 226 has a smooth contour shape 227 designed to aid in the smooth flow of swirler air. The contour shape and orientation of a particular vane 208 is designed using known methods of fluid flow analysis. In the exemplary embodiment shown in FIGS. 3-11 herein, the vane 208 has a cantilever type support, and the vane is at the blade root 210 with the vane tip 220 essentially free. Structurally supported on the hub 205. In some alternative swirler designs, additional structural support is provided in the tip region 220 for at least some of the vanes 208, for example as shown in FIG. 12 illustrating an alternative embodiment of the present invention. It is also possible to provide. In another aspect of the invention, a recess 222 is provided at the wing tip 220 of the vane 228, for example as shown in FIGS. The recess 222 engages adjacent components of the fuel nozzle 100 to orient the adjacent components of the fuel nozzle 100 in the axial direction, as shown, for example, in FIGS. In the exemplary embodiment shown in FIGS. 4 and 5, the recess 222 includes a step having a stepped change in radius at the vane tip 220. It will be apparent to those skilled in the art that the recess 222 can have other locations or other geometric shapes on the vane 208.

図3〜5に示した例示的スワーラ200は、ベーン208の円周方向の列から軸方向で後方に位置するアダプタ250を含む。アダプタ250は、たとえば、ターボファンエンジン10(図1参照)の圧縮器排出から流出するCDP空気流などの、空気流190を送るための流路254を形成するアーチ形壁256(図6参照)を含む。流入空気190は、アダプタ250の通路254に入り、スワーラ200のベーン208の列の方へ軸方向で前方へ流れる。本発明の一態様では、スワーラ本体201の一部203は、ハブ205から軸方向で後方に延び、アダプタ250の一部を形成する。図6に示した例示的実施形態では、軸方向で後方に延びる本体201の一部203は、アダプタ250のアーチ形壁256の一部を形成する。アダプタ250はまた、図3に示したように、燃料ノズルアセンブリ68などのアセンブリにスワーラ200を搭載する手段としての役目をする。図6に示した例示的実施形態では、アダプタ250は、たとえば図2に示した燃料ノズルステム103などの別の構造にアダプタ250を接続するのに使用するろう付け材料(図示せず)を受けるためのアーチ形溝252を含む。図6で明らかに分かるように、アーチ形壁256の溝252は、従来の機械加工方法を使用して形成するのが困難である、複雑な3次元形状を有する。本発明の一態様では、図4〜10に示したような複雑な3次元形状を有するアーチ形壁256の溝252は、以降に本明細書に記載の製造する方法を使用して、単体構造を有するように一体的に形成される。   The exemplary swirler 200 shown in FIGS. 3-5 includes an adapter 250 located axially rearward from a circumferential row of vanes 208. The adapter 250 includes an arcuate wall 256 (see FIG. 6) that forms a flow path 254 for delivering an air flow 190, such as, for example, a CDP air flow exiting the compressor discharge of the turbofan engine 10 (see FIG. 1). including. Incoming air 190 enters passage 254 of adapter 250 and flows axially forward toward the row of vanes 208 of swirler 200. In one aspect of the invention, a portion 203 of the swirler body 201 extends axially rearward from the hub 205 and forms a portion of the adapter 250. In the exemplary embodiment shown in FIG. 6, a portion 203 of the body 201 that extends rearward in the axial direction forms part of the arcuate wall 256 of the adapter 250. The adapter 250 also serves as a means for mounting the swirler 200 on an assembly, such as the fuel nozzle assembly 68, as shown in FIG. In the exemplary embodiment shown in FIG. 6, the adapter 250 receives a brazing material (not shown) used to connect the adapter 250 to another structure, such as the fuel nozzle stem 103 shown in FIG. Including an arcuate groove 252 for the purpose. As can be clearly seen in FIG. 6, the groove 252 of the arcuate wall 256 has a complex three-dimensional shape that is difficult to form using conventional machining methods. In one aspect of the present invention, the groove 252 of the arched wall 256 having a complex three-dimensional shape as shown in FIGS. 4-10 can be used to produce a unitary structure using the manufacturing methods described hereinbelow. Are integrally formed.

図3〜5に示した例示的スワーラ200は、スワーラ軸11と同軸であり、ハブ205から半径方向に外向きに位置する、環状リム240を含む。図3、11および12に見られるように、リム240は燃料ノズル100の隣接する構成部品と係合し、スワーラ200に空気190を流すための流路の一部を形成する。空気流190は、軸方向で前方方向のスワーラ200の後部分に入り、ハブ205およびリム240によってベーン208の方へ送られる。図4〜6に示した例示的実施形態では、圧縮器排出からなどの空気流190は、アダプタ250の通路254に入る。図5および6に最も良く見られるように、アダプタ250のアーチ形壁256の軸方向前方端部は、リム240および本体201に一体的に接続する。望ましい実施形態では、アダプタ250、リム240、本体201、ハブ205およびベーン208は、本明細書に記載の製造方法を使用して単体構造を有する。あるいは、アダプタ250は、個別に製造され、従来の接続手段を使用して、リム240と本体201に接続されてもよい。   The exemplary swirler 200 shown in FIGS. 3-5 includes an annular rim 240 that is coaxial with the swirler shaft 11 and located radially outward from the hub 205. As seen in FIGS. 3, 11, and 12, the rim 240 engages adjacent components of the fuel nozzle 100 and forms part of a flow path for flowing air 190 through the swirler 200. Airflow 190 enters the rear portion of swirler 200 axially forward and is directed toward vane 208 by hub 205 and rim 240. In the exemplary embodiment shown in FIGS. 4-6, an air flow 190, such as from a compressor discharge, enters the passage 254 of the adapter 250. As best seen in FIGS. 5 and 6, the axial forward end of arcuate wall 256 of adapter 250 integrally connects to rim 240 and body 201. In a preferred embodiment, adapter 250, rim 240, body 201, hub 205 and vane 208 have a unitary structure using the manufacturing methods described herein. Alternatively, the adapter 250 may be manufactured separately and connected to the rim 240 and the body 201 using conventional connection means.

図4を参照すれば、壁260はリム240の一部と本体201のハブ205の一部の間に延びる。壁260は、リム240とスワーラのハブ205の間の構造的支持の少なくとも一部を提供する。壁260はまた、アダプタ250の通路254からスワーラの前方部分に入る空気190が軸方向に逆方向に流れず、流れ190をベーン208の方に軸方向で前方に行き続かせることを確実にする。図5に示した例示的実施形態では、壁260の前方表面262は、スワーラ軸11に垂直な面に関して実質的に平面である。空気が滑らかに流れるのを促進するために、壁260(図4および5参照)の端部は、鋭い角で突然流れが分離するのを回避するために滑らかに成形される。   Referring to FIG. 4, the wall 260 extends between a portion of the rim 240 and a portion of the hub 205 of the body 201. Wall 260 provides at least part of the structural support between rim 240 and swirler hub 205. Wall 260 also ensures that air 190 entering the forward portion of the swirler from passage 254 of adapter 250 does not flow axially in the reverse direction and allows flow 190 to continue axially forward toward vane 208. . In the exemplary embodiment shown in FIG. 5, the front surface 262 of the wall 260 is substantially planar with respect to a plane perpendicular to the swirler axis 11. In order to facilitate the smooth flow of air, the ends of the walls 260 (see FIGS. 4 and 5) are shaped smoothly to avoid sudden flow separation at sharp corners.

燃焼器に入る圧縮器排出空気190(図3および4参照)と燃料ノズル領域が、800°F(約427°C)を超える温度を有して、非常に高温であることは、燃焼器および燃料ノズルの適用では一般的である。このような高温は、たとえば、燃料流路102、104およびスワーラ200などの、燃料ノズル100の内部構成部品のいくつかにコークス化または他の熱が誘発する故障を引き起こす場合がある。空気190の高温はまた、たとえば、燃料噴射器163とディストリビュータリング本体(図3参照)の間などの内部ろう接継手を弱める場合がある。本発明の一態様では、絶縁用隙間216は、スワーラ100、および1次燃料噴射器163または2次燃料噴射器167などの他の内部構成部品に流れる空気からの熱の伝達を減少するために、スワーラ200の本体201内に提供される。品目216などの絶縁用隙間は、エンジン作動中に燃料ノズルのろう接継手での温度を低下させる助けをする。絶縁用隙間216は、図3、11および12に示すように、環状であってよい。知られている熱伝達解析に基づく他の適切な形状も使用してよい。図3に示した例示的実施形態では、絶縁用隙間は、スワーラ本体201内で少なくとも部分的に延びる環状であり、約0.015インチ(約0.038cm)と0.025インチ(約0.064cm)の間の隙間の半径方向幅を有する。本発明の一態様では、絶縁用隙間216は、以降に本明細書に記載の製造する方法を使用して、スワーラ本体201と一体的に形成され単体構造を有する。本明細書に記載の溝のような、一体的に形成されたろう付け用溝は、複雑な輪郭を有し、予め形成されたろう付けリング(図示せず)が取り付けられるのを可能にし、容易な組み立てを促進する。   The compressor exhaust air 190 entering the combustor (see FIGS. 3 and 4) and the fuel nozzle region are very hot, with temperatures exceeding 800 ° F. (about 427 ° C.). It is common in the application of fuel nozzles. Such high temperatures may cause coking or other heat-induced failures in some of the internal components of the fuel nozzle 100, such as, for example, the fuel flow paths 102, 104 and the swirler 200. The high temperature of the air 190 may also weaken the internal brazed joint, such as between the fuel injector 163 and the distributor ring body (see FIG. 3). In one aspect of the invention, the insulating gap 216 reduces the transfer of heat from the air flowing to the swirler 100 and other internal components such as the primary fuel injector 163 or the secondary fuel injector 167. , Provided in the body 201 of the swirler 200. Insulating gaps, such as item 216, help reduce the temperature at the brazed joint of the fuel nozzle during engine operation. The insulating gap 216 may be annular as shown in FIGS. Other suitable shapes based on known heat transfer analysis may also be used. In the exemplary embodiment shown in FIG. 3, the insulating gap is an annulus that extends at least partially within the swirler body 201 and is about 0.015 inches and 0.025 inches. 064 cm) in the radial width of the gap. In one aspect of the invention, the insulating gap 216 has a unitary structure that is formed integrally with the swirler body 201 using the manufacturing methods described hereinbelow. An integrally formed brazing groove, such as the grooves described herein, has a complex profile and allows a pre-formed brazing ring (not shown) to be attached and facilitated Facilitates assembly.

図4および6を参照すれば、アダプタ通路254から入る空気流190は、ベーン208に入るとき、円周方向に均一でないことは、当業者には明白である。この不均一性は、壁260が存在することによりさらに強化される。従来のスワーラでは、流れのこのような不均一性は、燃料と空気の混合の不均一性を引き起こし、不均一な燃焼温度につながる場合がある。スワーラ200の本発明の一態様では、円周方向に不均一な流入の悪影響は、円周方向に隣接したベーンの形状とは異なる形状を備えたスワーラベーン208を有することによって、最小化することができる。特別誂えのスワーラベーン208の形状は、知られている流体流動解析技術に基づいて、ハブ205のそれぞれの円周位置に合わせて選択できる。異なった円周位置に位置するベーン208のために異なった形状を有するスワーラは、本明細書に記載の製造方法を使用して製造される単体構造を有することができる。   With reference to FIGS. 4 and 6, it will be apparent to those skilled in the art that the air flow 190 entering the adapter passage 254 is not circumferentially uniform as it enters the vane 208. This non-uniformity is further enhanced by the presence of walls 260. In conventional swirlers, this non-uniformity in the flow can cause non-uniform fuel and air mixing and can lead to non-uniform combustion temperatures. In one aspect of the present invention of swirler 200, the adverse effects of uneven circumferential inflow can be minimized by having swirler vanes 208 with shapes different from the shapes of circumferentially adjacent vanes. it can. The shape of the special swirler vane 208 can be selected for each circumferential position of the hub 205 based on known fluid flow analysis techniques. Swirlers having different shapes for vanes 208 located at different circumferential positions can have a unitary structure that is manufactured using the manufacturing methods described herein.

