JP5418767B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5418767B2
JP5418767B2 JP2009110426A JP2009110426A JP5418767B2 JP 5418767 B2 JP5418767 B2 JP 5418767B2 JP 2009110426 A JP2009110426 A JP 2009110426A JP 2009110426 A JP2009110426 A JP 2009110426A JP 5418767 B2 JP5418767 B2 JP 5418767B2
Authority
JP
Japan
Prior art keywords
tire
radial direction
recess
tire radial
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009110426A
Other languages
Japanese (ja)
Other versions
JP2010260376A (en
Inventor
森  伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2009110426A priority Critical patent/JP5418767B2/en
Publication of JP2010260376A publication Critical patent/JP2010260376A/en
Application granted granted Critical
Publication of JP5418767B2 publication Critical patent/JP5418767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、例えばサーキットで競技する車両に装着され、レーシングタイヤとして用いられる空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire that is used, for example, as a racing tire mounted on a vehicle that competes on a circuit.

近年、サーキットで行われるレーシングカーの競技では、最高速度の向上みならず低燃費性も競技の結果に重要な影響を与える要素となっている。即ち、最高速を上げることは前車を追い抜くのに有利となり、低燃費性の向上はピットイン回数を減らしてタイムの大幅な短縮を図ることが可能となる。   In recent years, in racing car competitions on the circuit, not only the improvement of the maximum speed but also the low fuel consumption has become an important factor affecting the competition results. That is, increasing the maximum speed is advantageous for overtaking the preceding vehicle, and improving fuel efficiency can reduce the number of pit-ins and significantly reduce the time.

一般には、最高速度や低燃費性の向上はエンジンの性能や車体の空力性能等に依存するが、タイヤの転がり抵抗を低減することも有効である。タイヤの転がり抵抗を低減するためには、トレッドに低発熱性のゴムを用いる、タイヤの寸法諸元を可能な限り大きくする、タイヤ自体を軽量化する、タイヤの構造を負荷時の撓みが小さくなるようにする、路面抵抗及び発熱の少ないトレッドパターンを採用するなどが考えられるが、このようなタイヤの材質や構造はタイヤの操縦安定性やグリップ性能にも影響を与えるため、これらの性能との両立を図る必要があり、転がり抵抗の低減には限界がある。   In general, improvement in maximum speed and fuel efficiency depends on engine performance and aerodynamic performance of the vehicle body, but it is also effective to reduce tire rolling resistance. In order to reduce the rolling resistance of the tire, use low heat-generating rubber for the tread, increase the dimensional specifications of the tire as much as possible, reduce the weight of the tire itself, and reduce the deflection of the tire structure under load. It is conceivable to adopt a tread pattern with little road resistance and heat generation.However, since the material and structure of such a tire also affect the steering stability and grip performance of the tire, these performance and Therefore, there is a limit to reducing rolling resistance.

一方、速度や燃費にはタイヤの空気抵抗による影響もあると考えられるため、タイヤの空気抵抗を低減すれば、最高速度の向上及び低燃費化を図ることが可能である。即ち、車両の速度(タイヤの回転速度)が速くなると転がり抵抗も大きくなるが、これに加えてタイヤの空気抵抗も増大するため、時速200km〜300kmを超えるようなサーキットレースでは、一般車両の走行に比べてタイヤの空気抵抗の増加は著しく、特にフォーミュラカーのようにタイヤ全体が露出している場合は、タイヤの空気抵抗による影響は一段と大きくなる。   On the other hand, since it is considered that the speed and fuel consumption are affected by the air resistance of the tire, it is possible to improve the maximum speed and reduce the fuel consumption by reducing the air resistance of the tire. That is, as the vehicle speed (tire rotation speed) increases, the rolling resistance also increases, but in addition to this, the air resistance of the tire also increases. Therefore, in circuit races where the speed exceeds 200 km to 300 km per hour, driving of ordinary vehicles The air resistance of the tire is remarkably increased compared to the above, and particularly when the entire tire is exposed like a formula car, the influence of the air resistance of the tire is further increased.

そこで、タイヤの空気抵抗の低減を図るために、トレッド端部からサイドウォール部に至るバットレス部に、溝、模様、文字等の凹凸部を有しない乱流防止領域を設け、バットレス部の乱流を防止することにより、タイヤ表面の空気抵抗を低減するようにしたものが知られている(例えば、特許文献1参照。)。   Therefore, in order to reduce the air resistance of the tire, a turbulent flow prevention region that does not have uneven portions such as grooves, patterns, letters, etc. is provided in the buttress portion extending from the tread end portion to the sidewall portion. It is known that the air resistance on the tire surface is reduced by preventing the above (for example, see Patent Document 1).

