JP5418461B2 - Substrate inspection method and substrate inspection apparatus - Google Patents

Substrate inspection method and substrate inspection apparatus Download PDF

Info

Publication number
JP5418461B2
JP5418461B2 JP2010227320A JP2010227320A JP5418461B2 JP 5418461 B2 JP5418461 B2 JP 5418461B2 JP 2010227320 A JP2010227320 A JP 2010227320A JP 2010227320 A JP2010227320 A JP 2010227320A JP 5418461 B2 JP5418461 B2 JP 5418461B2
Authority
JP
Japan
Prior art keywords
substrate
polarized light
incident
angle
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010227320A
Other languages
Japanese (ja)
Other versions
JP2012083126A (en
Inventor
弘克 矢代
泰三 星野
辰雄 藤本
芳生 平野
正史 中林
弘志 柘植
正和 勝野
崇 藍郷
信也 佐藤
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010227320A priority Critical patent/JP5418461B2/en
Publication of JP2012083126A publication Critical patent/JP2012083126A/en
Application granted granted Critical
Publication of JP5418461B2 publication Critical patent/JP5418461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基板の検査方法、及び基板の検査装置に関し、詳しくは、基板の表面に付着した異物や基板に含まれる欠陥を異常個所として検出することができる基板の検査方法、及びこの方法を用いた基板の検査装置に関する。   The present invention relates to a substrate inspection method and a substrate inspection apparatus, and more particularly, to a substrate inspection method capable of detecting a foreign matter adhering to the surface of a substrate or a defect included in the substrate as an abnormal portion, and this method. The present invention relates to a substrate inspection apparatus used.

半導体デバイスや太陽電池等で使用される半導体基板をはじめ、ハードディスクや液晶表示装置等で使用されるガラス基板等では、表面に付着した異物のみならず、外的要因によって付されたキズや、基板そのものが有する転位等の欠陥を検査することが行われている。これは、各種デバイスや装置の製造等における歩留まりを向上させたり、製品としての品質を高めたりするのに極めて重要なことであり、様々な製造分野や各工程で、日常的に基板の検査は行われている。   In addition to semiconductor substrates used in semiconductor devices and solar cells, glass substrates used in hard disks and liquid crystal display devices, etc., not only foreign substances attached to the surface, but also scratches and substrates attached by external factors It is inspected for defects such as dislocations. This is extremely important for improving the yield in the manufacture of various devices and equipment, and improving the quality of products, and inspecting the substrate on a daily basis in various manufacturing fields and processes. Has been done.

このように、基板に付着した異物や、基板が備える各種欠陥を検査する方法として、基板の表面に所定の光を照射し、得られた反射光を処理することで、異物が付着した箇所や欠陥を有する箇所を光学的に検出する方法が提案されている。   As described above, as a method of inspecting the foreign matter attached to the substrate and various defects included in the substrate, the surface of the substrate is irradiated with predetermined light and the obtained reflected light is processed, A method for optically detecting a portion having a defect has been proposed.

例えば、目的の欠陥の形状を楕円体で近似するようにして、球以外の非対称な欠陥に発生する双極子モーメントを得られるようにし、散乱光をレーリー散乱に基づいて処理することで、シリコン基板を形成する結晶中に含まれた欠陥のサイズやその密度を正確に計測する方法(特許文献1参照)や、基板に複数の波長の光を照射することで、ひとつの波長の信号により検出した基板面内での欠陥分布と、他の波長による基板表面の格子歪みや結晶配列の影響によるヘイズ信号の分布とを比較して、欠陥に由来する情報を正確に取得する方法(特許文献2参照)などが知られている。また、有機膜を表面に有したX線露光用マスクに対してp偏光の光を照射する際、入射角をブリュースター角(Brewster's angle)にすることで、散乱光の有無から異物の存在を検出する方法(特許文献3参照)なども知られている。   For example, the silicon substrate can be obtained by approximating the shape of the target defect with an ellipsoid so as to obtain a dipole moment generated in an asymmetric defect other than a sphere, and processing scattered light based on Rayleigh scattering. A method of accurately measuring the size and density of defects contained in a crystal forming a crystal (see Patent Document 1), or irradiating a substrate with light of a plurality of wavelengths, and detecting with a signal of one wavelength A method of accurately acquiring information derived from defects by comparing the defect distribution in the substrate surface with the distribution of haze signals due to the influence of the lattice distortion or crystal arrangement on the substrate surface due to other wavelengths (see Patent Document 2) ) Etc. are known. In addition, when irradiating p-polarized light to an X-ray exposure mask with an organic film on the surface, the incident angle is set to Brewster's angle, so that the presence of foreign matter can be detected from the presence or absence of scattered light. A detection method (see Patent Document 3) is also known.

これらの方法は、いずれも、基板の表面に所定の光を照射して、得られた反射光を測定したり、特定の処理を行ったりすることで、基板の異常個所を検出するものである。ところが、検査対象の基板の表面が完全に平坦である、理想状態であれば、これらの検査方法で特に問題はないが、実際の基板では、多少なりともそりやうねりが存在することから、実際には、異常個所を誤って検出したり、本来の異常個所を検出できなかったりするといったことが生じる。   In any of these methods, an abnormal portion of the substrate is detected by irradiating the surface of the substrate with predetermined light and measuring the obtained reflected light or performing a specific process. . However, if the surface of the substrate to be inspected is perfectly flat and in an ideal state, there is no particular problem with these inspection methods. However, in actual substrates, there are some warping and undulations. In some cases, an abnormal part is erroneously detected or an original abnormal part cannot be detected.

そこで、このような問題に対処するために、基板を回転させ、かつ、水平方向に移動させながら、基板の表面に第一のレーザ光を照射して第一の散乱光を検出すると共に、第二のレーザ光を照射して第二の散乱光を検出することで、基板からの散乱光と正反射光とを同時に検出するようにして、基板全体のうねりや局所的なうねりの影響を低減させて、欠陥の信号レベルを検出できるようにする方法が提案されている(特許文献4参照)。ところが、この方法では、検出した正反射光について、特定検出角度を基準にした検出光量の平均値を求め、その平均値処理した信号波形を更に演算処理して、うねり情報を持った信号波形を生成し、このうねり情報を持った信号波形をしきい値処理して、数段階に波形分割処理するなど、極めて複雑な処理が必要であり、しかも、基板を回転させながら水平方向に移動させつつ、各レーザ光を照射して基板の全表面を走査するため、膨大なデータの処理が必要であったり、検査に長時間を要してしまったりすることになる。   Therefore, in order to cope with such a problem, the first scattered light is detected by irradiating the surface of the substrate with the first laser light while rotating the substrate and moving the substrate in the horizontal direction. By irradiating the second laser beam and detecting the second scattered light, the scattered light from the substrate and the specularly reflected light are detected at the same time, reducing the influence of undulation and local undulation of the entire substrate. Thus, a method has been proposed in which the signal level of a defect can be detected (see Patent Document 4). However, in this method, for the detected regular reflection light, the average value of the detected light amount with respect to the specific detection angle is obtained, and the signal waveform obtained by the average value processing is further processed to obtain a signal waveform having undulation information. Generates and thresholds the signal waveform with this undulation information and performs waveform division processing in several stages, and it is necessary to move the substrate horizontally while rotating the substrate. Since the entire surface of the substrate is scanned by irradiating each laser beam, a huge amount of data is required to be processed or a long time is required for the inspection.