スワーラ300の代替例示的実施形態が図7および8に示してある。スワーラ300の代替例示的実施形態は、これまでに本明細書に記載のスワーラ200と同様、スワーラベーン308、本体301、ハブ305、アダプタ350およびリム340を含む。図7は、スワーラリム340と壁360の一部を切り欠いた、スワーラ300の代替例示的実施形態の等角図である。図8は、図7に示した代替例示的スワーラ300の平面図である。前記のように、壁260などの壁が存在すれば(図5参照)、ベーン208、特に軸方向で壁260の前に位置するそれらのベーン208に入る空気の流れの不均一性を引き起こす場合がある。壁近くの流れの不均一性を緩和する1つの方法は、壁200近くで流れ190が分離するのを軽減することである。これは、図8に示したように、前方表面362に輪郭形状を備えた壁360を有することによる、スワーラ300の代替例示的実施形態において達成される。壁360のための空気力学的輪郭形状は、知られている流体流動解析技術に基づき、壁360近くの流れの分離を軽減するように選択することができる。流れの矢印191(図8参照)により表示される、壁360近くの改善された流れの方向は、ベーン308、特に軸方向で壁360の前に位置するそれらのベーン308に、より均一な空気の流れを提供する。円周方向で不均一な流れが入ることの悪影響は、これまで論じてきたように、壁360に滑らかな端部を有すること、および/または円周方向で隣接するベーン308の形状と異なる形状を備えたスワーラベーン309を有することによって、さらに最小化することができる。壁360およびベーン308、309に複雑な形状を有するスワーラ300の代替例示的実施形態は、本明細書に記載の製造方法を使用して製造することができる。   An alternative exemplary embodiment of swirler 300 is shown in FIGS. An alternative exemplary embodiment of swirler 300 includes swirler vane 308, body 301, hub 305, adapter 350 and rim 340, similar to swirler 200 previously described herein. FIG. 7 is an isometric view of an alternative exemplary embodiment of swirler 300 with a portion of swirler rim 340 and wall 360 cut away. FIG. 8 is a plan view of the alternative exemplary swirler 300 shown in FIG. As noted above, the presence of walls such as walls 260 (see FIG. 5) may cause non-uniformity in the flow of air into the vanes 208, particularly those vanes 208 that are axially located in front of the walls 260. There is. One way to mitigate the non-uniformity of the flow near the wall is to reduce the separation of the flow 190 near the wall 200. This is achieved in an alternative exemplary embodiment of the swirler 300 by having a contoured wall 360 on the front surface 362, as shown in FIG. The aerodynamic profile for the wall 360 can be selected to reduce flow separation near the wall 360 based on known fluid flow analysis techniques. The improved flow direction near the wall 360, indicated by the flow arrows 191 (see FIG. 8), is more uniform air on the vanes 308, especially those vanes 308 that are axially located in front of the wall 360. Provide a flow of The adverse effects of uneven flow in the circumferential direction may have a smooth end on the wall 360 and / or a shape that is different from the shape of the circumferentially adjacent vane 308, as discussed above. Can be further minimized by having a swirler vane 309 with Alternative exemplary embodiments of swirler 300 having complex shapes on walls 360 and vanes 308, 309 can be manufactured using the manufacturing methods described herein.

スワーラ400の別の代替例示的実施形態が、図9および10に示される。スワーラ400の代替例示的実施形態は、これまでに本明細書に記載のスワーラ200、300と同様に、スワーラベーン408、本体401、ハブ405、アダプタ450およびリム440を含む。図9は、スワーラリム440と壁460の一部を切り欠いた、スワーラ400の代替例示的実施形態の等角図である。図10は、図9に示した代替例示的スワーラ400の平面図である。前記のように、壁260(図5参照)などの壁が存在すれば、ベーン208、特に軸方向で壁260の前に位置するそれらのベーン208に入る空気の流れの不均一性を引き起こす場合がある。壁近くの流れの不均一性は、壁200近くで流れ190が分離するのを軽減することで減少できる。これは、図9および10に示すように、壁460の前方表面462から軸方向に前方へ延びる羽部409を有することによる、スワーラ400の代替例示的実施形態で達成できる。壁460およびベーン409の空気力学的輪郭形状は、知られている流体流動解析技術に基づいて、壁360近くの流れの分離を軽減するように設計してよい。流れの矢印191(図10参照)により表示される、壁460近くの改善した流れの方向は、ベーン408、409、特に軸方向で壁460の前に位置するそれらのベーンに、より一定した空気流を提供する。円周方向で不均一な流れが流入することの悪影響は、これまで論じてきたように、壁460に滑らかな端部を有すること、および/または円周方向で隣接するベーン408の形状と異なる形状を備えたより多くのスワーラ羽部409を有することによって、さらに最小化することができる。壁460およびベーン408、409に複雑な形状を有するスワーラ400の代替例示的実施形態は、本明細書に記載の製造方法を使用することによって製造できる。   Another alternative exemplary embodiment of swirler 400 is shown in FIGS. An alternative exemplary embodiment of swirler 400 includes swirler vane 408, body 401, hub 405, adapter 450 and rim 440, similar to swirlers 200, 300 previously described herein. FIG. 9 is an isometric view of an alternative exemplary embodiment of swirler 400 with a portion of swirler rim 440 and wall 460 cut away. FIG. 10 is a plan view of the alternative exemplary swirler 400 shown in FIG. As described above, the presence of walls such as walls 260 (see FIG. 5) may cause non-uniformity in the flow of air into the vanes 208, particularly those vanes 208 that are axially located in front of the walls 260. There is. The non-uniformity of the flow near the wall can be reduced by reducing the separation of the flow 190 near the wall 200. This can be achieved in an alternative exemplary embodiment of the swirler 400 by having a wing 409 extending axially forward from the front surface 462 of the wall 460, as shown in FIGS. The aerodynamic profile of wall 460 and vane 409 may be designed to reduce flow separation near wall 360 based on known fluid flow analysis techniques. The improved flow direction near the wall 460, indicated by the flow arrows 191 (see FIG. 10), is more constant air on the vanes 408, 409, especially those vanes located axially in front of the wall 460. Provide flow. The negative effects of inflowing circumferentially uneven flows are different from having a smooth edge on the wall 460 and / or the shape of the circumferentially adjacent vane 408, as discussed above. By having more swirler wings 409 with shape, it can be further minimized. Alternative exemplary embodiments of the swirler 400 having complex shapes on the walls 460 and vanes 408, 409 can be manufactured by using the manufacturing methods described herein.

図11および12は、壁260の位置の代替例示的実施形態を示す。図3に示した例示的実施形態では、壁260は本体201のハブ205の軸方向で後方端部に位置する。いくつかの用途では、たとえば、機械的振動を軽減するために、壁260を軸方向で前方に位置することが有利である場合がある。図11は、壁260が、ベーン208の前縁212から軸方向に後ろである位置に、ハブ205の後方端部から軸方向で前方に位置する、例示的実施形態を示す。あるいは、図12は、壁260がベーン208の翼端部220から延びる、別の例示的実施形態を示す。いくつかの設計では、壁260が複数のベーン208の翼端部220から延びることも可能である。   FIGS. 11 and 12 illustrate alternative exemplary embodiments of the location of the wall 260. In the exemplary embodiment shown in FIG. 3, the wall 260 is located at the rearward end in the axial direction of the hub 205 of the body 201. In some applications, it may be advantageous to position the wall 260 axially forward, for example, to reduce mechanical vibrations. FIG. 11 illustrates an exemplary embodiment in which the wall 260 is located axially forward from the rear end of the hub 205 in a position that is axially rearward from the leading edge 212 of the vane 208. Alternatively, FIG. 12 shows another exemplary embodiment in which the wall 260 extends from the wing tip 220 of the vane 208. In some designs, the wall 260 may extend from the wing tips 220 of the plurality of vanes 208.

図3〜6に示した単体スワーラ200の例示的実施形態、および図7〜12に示した単体スワーラ300、400の例示的実施形態は、直接金属レーザ焼結(DMLS)、レーザネットシェープ製造(LNSM)、電子ビーム焼結および製造で知られた他のプロセスなどの、迅速製造プロセスを使用して製造できる。DMLSは、本明細書に記載の単体スワーラ200、300、400を製造する望ましい方法である。   The exemplary embodiment of the unitary swirler 200 shown in FIGS. 3-6 and the exemplary embodiments of the unitary swirlers 300, 400 shown in FIGS. 7-12 include direct metal laser sintering (DMLS), laser net shape fabrication ( LNSM), other processes known in electron beam sintering and manufacturing can be used to manufacture using rapid manufacturing processes. DMLS is a desirable method of manufacturing the single swirler 200, 300, 400 described herein.

図13は、本明細書に記載し、図3〜12に示した、品目200、300および400などの、単体スワーラを製作する方法500の例示的実施形態を説明する流れ図である。製作方法500は例として単体スワーラ200を使用して以下に記載しているが、同じ方法、ステップ、手順等は、図9〜12に示したスワーラの代替例示的実施形態にも適用する。方法500には、直接金属レーザ焼結(DMLS)を使用して、単体スワーラ200(図3〜6に図示)を製作するステップが含まれる。DMLSは、3次元情報、たとえば構成部品の3次元コンピュータモデルを使用して金属構成部品を製作する、知られている製造プロセスである。3次元情報は、各スライスが予め決定した高さのスライスの構成部品の断面を定義する、複数のスライスに変換される。構成部品は次に、完了するまで、スライスごとに、または層ごとに、「ビルドアップ」される。構成部品の各層は、レーザを使用して金属粉末を溶解することによって形成される。   FIG. 13 is a flow diagram illustrating an exemplary embodiment of a method 500 for making a unitary swirler, such as items 200, 300 and 400 described herein and shown in FIGS. Although the fabrication method 500 is described below using a single swirler 200 as an example, the same methods, steps, procedures, etc. apply to the alternative exemplary embodiment of the swirler shown in FIGS. Method 500 includes fabricating a single swirler 200 (shown in FIGS. 3-6) using direct metal laser sintering (DMLS). DMLS is a known manufacturing process that uses three-dimensional information, eg, a three-dimensional computer model of a component, to produce a metal component. The three-dimensional information is converted into a plurality of slices, each slice defining a cross-section of a slice of a predetermined height. The component is then “built up” by slice or layer by layer until completion. Each layer of the component is formed by melting a metal powder using a laser.

したがって、方法500には、単体スワーラ200の3次元情報を決定するステップ505と、各スライスが単体スワーラ200の断面層を定義する複数のスライスに3次元情報を変換するステップ510とが含まれる。次に、単体スワーラ200はDMLSを使用して製作され、またはより詳細には、各層は、レーザエネルギーを使用して金属粉末を溶解することによってステップ515で次々に形成される。各層は約0.0005インチ(約0.0013cm)と約0.001インチ(約0.0025cm)の間の寸法を有する。単体スワーラ200は、任意の適正なレーザ焼結機械を使用して製作してよい。適正なレーザ焼結機械の例には、限定はされないが、ミシガン州Noviの EOS of North America、Inc.から入手可能なEOSINT.RTM.M 270 DMLSマシン、PHENIX PM250マシン、および/またはEOSINT.RTM.M 250 Xtended DMLSマシンが含まれる。単体スワーラ200を製作するのに使用する金属粉末は、望ましくは、コバルトクロムを含む粉末であるが、限定はされないが、HS188およびINCO625などの、任意の他の適正な金属粉末であってよい。金属粉末は、約10ミクロンと74ミクロンの間の粒径を有することができるが、望ましくは約15ミクロンと約30ミクロンの間である。   Accordingly, the method 500 includes a step 505 of determining the three-dimensional information of the single swirler 200 and a step 510 of converting the three-dimensional information into a plurality of slices, each slice defining a cross-sectional layer of the single swirler 200. Next, the unitary swirler 200 is fabricated using DMLS, or more specifically, each layer is formed one after another in step 515 by melting the metal powder using laser energy. Each layer has a dimension between about 0.0005 inches (about 0.0013 cm) and about 0.001 inches (about 0.0025 cm). The unitary swirler 200 may be fabricated using any suitable laser sintering machine. Examples of suitable laser sintering machines include, but are not limited to, EOS of North America, Inc., Novi, Michigan. Available from EOSINT. RTM. M270 DMLS machine, PHENIX PM250 machine, and / or EOSINT. RTM. An M 250 Xtended DMLS machine is included. The metal powder used to make the unitary swirler 200 is desirably a powder comprising cobalt chromium, but may be any other suitable metal powder such as, but not limited to, HS188 and INCO625. The metal powder can have a particle size between about 10 microns and 74 microns, but desirably between about 15 microns and about 30 microns.