特開2003−127615号公報JP 2003-127615 A

しかしながら、バットレス部の乱流を防止するようにした場合、タイヤ周囲の空気の流れが層流となるため、車両走行時のタイヤの後方が低圧となり、タイヤを後方へ引き戻そうとする力が働くことになる。このため、タイヤ表面の空気抵抗を低減させたとしても、タイヤの後方に低圧部が生ずるため、高速走行時における空気抵抗の低減効果を十分に得られないという問題点があった。   However, when the turbulent flow of the buttress is prevented, the air flow around the tire becomes a laminar flow, so that the pressure behind the tire when the vehicle travels becomes low, and the force to pull the tire back acts. become. For this reason, even if the air resistance on the tire surface is reduced, there is a problem in that a low pressure portion is generated behind the tire, so that the effect of reducing the air resistance during high-speed running cannot be obtained sufficiently.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、高速走行時の空気抵抗を効果的に低減することのできる空気入りタイヤを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a pneumatic tire that can effectively reduce the air resistance during high-speed running.

本発明は前記目的を達成するために、レーシングタイヤとして用いられる空気入りタイヤにおいて、タイヤ外側面の所定領域にタイヤ周方向及びタイヤ径方向に亘って多数の凹部を設け、各凹部を、タイヤ径方向内側とタイヤ径方向外側で非対称となる形状であって、対称形状よりも空気の剥離効果の大きい形状になるように形成し、各凹部を0.5mm以上5mm以下の深さに形成するとともに、その開口面の最大の大きさが2mm以上8mm以下になるように形成し、各凹部をタイヤ径方向外側になるほど密度が高くなるように配置している。 In order to achieve the above object, the present invention provides a pneumatic tire used as a racing tire in which a plurality of recesses are provided in a predetermined region on the outer surface of the tire in the tire circumferential direction and the tire radial direction. The shape is asymmetric between the inner side in the tire direction and the outer side in the tire radial direction, and is formed so as to have a shape with greater air peeling effect than the symmetrical shape, and each recess is formed to a depth of 0.5 mm or more and 5 mm or less. The maximum size of the opening surface is 2 mm or more and 8 mm or less, and the recesses are arranged so that the density increases as it goes outward in the tire radial direction .

これにより、タイヤ外側面に設けられた多数の凹部によって車両走行時のタイヤの周囲に乱流が生ずることから、タイヤ後方に生ずる低圧部(空気密度の薄い領域)が凹部を有しないタイヤよりも少なくなり、その分だけ低圧部による抗力(後方へ引き戻そうとする力)が小さくなる。この場合、各凹部を対称形状よりも空気の剥離効果の大きい非対称形状にすることにより、乱流発生効果がより向上する As a result, turbulent flow is generated around the tire when the vehicle travels due to a large number of recesses provided on the outer surface of the tire. As a result, the drag by the low pressure part (the force to pull back) is reduced accordingly. In this case, the turbulent flow generation effect is further improved by making each concave portion an asymmetric shape having a larger air separation effect than the symmetrical shape .

本発明によれば、走行時にタイヤを後方へ引き戻そうとする抗力を小さくすることができるので、高速走行時の空気抵抗を効果的に低減することができる。特に、時速200km〜300kmを超えるようなサーキットレースでは、一般車両の走行に比べてタイヤの空気抵抗の増加は著しくなるため、タイヤの空気抵抗の低減により、最高速度を上げることができるとともに、低燃費性の向上を図ることができ、レーシングタイヤとして極めて有利である。   According to the present invention, it is possible to reduce a drag force that pulls the tire backwards during traveling, so that air resistance during high-speed traveling can be effectively reduced. In particular, in circuit races where the speed exceeds 200 km to 300 km per hour, the increase in tire air resistance is significant compared to the driving of ordinary vehicles. Therefore, the maximum speed can be increased by reducing the tire air resistance, and low The fuel efficiency can be improved, which is extremely advantageous as a racing tire.

本発明の第1の参考例を示す空気入りタイヤの部分正面断面図Partial front sectional view of a pneumatic tire showing a first reference example of the present invention 空気入りタイヤの部分側面図Partial side view of pneumatic tire 凹部の平面図Top view of the recess 凹部の側面断面図Side sectional view of recess 本発明の第2の参考例を示す空気入りタイヤの部分側面図The partial side view of the pneumatic tire which shows the 2nd reference example of this invention 本発明の第3の参考例を示す空気入りタイヤの部分側面図The partial side view of the pneumatic tire which shows the 3rd reference example of this invention 凹部の平面図Top view of the recess 凹部の側面断面図Side sectional view of recess 凹部の変形例を示す平面図The top view which shows the modification of a recessed part 凹部の変形例を示す側面断面図Side sectional view showing a modified example of the recess 本発明の第4の参考例を示す空気入りタイヤの部分正面断面図Partial front sectional view of a pneumatic tire showing a fourth reference example of the present invention 空気入りタイヤの部分側面図Partial side view of pneumatic tire 突部の側面断面図Side sectional view of the protrusion 突部の変形例を示す平面図The top view which shows the modification of a protrusion 本発明の第の実施形態を示す凹部の側面断面図Side surface sectional drawing of the recessed part which shows the 1st Embodiment of this invention 凹部の平面図Top view of the recess 本発明の第の実施形態を示す凹部の側面断面図Side surface sectional drawing of the recessed part which shows the 2nd Embodiment of this invention 凹部の平面図Top view of the recess タイヤ周囲の空気の流れを示す概略図Schematic showing the air flow around the tire 試験結果を示す図Diagram showing test results