特開2001−272340号公報JP 2001-272340 A 特開2001−91451号公報JP 2001-91451 A 特開平1−185434号公報JP-A-1-185434 特開2008−268189号公報JP 2008-268189 A

近年、半導体基板やガラス基板等の大型化が進むにつれて、そりやうねりの影響は益々顕著になっており、そりやうねりを持った基板であっても、正確かつ簡便に異常個所を検出することができる基板の検査方法が求められている。   In recent years, as the size of semiconductor substrates and glass substrates has increased, the effects of warpage and undulation have become more prominent. Even if the substrate has warpage or undulation, it is possible to accurately and easily detect abnormal locations. There is a need for a method for inspecting a substrate that can be used.

本発明は、上記事情に鑑みてなされたものであり、基板が備えるそりやうねりの影響を考慮しながら、正確かつ簡便に、異物の付着や欠陥を有した箇所を異常箇所として検出することができる、基板の検査方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to accurately and easily detect a place with foreign matter adhesion or a defect as an abnormal place while considering the influence of warpage or swell provided on the substrate. An object of the present invention is to provide a method for inspecting a substrate.

また、上記の方法を利用しながら、異物の付着や欠陥を有した箇所を異常箇所として検出することができる、基板の検査装置を提供することを別の目的とする。   It is another object of the present invention to provide a substrate inspection apparatus that can detect a part having a foreign substance or a defect as an abnormal part while using the above method.

本発明者等は、上記課題を解決するための手段について鋭意検討した結果、基板の表面にp偏光の光を照射して、鏡面反射光から基板画像を得る際、その入射面内において基板の理論上のブリュースター角θBを含む所定の角度範囲dで入射角を変化させる入射面内走査と、入射面と基板とが交わる線を中心軸にして所定の傾斜角範囲φで基板を傾斜させる傾斜走査とを組み合わせることで、正確かつ簡便に基板の異常個所を検出することができることを見出し、本発明を完成させた。
すなわち、本発明の要旨は、以下のとおりである。
As a result of earnestly examining the means for solving the above problems, the present inventors have radiated p-polarized light onto the surface of the substrate to obtain a substrate image from the specular reflection light. Incident in-plane scanning that changes the incident angle within a predetermined angle range d including the theoretical Brewster angle θ B and the substrate tilted within a predetermined inclination angle range φ around the line where the incident surface and the substrate intersect The present inventors have found that an abnormal part of a substrate can be detected accurately and simply by combining it with tilt scanning.
That is, the gist of the present invention is as follows.

(1)基板の表面に対してp偏光の光を照射して得られた鏡面反射光から、基板の表面を複数の小領域に分割した分割小領域に対応する画素を有した基板画像を取得し、該基板画像に基づき、異物の付着や欠陥を有した箇所を異常箇所として検出する基板の検査方法であり、
i)基板の直径を含んだp偏光の光の入射面内において、該基板の理論上のブリュースター角θBを含む所定の角度範囲dで基板の表面に対するp偏光の光の入射角を相対的に変化させる入射面内走査と、
ii)入射面と基板とが交わる線を中心軸にして、所定の傾斜角範囲φで基板を相対的に傾斜させる傾斜走査と、
を組み合わせて、基板の表面に対するp偏光の光の入射角、及び、基板の表面に対するp偏光の光の入射方向を変化させながら、それぞれ基板画像を取得し、
基板表面の分割小領域にp偏光の光が実際にブリュースター角θBで入射された際に対応する画素の光量をゼロとしたとき、上記で得られた全基板画像において画素の光量が一度もゼロにならない分割小領域を基板の異常箇所として検出することを特徴とする基板の検査方法。
(1) A substrate image having pixels corresponding to divided small regions obtained by dividing the surface of the substrate into a plurality of small regions is obtained from specular reflection light obtained by irradiating the surface of the substrate with p-polarized light. And, based on the substrate image, is a method for inspecting a substrate for detecting a location having a foreign matter adhesion or a defect as an abnormal location,
i) In the plane of incidence of p-polarized light including the diameter of the substrate, the angle of incidence of p-polarized light relative to the surface of the substrate is relative within a predetermined angle range d including the theoretical Brewster angle θ B of the substrate. In-plane scanning to be changed automatically,
ii) tilt scanning in which the substrate is relatively tilted within a predetermined tilt angle range φ around the line where the incident surface and the substrate intersect as a central axis;
In combination with each other, changing the incident angle of the p-polarized light to the surface of the substrate and the incident direction of the p-polarized light to the surface of the substrate, respectively,
When p-polarized light is actually incident on the divided small area of the substrate surface at the Brewster angle θ B and the corresponding pixel light amount is zero, the pixel light amount is once in the entire substrate image obtained above. A method for inspecting a substrate, comprising detecting a divided small region that does not become zero as an abnormal portion of the substrate.

(2)前記入射面内走査の角度範囲dは、該基板が備えるそり・うねりによる最大傾斜角αを考慮して、理論上のブリュースター角θBを基準に、少なくともd=θB±αの範囲を含むようにすることを特徴とする上記(1)に記載の基板の検査方法。 (2) The angle range d of the in-plane scanning is at least d = θ B ± α on the basis of the theoretical Brewster angle θ B in consideration of the maximum inclination angle α due to warpage and swell of the substrate. The method for inspecting a substrate as described in (1) above, wherein the range is included.

(3)前記傾斜走査は、入射面と基板とが垂直に交わる場合の傾斜角度を0°として、−0.5°以上+0.5°以下の傾斜角範囲φで行うことを特徴とする上記(1)又は(2)に記載の基板の検査方法。 (3) The tilt scanning is performed in a tilt angle range φ of −0.5 ° or more and + 0.5 ° or less, where the tilt angle when the incident surface and the substrate intersect perpendicularly is 0 °. (1) The inspection method of the board | substrate as described in (2).