単体スワーラ200を製造する方法は、望ましい方法としてDMLSを使用すると本明細書には記載してきたが、層ごとの構築または追加製作を使用する任意の他の適正な迅速製造方法も使用できることは、当業者には理解されよう。これら代替の迅速製造方法には、限定はされないが、選択的レーザ焼結(SLS)、インクジェットおよびレーザジェットによるなどの3D印刷、ステレオリトグラフィ(SLS)、直接選択的レーザ焼結(DSLS)、電子ビーム焼結(EBS)、電子ビーム溶解(EBM)、レーザ技術ネットシェープ法(LENS)、レーザネットシェープ製造(LNSM)および直接金属蒸着(DMD)が含まれる。   Although the method of manufacturing the unitary swirler 200 has been described herein as using DMLS as the preferred method, any other suitable rapid manufacturing method using layer-by-layer construction or additional fabrication can also be used. Those skilled in the art will appreciate. These alternative rapid manufacturing methods include, but are not limited to, selective laser sintering (SLS), 3D printing such as by inkjet and laser jet, stereolithography (SLS), direct selective laser sintering (DSLS), Electron beam sintering (EBS), electron beam melting (EBM), laser technology net shape method (LENS), laser net shape manufacturing (LNSM) and direct metal deposition (DMD) are included.

タービンエンジン(図1〜3参照)の燃料ノズル100のための単体スワーラ200は、知られているスワーラおよび燃料ノズルより含まれる構成部品および結合は少ない。詳細には、上記の単体スワーラ200は、複数のベーン208、本体201、リム40、壁260を含む一体型単体スワーラ200を使用するために、より少ない構成部品を必要とする。結果として、記載の燃料単体スワーラ200は、知られている燃料スワーラに対して、より軽い、よりコストがかからない代替を提供する。さらに、単体スワーラ200用の記載の単体構造は、知られているスワーラと比較して、漏れまたは故障の機会が少なくなり、より容易に修理が可能になる。   A single swirler 200 for a fuel nozzle 100 of a turbine engine (see FIGS. 1-3) includes fewer components and couplings than known swirlers and fuel nozzles. Specifically, the unitary swirler 200 described above requires fewer components in order to use the unitary unitary swirler 200 that includes a plurality of vanes 208, body 201, rim 40, and wall 260. As a result, the single fuel swirler 200 described provides a lighter, less expensive alternative to known fuel swirlers. Furthermore, the described unitary structure for the unitary swirler 200 has fewer opportunities for leakage or failure compared to known swirlers and can be repaired more easily.

本明細書で使用されるように、単数形で列挙され又は数詞がないステップは、複数を除外することが明確に説明されていない限り、複数の前記要素またはステップを除外しないと理解されるべきである。本明細書に記載および/または例示した単体ベンチュリ500、600の要素/構成部品/ステップなどを導入するとき、数詞がないことや「前記」などの冠詞は、1つまたは複数の要素/構成部品/などがあることを意味することを意図する。用語「comprising(含む)」「including(含む)」および「having(有する)」は包括的であり、列挙した要素/構成部品/など以外に追加の要素/構成部品/などがあり得ることを意味することを意図する。さらに、本発明の「一実施形態」に言及することは、列挙した特徴も組み込む追加の実施形態が存在することを除外すると解釈されることは意図していない。   As used herein, a step recited in the singular or lacking a number should be understood not to exclude a plurality of said elements or steps unless specifically stated to exclude a plurality. It is. When introducing the elements / components / steps, etc. of the single venturi 500, 600 described and / or illustrated herein, articles such as the absence of a numeral or “above” may refer to one or more elements / components. It is intended to mean that there is / etc. The terms “comprising”, “including” and “having” are inclusive and mean that there may be additional elements / components / etc. In addition to the listed elements / components / etc. Intended to be. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.

本明細書に記載の方法および単体スワーラ200、300、400などの物品は、液体燃料をタービンエンジンの空気と混合するために空気を旋回させることとの関連で記載されているが、本明細書に記載の単体スワーラ200、300、400およびその製造の方法は、燃料ノズルまたはタービンエンジンに限定されるものではないことは理解されたい。本明細書に含まれる図面に描かれた単体スワーラ200、300、400は、本明細書に記載の特定の実施形態に限定はされず、むしろ、これらは本明細書に記載の他の構成部品と独立して、個別に利用できる。   Although the methods described herein and articles such as unitary swirlers 200, 300, 400 are described in the context of swirling air to mix liquid fuel with turbine engine air, It should be understood that the single swirlers 200, 300, 400 and their method of manufacture described in are not limited to fuel nozzles or turbine engines. The single swirlers 200, 300, 400 depicted in the drawings included herein are not limited to the specific embodiments described herein, but rather are other components described herein. Independently and independently available.

本書は、最良の形態を含み、本発明を開示するために、また当業者が本発明を製造および使用できるようにするために、例示を使用するものである。本発明の特許性のある範囲は、特許請求の範囲により定義され、当業者が気付く他の例示も含まれる場合がある。このような他の例示は、その例示が本特許請求の範囲の文言上の用語と異ならない構造要素を有する場合、またはその例示が本特許請求の範囲の文言上の用語とごくわずかな差異を伴う等価の構造要素を含む場合は、本特許請求の範囲内にあることを意図するものである。   This written description uses the examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples may have structural elements that do not differ from the wording terms of the claims, or the illustrations may differ only slightly from the wording terms of the claims. The accompanying equivalent structural elements are intended to be within the scope of the claims.

10 ガスタービンエンジン
11 スワーラ軸
12 軸方向中心線軸
14 コアガスタービンエンジン
16 ファンセクション
18 外側ケーシング
20 入口
22 ブースタ
24 高圧多段式軸流圧縮器
26 燃焼器
28 第1(高圧)タービン
30 第1(高圧)ドライブシャフト
32 第2(低圧)タービン
34 第2(低圧)ドライブシャフト
36 排気ノズル
38 軸流ファンロータ
40 ファンケーシング
42 ガイドベーン
44 ファンロータブレード
46 下流セクション
48 空気流導管
50 空気流
52 入口
54 空気流
56 空気流
58 空気流
60 燃焼生成物/燃焼ガス
62 燃焼室
64 入口
66 出口
68 燃料ノズル先端部アセンブリ
69 高圧圧縮器排出出口
72 タービンノズル
74 ノズルベーン
100 燃料ノズル
102 パイロット燃料通路
103 ステム
104 パイロット燃料通路
105 主燃料通路
116 絶縁用隙間
162 パイロット燃料出口
163 パイロット燃料噴射器
164 出口通路
165 主燃料出口
167 パイロット燃料噴射器
171 ディストリビュータリング
180 燃料ディストリビュータ先端部
190 圧縮器排出空気/「CDP」空気
191 空気流
200 スワーラ
201 スワーラ本体
203 スワーラ本体の一部
205 ハブ
208 ベーン
209 ベーン
210 翼根部
212 前縁
214 後縁
216 絶縁用隙間
220 翼端部
222 陥凹部
226 隅肉
227 滑らかな輪郭形状
240 リム
250 アダプタ
252 溝
254 アダプタ通路
256 アーチ形壁
260 壁
262 前方表面
300 スワーラ
301 スワーラ本体
305 ハブ
308 ベーン
309 ベーン
320 翼端部
322 陥凹部
340 リム
350 アダプタ
360 壁
362 前方表面
364 輪郭
400 スワーラ
401 スワーラ本体
405 ハブ
408 ベーン
409 ベーン
440 スワーラリム
450 アダプタ
460 壁
462 前方表面
DESCRIPTION OF SYMBOLS 10 Gas turbine engine 11 Swirler shaft 12 Axial centerline shaft 14 Core gas turbine engine 16 Fan section 18 Outer casing 20 Inlet 22 Booster 24 High pressure multistage axial compressor 26 Combustor 28 First (high pressure) turbine 30 First (high pressure) ) Drive shaft 32 Second (low pressure) turbine 34 Second (low pressure) drive shaft 36 Exhaust nozzle 38 Axial fan rotor 40 Fan casing 42 Guide vane 44 Fan rotor blade 46 Downstream section 48 Air flow conduit 50 Air flow 52 Inlet 54 Air Flow 56 Air flow 58 Air flow 60 Combustion products / combustion gas 62 Combustion chamber 64 Inlet 66 Outlet 68 Fuel nozzle tip assembly 69 High pressure compressor discharge outlet 72 Turbine nozzle 74 Nozzle vane 100 Fuel nozzle 102 Pilot fuel passage 103 Stem 104 Pilot fuel passage 105 Main fuel passage 116 Insulation gap 162 Pilot fuel outlet 163 Pilot fuel injector 164 Outlet passage 165 Main fuel outlet 167 Pilot fuel injector 171 Distributor ring 180 Fuel distributor tip 190 Compressor discharge Air / “CDP” air 191 Air flow 200 Swirler 201 Swirler body 203 Part of swirler body 205 Hub 208 Vane 209 Vane 210 Blade root 212 Front edge 214 Rear edge 216 Insulation gap 220 Blade end 222 Recess 226 Fillet 227 Smooth contour 240 Rim 250 Adapter 252 Groove 254 Adapter passage 256 Arched wall 260 Wall 262 Front surface 300 Swirler 301 Swirler body 305 hub 308 vane 309 vane 320 wing tip 322 recess 340 rim 350 adapter 360 wall 362 front surface 364 contour 400 swirler 401 swirler body 405 hub 408 vane 409 vane 440 swirler rim 450 adapter 460 wall 462 front surface

Claims (30)