以下、本発明の第1の参考例について、図1乃至図4を参照して説明する。同図に示す空気入りタイヤはサーキットレース(例えば、FIA国際モータースポーツ競技規則に規定されるサーキットレース)に使用されるレーシングタイヤ(例えば、2008年FIAフォーミュラ1世界選手権規則書に規定されるタイヤ)として用いられるもので、タイヤ外周面側に形成されるトレッド部1と、タイヤ幅方向両側に形成される一対のサイドウォール部2と、タイヤ幅方向両側に形成される一対のビード部3と、トレッド部1とサイドウォール部2との間に形成されるバットレス部4とから構成されている。 Hereinafter, a first reference example of the present invention will be described with reference to FIGS. The pneumatic tires shown in the figure are racing tires used in circuit races (for example, circuit races stipulated in the FIA International Motor Sports Competition Rules) (eg tires stipulated in the 2008 FIA Formula 1 World Championship Rules). A tread portion 1 formed on the tire outer peripheral surface side, a pair of sidewall portions 2 formed on both sides in the tire width direction, a pair of bead portions 3 formed on both sides in the tire width direction, A buttress portion 4 is formed between the tread portion 1 and the sidewall portion 2.

この空気入りタイヤは、タイヤ内面側に配置されるインナーライナ5と、インナーライナ5の外側に配置されるカーカス部材6と、タイヤ幅方向両側に配置される一対のビード部材7と、カーカス部材6の外側に配置されるベルト8と、タイヤ外周面側に配置されるトレッド部材9と、タイヤ両側に配置される一対のサイドウォール部材10とから形成されている。   The pneumatic tire includes an inner liner 5 disposed on the inner surface of the tire, a carcass member 6 disposed on the outer side of the inner liner 5, a pair of bead members 7 disposed on both sides in the tire width direction, and the carcass member 6 The belt 8 is arranged on the outer side of the tire, the tread member 9 is arranged on the tire outer peripheral surface side, and the pair of sidewall members 10 are arranged on both sides of the tire.

インナーライナ5は、気体透過性の低いシート状のゴムからなり、カーカス部材6の内周面側に配置される。   The inner liner 5 is made of a sheet-like rubber having low gas permeability, and is disposed on the inner peripheral surface side of the carcass member 6.

カーカス部材6は複数本の補強コード6aをシート状のゴムで被覆してなり、両端側をビード部材を巻き込むようにタイヤ幅方向内側から外側に向けてサイドウォール部2側に折り返されている。   The carcass member 6 is formed by covering a plurality of reinforcing cords 6a with sheet-like rubber, and is folded back toward the sidewall portion 2 from the inner side to the outer side in the tire width direction so as to enclose the bead member at both ends.

ビード部材7は、金属線等のワイヤを束ねてなるビードコア7aと、断面略三角形状のゴムからなるビードフィラー7bとからなり、ビードフィラー7bはビードコア7aの外周側に配置される。   The bead member 7 includes a bead core 7a formed by bundling wires such as metal wires and a bead filler 7b formed of rubber having a substantially triangular cross section. The bead filler 7b is disposed on the outer peripheral side of the bead core 7a.

ベルト8はスチールや高強度繊維等からなるベルトコードをシート状のゴムで被覆してなり、カーカス部材6の外周面側に配置される。   The belt 8 is formed by coating a belt cord made of steel, high-strength fiber, or the like with a sheet-like rubber, and is disposed on the outer peripheral surface side of the carcass member 6.

トレッド部材9は押出成形によって形成されたゴムからなり、カーカス部材6の幅方向中央側及びベルト8の外周面側を覆うように配置されている。   The tread member 9 is made of rubber formed by extrusion molding, and is disposed so as to cover the center side in the width direction of the carcass member 6 and the outer peripheral surface side of the belt 8.

サイドウォール部材10は押出成形によって形成されたゴムからなり、カーカス部材6のタイヤ幅方向両側を覆うように配置される。   The sidewall member 10 is made of rubber formed by extrusion molding and is disposed so as to cover both sides of the carcass member 6 in the tire width direction.

前記空気入りタイヤの外側面における所定の領域A(例えば、タイヤ径方向内側端部からタイヤ断面高さHの35%以上85%以下の範囲)に、タイヤ周方向及びタイヤ径方向に亘って多数の凹部11が設けられている。尚、タイヤ断面高さとは、130kPaの空気圧をタイヤに充填し、荷重を3000Nとした状態におけるタイヤ断面高さをいう。各凹部11は、中心部の深さHが0.5mm以上5mm以下、その開口面の最大の大きさL(直径)が2mm以上8mm以下の円形の球面状に形成され、互いに同一の大きさに形成されて等間隔で配置されている。この場合、各凹部11は、その総面積(タイヤ表面における全ての凹部11の面積)が領域Aに対して30%以上80%以下になるように形成されている。尚、凹部11は、タイヤ側面に表示される文字、記号または標章からなる凹部は含まない。   Many in the tire circumferential direction and the tire radial direction in a predetermined region A (for example, a range of 35% to 85% of the tire cross-section height H from the tire radial direction inner end portion) on the outer surface of the pneumatic tire. The recess 11 is provided. The tire cross-sectional height refers to the tire cross-sectional height when the tire is filled with air pressure of 130 kPa and the load is 3000 N. Each recess 11 is formed in a circular spherical shape having a central portion depth H of 0.5 mm or more and 5 mm or less and a maximum size L (diameter) of the opening surface of 2 mm or more and 8 mm or less. Formed at regular intervals. In this case, each recess 11 is formed so that the total area (area of all the recesses 11 on the tire surface) is 30% or more and 80% or less with respect to the region A. In addition, the recessed part 11 does not include the recessed part which consists of a character, a symbol, or a mark displayed on a tire side surface.