(4)前記入射面内走査を0.01°以上0.5°以下の角度間隔で行うと共に、前記傾斜走査を0.01°以上0.5°以下の傾斜角間隔で行うことを特徴とする上記(1)〜(3)のいずれかに記載の基板の検査方法。 (4) The in-plane scanning is performed at an angular interval of 0.01 ° to 0.5 °, and the inclined scanning is performed at an inclination angle interval of 0.01 ° to 0.5 °. The substrate inspection method according to any one of (1) to (3) above.

(5)基板の表面に対してp偏光の光を照射する照射手段と、該基板を載置すると共に、p偏光の光の入射角、及びp偏光の光の入射方向を相対的に変化させることができる基板保持手段と、得られた鏡面反射光から、該基板の表面を複数の小領域に分割した分割小領域に対応する画素を有した基板画像を取得する画像取得手段と、取得した基板画像を処理して、異物の付着や欠陥を有した箇所を基板の異常個所として検出することができる画像処理手段とを備えた基板の検査装置であり、
前記基板保持手段によって、照射手段から照射されたp偏光の光の入射角、及びp偏光の光の入射方向を変化させることで、
i)該基板の直径を含んだp偏光の光の入射面内において、該基板の理論上のブリュースター角θBを含む所定の角度範囲dで基板の表面に対するp偏光の光の入射角を変化させる入射面内走査と、
ii)入射面と基板とが交わる線を中心軸にして、所定の傾斜角範囲φで基板を傾斜させる傾斜走査と、
を組み合わせながら、画像取得手段でそれぞれの基板画像を取得し、
前記画像処理手段によって、基板表面の分割小領域にp偏光の光が実際にブリュースター角θBで入射された際に対応する画素の光量をゼロとして処理したときに、上記で得られた全基板画像において画素の光量が一度もゼロにならない分割小領域を基板の異常箇所として検出することを特徴とする基板の検査装置。
(5) Irradiation means for irradiating the surface of the substrate with p-polarized light and the substrate are mounted, and the incident angle of the p-polarized light and the incident direction of the p-polarized light are relatively changed. A substrate holding means capable of acquiring the substrate image having pixels corresponding to the divided small areas obtained by dividing the surface of the substrate into a plurality of small areas from the obtained specular reflection light, and A substrate inspection apparatus comprising an image processing means capable of processing a substrate image and detecting a portion having a foreign matter adhesion or a defect as an abnormal portion of the substrate,
By changing the incident angle of the p-polarized light irradiated from the irradiation means and the incident direction of the p-polarized light by the substrate holding means,
i) The incident angle of the p-polarized light with respect to the surface of the substrate within a predetermined angle range d including the theoretical Brewster angle θ B of the substrate within the plane of incidence of the p-polarized light including the diameter of the substrate. Changing incident in-plane scanning;
ii) tilt scanning in which the substrate is tilted within a predetermined tilt angle range φ around a line where the incident surface and the substrate intersect as a central axis;
Each board image is acquired by the image acquisition means,
When the p-polarized light is actually incident at the Brewster angle θ B on the divided small areas on the substrate surface by the image processing means, the light quantity of the corresponding pixels is processed as zero, and all the obtained above are obtained. A substrate inspection apparatus for detecting a divided small region in which a light amount of a pixel never becomes zero in a substrate image as an abnormal portion of the substrate.

(6)前記基板保持手段が、x−y直交座標を形成する2本の直交軸のまわりでそれぞれ回転させるようにして、載置した基板を任意の方向に傾斜させることができる基板ホルダーである上記(5)に記載の基板の検査装置。 (6) The substrate holder is a substrate holder capable of tilting the placed substrate in an arbitrary direction so as to rotate around two orthogonal axes forming xy orthogonal coordinates. The substrate inspection apparatus according to (5) above.

本発明によれば、p偏光の光がブリュースター角θBで入射された際、基板からの反射光がゼロになることを利用して、基板が備えるそりやうねりを考慮しながら、理論上のブリュースター角θBを含んだ角度範囲で入射角を変化させる入射面内走査と、入射面と基板とが交わる線を中心軸にして所定の傾斜角範囲φで基板を傾斜させる傾斜走査とを組み合わせることで、そりやうねりを持った基板であっても、正確に、かつ簡便に、基板の異常個所を検出することができる。 According to the present invention, when the light of p-polarized light is incident at Brewster angle theta B, by utilizing the fact that reflected light from the substrate is zero, while considering warpage or waviness included in the substrate, theoretically a scanning plane of incidence of changing the incident angle in an angular range including the Brewster angle theta B of inclination scanning and for in the central axis line entrance surface and the substrate intersects tilting the substrate at a predetermined inclination angle range φ By combining these, even if the substrate has warpage or undulation, an abnormal portion of the substrate can be detected accurately and simply.

図1は、本発明の検査方法におけるp偏光の光の照射と基板との関係を示す斜視模式図である。FIG. 1 is a schematic perspective view showing a relationship between irradiation of p-polarized light and a substrate in the inspection method of the present invention. 図2は、基板の表面におけるp偏光の光の入射角とブリュースター角θBとの関係を模式的に説明する基板側面図である。FIG. 2 is a substrate side view for schematically explaining the relationship between the incident angle of p-polarized light and the Brewster angle θ B on the surface of the substrate. 図3は、基板画像の様子を模式的に説明する平面図である。FIG. 3 is a plan view schematically illustrating the state of the substrate image. 図4は、本発明の検査装置を模式的に説明する側面図である。FIG. 4 is a side view schematically illustrating the inspection apparatus of the present invention. 図5は、検査装置の基板保持手段において基板を傾斜させる動作を説明する平面模式図である。FIG. 5 is a schematic plan view for explaining the operation of inclining the substrate in the substrate holding means of the inspection apparatus.

以下、本発明について詳細に説明する。
本発明では、基板の表面にp偏光の光を照射して、その鏡面反射光(正反射光)から基板画像を取得するようにする。p偏光の光を基板の表面に照射するためには、例えば、公知の光源と偏光子とを用いれば良く、その際、光源について特に制限はないが、好ましくは、検査対象の基板の表面全体に一度でp偏光の光を照射することができるようなものを使用するのが良い。
Hereinafter, the present invention will be described in detail.
In the present invention, the surface of the substrate is irradiated with p-polarized light, and the substrate image is acquired from the specular reflection light (regular reflection light). In order to irradiate the surface of the substrate with p-polarized light, for example, a known light source and a polarizer may be used. In this case, the light source is not particularly limited, but preferably the entire surface of the substrate to be inspected. It is preferable to use one that can emit p-polarized light at a time.