スワーラ軸(11)を有するスワーラハブ(205)を含む本体(201)と、
前記ハブ(205)から延び、前記スワーラ軸(11)の周りで円周方向に配列される複数のベーン(208)と、
前記スワーラ軸(11)と同軸に位置するリム(240)と、
前記リム(240)の一部と前記ハブ(205)の一部の間に延びる壁(260)と
前記複数のベーン(208)の少なくともいくつかの方へ空気の流れを導くように構成された通路(254)を有するアダプタ(250)と
を含み、
前記通路(254)が前記本体(201)の一部から延びるアーチ形壁(256)によって形成され、
単体構造を有する、スワーラ(200)。
A body (201) including a swirler hub (205) having a swirler shaft (11);
A plurality of vanes (208) extending from the hub (205) and arranged circumferentially around the swirler axis (11);
A rim (240) positioned coaxially with the swirler shaft (11);
A wall (260) extending between a portion of the rim (240) and a portion of the hub (205) ;
An adapter (250) having a passage (254) configured to direct the flow of air toward at least some of the plurality of vanes (208) ;
The passage (254) is formed by an arched wall (256) extending from a portion of the body (201);
A swirler (200) having a unitary structure.
前記通路(254)が前記リム(240)の一部から延びるアーチ形壁(256)によって形成される、請求項記載のスワーラ(200)。 It said passage (254) is formed by arcuate wall (256) extending from a portion of said rim (240) of claim 1, wherein a swirler (200). 前記アダプタ(250)がろう付け材料を受けることができる溝(252)を有する、請求項記載のスワーラ(200)。 It has a groove (252) capable of receiving said adapter (250) brazed material, according to claim 1, wherein a swirler (200). 前記本体(201)が、前記本体(201)内に少なくとも部分的に位置する絶縁用隙間(216)を有する、請求項1記載のスワーラ(200)。 The swirler (200) of claim 1, wherein the body (201) has an insulating gap (216) located at least partially within the body (201). 各ベーン(208)が実質的に同じ形状を有する、請求項1記載のスワーラ(200)。 The swirler (200) of any preceding claim, wherein each vane (208) has substantially the same shape. 少なくとも1つのベーン(209)が別のベーン(208)と異なる形状を有する、請求項1記載のスワーラ(200)。 The swirler (200) of any preceding claim, wherein at least one vane (209) has a different shape than another vane (208). 前記壁(260)が実質的に平面である軸方向前方表面(262)を有する、請求項1記載のスワーラ(200)。 The swirler (200) of any preceding claim, wherein the wall (260) has an axial forward surface (262) that is substantially planar. 前記壁(360)が、空気の滑らかな流れを促進する輪郭(364)を有する軸方向前方表面(362)を有する、請求項1記載のスワーラ(300)。 The swirler (300) of any preceding claim, wherein the wall (360) has an axial forward surface (362) having a contour (364) that facilitates a smooth flow of air. 少なくとも1つのベーン(409)が前記壁(460)の軸方向前方表面(462)から延びる、請求項1記載のスワーラ(400)。 The swirler (400) of any preceding claim, wherein at least one vane (409) extends from an axial forward surface (462) of the wall (460). 少なくとも1つのベーン(308)が、自由である翼端部(320)を有する、請求項1記載のスワーラ(300)。 The swirler (300) of any preceding claim, wherein the at least one vane (308) has a free wing tip (320). 少なくとも1つのベーン(308)が前記翼端部(320)の一部に広がる陥凹部(322)を有する、請求項10記載のスワーラ(300)。 The swirler (300) of claim 10 , wherein at least one vane (308) has a recess (322) that extends into a portion of the wing tip (320). 前記壁(260)が前記ハブ(205)の軸方向後端部に位置する、請求項1記載のスワーラ(200)。 The swirler (200) of claim 1, wherein the wall (260) is located at an axial rear end of the hub (205). 前記壁(260)が前記ハブ(205)の後端部から軸方向で前方に位置する、請求項1記載のスワーラ(200)。 The swirler (200) of claim 1, wherein the wall (260) is located axially forward from a rear end of the hub (205). 前記壁(260)がベーン(208)の前記翼端部(220)から延びる、請求項1記載のスワーラ(200)。 The swirler (200) of any preceding claim, wherein the wall (260) extends from the wing tip (220) of a vane (208). 単体スワーラ(200)を製作する方法(500)であって、
スワーラ軸(11)の周りで本体(201)上に円周方向に配列された複数のベーン(208)、およびリム(240)と前記本体(201)の一部の間に延びる壁(260)を有する単体スワーラ(200)の3次元情報を決定するステップと、
各スライスが前記単体スワーラ(200)の断面層を定義する複数のスライスに前記3次元情報を変換するステップと、
レーザエネルギーを使用して金属粉末を溶解することによって前記単体スワーラ(200)の各層を次々に形成するステップと
を含
前記単体スワーラ(200)の3次元情報を決定するステップが、前記複数のベーン(208)の少なくともいくつかの方へ空気の流れを導くように構成され且つ前記本体(201)の一部から延びるアーチ形壁(256)によって形成された通路(254)を有するアダプタ(250)を有する前記単体スワーラ(200)の3次元モデルを決定するステップをさらに含む
ことを特徴とする、方法。
A method (500) for making a single swirler (200),
A plurality of vanes (208) arranged circumferentially on the body (201) around the swirler axis (11) and a wall (260) extending between the rim (240) and a portion of the body (201) Determining three-dimensional information of a single swirler (200) having:
Converting the three-dimensional information into a plurality of slices, each slice defining a cross-sectional layer of the unitary swirler (200);
Using a laser energy each saw including a step of forming successively a of the unitary swirler (200) by dissolving the metal powder,
Determining the three-dimensional information of the unitary swirler (200) is configured to direct air flow toward at least some of the plurality of vanes (208) and extends from a portion of the body (201). Determining a three-dimensional model of the unitary swirler (200) having an adapter (250) having a passageway (254) formed by an arcuate wall (256);
A method characterized by that .
前記単体スワーラ(200)の3次元情報を決定するステップが、前記単体スワーラ(200)の3次元モデルを決定するステップをさらに含む、請求項15記載の方法。 The method of claim 15 , wherein determining three-dimensional information of the single swirler (200) further comprises determining a three-dimensional model of the single swirler (200). レーザエネルギーを使用して金属粉末を溶解することによって前記単体スワーラ(200)の各層を次々に形成するステップが、コバルトクロム、HS188およびINCO625の少なくとも1つを含む粉末を溶解するステップをさらに含む、請求項15記載の方法。 Forming each layer of the unitary swirler (200) one after another by melting metal powder using laser energy further comprises dissolving a powder comprising at least one of cobalt chrome, HS188 and INCO625. The method of claim 15 . レーザエネルギーを使用して金属粉末を溶解することによって前記単体スワーラ(200)の各層を次々に形成するステップが、約10ミクロンと約75ミクロンの間の粒径を有する金属粉末を溶解するステップをさらに含む、請求項15記載の方法。 The step of sequentially forming each layer of the unitary swirler (200) by dissolving the metal powder using laser energy comprises dissolving the metal powder having a particle size between about 10 microns and about 75 microns. 16. The method of claim 15 , further comprising: レーザエネルギーを使用して金属粉末を溶解することによって前記単体スワーラ(200)の各層を次々に形成するステップが、約15ミクロンと約30ミクロンの間の粒径を有する金属粉末を溶解するステップをさらに含む、請求項18記載の方法。 The step of successively forming each layer of the unitary swirler (200) by dissolving the metal powder using laser energy comprises dissolving the metal powder having a particle size between about 15 microns and about 30 microns. The method of claim 18 further comprising: 前記単体スワーラ(200)の3次元情報を決定するステップが、前記本体(201)内に少なくとも部分的に位置する隙間(216)を有する前記単体スワーラ(200)の3次元モデルを決定するステップをさらに含む、請求項15記載の方法。 The step of determining the three-dimensional information of the single swirler (200) includes the step of determining a three-dimensional model of the single swirler (200) having a gap (216) positioned at least partially within the body (201). 16. The method of claim 15 , further comprising: 前記単体スワーラ(200)の3次元情報を決定するステップが、別のベーン(208)と異なる形状を有する少なくとも1つのベーン(209)を有する前記単体スワーラ(200)の3次元モデルを決定するステップをさらに含む、請求項15記載の方法。 The step of determining the three-dimensional information of the single swirler (200) determines a three-dimensional model of the single swirler (200) having at least one vane (209) having a different shape from another vane (208). 16. The method of claim 15 , further comprising: 前記アダプタ(250)がろう付け材料を受けることができる溝(252)を有する、請求項15記載の方法。 The method of claim 15 , wherein the adapter (250) has a groove (252) capable of receiving a brazing material. スワーラ軸(11)を有するスワーラハブ(205)を含む、単体構造を有する本体(201)と、
前記スワーラ軸(11)の周りで円周方向に配列され、前記ハブ(205)から延びる複数のベーン(208)と、
前記複数のベーン(208)の少なくともいくつかの方へ空気の流れを導くように構成された通路(254)を有するアダプタ(250)と
を含み、
前記通路(254)が前記本体(201)の一部から延びるアーチ形壁(256)によって形成されており、
迅速製造プロセスを使用して製造されたことを特徴とする、単体スワーラ(200)。
A body (201) having a unitary structure including a swirler hub (205) having a swirler shaft (11) ;
Are arranged circumferentially around said swirler shaft (11), and a plurality of vanes (208) extending from said hub (205),
An adapter (250) having a passage (254) configured to direct the flow of air toward at least some of the plurality of vanes (208) ;
The passage (254) is formed by an arched wall (256) extending from a portion of the body (201);
A single swirler (200), characterized by being manufactured using a rapid manufacturing process.
前記迅速製造プロセスがレーザ焼結プロセスである、請求項23記載の単体スワーラ(200)。 24. The unitary swirler (200) of claim 23 , wherein the rapid manufacturing process is a laser sintering process. 前記迅速製造プロセスがDMLSである、請求項23記載の単体スワーラ(200)。 24. The unitary swirler (200) of claim 23 , wherein the rapid manufacturing process is DMLS. 前記軸(11)と同軸のリム(240)をさらに含む、請求項23記載の単体スワーラ(200)。 24. The unitary swirler (200) of claim 23 , further comprising a rim (240) coaxial with the shaft (11). 前記リム(240)の一部と前記ハブ(205)の一部の間に延びる壁(260)をさらに含む、請求項26記載の単体スワーラ(200)。 27. The unitary swirler (200) of claim 26 , further comprising a wall (260) extending between a portion of the rim (240) and a portion of the hub (205). 各ベーン(208)が実質的に同じ形状を有する、請求項23記載の単体スワーラ(200)。 24. The unitary swirler (200) of claim 23 , wherein each vane (208) has substantially the same shape. 少なくとも1つのベーン(209)が別のベーン(208)と異なる形状を有する、請求項23記載の単体スワーラ(200)。 24. A unitary swirler (200) according to claim 23 , wherein at least one vane (209) has a different shape than another vane (208). 前記本体(201)が、前記本体(201)内に少なくとも部分的に位置する絶縁用隙間(216)を有する、請求項23記載の単体スワーラ(200)。
24. A single swirler (200) according to claim 23 , wherein the body (201) has an insulating gap (216) located at least partially within the body (201).
JP2011504037A 2008-04-11 2009-03-16 Swirler and method of manufacturing Active JP5419962B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US4411608P 2008-04-11 2008-04-11
US61/044,116 2008-04-11
US12/200,956 US8171734B2 (en) 2008-04-11 2008-08-29 Swirlers
US12/200,956 2008-08-29
US12/200,960 2008-08-29
US12/200,960 US20090255119A1 (en) 2008-04-11 2008-08-29 Method of manufacturing a unitary swirler
PCT/US2009/037221 WO2009126403A2 (en) 2008-04-11 2009-03-16 Swirlers and method of manufacturing

Publications (2)

Publication Number Publication Date
JP2011528097A JP2011528097A (en) 2011-11-10
JP5419962B2 true JP5419962B2 (en) 2014-02-19

Family

ID=41162795

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2011504035A Active JP5437362B2 (en) 2008-04-11 2009-03-13 Fuel distributor and method of manufacturing
JP2011504034A Active JP5779499B2 (en) 2008-04-11 2009-03-13 Unit conduit for transporting fluid and method of manufacturing
JP2011504037A Active JP5419962B2 (en) 2008-04-11 2009-03-16 Swirler and method of manufacturing
JP2011504038A Pending JP2011528098A (en) 2008-04-11 2009-03-16 Venturi and method of manufacture
JP2011504087A Pending JP2011526976A (en) 2008-04-11 2009-04-03 Combustor mixer and manufacturing method
JP2011504155A Withdrawn JP2011528075A (en) 2008-04-11 2009-04-08 Method of repairing fuel nozzle components
JP2011504148A Withdrawn JP2011526995A (en) 2008-04-11 2009-04-08 Repairable fuel nozzle and repair method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2011504035A Active JP5437362B2 (en) 2008-04-11 2009-03-13 Fuel distributor and method of manufacturing
JP2011504034A Active JP5779499B2 (en) 2008-04-11 2009-03-13 Unit conduit for transporting fluid and method of manufacturing

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2011504038A Pending JP2011528098A (en) 2008-04-11 2009-03-16 Venturi and method of manufacture
JP2011504087A Pending JP2011526976A (en) 2008-04-11 2009-04-03 Combustor mixer and manufacturing method
JP2011504155A Withdrawn JP2011528075A (en) 2008-04-11 2009-04-08 Method of repairing fuel nozzle components
JP2011504148A Withdrawn JP2011526995A (en) 2008-04-11 2009-04-08 Repairable fuel nozzle and repair method

Country Status (6)

Country Link
US (13) US8061142B2 (en)
JP (7) JP5437362B2 (en)
CA (7) CA2720253C (en)
DE (7) DE112009000820B4 (en)
GB (7) GB2471234B (en)
WO (3) WO2009148682A2 (en)