前記空気入りタイヤにおいては、タイヤ外側面に設けられた多数の凹部11によって車両走行時のタイヤの周囲に乱流が生じ、タイヤ表面から空気が剥離しやすくなる。その結果、図19(a)(b)に示すように凹部11を有するタイヤT1 の後方に生ずる低圧部P(空気密度の薄い領域)が凹部11を有しないタイヤT2 よりも少なくなり、その分だけ低圧部Pによる抗力(後方へ引き戻そうとする力)が小さくなる。 In the pneumatic tire, turbulent flow is generated around the tire when the vehicle travels due to the large number of recesses 11 provided on the outer surface of the tire, and air is easily separated from the tire surface. As a result, as shown in FIGS. 19 (a) and 19 (b), the low-pressure portion P (the region having a low air density) generated behind the tire T1 having the recess 11 is smaller than the tire T2 having no recess 11, and accordingly. As a result, the drag (force to pull back backward) due to the low pressure portion P is reduced.

このように、前記空気入りタイヤによれば、タイヤ外側面の所定領域Aにタイヤ周方向及びタイヤ径方向に亘って多数の凹部11を設けることにより、各凹部11によってタイヤ周囲の空気に乱流を発生させるようにしたので、タイヤを後方へ引き戻そうとする抗力を小さくすることができ、高速走行時のタイヤの空気抵抗を効果的に低減することができる。特に、時速200km〜300kmを超えるようなサーキットレースでは、一般車両の走行に比べてタイヤの空気抵抗の増加は著しくなるため、タイヤの空気抵抗の低減により、最高速度を上げることができるとともに、低燃費性の向上を図ることができ、レーシングタイヤとして極めて有利である。また、レーシングカーは、高速走行時の浮き上がりを防止するために車体を路面に押し付けるような空力設計になっており、その分だけタイヤの接地圧が高くなって燃費を悪化させるが、各凹部11によってタイヤの周囲に乱流を発生させると、タイヤに適度な揚力が付与されて接地圧が低減することから、低燃費性の向上に有利となる。 As described above , according to the pneumatic tire, by providing a large number of recesses 11 in the tire circumferential direction and the tire radial direction in the predetermined region A on the tire outer surface, each recess 11 causes turbulent flow to the air around the tire. Therefore, it is possible to reduce the drag force to pull the tire backward, and to effectively reduce the air resistance of the tire during high speed running. In particular, in circuit races where the speed exceeds 200 km to 300 km per hour, the increase in tire air resistance is significant compared to the driving of ordinary vehicles. Therefore, the maximum speed can be increased by reducing the tire air resistance, and low The fuel efficiency can be improved, which is extremely advantageous as a racing tire. In addition, the racing car has an aerodynamic design in which the vehicle body is pressed against the road surface in order to prevent the vehicle from lifting when traveling at high speeds. If a turbulent flow is generated around the tire, an appropriate lift is imparted to the tire and the contact pressure is reduced, which is advantageous in improving fuel efficiency.

更に、各凹部11を0.5mm以上5mm以下の深さHに形成するとともに、その開口面の最大の大きさLが2mm以上8mm以下になるように形成したので、凹部11が小さすぎて乱流発生効果が不十分になることがなく、凹部11が大きすぎてゴムの厚さが不足することもないという利点がある。   Further, each recess 11 is formed to a depth H of 0.5 mm or more and 5 mm or less and the maximum size L of the opening surface is formed to be 2 mm or more and 8 mm or less. There is an advantage that the flow generation effect does not become insufficient, and the concave portion 11 is too large so that the rubber thickness is not insufficient.

尚、前記参考例では、各凹部11を等間隔で配置したものを示したが、図5の第2の参考例に示すように、各凹部11をタイヤ径方向外側になるほど密度が高くなるように配置するようにしてもよい。これにより、タイヤ径方向内側よりも相対的に回転速度が速くなるタイヤ径方向外側に多くの凹部11を配置することができ、各凹部11による乱流発生効果をより高めることができる。この場合、凹部11の密度は、タイヤ径方向外側で1平方センチメートル当たり6〜9個、タイヤ径方向内側で1平方センチメートル当たり1〜3個が好ましい。 In the reference example , the concave portions 11 are arranged at equal intervals. However, as shown in the second reference example of FIG. 5, the density increases as the concave portions 11 are located on the outer side in the tire radial direction. You may make it arrange | position to. Thereby, many recessed parts 11 can be arrange | positioned in the tire radial direction outer side where a rotational speed becomes relatively faster than a tire radial direction inner side, and the turbulent flow generation effect by each recessed part 11 can be heightened more. In this case, the density of the recesses 11 is preferably 6 to 9 per square centimeter on the outer side in the tire radial direction and 1 to 3 per square centimeter on the inner side in the tire radial direction.