そして、本発明では、図1に示すように、基板1の直径1aを含むp偏光の光2の入射面4内において、検査対象の基板1の理論上のブリュースター角θBを含んだ所定の角度範囲dで、p偏光の光2の入射角θを変化させる『i)入射面内走査』を行うようにする。通常、p偏光の光は、入射角が増していくと反射率が減少し、やがてそれが0(ゼロ)になり、その後再び増加する。この反射率がゼロになるときの入射角がブリュースター角(Brewster's angle)θBであり、ブリュースター角θBは、入射側の材質の屈折率n1と透過側の材質の屈折率n2とから、下記式(1)によって求めることができる。本発明では、この式(1)から求められるブリュースター角θBを、検査対象基板の理論上のブリュースター角θBと呼ぶものとする。表1に示したように、例えば、水晶の屈折率は1.54であり、大気圧の空気(屈折率1.0)側からp偏光の光を水晶基板に入射した場合であれば、理論上のブリュースター角θBは57.00°になる。同様に、炭化珪素(SiC)の屈折率は2.65であり、空気側からp偏光の光をSiC基板に入射した場合であれば、理論上のブリュースター角θBは69.33°になる。

Figure 0005418461
In the present invention, as shown in FIG. 1, a predetermined value including the theoretical Brewster angle θ B of the substrate 1 to be inspected in the incident surface 4 of the p-polarized light 2 including the diameter 1 a of the substrate 1. In this angle range d, “i) In-plane scanning” is performed to change the incident angle θ of the p-polarized light 2. Normally, the reflectance of p-polarized light decreases as the incident angle increases, eventually becoming 0 (zero), and then increasing again. The incident angle of Brewster's angle (Brewster's angle) θ B when this reflectance is zero, Brewster angle theta B is refraction of the material of the incidence side index n 1 and the permeate side material refractive index of n 2 From the above, it can be obtained by the following equation (1). In the present invention, the Brewster angle θ B obtained from the equation (1) is referred to as a theoretical Brewster angle θ B of the substrate to be inspected. As shown in Table 1, for example, the refractive index of quartz is 1.54, and if p-polarized light is incident on the quartz substrate from the atmospheric pressure air (refractive index 1.0) side, it is theoretical. The Brewster angle θ B is 57.00 °. Similarly, the refractive index of silicon carbide (SiC) is 2.65, and when the p-polarized light is incident on the SiC substrate from the air side, the theoretical Brewster angle θ B is 69.33 °. Become.
Figure 0005418461

Figure 0005418461
Figure 0005418461

ところで、例えば、SiC基板のように、インゴットから切り出し、鏡面加工等を施して仕上げたような基板では、一般に、インゴットが有した内部応力や加工応力等により、そりやうねりを伴ってしまう。これは、ガラス基板のような他の基板についても同様であり、基板の表面を全て完全に平坦な面に仕上げることは現実的には難しく、加工応力等が原因で、基板にはそりやうねりが存在してしまう。特に、近年では、各種基板は大型化されていることから、そりやうねりのない、完全に平坦な基板を作製すること自体が困難である。   By the way, for example, a substrate that is cut out from an ingot and finished by mirror finishing, such as a SiC substrate, is generally accompanied by warpage or undulation due to internal stress, processing stress, or the like that the ingot has. The same applies to other substrates such as glass substrates, and it is practically difficult to finish the entire surface of the substrate to a completely flat surface, and due to processing stress etc., the substrate is warped or wavy. Will exist. In particular, in recent years, since various substrates have been increased in size, it is difficult to produce a completely flat substrate without warping or undulation.

そこで、本発明では、基板の表面に対するp偏光の光の入射角を相対的に変化させる入射面内走査を行うが、この入射面内走査で変化させる所定の角度範囲dについては、好ましくは、そりやうねりによって基板の表面に形成される最大傾斜角αを含むようにするのが良く、より好ましくは、角度範囲dは、理論上のブリュースター角θBを基準(中心)にして、少なくともd=θB±αの範囲を含むようにするのが良い。この点について、図2に示した模式図を使って説明すると、理論上のブリュースター角θBで入射されたp偏光の光2は、理想的な平坦面では反射されないが、そりやうねりのある箇所では、この関係が成り立たず、入射された光2の一部を反射してしまう。そのため、理想的な平坦面に対して、そりやうねりにより形成される形成される傾斜のなかで、最も傾斜角が大きい角度αを用いて、少なくともd=θB±αの範囲で入射面内走査を行うようにすれば、基板の表面の全てにおいて異常個所の誤検知を防ぐことができる。 Therefore, in the present invention, the in-plane scanning is performed to relatively change the incident angle of the p-polarized light with respect to the surface of the substrate. Preferably, the predetermined angle range d to be changed by this in-plane scanning is preferably It is preferable to include a maximum inclination angle α formed on the surface of the substrate by warping or undulation, and more preferably, the angle range d is at least based on the theoretical Brewster angle θ B (center). It is preferable to include a range of d = θ B ± α. This point will be described with reference to the schematic diagram shown in FIG. 2. The p-polarized light 2 incident at the theoretical Brewster angle θ B is not reflected on an ideal flat surface, but is warped or waved. In some places, this relationship does not hold, and a part of the incident light 2 is reflected. Therefore, with respect to an ideal flat surface, the angle α having the largest inclination angle among the inclinations formed by warping and undulation is used, and at least in the range of d = θ B ± α. By performing scanning, it is possible to prevent erroneous detection of abnormal parts on the entire surface of the substrate.

また、本発明では、図1に示すように、入射面4と基板1とが交わる線を中心軸1bにして、所定の傾斜角範囲φで基板を相対的に傾斜させる『ii)傾斜走査』(すなわち入射面と基板面で作られる線(軸)を中心に回転させる走査)を組み合わせるようにする。中心軸1bを中心にした『ii)傾斜走査』の傾斜角範囲φをそりやうねりによって形成される最大傾斜角αを含む範囲にして『i)入射面内走査』を行えば、基板に形成された局所的な凹凸を含めて、全てのそりやうねりを考慮しながら、基板の表面全体を検査することができる。   Further, in the present invention, as shown in FIG. 1, "ii) tilt scanning" in which the substrate is relatively tilted within a predetermined tilt angle range φ with the line where the incident surface 4 and the substrate 1 intersect as the central axis 1b. (That is, scanning that rotates around a line (axis) formed by the incident surface and the substrate surface). Formed on the substrate by performing “i) In-plane scanning” with the tilt angle range φ of “ii) tilt scan” centered on the central axis 1b including the maximum tilt angle α formed by warping and undulation. The entire surface of the substrate can be inspected while taking into account all warpage and undulations, including local irregularities.