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854120B2 (en) * 2006-03-03 2010-12-21 Pratt & Whitney Canada Corp. Fuel manifold with reduced losses
DE102007050276A1 (en) * 2007-10-18 2009-04-23 Rolls-Royce Deutschland Ltd & Co Kg Lean premix burner for a gas turbine engine
US20090139236A1 (en) * 2007-11-29 2009-06-04 General Electric Company Premixing device for enhanced flameholding and flash back resistance
US8061142B2 (en) * 2008-04-11 2011-11-22 General Electric Company Mixer for a combustor
US20090255120A1 (en) * 2008-04-11 2009-10-15 General Electric Company Method of assembling a fuel nozzle
US9188341B2 (en) * 2008-04-11 2015-11-17 General Electric Company Fuel nozzle
US20090255256A1 (en) * 2008-04-11 2009-10-15 General Electric Company Method of manufacturing combustor components
US8806871B2 (en) * 2008-04-11 2014-08-19 General Electric Company Fuel nozzle
US8607571B2 (en) * 2009-09-18 2013-12-17 Delavan Inc Lean burn injectors having a main fuel circuit and one of multiple pilot fuel circuits with prefiliming air-blast atomizers
CA2635410C (en) * 2008-06-19 2010-08-17 Westport Power Inc. Dual fuel connector
US9464808B2 (en) * 2008-11-05 2016-10-11 Parker-Hannifin Corporation Nozzle tip assembly with secondary retention device
US8061657B2 (en) * 2008-12-31 2011-11-22 General Electric Company Method and apparatus for aircraft anti-icing
EP2451988A1 (en) * 2009-07-07 2012-05-16 Eurocoating S.p.A. Laser process for producing metallic objects, and object obtained therefrom
FR2951245B1 (en) * 2009-10-13 2013-05-17 Snecma MULTI-POINT INJECTION DEVICE FOR A TURBOMACHINE COMBUSTION CHAMBER
EP2325542B1 (en) * 2009-11-18 2013-03-20 Siemens Aktiengesellschaft Swirler vane, swirler and burner assembly
US20110247590A1 (en) * 2010-04-07 2011-10-13 Delavan Inc Injectors utilizing lattice support structure
DE102010019447A1 (en) * 2010-05-05 2011-11-10 Eos Gmbh Electro Optical Systems A method for generatively producing a three-dimensional object with reamers and method for creating a corresponding dataset
US9175568B2 (en) 2010-06-22 2015-11-03 Honeywell International Inc. Methods for manufacturing turbine components
US10054313B2 (en) 2010-07-08 2018-08-21 Siemens Energy, Inc. Air biasing system in a gas turbine combustor
JP5668352B2 (en) * 2010-07-30 2015-02-12 日本電産株式会社 Axial fan and slide mold
US20120137695A1 (en) * 2010-12-01 2012-06-07 General Electric Company Fuel nozzle with gas only insert
US8726668B2 (en) 2010-12-17 2014-05-20 General Electric Company Fuel atomization dual orifice fuel nozzle
US20120151928A1 (en) * 2010-12-17 2012-06-21 Nayan Vinodbhai Patel Cooling flowpath dirt deflector in fuel nozzle
US8387391B2 (en) 2010-12-17 2013-03-05 General Electric Company Aerodynamically enhanced fuel nozzle
US9085980B2 (en) 2011-03-04 2015-07-21 Honeywell International Inc. Methods for repairing turbine components
US20120272660A1 (en) * 2011-04-29 2012-11-01 Proenergy Services, Llc Method and assembly for retrofitting a gas turbine combustor end cover
US8757087B2 (en) 2011-05-24 2014-06-24 Nordson Corporation Device and method for coating elongate objects
JP5772245B2 (en) * 2011-06-03 2015-09-02 川崎重工業株式会社 Fuel injection device
US10773863B2 (en) 2011-06-22 2020-09-15 Sartorius Stedim North America Inc. Vessel closures and methods for using and manufacturing same
US9021675B2 (en) 2011-08-15 2015-05-05 United Technologies Corporation Method for repairing fuel nozzle guides for gas turbine engine combustors using cold metal transfer weld technology
US8506836B2 (en) 2011-09-16 2013-08-13 Honeywell International Inc. Methods for manufacturing components from articles formed by additive-manufacturing processes
US9266170B2 (en) 2012-01-27 2016-02-23 Honeywell International Inc. Multi-material turbine components
US20130192243A1 (en) * 2012-01-31 2013-08-01 Matthew Patrick Boespflug Fuel nozzle for a gas turbine engine and method of operating the same
US9228498B2 (en) * 2012-03-01 2016-01-05 Solar Turbines Incorporated Laser clad fuel injector premix barrel
JP5991025B2 (en) * 2012-05-22 2016-09-14 株式会社Ihi Burner and gas turbine combustor
US8951303B2 (en) 2012-06-11 2015-02-10 Ut-Battelle, Llc Freeform fluidics
CA2875800C (en) 2012-06-15 2017-03-28 General Electric Company Fluid conduit
US10131010B2 (en) 2012-06-28 2018-11-20 United Technologies Corporation Gas turbine fuel nozzle end cover using Au—Ni braze and method producing same
US20140003923A1 (en) 2012-07-02 2014-01-02 Peter Finnigan Functionally graded composite fan containment case
US9120151B2 (en) 2012-08-01 2015-09-01 Honeywell International Inc. Methods for manufacturing titanium aluminide components from articles formed by consolidation processes
US9289826B2 (en) 2012-09-17 2016-03-22 Honeywell International Inc. Turbine stator airfoil assemblies and methods for their manufacture
US9400104B2 (en) * 2012-09-28 2016-07-26 United Technologies Corporation Flow modifier for combustor fuel nozzle tip
DE102012219615A1 (en) * 2012-10-26 2014-04-30 Röchling Automotive AG & Co. KG Filler neck with integrated ventilation channel
US9322415B2 (en) 2012-10-29 2016-04-26 United Technologies Corporation Blast shield for high pressure compressor
US9272437B2 (en) 2012-10-31 2016-03-01 Flow International Corporation Fluid distribution components of high-pressure fluid jet systems
CA2891128C (en) * 2012-11-15 2017-06-13 General Electric Company Fuel nozzle heat shield
US10315275B2 (en) * 2013-01-24 2019-06-11 Wisconsin Alumni Research Foundation Reducing surface asperities
GB201301624D0 (en) 2013-01-30 2013-03-13 Rolls Royce Plc A Method Of Manufacturing A Wall
US20140216043A1 (en) * 2013-02-06 2014-08-07 Weidong Cai Combustor liner for a can-annular gas turbine engine and a method for constructing such a liner
US9377201B2 (en) 2013-02-08 2016-06-28 Solar Turbines Incorporated Forged fuel injector stem
US9267689B2 (en) 2013-03-04 2016-02-23 Siemens Aktiengesellschaft Combustor apparatus in a gas turbine engine
DE102013203938A1 (en) * 2013-03-07 2014-09-25 Airbus Operations Gmbh Generative layer building method for producing a three-dimensional object and three-dimensional object
DE102013203936A1 (en) * 2013-03-07 2014-09-11 Airbus Operations Gmbh Generative layer building method for producing a three-dimensional object and three-dimensional object
US9174312B2 (en) 2013-03-12 2015-11-03 Honeywell International Inc. Methods for the repair of gas turbine engine components using additive manufacturing techniques
US9267189B2 (en) * 2013-03-13 2016-02-23 Honeywell International Inc. Methods for forming dispersion-strengthened aluminum alloys
US9920693B2 (en) 2013-03-14 2018-03-20 United Technologies Corporation Hollow-wall heat shield for fuel injector component
US20140367494A1 (en) * 2013-06-14 2014-12-18 Delavan Inc Additively manufactured nozzle tip for fuel injector
US9310023B2 (en) 2013-06-20 2016-04-12 The Boeing Company Methods and systems for distributing inert gas in an aircraft
US9322558B2 (en) 2013-06-27 2016-04-26 Siemens Aktiengesellschaft Combustor apparatus in a gas turbine engine
US9192999B2 (en) 2013-07-01 2015-11-24 General Electric Company Methods and systems for electrochemical machining of an additively manufactured component
EP2823952A1 (en) * 2013-07-09 2015-01-14 Siemens Aktiengesellschaft Adaptation method and production method for components produced by means of SLM
EP3052785B1 (en) * 2013-10-04 2020-04-08 United Technologies Corporation Swirler for a turbine engine combustor
US9975169B2 (en) 2013-10-04 2018-05-22 United Technologies Corporation Additive manufactured fuel nozzle core for a gas turbine engine
EP3060849B1 (en) * 2013-10-25 2019-05-15 United Technologies Corporation Gas turbine combustor with swirler anti-rotation
GB201321193D0 (en) 2013-12-02 2014-01-15 Rolls Royce Plc A combustion chamber assembly
US9995220B2 (en) * 2013-12-20 2018-06-12 Pratt & Whitney Canada Corp. Fluid manifold for gas turbine engine and method for delivering fuel to a combustor using same
EP3087321B1 (en) 2013-12-23 2020-03-25 General Electric Company Fuel nozzle structure for air-assisted fuel injection
US9884406B2 (en) * 2014-01-15 2018-02-06 Flow International Corporation High-pressure waterjet cutting head systems, components and related methods
WO2015112384A1 (en) 2014-01-22 2015-07-30 United Technologies Corporation Method for additively constructing internal channels
US20160252200A1 (en) * 2014-01-24 2016-09-01 United Technologies Corporation Fuel fitting
WO2015112385A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Thermally compliant additively manufactured fuel injector
WO2015147951A2 (en) 2014-01-24 2015-10-01 United Technologies Corporation Axial staged combustor with restricted main fuel injector
CN106029945B (en) 2014-02-13 2018-10-12 通用电气公司 Anti- coking coating, its technique and the hydrocarbon fluid channel equipped with anti-coking coating
US10295186B2 (en) * 2014-03-28 2019-05-21 Delavan Inc. Of Des Moines Ia Airblast nozzle with upstream fuel distribution and near-exit swirl
US9528705B2 (en) 2014-04-08 2016-12-27 General Electric Company Trapped vortex fuel injector and method for manufacture
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US9551490B2 (en) 2014-04-08 2017-01-24 General Electric Company System for cooling a fuel injector extending into a combustion gas flow field and method for manufacture
US10934890B2 (en) * 2014-05-09 2021-03-02 Raytheon Technologies Corporation Shrouded conduit for arranging a fluid flowpath
US9857002B2 (en) * 2014-05-09 2018-01-02 United Technologies Corporation Fluid couplings and methods for additive manufacturing thereof
JP5940588B2 (en) * 2014-06-04 2016-06-29 三菱日立パワーシステムズ株式会社 Repair system, repair data providing apparatus, and repair data generation method
GB2541575B (en) 2014-06-04 2021-06-09 Mitsubishi Power Ltd Additive manufacturing system, modeling-data providing apparatus and providing method
US20160003150A1 (en) * 2014-07-03 2016-01-07 General Electric Company Igniter tip with cooling passage
US10208673B2 (en) * 2014-07-03 2019-02-19 United Technologies Corporation Fuel dispensing apparatus and method of operation
WO2016006707A1 (en) * 2014-07-11 2016-01-14 倉敷紡績株式会社 Bent product
US20170059163A1 (en) * 2014-07-11 2017-03-02 United Technologies Corporation Additively manufactured swirler mount interface for gas turbine engine combustor
JP6301774B2 (en) * 2014-08-01 2018-03-28 三菱日立パワーシステムズ株式会社 Gas turbine combustor
FR3025017B1 (en) * 2014-08-20 2016-09-30 Snecma CONNECTING DEVICE COMPRISING SEVERAL CONCENTRIC TUBES HANGERS
US9528632B2 (en) 2014-10-14 2016-12-27 General Electric Company Tortuous path control valve trim
US20160304210A1 (en) * 2014-10-15 2016-10-20 Rosemount Aerospace Inc. One-piece air data probe
US9869047B2 (en) 2014-11-05 2018-01-16 Haier Us Appliance Solutions, Inc. Unitary top panel for a washing machine appliance
US9695542B2 (en) 2014-11-05 2017-07-04 Haier Us Appliance Solutions, Inc. Unitary spray nozzle for a washing machine appliance
US9901944B2 (en) * 2015-02-18 2018-02-27 Delavan Inc Atomizers
US10450871B2 (en) 2015-02-26 2019-10-22 Rolls-Royce Corporation Repair of dual walled metallic components using directed energy deposition material addition
EP3061556B1 (en) 2015-02-26 2018-08-15 Rolls-Royce Corporation Method for repairing a dual walled metallic component using braze material and such component obtained
US9939157B2 (en) 2015-03-10 2018-04-10 General Electric Company Hybrid air blast fuel nozzle
US10591164B2 (en) 2015-03-12 2020-03-17 General Electric Company Fuel nozzle for a gas turbine engine
US9927124B2 (en) * 2015-03-26 2018-03-27 Ansaldo Energia Switzerland AG Fuel nozzle for axially staged fuel injection
EP3076080B1 (en) * 2015-03-30 2020-06-10 Ansaldo Energia Switzerland AG Fuel injector device
US9874351B2 (en) 2015-04-14 2018-01-23 General Electric Company Thermally-coupled fuel manifold
GB201508703D0 (en) 2015-05-21 2015-07-01 Rolls Royce Plc Additive layer repair of a metallic component
US20160362200A1 (en) * 2015-06-15 2016-12-15 The Procter & Gamble Company Process and apparatus for making water soluble pouches
US10209146B1 (en) * 2015-06-21 2019-02-19 Florida Turbine Technologies, Inc Apparatus and process for determining a convective heat transfer coefficient between a moving fluid and a bounding surface
US10596717B2 (en) 2015-07-13 2020-03-24 Flow International Corporation Methods of cutting fiber reinforced polymer composite workpieces with a pure waterjet
US10364751B2 (en) * 2015-08-03 2019-07-30 Delavan Inc Fuel staging
US10443115B2 (en) 2015-08-20 2019-10-15 General Electric Company Apparatus and method for direct writing of single crystal super alloys and metals
US10378446B2 (en) * 2015-11-17 2019-08-13 Delavan Inc Thermal management for injectors
US9879536B2 (en) 2015-12-21 2018-01-30 General Electric Company Surface treatment of turbomachinery
WO2017117072A1 (en) * 2015-12-29 2017-07-06 Moen Incorporated Spray devices and unitarily formed components thereof
EP3225915B1 (en) * 2016-03-31 2019-02-06 Rolls-Royce plc Fuel injector and method of manufactering the same
FR3049982B1 (en) * 2016-04-12 2020-01-17 Zodiac Aerotechnics METHOD OF MANUFACTURING A STRAINER, STRAINER, AND EJECTOR COMPRISING SUCH A STRAINER
US20170363292A1 (en) * 2016-06-17 2017-12-21 Pratt & Whitney Canada Corp. Method of accessing a nozzle tip assembly of a fuel nozzle
US11262003B2 (en) * 2016-06-30 2022-03-01 General Electric Company Integral fluid conduit
US10544683B2 (en) 2016-08-30 2020-01-28 Rolls-Royce Corporation Air-film cooled component for a gas turbine engine
EP3290804A1 (en) * 2016-08-31 2018-03-07 Siemens Aktiengesellschaft A burner with fuel and air supply incorporated in a wall of the burner
US20180073390A1 (en) 2016-09-13 2018-03-15 Rolls-Royce Corporation Additively deposited gas turbine engine cooling component
US10689984B2 (en) 2016-09-13 2020-06-23 Rolls-Royce Corporation Cast gas turbine engine cooling components
EP3516202B1 (en) * 2016-10-31 2024-08-21 Cummins Inc. Injector sleeve assembly and method for field repair procedure
EP3324120B1 (en) * 2016-11-18 2019-09-18 Ansaldo Energia Switzerland AG Additively manufactured gas turbine fuel injector device
JP6863718B2 (en) * 2016-11-21 2021-04-21 三菱パワー株式会社 Gas turbine combustor
US10221769B2 (en) 2016-12-02 2019-03-05 General Electric Company System and apparatus for gas turbine combustor inner cap and extended resonating tubes
DE102016123323B3 (en) 2016-12-02 2018-03-01 Eberspächer Climate Control Systems GmbH & Co. KG vehicle
US10220474B2 (en) 2016-12-02 2019-03-05 General Electricd Company Method and apparatus for gas turbine combustor inner cap and high frequency acoustic dampers
US10228138B2 (en) 2016-12-02 2019-03-12 General Electric Company System and apparatus for gas turbine combustor inner cap and resonating tubes
US11149952B2 (en) 2016-12-07 2021-10-19 Raytheon Technologies Corporation Main mixer in an axial staged combustor for a gas turbine engine
US10801728B2 (en) * 2016-12-07 2020-10-13 Raytheon Technologies Corporation Gas turbine engine combustor main mixer with vane supported centerbody
EP3361161B1 (en) * 2017-02-13 2023-06-07 Ansaldo Energia Switzerland AG Burner assembly for a combustor of a gas turbine power plant and combustor comprising said burner assembly
EP3596393B1 (en) 2017-03-13 2023-03-01 Siemens Energy Global GmbH & Co. KG Fuel injector nozzle for combustion turbine engines including thermal stress-relief vanes
GB201704899D0 (en) 2017-03-28 2017-05-10 Rolls Royce Plc Fuel injector
GB2561190A (en) * 2017-04-04 2018-10-10 Edwards Ltd Purge gas feeding means, abatement systems and methods of modifying abatement systems
US20180313225A1 (en) 2017-04-26 2018-11-01 General Electric Company Methods of cleaning a component within a turbine engine
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
US11577953B2 (en) 2017-11-14 2023-02-14 Sartorius Stedim North America, Inc. System for simultaneous distribution of fluid to multiple vessels and method of using the same
EP3710361A4 (en) 2017-11-14 2021-08-11 Sartorius Stedim North America Inc. Fluid transfer assembly with a junction having multiple fluid pathways
US11691866B2 (en) 2017-11-14 2023-07-04 Sartorius Stedim North America Inc. System for simultaneous distribution of fluid to multiple vessels and method of using the same
US11319201B2 (en) 2019-07-23 2022-05-03 Sartorius Stedim North America Inc. System for simultaneous filling of multiple containers
US10557732B2 (en) 2017-12-07 2020-02-11 Cameron International Corporation Flowmeters and methods of manufacture
US11175045B2 (en) * 2018-01-04 2021-11-16 General Electric Company Fuel nozzle for gas turbine engine combustor
US10746326B2 (en) * 2018-01-08 2020-08-18 General Electric Company Additively manufactured tube array
US10808934B2 (en) * 2018-01-09 2020-10-20 General Electric Company Jet swirl air blast fuel injector for gas turbine engine
GB201802251D0 (en) * 2018-02-12 2018-03-28 Rolls Royce Plc An air swirler arrangement for a fuel injector of a combustion chamber
CN108312548B (en) * 2018-02-13 2020-05-19 上海大学 Five-axis linkage 3D printing method based on model surface feature hybrid adaptive slicing
US10816207B2 (en) * 2018-02-14 2020-10-27 Pratt & Whitney Canada Corp. Fuel nozzle with helical fuel passage
US10955059B2 (en) 2018-02-27 2021-03-23 Delta Faucet Company Faucet including dual water outlets
US10823419B2 (en) 2018-03-01 2020-11-03 General Electric Company Combustion system with deflector
US11338396B2 (en) 2018-03-08 2022-05-24 Rolls-Royce Corporation Techniques and assemblies for joining components
FR3080437B1 (en) 2018-04-24 2020-04-17 Safran Aircraft Engines INJECTION SYSTEM FOR A TURBOMACHINE ANNULAR COMBUSTION CHAMBER
US11149950B2 (en) * 2018-06-11 2021-10-19 Woodward, Inc. Pre-swirl pressure atomizing tip
FR3084449B1 (en) * 2018-07-25 2020-07-17 Safran Aircraft Engines MULTI-POINT FUEL INJECTION DEVICE
US11187153B2 (en) * 2018-09-25 2021-11-30 Woodward, Inc. Composite spray bars
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11192207B2 (en) 2018-10-26 2021-12-07 General Electric Company Additive manufactured object with passage having varying cross-sectional shape
US11090771B2 (en) 2018-11-05 2021-08-17 Rolls-Royce Corporation Dual-walled components for a gas turbine engine
US11346545B2 (en) 2018-11-09 2022-05-31 Fisher Controls International Llc Spray heads for use with desuperheaters and desuperheaters including such spray heads
US10852173B2 (en) 2018-12-18 2020-12-01 Sensia Llc Flowmeters and methods of manufacture
US10844969B2 (en) 2018-12-28 2020-11-24 Delta Faucet Company Faucet including a rotatable spout arm
US11186973B2 (en) 2018-12-28 2021-11-30 Delta Faucet Company Cantilevered faucet spout
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
US11305363B2 (en) 2019-02-11 2022-04-19 Rolls-Royce Corporation Repair of through-hole damage using braze sintered preform
US20200309373A1 (en) * 2019-03-25 2020-10-01 United Technologies Corporation Aftermarket repair process for a fuel nozzle guide heat shield of a gas turbine engine
US11187110B2 (en) 2019-06-12 2021-11-30 Pratt & Whitney Canada Corp. Method of repairing a rod guide assembly of a fuel control unit
US11369985B2 (en) * 2019-10-04 2022-06-28 Delavan Inc Fluid conduits with heat shielding
US11454390B2 (en) 2019-12-03 2022-09-27 Fisher Controls International Llc Spray heads for use with desuperheaters and desuperheaters including such spray heads
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
FR3107564B1 (en) * 2020-02-24 2022-12-02 Safran Helicopter Engines Turbomachine Combustion Assembly
US11371437B2 (en) 2020-03-10 2022-06-28 Oliver Crispin Robotics Limited Insertion tool
US12091981B2 (en) 2020-06-11 2024-09-17 General Electric Company Insertion tool and method
US11935290B2 (en) 2020-10-29 2024-03-19 Oliver Crispin Robotics Limited Systems and methods of servicing equipment
US11685051B2 (en) 2020-10-29 2023-06-27 General Electric Company Systems and methods of servicing equipment
US11992952B2 (en) 2020-10-29 2024-05-28 General Electric Company Systems and methods of servicing equipment
US11915531B2 (en) 2020-10-29 2024-02-27 General Electric Company Systems and methods of servicing equipment
US11874653B2 (en) 2020-10-29 2024-01-16 Oliver Crispin Robotics Limited Systems and methods of servicing equipment
US11938907B2 (en) 2020-10-29 2024-03-26 Oliver Crispin Robotics Limited Systems and methods of servicing equipment
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool
US11384937B1 (en) 2021-05-12 2022-07-12 General Electric Company Swirler with integrated damper
US11428411B1 (en) * 2021-05-18 2022-08-30 General Electric Company Swirler with rifled venturi for dynamics mitigation
CN113664466B (en) * 2021-08-16 2022-05-31 西安远航真空钎焊技术有限公司 Preparation method of gas turbine swirler
US11692446B2 (en) 2021-09-23 2023-07-04 Rolls-Royce North American Technologies, Inc. Airfoil with sintered powder components
US11774100B2 (en) * 2022-01-14 2023-10-03 General Electric Company Combustor fuel nozzle assembly
US20230228420A1 (en) * 2022-01-19 2023-07-20 General Electric Company Radial-radial-axial swirler assembly
US11725526B1 (en) 2022-03-08 2023-08-15 General Electric Company Turbofan engine having nacelle with non-annular inlet
CN115143490B (en) * 2022-06-15 2023-08-01 南京航空航天大学 Combustion chamber with circumferential staggered opposite flushing jet flow and full-ring large-scale rotational flow coupling
DE102022207492A1 (en) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Nozzle device for adding at least one gaseous fuel and one liquid fuel, set, supply system and gas turbine arrangement
US12092331B2 (en) 2022-11-23 2024-09-17 Woodward, Inc. Tangential pressure atomizing tip without feed chamber