また、前記参考例では、円形状の凹部11を設けたものを示したが、図6乃至図8の第3の参考例に示すように、円形状の多数の凹部12と四角形状の多数の凹部13とを混在させるようにしてもよい。これにより、領域A内の凹凸が不規則になり、乱流発生効果をより高めることができる。 In the reference example , the circular recess 11 is provided. However, as shown in the third reference example of FIGS. 6 to 8, a large number of circular recesses 12 and a large number of squares are provided. The recess 13 may be mixed. Thereby, the unevenness | corrugation in the area | region A becomes irregular, and can improve the turbulent flow generation effect more.

更に、図9(a) に示すように四角形状の角部を面取りした凹部14、図9(b) に示すように楕円形状の凹部15、図9(c) に示すように三角形状の凹部16など、他の形状の凹部を設けるようにしたり、或いは二種類以上の凹部を混在させるようにしてもよい。   Further, as shown in FIG. 9 (a), a concave portion 14 having chamfered square corners, an elliptical concave portion 15 as shown in FIG. 9 (b), and a triangular concave portion as shown in FIG. 9 (c). 16 may be provided, or two or more kinds of recesses may be mixed.

また、凹部は均一な深さに形成してもよいが、図10(a) に示すように内側面がテーパ状で底面の広い凹部17、図10(b) に示すように内側面がテーパ状で底面の狭い凹部18、図10(c) に示すように底面が凹面状に湾曲した凹部19など、他の形状の凹部を設けるようにしたり、或いは二種類以上の凹部を混在させるようにしてもよい。   The recess may be formed to a uniform depth, but the inner surface is tapered as shown in FIG. 10 (a) and the inner surface is tapered as shown in FIG. 10 (b). A concave portion 18 having a narrow bottom surface and a concave portion 19 having a concave bottom surface as shown in FIG. 10 (c) may be provided, or two or more types of concave portions may be mixed. May be.

更に、前記第3の参考例では、円形状の多数の凹部12と四角形状の多数の凹部13とを混在させるようにしたものを示したが、図11乃至図13の第4の参考例に示すように、円形状の凹部12と四角形状の凹部13に加え、円錐状の多数の突部20を混在させるようにしてもよい。即ち、各凹部11,13に各突部20が混在することにより、領域A内の凹凸をより不規則にすることができるので、乱流発生効果の向上に極めて有利である。尚、図12では、凹部12と判別するため突部20を黒色で塗りつぶしてある。 Furthermore, in the third reference example, a configuration in which a large number of circular recesses 12 and a large number of quadrangle recesses 13 are mixed is shown. In the fourth reference example of FIGS. As shown, a large number of conical protrusions 20 may be mixed in addition to the circular recess 12 and the rectangular recess 13. That is, since the protrusions 20 are mixed in the recesses 11 and 13, the irregularities in the region A can be made more irregular, which is extremely advantageous for improving the effect of generating turbulence. In FIG. 12, the protrusion 20 is painted in black to distinguish it from the recess 12.

この場合、各突部20を、その高さHが1mm以上5mm以下、その底面のタイヤ径方向の最大の大きさLが5mm以下になるように形成することにより、突部20による乱流発生効果を十分に得ることができるとともに、突部20が大きすぎることによる空気抵抗の増大を抑制することができる。   In this case, turbulent flow is generated by the protrusions 20 by forming each protrusion 20 so that its height H is 1 mm or more and 5 mm or less and the maximum size L in the tire radial direction of its bottom surface is 5 mm or less. An effect can be sufficiently obtained, and an increase in air resistance due to the projection 20 being too large can be suppressed.

また、各突部20を凹部11,13の数よりも割合が少なくなるように設けることにより、突部20が多すぎることによる空気抵抗の増大を抑制することができる。この場合、凹部11,13の数5〜7個に対し、突部20の数1〜2個の割合が好ましい。   Moreover, by providing each protrusion 20 so that the ratio is less than the number of the recesses 11 and 13, an increase in air resistance due to the excessive protrusion 20 can be suppressed. In this case, the ratio of the number 1 to 2 of the protrusions 20 to the number 5 to 7 of the recesses 11 and 13 is preferable.

尚、前記第4の参考例では、円錐状(断面三角形状)の突部20を設けたものを示したが、図14(a) に示すように上面の広い断面台形状の突部21、図14(b) に示すように上面の狭い断面台形状の突部22、図14(c) に示すように上面が凸面状に湾曲した突部23など、他の形状の突部を設けるようにしたり、或いは二種類以上の凹部を混在させるようにしてもよい。この場合、四角形状、楕円形状または三角形状の底面を有する突部を設けるようにしてもよい。 In the fourth reference example , the one having the conical (triangular cross-sectional) protrusion 20 is shown. However, as shown in FIG. As shown in FIG. 14 (b), a protrusion 22 having a trapezoidal shape with a narrow upper surface, and a protrusion 23 having a curved upper surface as shown in FIG. 14 (c) are provided. Alternatively, two or more types of recesses may be mixed. In this case, a protrusion having a rectangular, elliptical, or triangular bottom may be provided.