ただし、SiC基板やSi基板などのようにインゴットから切り出された基板では表面が平坦になるように切り出すために、局所的な凹凸の程度は小さく、また、切り出した後に表面が鏡面になるように研磨することから、そりやうねりによって形成される傾斜角も最大で±0.5°程度である。更には、これら半導体基板の検査において、実際に検出すべき異常は、主に、ピットやマイクロパイプ欠陥等のような結晶欠陥や、パーティクル等の異物の付着であり、結晶欠陥については微小であり、パーティクル等の大きさも高々数ミクロン程度である。しかも、理論上のブリュースター角θBの大きさを考慮すれば、これら半導体基板の微視的な異常箇所を検出する上で、上記のような傾斜走査については、中心軸1bを中心にした傾斜角範囲φを±2°程度の範囲で行うのが好適であり、より好ましくは、傾斜角範囲φを±0.5°の範囲で行うのが良い。なお、この傾斜走査の傾斜角範囲φは、入射面4と基板1とが垂直に交わる場合の傾斜角度を0°としたものである。 However, in the case of a substrate cut out from an ingot such as a SiC substrate or a Si substrate, since the surface is cut out to be flat, the degree of local unevenness is small, and the surface becomes a mirror surface after cutting out. Since the polishing is performed, the inclination angle formed by warping or waviness is also about ± 0.5 ° at the maximum. Furthermore, in the inspection of these semiconductor substrates, the abnormality that should actually be detected is mainly crystal defects such as pits and micropipe defects, and adhesion of foreign matters such as particles, and the crystal defects are minute. In addition, the size of particles and the like is about several microns at most. In addition, when the theoretical Brewster angle θ B is taken into consideration, the above-described inclined scanning is centered on the central axis 1b in detecting microscopic abnormal portions of the semiconductor substrate. It is preferable to perform the inclination angle range φ within a range of about ± 2 °, and more preferably, the inclination angle range φ is within a range of ± 0.5 °. Note that the tilt angle range φ of this tilt scan is such that the tilt angle when the incident surface 4 and the substrate 1 intersect perpendicularly is 0 °.

本発明では、上記『i)入射面内走査』と『ii)傾斜走査』とを組み合わせるようにして、基板1の表面に対するp偏光の光2の入射角θ、及び、基板の表面に対するp偏光の光2の入射方向を変化させながら、それぞれの鏡面反射光から基板画像を取得する。この際、図3(a)に示すように、検査対象の基板の表面を複数の小領域に分割して、この分割小領域1cに対応した画素を有した基板画像5nを取得するようにする。ここで、理論上のブリュースター角θBで入射されたp偏光の光が、実際のブリュースター角θBに相当すれば、原則、その分割小領域1cでの反射は無くなることから、基板画像5nにおいて、その分割小領域に対応する画素の光量をゼロとみなす(図3(a)の1c-1)。ところが、その分割小領域にパーティクル等の異物が付着していたり、ピット等の欠陥を有していたりすると、反射光が観察されて、そこに対応する画素の光量はゼロにはならない(図3(a)の1c-2)。一方、そりやうねりに該当する箇所であると、実際にはブリュースター角θBにならないため、やはり、反射光が観察されて、その分割小領域に対応する画素の光量はゼロにはならない。 In the present invention, the above-mentioned “i) In-plane scanning” and “ii) Inclined scanning” are combined, and the incident angle θ of the p-polarized light 2 with respect to the surface of the substrate 1 and the p-polarized light with respect to the surface of the substrate. The substrate image is acquired from each specular reflection light while changing the incident direction of the light 2. At this time, as shown in FIG. 3A, the surface of the substrate to be inspected is divided into a plurality of small regions, and a substrate image 5n having pixels corresponding to the divided small regions 1c is obtained. . Here, the light of p-polarized light incident at the Brewster angle theta B of theoretical, if equivalent to the actual Brewster angle theta B, in principle, since the reflection is eliminated at the divided small regions 1c, the substrate image In 5n, the light quantity of the pixel corresponding to the divided small area is regarded as zero (1c-1 in FIG. 3A). However, if a foreign substance such as a particle adheres to the divided small area or has a defect such as a pit, reflected light is observed, and the light quantity of the corresponding pixel does not become zero (FIG. 3). (a) 1c-2). On the other hand, if it is a portion corresponding to warping or undulation, the Brewster angle θ B is not actually reached, so that the reflected light is also observed, and the light quantity of the pixel corresponding to the divided small area does not become zero.

そこで、『i)入射面内走査』と『ii)傾斜走査』とを組み合わせて得られた全基板画像において、画素の光量が一度もゼロにならない分割小領域を、基板の異常箇所として検出する。例えば、図3(b)は、図3(a)に示した基板画像5nと同じ検査基板の別の検査画像5nの例であり(画像の向きも同じ)、図3(a)で反射光が検出された画素の一部で光量がゼロになっていることから、これらの画素に対応する分割小領域は、基板が備えるそり・うねりの箇所に対応するものと判断できる。そして、全ての基板画像において、一度も光量がゼロにならない画素が、異物の付着やピット等の欠陥を有した分割小領域と判断される。なお、図3に示した基板画像5nでは、便宜上、基板の分割小領域からの反射が無くて光量がゼロの画素を、白抜きセル1c-1で表しており、反射光が観察されて光量がゼロにはならない画素を、黒塗りセル1c-2で表している。   Therefore, in all the substrate images obtained by combining “i) In-plane scanning” and “ii) Inclined scanning, a divided small region where the light quantity of the pixel never becomes zero is detected as an abnormal portion of the substrate. . For example, FIG. 3B is an example of another inspection image 5n on the same inspection board as the substrate image 5n shown in FIG. 3A (the direction of the image is the same), and the reflected light in FIG. Since the amount of light is zero in some of the pixels in which detection is detected, it can be determined that the divided small areas corresponding to these pixels correspond to the portions of warpage and swell provided in the substrate. Then, in all the substrate images, a pixel whose light amount never becomes zero is determined as a divided small region having a foreign matter attached or a defect such as a pit. In the substrate image 5n shown in FIG. 3, for the sake of convenience, a pixel having no reflection from the divided small area of the substrate and having a light quantity of zero is represented by a white cell 1c-1, and the reflected light is observed and the light quantity is observed. Pixels that do not become zero are represented by black cells 1c-2.