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1908066A (en) * 1929-08-22 1933-05-09 Holzwarth Gas Turbine Co Nozzle for gas turbines
GB837500A (en) 1957-07-29 1960-06-15 Cleaver Brooks Co Oil burner purge method and system
US3480416A (en) * 1964-03-12 1969-11-25 Sun Oil Co Gas preparation process and apparatus
US3258838A (en) * 1964-08-27 1966-07-05 Equipment Dev Corp Method and apparatus for finding centers
US3291191A (en) * 1966-01-28 1966-12-13 Sun Oil Co Method of making a normally liquid fuel interchangeable with gas
US3684186A (en) * 1970-06-26 1972-08-15 Ex Cell O Corp Aerating fuel nozzle
US4216652A (en) * 1978-06-08 1980-08-12 General Motors Corporation Integrated, replaceable combustor swirler and fuel injector
DE2838659C2 (en) * 1978-09-05 1981-07-16 Bio-Melktechnik Swiss Hoefelmayer & Co, Niederteufen, Aargau Hose arrangement for a quarter milking machine
US4327547A (en) * 1978-11-23 1982-05-04 Rolls-Royce Limited Fuel injectors
EP0019421A3 (en) 1979-05-17 1981-01-14 John Zink Company Method of burning a liquid fuel and water mixture as gaseous fuel and apparatus for carrying out said method
EP0042454A1 (en) 1980-06-24 1981-12-30 Franz X. Wittek Method of operating combustion apparatuses, and combustion engine and heating device in which this method is used
US4425755A (en) * 1980-09-16 1984-01-17 Rolls-Royce Limited Gas turbine dual fuel burners
JPS5841471U (en) * 1981-09-12 1983-03-18 株式会社東芝 refrigerator
US4584834A (en) * 1982-07-06 1986-04-29 General Electric Company Gas turbine engine carburetor
US4582093A (en) * 1983-12-05 1986-04-15 Libbey-Owens-Ford Company Fiber optic duct insert
US4674167A (en) * 1983-12-05 1987-06-23 Sterling Engineered Products Inc. Method of converting a single chambered conduit to a multi-chambered conduit
US4610320A (en) * 1984-09-19 1986-09-09 Directional Enterprises, Inc. Stabilizer blade
US4798330A (en) * 1986-02-14 1989-01-17 Fuel Systems Textron Inc. Reduced coking of fuel nozzles
JPS62150543U (en) * 1986-03-18 1987-09-24
US4722559A (en) * 1986-07-02 1988-02-02 Heinz Bongartz Spray hose assembly
US4876643A (en) * 1987-06-24 1989-10-24 Kabushiki Kaisha Toshiba Parallel searching system having a master processor for controlling plural slave processors for independently processing respective search requests
US5057073A (en) * 1988-04-21 1991-10-15 Vas-Cath Incorporated Dual lumen catheter
GB2227190B (en) * 1989-01-24 1992-12-16 Refurbished Turbine Components Turbine blade repair
US5038014A (en) * 1989-02-08 1991-08-06 General Electric Company Fabrication of components by layered deposition
JP2798281B2 (en) * 1989-10-31 1998-09-17 龍三 渡辺 Particle array laser sintering method and apparatus
US5117637A (en) * 1990-08-02 1992-06-02 General Electric Company Combustor dome assembly
US5460758A (en) * 1990-12-21 1995-10-24 Eos Gmbh Electro Optical Systems Method and apparatus for production of a three-dimensional object
US5197191A (en) * 1991-03-04 1993-03-30 General Electric Company Repair of airfoil edges
IT1251147B (en) * 1991-08-05 1995-05-04 Ivo Panzani MULTILUME TUBE FOR CENTRIFUGAL SEPARATOR PARTICULARLY FOR BLOOD
US5250136A (en) * 1992-02-12 1993-10-05 General Motors Corporation Method of making a core/pattern combination for producing a gas-turbine blade or component
US5309709A (en) * 1992-06-25 1994-05-10 Solar Turbines Incorporated Low emission combustion system for a gas turbine engine
JPH0756933A (en) * 1993-06-24 1995-03-03 Xerox Corp Method for retrieval of document
US5519608A (en) * 1993-06-24 1996-05-21 Xerox Corporation Method for extracting from a text corpus answers to questions stated in natural language by using linguistic analysis and hypothesis generation
US5530939A (en) * 1994-09-29 1996-06-25 Bell Communications Research, Inc. Method and system for broadcasting and querying a database using a multi-function module
US5761907A (en) * 1995-12-11 1998-06-09 Parker-Hannifin Corporation Thermal gradient dispersing heatshield assembly
US5673552A (en) * 1996-03-29 1997-10-07 Solar Turbines Incorporated Fuel injection nozzle
US5686676A (en) * 1996-05-07 1997-11-11 Brush Wellman Inc. Process for making improved copper/tungsten composites
US6032457A (en) * 1996-06-27 2000-03-07 United Technologies Corporation Fuel nozzle guide
US5824250A (en) * 1996-06-28 1998-10-20 Alliedsignal Inc. Gel cast molding with fugitive molds
US5916142A (en) * 1996-10-21 1999-06-29 General Electric Company Self-aligning swirler with ball joint
US5836163A (en) * 1996-11-13 1998-11-17 Solar Turbines Incorporated Liquid pilot fuel injection method and apparatus for a gas turbine engine dual fuel injector
CN1332340C (en) * 1997-03-04 2007-08-15 石仓博 Language analysis system and method
US6076051A (en) * 1997-03-07 2000-06-13 Microsoft Corporation Information retrieval utilizing semantic representation of text
US5794601A (en) * 1997-05-16 1998-08-18 Pantone; Paul Fuel pretreater apparatus and method
EP0986717A1 (en) 1997-06-02 2000-03-22 Solar Turbines Incorporated Dual fuel injection method and apparatus
US5933822A (en) * 1997-07-22 1999-08-03 Microsoft Corporation Apparatus and methods for an information retrieval system that employs natural language processing of search results to improve overall precision
US6355086B2 (en) * 1997-08-12 2002-03-12 Rolls-Royce Corporation Method and apparatus for making components by direct laser processing
US6269368B1 (en) * 1997-10-17 2001-07-31 Textwise Llc Information retrieval using dynamic evidence combination
EP0916894B1 (en) * 1997-11-13 2003-09-24 ALSTOM (Switzerland) Ltd Burner for operating a heat generator
US5988531A (en) * 1997-11-25 1999-11-23 Solar Turbines Method of making a fuel injector
US6068330A (en) * 1998-01-22 2000-05-30 Honda Giken Kogyo Kabushiki Kaisha Framework of an automobile body
EP0962873A1 (en) * 1998-06-02 1999-12-08 International Business Machines Corporation Processing of textual information and automated apprehension of information
CA2284759C (en) * 1998-10-05 2006-11-28 Mahmud U. Islam Process for manufacturing or repairing turbine engine or compressor components
US6189002B1 (en) * 1998-12-14 2001-02-13 Dolphin Search Process and system for retrieval of documents using context-relevant semantic profiles
KR100291953B1 (en) * 1999-03-15 2001-06-01 윤덕용 Variable deposition manufacturing method and apparatus
ES2252921T3 (en) * 1999-03-23 2006-05-16 Gaimont Universal Ltd. B.V.I. EXTRUSIONED TUBULAR DEVICE.
US6321541B1 (en) * 1999-04-01 2001-11-27 Parker-Hannifin Corporation Multi-circuit multi-injection point atomizer
US6711898B2 (en) * 1999-04-01 2004-03-30 Parker-Hannifin Corporation Fuel manifold block and ring with macrolaminate layers
US6715292B1 (en) * 1999-04-15 2004-04-06 United Technologies Corporation Coke resistant fuel injector for a low emissions combustor
JP3364169B2 (en) * 1999-06-09 2003-01-08 三菱重工業株式会社 Gas turbine and its combustor
US6901402B1 (en) * 1999-06-18 2005-05-31 Microsoft Corporation System for improving the performance of information retrieval-type tasks by identifying the relations of constituents
US6391251B1 (en) * 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US6811744B2 (en) * 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
JP2001041454A (en) * 1999-07-27 2001-02-13 Ishikawajima Harima Heavy Ind Co Ltd Fuel jet nozzle for normal and emergency use
US6419446B1 (en) * 1999-08-05 2002-07-16 United Technologies Corporation Apparatus and method for inhibiting radial transfer of core gas flow within a core gas flow path of a gas turbine engine
US6547163B1 (en) * 1999-10-01 2003-04-15 Parker-Hannifin Corporation Hybrid atomizing fuel nozzle
EP1096201A1 (en) * 1999-10-29 2001-05-02 Siemens Aktiengesellschaft Burner
US6279323B1 (en) * 1999-11-01 2001-08-28 General Electric Company Low emissions combustor
US6256995B1 (en) * 1999-11-29 2001-07-10 Pratt & Whitney Canada Corp. Simple low cost fuel nozzle support
US6354072B1 (en) 1999-12-10 2002-03-12 General Electric Company Methods and apparatus for decreasing combustor emissions
US6460340B1 (en) * 1999-12-17 2002-10-08 General Electric Company Fuel nozzle for gas turbine engine and method of assembling
DE10004159C2 (en) 2000-02-01 2001-12-06 Bosch Gmbh Robert Nozzle assembly for gas burners
US7120574B2 (en) * 2000-04-03 2006-10-10 Invention Machine Corporation Synonym extension of search queries with validation
US6968332B1 (en) * 2000-05-25 2005-11-22 Microsoft Corporation Facility for highlighting documents accessed through search or browsing
EP1296776A4 (en) * 2000-06-01 2004-12-08 Univ Texas Direct selective laser sintering of metals
US7171349B1 (en) * 2000-08-11 2007-01-30 Attensity Corporation Relational text index creation and searching
US6389815B1 (en) * 2000-09-08 2002-05-21 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
EP1189148A1 (en) * 2000-09-19 2002-03-20 UMA Information Technology AG Document search and analysing method and apparatus
US6363726B1 (en) * 2000-09-29 2002-04-02 General Electric Company Mixer having multiple swirlers
US6381964B1 (en) * 2000-09-29 2002-05-07 General Electric Company Multiple annular combustion chamber swirler having atomizing pilot
US6367262B1 (en) * 2000-09-29 2002-04-09 General Electric Company Multiple annular swirler
CA2423965A1 (en) * 2000-09-29 2002-04-04 Gavagai Technology Incorporated A method and system for adapting synonym resources to specific domains
US6474071B1 (en) * 2000-09-29 2002-11-05 General Electric Company Multiple injector combustor
GB0025765D0 (en) * 2000-10-20 2000-12-06 Aero & Ind Technology Ltd Fuel injector
US6955023B2 (en) * 2000-12-13 2005-10-18 Kevin Chaite Rotheroe Unitary metal structural member with internal reinforcement
DE10064267A1 (en) * 2000-12-22 2002-07-04 Alstom Switzerland Ltd Process for quickly manufacturing hollow turbine blades for manufacturing development and component testing
JP2002230035A (en) * 2001-01-05 2002-08-16 Internatl Business Mach Corp <Ibm> Information arranging method, information processor, information processing system, storage medium and program transmitting device
US6453660B1 (en) 2001-01-18 2002-09-24 General Electric Company Combustor mixer having plasma generating nozzle
US6741981B2 (en) * 2001-03-02 2004-05-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) System, method and apparatus for conducting a phrase search
US6688534B2 (en) * 2001-03-07 2004-02-10 Delavan Inc Air assist fuel nozzle
US6442940B1 (en) * 2001-04-27 2002-09-03 General Electric Company Gas-turbine air-swirler attached to dome and combustor in single brazing operation
US6484489B1 (en) 2001-05-31 2002-11-26 General Electric Company Method and apparatus for mixing fuel to decrease combustor emissions
US6418726B1 (en) 2001-05-31 2002-07-16 General Electric Company Method and apparatus for controlling combustor emissions
US8799776B2 (en) * 2001-07-31 2014-08-05 Invention Machine Corporation Semantic processor for recognition of whole-part relations in natural language documents
US7398201B2 (en) * 2001-08-14 2008-07-08 Evri Inc. Method and system for enhanced data searching
US7526425B2 (en) * 2001-08-14 2009-04-28 Evri Inc. Method and system for extending keyword searching to syntactically and semantically annotated data