また、前記第4の参考例では、各凹部11,13及び各突部20を等間隔で配置したものを示したが、前記第2の参考例と同様、各凹部11,13及び各突部20をタイヤ径方向外側になるほど密度が高くなるように配置してもよい。 In the fourth reference example , the recesses 11 and 13 and the protrusions 20 are arranged at equal intervals. However, as in the second reference example , the recesses 11 and 13 and the protrusions are arranged. You may arrange | position 20 so that a density may become so high that it becomes a tire radial direction outer side.

図15及び図16に示す本発明のの実施形態は、タイヤ径方向内側とタイヤ径方向外側で非対称となる形状の凹部23を設けたものである。即ち、凹部23は円形の球面状に形成されるとともに、タイヤ径方向内側(図中右側)の開口縁部にタイヤ外方に盛り上がる隆起部23aが形成されている。これにより、タイヤ径方向内側の開口縁部における凹部23の底部からの高さH1 がタイヤ径方向外側の開口縁部における凹部23の底部からの高さH2 よりも高くなるため、図中実線矢印に示すように前方から流れる空気が隆起部23aに当たることによる空気の剥離効果が対称形状よりも向上し、乱流発生効果をより向上させることができる。この場合、隆起部23aを滑らかに盛り上がるように形成することにより、隆起部23aによる空気抵抗の増加を抑制することができる。 The first embodiment of the present invention shown in FIGS. 15 and 16 is provided with a recess 23 having an asymmetric shape between the inner side in the tire radial direction and the outer side in the tire radial direction. That is, the concave portion 23 is formed in a circular spherical shape, and a raised portion 23a bulging outward from the tire is formed at an opening edge on the inner side in the tire radial direction (right side in the drawing). As a result, the height H1 from the bottom of the recess 23 at the opening edge on the inner side in the tire radial direction becomes higher than the height H2 from the bottom of the recess 23 at the opening edge on the outer side in the tire radial direction. As shown in FIG. 5, the air peeling effect due to the air flowing from the front hitting the raised portion 23a is improved as compared with the symmetrical shape, and the turbulent flow generating effect can be further improved. In this case, it is possible to suppress an increase in air resistance due to the raised portion 23a by forming the raised portion 23a so as to rise smoothly.

また、図17及び図18に示す本発明のの実施形態は、タイヤ径方向内側とタイヤ径方向外側で非対称となる他の形状の凹部24を設けたものである。即ち、凹部24は球面状に形成されるとともに、タイヤ径方向外側(図中左側)の開口縁部側がタイヤ径方向内側(図中右側)の開口縁部側よりも緩やかな斜面をなすように形成されている。これにより、タイヤ径方向外側の開口縁部から凹部24内に空気が侵入しやすくなるため、図中実線矢印に示すように前方から流れる空気がタイヤ径方向内側の開口縁部に当たることによる空気の剥離効果が対称形状よりも向上し、乱流発生効果をより向上させることができる。 In addition, the second embodiment of the present invention shown in FIGS. 17 and 18 is provided with recesses 24 of other shapes that are asymmetrical on the inner side in the tire radial direction and the outer side in the tire radial direction. That is, the recess 24 is formed in a spherical shape, and the opening edge side on the outer side in the tire radial direction (left side in the figure) forms a gentler slope than the opening edge side on the inner side in the tire radial direction (right side in the figure). Is formed. As a result, air easily enters the concave portion 24 from the opening edge on the tire radial direction outer side, so that air flowing from the front hits the opening edge on the inner side in the tire radial direction as shown by a solid line arrow in the figure. The peeling effect is improved as compared with the symmetrical shape, and the turbulent flow generation effect can be further improved.

尚、第及び第の実施形態の凹部23,24は一例であり、対称形状よりも空気の剥離効果の大きい非対称形状であれば、第及び第の実施形態とは異なる形状の凹部を設けるようにしてもよい The recesses 23 and 24 in the first and second embodiments are merely examples, and the recesses having a shape different from those in the first and second embodiments may be used as long as they have an asymmetric shape having a greater air separation effect than the symmetrical shape. May be provided .