基板画像の総枚数は、『i)入射面内走査』と『ii)傾斜走査』との組み合わせによって決まる。詳しくは、入射面内走査の角度間隔及び角度範囲dと、傾斜走査の傾斜角間隔及び傾斜角範囲φとによって決められる。ここで、入射面内走査の角度間隔と傾斜走査の傾斜角間隔については特に制限されず、異常箇所の検出に求められる精度や、基板画像を取得するための画像取得手段の容量等によって決定すればよいが、好適には、入射面内走査の角度間隔と傾斜走査の傾斜角間隔は、それぞれ0.01°以上0.5°以下の間隔で行うのが好ましい。例えば、最大傾斜角α=0.5°のそりやうねりを持ったSiC基板を検査する場合、理論上のブリュースター角θB=69.33°を中心にして±0.5°の角度範囲dを0.01°の角度間隔で全101段階の入射面内走査を行うと共に、入射面と基板とが交わる線を中心軸にして0.01°の傾斜角間隔で−0.5°から+0.5°までの傾斜角範囲φの傾斜走査を全101段階行うようにして、入射面内走査と傾斜走査とを組み合わせれば、合計101×101枚の基板画像を得ることになる。 The total number of substrate images is determined by a combination of “i) In-plane scanning” and “ii) Inclined scanning”. Specifically, it is determined by the angle interval and angle range d of the in-plane scanning and the inclination angle interval and inclination angle range φ of the inclined scanning. Here, the angle interval of the in-plane scanning and the inclination angle interval of the inclined scanning are not particularly limited, and are determined by the accuracy required for detecting the abnormal part, the capacity of the image acquiring means for acquiring the substrate image, and the like. However, it is preferable that the angle interval of the in-plane scanning and the inclination angle interval of the inclined scanning are each preferably 0.01 ° to 0.5 °. For example, when inspecting a SiC substrate having warpage or undulation with a maximum inclination angle α = 0.5 °, an angular range of ± 0.5 ° centered on the theoretical Brewster angle θ B = 69.33 ° In-plane scanning of all 101 stages of d is performed at an angular interval of 0.01 °, and from −0.5 ° at an inclination angle interval of 0.01 ° with the line intersecting the incident surface and the substrate as the central axis. A total of 101 × 101 substrate images can be obtained by combining the in-plane scanning and the tilt scanning by performing 101 tilt scans in the tilt angle range φ up to + 0.5 °.

本発明の検査方法は、基板を構成する材料の種類や形状等によって制限を受けることはなく、検査対象の基板として、例えば、SiC、Si、水晶、サファイアをはじめとした単結晶、多結晶、アモルファス等の半導体基板のほか、ガラス基板、各種プラスチック基板、等を挙げることができ、また、これら以外のものであっても適用可能である。但し、屈折率が異なる材料が混在したり、貼り合わせられたりしていると、正しく検出できないことがあるため、単独の屈折率を有した材料からなる基板であるのが望ましい。また、本発明の検査方法によって検出可能な異常としては、パーティクル等の異物の付着のほか、外的要因によって付されたキズであったり、基板自体に含まれるピット等の欠陥であったりが挙げられる。例えば、SiC単結晶基板の場合、マイクロパイプ、研磨傷、スクラッチ、ボイド、基板自体に含まれる結晶欠陥に起因する三角欠陥等などの検出が可能である。   The inspection method of the present invention is not limited by the type or shape of the material constituting the substrate, and as the substrate to be inspected, for example, SiC, Si, quartz, single crystal including sapphire, polycrystal, In addition to an amorphous semiconductor substrate, a glass substrate, various plastic substrates, and the like can be given, and other materials can also be applied. However, a substrate made of a material having a single refractive index is desirable because it may not be detected correctly if materials having different refractive indexes are mixed or bonded together. In addition, examples of abnormalities that can be detected by the inspection method of the present invention include adhesion of foreign matters such as particles, scratches caused by external factors, and defects such as pits included in the substrate itself. It is done. For example, in the case of a SiC single crystal substrate, it is possible to detect micropipes, polishing flaws, scratches, voids, triangular defects caused by crystal defects included in the substrate itself, and the like.

本発明における基板の検査方法を利用して基板を検査するには、例えば、次のような構成例の検査装置を用いることができる。すなわち、図4に示すように、基板1の表面に対してp偏光の光2を照射する照射手段8と、基板1を載置すると共に、p偏光の光2の入射角、及びその入射方向を相対的に変化させることができる基板保持手段10と、得られた鏡面反射光3から基板画像を取得する画像取得手段9と、取得した基板画像を処理して、異物の付着や欠陥を有した箇所を基板の異常個所として検出することができる画像処理手段11とを備えた基板の検査装置である。   In order to inspect a substrate using the substrate inspection method of the present invention, for example, an inspection apparatus having the following configuration example can be used. That is, as shown in FIG. 4, the irradiation means 8 for irradiating the surface of the substrate 1 with the p-polarized light 2 and the substrate 1 are mounted, and the incident angle of the p-polarized light 2 and the incident direction thereof. The substrate holding means 10 capable of relatively changing the image, the image obtaining means 9 for obtaining a substrate image from the obtained specular reflected light 3, and processing the obtained substrate image The substrate inspection apparatus includes the image processing unit 11 that can detect the detected portion as an abnormal portion of the substrate.

ここで、p偏光の光2を照射する照射手段8としては、上述したように、公知の光源6と偏光子7とを用いることができる。また、画像取得手段9としては、CCD(Charge Coupled Device)カメラ等のように基板画像を撮影できる機器と、ハードディスクやメモリ等のように撮影した基板画像を記憶できる機器とを有したものが好適である。その際、CCDカメラ等の画素数が基板表面の分割小領域の数やサイズを決定するため、撮影機器は、少なくとも1,000×1,000画素を有したものを用いるのが好ましい。   Here, as the irradiation means 8 for irradiating the p-polarized light 2, as described above, a known light source 6 and polarizer 7 can be used. The image acquisition means 9 preferably includes a device that can capture a substrate image, such as a CCD (Charge Coupled Device) camera, and a device that can store the captured substrate image, such as a hard disk or memory. It is. At that time, since the number of pixels of the CCD camera or the like determines the number and size of the divided small areas on the substrate surface, it is preferable to use a photographing apparatus having at least 1,000 × 1,000 pixels.