US6755024B1 (en) * 2001-08-23 2004-06-29 Delavan Inc. Multiplex injector
CA2401060C (en) * 2001-09-04 2005-04-12 Honda Giken Kogyo Kabushiki Kaisha Vehicle body frame hollow member
US6523350B1 (en) * 2001-10-09 2003-02-25 General Electric Company Fuel injector fuel conduits with multiple laminated fuel strips
JP2003129862A (en) * 2001-10-23 2003-05-08 Toshiba Corp Turbine blade production method
NO316480B1 (en) * 2001-11-15 2004-01-26 Forinnova As Method and system for textual examination and discovery
ITMI20012780A1 (en) * 2001-12-21 2003-06-21 Nuovo Pignone Spa MAIN INJECTION DEVICE FOR LIQUID FUEL FOR SINGLE COMBUSTION CHAMBER EQUIPPED WITH PRE-MIXING CHAMBER OF A TU
US6865889B2 (en) * 2002-02-01 2005-03-15 General Electric Company Method and apparatus to decrease combustor emissions
US6866478B2 (en) * 2002-05-14 2005-03-15 The Board Of Trustees Of The Leland Stanford Junior University Miniature gas turbine engine with unitary rotor shaft for power generation
US6718770B2 (en) * 2002-06-04 2004-04-13 General Electric Company Fuel injector laminated fuel strip
US6851924B2 (en) * 2002-09-27 2005-02-08 Siemens Westinghouse Power Corporation Crack-resistance vane segment member
US6834505B2 (en) * 2002-10-07 2004-12-28 General Electric Company Hybrid swirler
US6986255B2 (en) * 2002-10-24 2006-01-17 Rolls-Royce Plc Piloted airblast lean direct fuel injector with modified air splitter
CA2409900C (en) * 2002-10-29 2005-02-08 Global Industries Holdings Ltd. Flat water hose and hose connectors for flat water hose
US20040086635A1 (en) * 2002-10-30 2004-05-06 Grossklaus Warren Davis Method of repairing a stationary shroud of a gas turbine engine using laser cladding
US6796770B2 (en) * 2002-11-06 2004-09-28 Spx Corporation Impeller and method using solid free form fabrication
US7007864B2 (en) * 2002-11-08 2006-03-07 United Technologies Corporation Fuel nozzle design
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
US7004622B2 (en) * 2002-11-22 2006-02-28 General Electric Company Systems and methods for determining conditions of articles and methods of making such systems
US6839607B2 (en) * 2003-01-09 2005-01-04 The Boeing Company System for rapid manufacturing of replacement aerospace parts
US6898938B2 (en) * 2003-04-24 2005-05-31 General Electric Company Differential pressure induced purging fuel injector with asymmetric cyclone
DE10319494A1 (en) * 2003-04-30 2004-11-18 Mtu Aero Engines Gmbh Process for repairing and / or modifying components of a gas turbine
US7146725B2 (en) * 2003-05-06 2006-12-12 Siemens Power Generation, Inc. Repair of combustion turbine components
US20040243556A1 (en) * 2003-05-30 2004-12-02 International Business Machines Corporation System, method and computer program product for performing unstructured information management and automatic text analysis, and including a document common analysis system (CAS)
US20040243554A1 (en) * 2003-05-30 2004-12-02 International Business Machines Corporation System, method and computer program product for performing unstructured information management and automatic text analysis
US7502779B2 (en) * 2003-06-05 2009-03-10 International Business Machines Corporation Semantics-based searching for information in a distributed data processing system
DE10326720A1 (en) * 2003-06-06 2004-12-23 Rolls-Royce Deutschland Ltd & Co Kg Burner for a gas turbine combustor
US20050006047A1 (en) 2003-07-10 2005-01-13 General Electric Company Investment casting method and cores and dies used therein
US6976363B2 (en) * 2003-08-11 2005-12-20 General Electric Company Combustor dome assembly of a gas turbine engine having a contoured swirler
US7062920B2 (en) * 2003-08-11 2006-06-20 General Electric Company Combustor dome assembly of a gas turbine engine having a free floating swirler
US7121095B2 (en) * 2003-08-11 2006-10-17 General Electric Company Combustor dome assembly of a gas turbine engine having improved deflector plates
US7104066B2 (en) * 2003-08-19 2006-09-12 General Electric Company Combuster swirler assembly
US6910864B2 (en) * 2003-09-03 2005-06-28 General Electric Company Turbine bucket airfoil cooling hole location, style and configuration
USD498825S1 (en) * 2003-09-08 2004-11-23 Huong Huong Fu Hose
JP3826196B2 (en) * 2003-09-30 2006-09-27 独立行政法人 宇宙航空研究開発機構 Pre-filmer type air blast atomization nozzle
US7542903B2 (en) * 2004-02-18 2009-06-02 Fuji Xerox Co., Ltd. Systems and methods for determining predictive models of discourse functions
US7363940B2 (en) * 2004-03-18 2008-04-29 Parker-Hannifin Corporation Flow-rate restrictor insert for orifice expansion device
US6951227B1 (en) * 2004-04-20 2005-10-04 Cheng-Wen Su Hose with multiple holes
US7509735B2 (en) * 2004-04-22 2009-03-31 Siemens Energy, Inc. In-frame repairing system of gas turbine components
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US7013649B2 (en) * 2004-05-25 2006-03-21 General Electric Company Gas turbine engine combustor mixer
TWI262992B (en) * 2004-06-01 2006-10-01 Sunonwealth Electr Mach Ind Co Housing structure for an axial-blowing heat-dissipating fan
US7207775B2 (en) * 2004-06-03 2007-04-24 General Electric Company Turbine bucket with optimized cooling circuit
US6993916B2 (en) * 2004-06-08 2006-02-07 General Electric Company Burner tube and method for mixing air and gas in a gas turbine engine
US20060042083A1 (en) * 2004-08-27 2006-03-02 Baker Martin C Repair of turbines on wing
US7702611B2 (en) * 2005-01-07 2010-04-20 Xerox Corporation Method for automatically performing conceptual highlighting in electronic text
CN101601032A (en) * 2005-01-18 2009-12-09 雅虎公司 Coupling and rank in conjunction with the sponsored search of world wide web search technology and web content
MX2007008763A (en) * 2005-01-25 2007-09-11 Norbert Abels Methods for shaping green bodies and articles made by such methods.
US7587387B2 (en) * 2005-03-31 2009-09-08 Google Inc. User interface for facts query engine with snippets from information sources that include query terms and answer terms
US7779636B2 (en) 2005-05-04 2010-08-24 Delavan Inc Lean direct injection atomizer for gas turbine engines
EP1889179A2 (en) * 2005-05-27 2008-02-20 Hakia, Inc. System and method for natural language processing and using ontological searches
US7581396B2 (en) * 2005-07-25 2009-09-01 General Electric Company Mixer assembly for combustor of a gas turbine engine having a plurality of counter-rotating swirlers
US7464553B2 (en) * 2005-07-25 2008-12-16 General Electric Company Air-assisted fuel injector for mixer assembly of a gas turbine engine combustor
US7415826B2 (en) * 2005-07-25 2008-08-26 General Electric Company Free floating mixer assembly for combustor of a gas turbine engine
US20070028595A1 (en) * 2005-07-25 2007-02-08 Mongia Hukam C High pressure gas turbine engine having reduced emissions
US7565803B2 (en) * 2005-07-25 2009-07-28 General Electric Company Swirler arrangement for mixer assembly of a gas turbine engine combustor having shaped passages
US20070028618A1 (en) * 2005-07-25 2007-02-08 General Electric Company Mixer assembly for combustor of a gas turbine engine having a main mixer with improved fuel penetration
US7540154B2 (en) * 2005-08-11 2009-06-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US20070071902A1 (en) * 2005-09-23 2007-03-29 The Boeing Company Rapid part fabrication employing integrated components
US20070073745A1 (en) * 2005-09-23 2007-03-29 Applied Linguistics, Llc Similarity metric for semantic profiling
US20070077148A1 (en) * 2005-10-04 2007-04-05 Siemens Power Generation, Inc. System for restoring turbine vane attachment systems in a turbine engine
US7531123B2 (en) * 2005-10-27 2009-05-12 The Boeing Company Direct manufactured self-contained parts kit
US7559202B2 (en) * 2005-11-15 2009-07-14 Pratt & Whitney Canada Corp. Reduced thermal stress fuel nozzle assembly
US7788927B2 (en) * 2005-11-30 2010-09-07 General Electric Company Turbine engine fuel nozzles and methods of assembling the same
US7739279B2 (en) * 2005-12-12 2010-06-15 Fuji Xerox Co., Ltd. Systems and methods for determining relevant information based on document structure
US20070141375A1 (en) 2005-12-20 2007-06-21 Budinger David E Braze cladding for direct metal laser sintered materials
FR2896031B1 (en) * 2006-01-09 2008-04-18 Snecma Sa MULTIMODE INJECTION DEVICE FOR COMBUSTION CHAMBER, IN PARTICULAR A TURBOREACTOR
US20070163114A1 (en) * 2006-01-13 2007-07-19 General Electric Company Methods for fabricating components
US7506510B2 (en) * 2006-01-17 2009-03-24 Delavan Inc System and method for cooling a staged airblast fuel injector
US8629368B2 (en) * 2006-01-30 2014-01-14 Dm3D Technology, Llc High-speed, ultra precision manufacturing station that combines direct metal deposition and EDM
US7358457B2 (en) * 2006-02-22 2008-04-15 General Electric Company Nozzle for laser net shape manufacturing
US7762073B2 (en) * 2006-03-01 2010-07-27 General Electric Company Pilot mixer for mixer assembly of a gas turbine engine combustor having a primary fuel injector and a plurality of secondary fuel injection ports
GB2437977A (en) * 2006-05-12 2007-11-14 Siemens Ag A swirler for use in a burner of a gas turbine engine
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
US8856145B2 (en) * 2006-08-04 2014-10-07 Yahoo! Inc. System and method for determining concepts in a content item using context
US7926286B2 (en) * 2006-09-26 2011-04-19 Pratt & Whitney Canada Corp. Heat shield for a fuel manifold
EP2076838A4 (en) * 2006-10-05 2010-03-17 Brainwave Applic Ltd A novel database
US7748221B2 (en) * 2006-11-17 2010-07-06 Pratt & Whitney Canada Corp. Combustor heat shield with variable cooling
US7698259B2 (en) * 2006-11-22 2010-04-13 Sap Ag Semantic search in a database
US20080172628A1 (en) * 2007-01-15 2008-07-17 Microsoft Corporation User Experience for Creating Semantic Relationships
US8691329B2 (en) * 2007-01-31 2014-04-08 General Electric Company Laser net shape manufacturing using an adaptive toolpath deposition method
US20080182017A1 (en) * 2007-01-31 2008-07-31 General Electric Company Laser net shape manufacturing and repair using a medial axis toolpath deposition method
US7651772B2 (en) * 2007-01-31 2010-01-26 Continental Carbon Company Core-shell carbon black pellets and method of forming same
US20080314878A1 (en) 2007-06-22 2008-12-25 General Electric Company Apparatus and method for controlling a machining system
JP4863085B2 (en) 2007-06-25 2012-01-25 アイシン精機株式会社 Engine exhaust gas purification device and engine-driven air conditioner
US20090255120A1 (en) * 2008-04-11 2009-10-15 General Electric Company Method of assembling a fuel nozzle
US20090255256A1 (en) * 2008-04-11 2009-10-15 General Electric Company Method of manufacturing combustor components
US8061142B2 (en) * 2008-04-11 2011-11-22 General Electric Company Mixer for a combustor
US9188341B2 (en) * 2008-04-11 2015-11-17 General Electric Company Fuel nozzle
US8806871B2 (en) * 2008-04-11 2014-08-19 General Electric Company Fuel nozzle
SG173932A1 (en) * 2010-02-25 2011-09-29 United Technologies Corp Repair of a coating on a turbine component