こで、参考例1〜5及び従来例について、最高速度及び低燃費性の試験を行ったところ、図20に示す結果が得られた。本試験では、従来例には凹部及び突部を有しないものを用い、参考例1及び2には円形状の凹部のみを有するもの、参考例3及び4には円形状の凹部と四角形状の凹部とを混在させたもの、参考例5には円形状の凹部と四角形状の凹部と円錐状の突部とを混在させたものを用いた。この場合、参考例1及び3には凹部の密度がタイヤ径方向内側と外側で均一なものを用い、参考例2、4及び5にはタイヤ径方向内側における凹部の密度を100とした場合、タイヤ径方向外側における凹部の密度が130となるものを用いた。 In here, the reference examples 1 to 5 and Conventional Example was subjected to a test at a maximum speed and fuel economy, the results shown in FIG. 20 were obtained. In this test, a conventional example having no recesses and protrusions is used, Reference Examples 1 and 2 have only circular recesses, and Reference Examples 3 and 4 have a circular recess and a square shape. In the reference example 5, a mixture of a circular recess, a square recess, and a conical protrusion was used. In this case, in Reference Examples 1 and 3, the density of the recesses is uniform in the tire radial direction inside and outside, and in Reference Examples 2, 4 and 5, the density of the recesses in the tire radial direction inside is 100, The thing whose density of the recessed part in a tire radial direction outer side is set to 130 was used.

尚、本試験では、タイヤサイズ240/45VR13、空気圧130kPaのレーシングタイヤをフォーミュラ4マシンに装着し、レースサーキットを走行することにより行った。   In this test, a racing tire having a tire size of 240/45 VR13 and an air pressure of 130 kPa was mounted on a Formula 4 machine and traveled on a race circuit.

最高速度の試験では、レースサーキットにおいて最高速度に達したときの速度を指数化し、従来例を100として参考例1〜5を評価した。この場合、指数の値が大きいほど優位性があるとした。試験の結果、参考例1〜5は従来例よりも最高速度を上げることができるという結果が得られた。 In the maximum speed test, the speed when the maximum speed was reached in the race circuit was indexed, and Reference Examples 1 to 5 were evaluated with the conventional example as 100. In this case, the larger the index value, the more superior. As a result of the test, it was found that Reference Examples 1 to 5 can increase the maximum speed as compared with the conventional example.

低燃費性の試験では、レースサーキットにおいて平均速度100km/hで50周走行した際の燃費を測定して指数化し、従来例を100として参考例1〜5を評価した。この場合、指数の値が大きいほど優位性があるとした。試験の結果、参考例1〜5は従来例よりも低燃費性に優れるという結果が得られた。 In the test of low fuel consumption, the fuel consumption when running 50 laps at an average speed of 100 km / h on a race circuit was measured and indexed, and Reference Examples 1 to 5 were evaluated using the conventional example as 100. In this case, the larger the index value, the more superior. As a result of the test, it was found that Reference Examples 1 to 5 were more excellent in fuel efficiency than the conventional examples.

1…トレッド部、2…サイドウォール部、3…ビード部、4…バットレス部、11,12,13,14,15,16,17,18,19…凹部、20,21,22,23,24…突部、A…領域。   DESCRIPTION OF SYMBOLS 1 ... Tread part, 2 ... Side wall part, 3 ... Bead part, 4 ... Buttress part, 11, 12, 13, 14, 15, 16, 17, 18, 19 ... Recessed part, 20, 21, 22, 23, 24 ... protrusion, A ... area.

Claims (3)

レーシングタイヤとして用いられる空気入りタイヤにおいて、
タイヤ外側面の所定領域にタイヤ周方向及びタイヤ径方向に亘って多数の凹部を設け
各凹部を、タイヤ径方向内側とタイヤ径方向外側で非対称となる形状であって、対称形状よりも空気の剥離効果の大きい形状になるように形成し、
各凹部を0.5mm以上5mm以下の深さに形成するとともに、その開口面の最大の大きさが2mm以上8mm以下になるように形成し、
各凹部をタイヤ径方向外側になるほど密度が高くなるように配置し
ことを特徴とする空気入りタイヤ。
In pneumatic tires used as racing tires,
A number of recesses are provided in a predetermined region on the outer surface of the tire over the tire circumferential direction and the tire radial direction ,
Each recess is a shape that is asymmetric between the tire radial inner side and the tire radial outer side, and is formed to have a shape with a greater air peeling effect than the symmetrical shape,
Each recess is formed to a depth of 0.5 mm to 5 mm, and the maximum size of the opening surface is 2 mm to 8 mm,
A pneumatic tire characterized in that each recess is arranged so that the density increases as it goes outward in the tire radial direction .
各凹部をタイヤ径方向内側の開口縁部がタイヤ径方向外側の開口縁部よりも高くなる非対称形状に形成した
ことを特徴とする請求項記載の空気入りタイヤ。
The pneumatic tire of claim 1, wherein each recess opening edge of the inner side in the tire radial direction is equal to or formed on the high becomes asymmetrical than the opening edge portion of the outer side in the tire radial direction.
各凹部をタイヤ径方向外側の開口縁部側がタイヤ径方向内側の開口縁部側よりも緩やかな斜面をなす非対称形状に形成した
ことを特徴とする請求項記載の空気入りタイヤ。
The pneumatic tire of claim 1, wherein each recess opening edge side of the tire radial direction outer side, characterized in that the formed asymmetrically forming a gentle slope than the opening edge side of the inner side in the tire radial direction.
JP2009110426A 2009-04-30 2009-04-30 Pneumatic tire Active JP5418767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110426A JP5418767B2 (en) 2009-04-30 2009-04-30 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110426A JP5418767B2 (en) 2009-04-30 2009-04-30 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010260376A JP2010260376A (en) 2010-11-18
JP5418767B2 true JP5418767B2 (en) 2014-02-19