また、基板保持手段10は、p偏光の光の入射角やその入射方向を変化させて、載置した基板の入射面内走査(y軸まわりの回転走査)と入射面と基板とが交わる線を中心軸にして基板を傾斜させる傾斜走査(x軸まわりの回転走査)とを行うことができるものであれば良く、好適には、載置面で載置した基板ごと傾斜させることができる傾斜機構を備えた基板ホルダーや、更に基板を回転させることができる回転機構を備えた基板ホルダーのようなものが望ましい。なかでも、SiC基板やSi基板などのようにインゴットから切り出された半導体基板では、上述したように、傾斜走査における傾斜角範囲φは±0.5°の範囲でも十分に検査可能であることから、これらの半導体基板を検査する際には、図4及び図5に示したように、基板表面でx−y直交座標を形成する2本の直交軸(x、y)のまわりで、それぞれ所定の範囲で回転させることができ、載置した基板を任意に傾斜させることができる基板ホルダーを用いるのが好適である。すなわち、これらの図に示した基板ホルダー10では、y軸を回転中心にして、理論上のブリュースター角θBを含む所定の角度範囲dで基板1を傾斜させて入射面内走査を行い、x軸を回転軸にして基板1を傾斜させることで、少なくとも±0.5°の範囲の傾斜角範囲φで傾斜走査を行うことができる。 Further, the substrate holding means 10 changes the incident angle and the incident direction of the p-polarized light so that the in-plane scanning (rotational scanning around the y axis) of the mounted substrate intersects the incident surface and the substrate. Can be used as long as it can perform tilt scanning (rotational scanning around the x-axis) that tilts the substrate around the center axis, and preferably tilts the entire substrate mounted on the mounting surface. A substrate holder provided with a mechanism or a substrate holder provided with a rotation mechanism capable of rotating the substrate is desirable. In particular, a semiconductor substrate cut out from an ingot, such as a SiC substrate or a Si substrate, can be sufficiently inspected even when the tilt angle range φ in tilt scan is within ± 0.5 ° as described above. When inspecting these semiconductor substrates, as shown in FIG. 4 and FIG. 5, each of the two predetermined axes around two orthogonal axes (x, y) forming xy orthogonal coordinates on the substrate surface is predetermined. It is preferable to use a substrate holder that can be rotated within the range of 2 and can tilt the mounted substrate arbitrarily. That is, in the substrate holder 10 shown in these drawings, the in-plane scanning is performed by inclining the substrate 1 within a predetermined angle range d including the theoretical Brewster angle θ B around the y-axis, By tilting the substrate 1 with the x axis as the rotation axis, tilt scanning can be performed at a tilt angle range φ of at least ± 0.5 °.

そして、入射面内走査と傾斜走査とを組み合わせて、画像取得手段でそれぞれ得られた基板画像は、コンピューター等の演算処理機器からなる画像処理手段によって、異物の付着や欠陥を有した箇所を基板の異常個所として検出する。すなわち、基板表面の分割小領域にp偏光の光が実際にブリュースター角θBで入射された際に、基板画像における対応する画素の光量をゼロとして処理し、全ての基板画像において、画素の光量が一度もゼロにならない分割小領域を異常箇所として検出する。この際、画像取得手段で基板画像を撮影する毎に、各分割小領域に対応する画素の光量を最小値で割り当てるようにしていき、最終的に再構成された基板画像のなかで、光量がゼロ以外の箇所を異常箇所として検出するようにしても良い。 Then, the substrate images obtained by the image acquisition means by combining the in-plane scanning and the inclination scanning are processed by the image processing means composed of arithmetic processing equipment such as a computer, and the portion having the adhesion of foreign matter or a defect is substrate. Detect as an abnormal part of That is, when p-polarized light is actually incident at a Brewster angle θ B on a divided small region of the substrate surface, the light amount of the corresponding pixel in the substrate image is processed as zero, and A divided small area where the light intensity never becomes zero is detected as an abnormal part. At this time, every time the substrate image is taken by the image acquisition means, the light amount of the pixel corresponding to each divided small region is assigned with the minimum value, and the light amount is finally determined in the reconstructed substrate image. A location other than zero may be detected as an abnormal location.

以下、実施例等に基づき本発明をより詳細に説明する。なお、本発明は以下の内容に制限されるものではない。   Hereinafter, the present invention will be described in more detail based on examples and the like. The present invention is not limited to the following contents.

直径100ミリの4HポリタイプのSiC単結晶基板を、図4に示したような装置を用いて本発明の方法で評価した。光源6にはナトリウムランプをコリメータで平行光にした光源を用いて、偏光子7でp偏光にした光をSiC基板に照射した。SiC基板は試料台10の上に載せて、裏面からの真空チャックにより試料台10上で動かないように固定した。   A 4H polytype SiC single crystal substrate having a diameter of 100 mm was evaluated by the method of the present invention using an apparatus as shown in FIG. The light source 6 was a light source in which a sodium lamp was collimated by a collimator, and the SiC substrate was irradiated with light that was made p-polarized by the polarizer 7. The SiC substrate was placed on the sample table 10 and fixed so as not to move on the sample table 10 by a vacuum chuck from the back surface.

SiC基板は、4H単結晶インゴットからワイヤーソーを用いて厚さ1mmで切り出した後に、ダイヤモンド砥粒を用いて表面が鏡面になるまで研磨仕上げした基板である。そのため、表面は目視観察では全く平坦に見えるが、直径100ミリ全体に亘って、9μm程度のそり・うねりがある。この基板を、2本の直交軸(x、y)のまわりでそれぞれ基板ごと回転させることができる試料台10上で、y軸まわりで回転走査させることで入射角を変えながら、反射像データを取得した。入射角は、68.83°から0.01°刻みで69.93°まで変えた(『i)入射面内走査』)。これは、基板のx軸方向の微細なそり・うねりを補正して、ブリュースター角θBに対応する反射像データを取得する意味に相当する。また、y軸まわりでの回転走査に併せて、x軸まわりに−0.5°から+0.5°の範囲で0.01°刻みで回転走査させながら計測した(『ii)傾斜走査』)。これは、基板のy軸方向の微細なそり・うねりによるブリュースター角θBからの測定誤差を吸収することに相当する。なお、x軸まわりの回転走査はp偏光した光の入射面とSiC基板とが垂直に交わる位置を中心(0°)とした。この基板では、直径100ミリ全体に亘って、9μm程度のそり・うねりがあるが、傾斜が最大となるところでは、(9μm)/(100ミリ)より大きな傾斜を持つ。但し、元々鏡面研磨仕上げしているこの基板で、傾斜はさほど大きくはなく、高々(9μm)/(10ミリ)であるので、最大傾斜角αはarctan(9μ/10mm)=0.052°程度である。従って、その一桁上の±0.5°の範囲でi)入射面内走査とii)傾斜走査を実施すれば、余裕を持って、基板全面のそり・うねりを補正できる。 The SiC substrate is a substrate that is cut out from a 4H single crystal ingot using a wire saw to a thickness of 1 mm and then polished using diamond abrasive grains until the surface becomes a mirror surface. Therefore, the surface looks completely flat by visual observation, but there is a warp / swell of about 9 μm over the entire 100 mm diameter. The reflected image data is obtained while changing the incident angle by rotating the substrate about the y-axis on the sample stage 10 which can be rotated together with the respective substrates about two orthogonal axes (x, y). I got it. The incident angle was changed from 68.83 ° to 69.93 ° in 0.01 ° increments (“i) In-plane scanning”). This corresponds to the meaning of correcting the fine warp / waviness in the x-axis direction of the substrate and obtaining the reflection image data corresponding to the Brewster angle θ B. In addition to the rotational scanning around the y-axis, the measurement was performed while rotating around the x-axis in the range of -0.5 ° to + 0.5 ° in increments of 0.01 ° (“ii) Inclined scanning”) . This corresponds to absorbing a measurement error from the Brewster angle θ B due to fine warping and waviness in the y-axis direction of the substrate. The rotational scanning around the x axis was centered at the position (0 °) where the incident surface of the p-polarized light and the SiC substrate intersect perpendicularly. In this substrate, there is a warp / swell of about 9 μm over the entire diameter of 100 mm, but the slope is greater than (9 μm) / (100 mm) where the slope is maximum. However, with this substrate that has been mirror-polished, the inclination is not so great and is at most (9 μm) / (10 mm), so the maximum inclination angle α is about arctan (9 μ / 10 mm) = 0.052 °. . Therefore, if i) In-plane scanning and ii) Inclined scanning are performed within the range of ± 0.5 °, which is one digit higher than that, it is possible to correct warpage and undulation of the entire substrate with a margin.