Also Published As

Publication number Publication date
WO2009126404A3 (en) 2012-03-22
JP2011528098A (en) 2011-11-10
CA2720263A1 (en) 2009-10-15
US20090255602A1 (en) 2009-10-15
US20090255257A1 (en) 2009-10-15
DE112009000778T5 (en) 2011-02-24
US8336313B2 (en) 2012-12-25
CA2720197A1 (en) 2009-10-15
WO2010008633A2 (en) 2010-01-21
US20090255119A1 (en) 2009-10-15
US20090256007A1 (en) 2009-10-15
WO2009148682A3 (en) 2012-05-03
DE112009000753B4 (en) 2024-05-16
JP2011526976A (en) 2011-10-20
WO2010008633A3 (en) 2013-01-17
GB2471234A (en) 2010-12-22
GB201016946D0 (en) 2010-11-24
GB2471233A (en) 2010-12-22
GB201016945D0 (en) 2010-11-24
US20090255102A1 (en) 2009-10-15
WO2009126404A2 (en) 2009-10-15
GB2471236A (en) 2010-12-22
JP2011526994A (en) 2011-10-20
GB2471232A (en) 2010-12-22
US20090255259A1 (en) 2009-10-15
DE112009000820T5 (en) 2011-05-05
CA2720255A1 (en) 2010-01-21
CA2720197C (en) 2016-06-07
JP2011528075A (en) 2011-11-10
DE112009000820B4 (en) 2024-04-25
CA2720253C (en) 2016-06-07
US20090255116A1 (en) 2009-10-15
US7841368B2 (en) 2010-11-30
US20090255118A1 (en) 2009-10-15
DE112009000821T5 (en) 2012-02-09
GB201016941D0 (en) 2010-11-24
US20090255261A1 (en) 2009-10-15
CA2720258A1 (en) 2009-10-15
US20100065142A1 (en) 2010-03-18
CA2720241A1 (en) 2009-12-10
DE112009000819T5 (en) 2011-06-30
GB201016943D0 (en) 2010-11-24
GB2471235A (en) 2010-12-22
GB2471231A (en) 2010-12-22
GB2471231B (en) 2013-11-13
CA2720241C (en) 2016-06-07
JP2011528097A (en) 2011-11-10
JP5437362B2 (en) 2014-03-12
WO2009148682A2 (en) 2009-12-10
DE112009000753T5 (en) 2011-03-03
GB201016942D0 (en) 2010-11-24
DE112009000728T5 (en) 2011-02-24
CA2720200A1 (en) 2009-10-15
CA2720253A1 (en) 2009-12-10
GB2471234B (en) 2013-10-30
GB201016947D0 (en) 2010-11-24
DE112009000819B4 (en) 2023-06-01
DE112009000781T5 (en) 2011-03-03
GB2471237A (en) 2010-12-22
US8061142B2 (en) 2011-11-22
US20090255265A1 (en) 2009-10-15
US20090255260A1 (en) 2009-10-15
JP2011526995A (en) 2011-10-20
US8171734B2 (en) 2012-05-08
US8210211B2 (en) 2012-07-03
JP5779499B2 (en) 2015-09-16
GB2471233B (en) 2013-11-13
JP2011526974A (en) 2011-10-20
US20090256003A1 (en) 2009-10-15
GB201016940D0 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP5419962B2 (en) Swirler and method of manufacturing
JP5726066B2 (en) Fuel nozzle
JP2011526975A (en) How to assemble a fuel nozzle
US10465909B2 (en) Mini mixing fuel nozzle assembly with mixing sleeve
WO2009148680A2 (en) Unitary conduit for transporting fluids and method of manufacturing
US10724740B2 (en) Fuel nozzle assembly with impingement purge
WO2009126403A2 (en) Swirlers and method of manufacturing
US10317084B2 (en) Additive layer manufacturing for fuel injectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130625

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250