Family

ID=43358848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110426A Active JP5418767B2 (en) 2009-04-30 2009-04-30 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5418767B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349040B1 (en) * 2011-07-13 2014-01-09 한국타이어 주식회사 Sidewall of vehicle tire
JP5457405B2 (en) * 2011-07-29 2014-04-02 住友ゴム工業株式会社 Pneumatic tire
JP5457415B2 (en) 2011-09-15 2014-04-02 住友ゴム工業株式会社 Run flat tire
JP5828258B2 (en) * 2011-09-28 2015-12-02 横浜ゴム株式会社 Pneumatic tire
JP5482759B2 (en) 2011-09-28 2014-05-07 横浜ゴム株式会社 Pneumatic tire
JP5482758B2 (en) 2011-09-28 2014-05-07 横浜ゴム株式会社 Pneumatic tire
JP2013071680A (en) 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Pneumatic tire unit
JP5582121B2 (en) * 2011-09-28 2014-09-03 横浜ゴム株式会社 Tire / wheel assembly
JP5497721B2 (en) * 2011-10-12 2014-05-21 住友ゴム工業株式会社 Pneumatic tire
KR101362946B1 (en) * 2011-12-12 2014-02-17 한국타이어 주식회사 Sidewall structure having multi-stepped letter design
WO2013122232A1 (en) * 2012-02-17 2013-08-22 株式会社ブリヂストン Tire, and tire manufacturing method
JP6046947B2 (en) * 2012-08-20 2016-12-21 住友ゴム工業株式会社 Run flat tire
JP6121215B2 (en) * 2013-03-29 2017-04-26 住友ゴム工業株式会社 Pneumatic tire
JP2015030441A (en) * 2013-08-07 2015-02-16 株式会社ブリヂストン Pneumatic tire
JP6331289B2 (en) * 2013-08-26 2018-05-30 横浜ゴム株式会社 Pneumatic tire
JP6149607B2 (en) * 2013-08-26 2017-06-21 横浜ゴム株式会社 Pneumatic tire
JP6232844B2 (en) * 2013-08-26 2017-11-22 横浜ゴム株式会社 Pneumatic tire
JP6434284B2 (en) * 2014-11-19 2018-12-05 株式会社ブリヂストン Pneumatic tire
JP6514566B2 (en) * 2015-05-08 2019-05-15 住友ゴム工業株式会社 Pneumatic tire
US11225112B2 (en) * 2017-07-24 2022-01-18 Bridgestone Americas Tire Operations, Llc Sidewall treatment for cooling and aerodynamics
JP7056376B2 (en) * 2017-08-22 2022-04-19 横浜ゴム株式会社 Pneumatic tires
KR102561573B1 (en) * 2021-07-14 2023-07-31 한국타이어앤테크놀로지 주식회사 Tire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311209U (en) * 1986-07-08 1988-01-25
JP3028492B2 (en) * 1991-03-27 2000-04-04 横浜ゴム株式会社 Pneumatic tire
JPH0680003A (en) * 1992-09-02 1994-03-22 Bridgestone Corp Pneumatic tire
JP2002205514A (en) * 2001-01-05 2002-07-23 Yokohama Rubber Co Ltd:The Pneumatic tire for heavy load
JP4956948B2 (en) * 2005-09-22 2012-06-20 横浜ゴム株式会社 Tire vulcanizing mold, pneumatic tire manufacturing method, and pneumatic tire
JP2007283803A (en) * 2006-04-12 2007-11-01 Bridgestone Corp Pneumatic tire for two-wheel vehicle
JP2008001249A (en) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The Pneumatic tire
JP5230229B2 (en) * 2007-04-05 2013-07-10 東洋ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2010260376A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5418767B2 (en) Pneumatic tire
JP5251709B2 (en) Pneumatic tire
JP5115516B2 (en) Pneumatic tire
US20150360521A1 (en) Pneumatic tire
JP6111808B2 (en) Pneumatic tire
JP5491953B2 (en) tire
CN106573501B (en) Pneumatic tire
US8381786B2 (en) Pneumatic tire
JP3028492B2 (en) Pneumatic tire
JP2014213639A (en) Pneumatic tire
JP6549472B2 (en) Pneumatic tire
JP6299225B2 (en) Pneumatic tire
US9663154B2 (en) Resistance reduction structure for vehicle and vehicle
JP2010167832A (en) Pneumatic tire
EP2862730B1 (en) Pneumatic tire
JP2003127615A (en) Pneumatic tire
JP2010168001A (en) Tire
TW202208192A (en) Wheel component in particular for bicycles
JP4703056B2 (en) Pneumatic radial tire
CN102463848B (en) Pneumatic tire
JP2015217905A (en) Pneumatic tire
JP5201961B2 (en) Pneumatic tires for motorcycles
JP2015209102A (en) Pneumatic tire
JP2014015182A (en) Pneumatic tire
JP2019108035A (en) Off-road tire for motorcycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5418767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250