上記のようにしてx軸まわり、および、y軸まわりに各々101×101個のデータを取得した。一個々々のデータは、画像取得手段9によって取り込まれ記録した。画像取得手段9には1,000万画素のCCDカメラが含まれていて、1,000万点の画素データが得られる。各画素について、x軸まわり、および、y軸まわりに走査しながら101×101個のデータを取り込むが、走査する過程で、当該画素のデータよりも光量が小さい時だけ、当該画素のデータを書き換える論理を採用している。これは、1,000万画素の全てについて101×101個のデータを記録すると膨大な記憶容量が必要となるので、その弊害を防止するのが目的である。   As described above, 101 × 101 pieces of data were acquired around the x axis and the y axis, respectively. Each piece of data was captured and recorded by the image acquisition means 9. The image acquisition means 9 includes a 10 million pixel CCD camera, and 10 million pixel data can be obtained. For each pixel, 101 × 101 pieces of data are captured while scanning around the x axis and the y axis, but the pixel data is rewritten only when the amount of light is smaller than the pixel data during the scanning process. Employs logic. The purpose of this is to prevent the harmful effects of recording a large amount of storage capacity when 101 × 101 data is recorded for all 10 million pixels.

取得した1,000万画素の画像データで、画像処理手段11を用いて、直径100ミリのSiC基板全体の表面状態を評価した。ここで、一画素は基板表面の0.3mm×0.3mmの領域に相当する。SiC基板全体の殆どの領域で反射光はなく、0.3mm×0.3mmの空間分解能では、殆どの領域で、異物、欠陥は検出されなかった。しかしながら、基板の周辺部のエッジから2mmの領域では、反射光が認められる画素が多数検出された。合計23個の異物もしくは欠陥が検出されたので、本測定の後で、光学顕微鏡で該当する箇所を観察したところ、マイクロパイプ欠陥が認められた。   Using the acquired image data of 10 million pixels, the image processing means 11 was used to evaluate the surface state of the entire SiC substrate having a diameter of 100 mm. Here, one pixel corresponds to an area of 0.3 mm × 0.3 mm on the substrate surface. There was no reflected light in almost the entire area of the SiC substrate, and no foreign matter or defect was detected in most areas with a spatial resolution of 0.3 mm × 0.3 mm. However, in the region 2 mm from the edge of the peripheral part of the substrate, a large number of pixels in which reflected light is recognized were detected. Since a total of 23 foreign matters or defects were detected, micropipe defects were observed when the corresponding portions were observed with an optical microscope after the main measurement.

本測定で、空間分解能を向上させるために、直径100ミリのSiC基板の一部を拡大して、画像取得手段9にて画像データを取得した。具体的には、画像取得手段9にて、直径100ミリのSiC基板の中心5ミリ角の領域を拡大してデータを取得した。その時、0.0016mm×0.0016mmの領域が一画素に対応するので、空間分解能は2μm(〜0.0016mm)である。5ミリ角の領域のデータを、画像処理手段11を用いて解析したところ、14個の異物もしくは欠陥が検出された。本測定の後で、光学顕微鏡で該当する箇所を観察したところ、欠陥は観察できなかったが、異物(ゴミ)が認められた。   In this measurement, in order to improve the spatial resolution, a part of a SiC substrate having a diameter of 100 mm was enlarged, and image data was acquired by the image acquisition means 9. Specifically, the image acquisition means 9 acquired data by enlarging a central 5 mm square area of a SiC substrate having a diameter of 100 mm. At that time, since a region of 0.0016 mm × 0.0016 mm corresponds to one pixel, the spatial resolution is 2 μm (˜0.0016 mm). When data of a 5 mm square area was analyzed using the image processing means 11, 14 foreign matters or defects were detected. After this measurement, when the corresponding part was observed with an optical microscope, no defect could be observed, but foreign matter (dust) was observed.

そこで、SiC基板を洗浄し直して、再度、本測定で、基板の中心5ミリ角の領域を評価した。洗浄前と洗浄後で全く同じ箇所を計測した訳ではないが、二回とも基板の中心のデータで、測定箇所は近いと推定できる。洗浄後、本測定による評価の結果、異物もしくは欠陥の数は3個にまで減少したので、洗浄の効果があったと推定された。   Therefore, the SiC substrate was washed again, and the central 5 mm square region of the substrate was evaluated again in this measurement. Although the same part is not measured before and after cleaning, it can be estimated that the measurement part is close by the data at the center of the substrate twice. As a result of the evaluation by this measurement after cleaning, the number of foreign matters or defects was reduced to three, so that it was estimated that there was a cleaning effect.

1 :基板
2 :p偏光の光
3 :反射光
4 :入射面
5n:基板画像
6 :光源
7 :偏光子
8 :照射手段
9 :画像取得手段
10:基板保持手段
11:画像処理手段
1: substrate 2: p-polarized light 3: reflected light 4: incident surface 5 n: substrate image 6: light source 7: polarizer 8: irradiation means 9: image acquisition means 10: substrate holding means 11: image processing means

Claims (6)

基板の表面に対してp偏光の光を照射して得られた鏡面反射光から、基板の表面を複数の小領域に分割した分割小領域に対応する画素を有した基板画像を取得し、該基板画像に基づき、異物の付着や欠陥を有した箇所を異常箇所として検出する基板の検査方法であり、
i)基板の直径を含んだp偏光の光の入射面内において、該基板の理論上のブリュースター角θBを含む所定の角度範囲dで基板の表面に対するp偏光の光の入射角を相対的に変化させる入射面内走査と、
ii)入射面と基板とが交わる線を中心軸にして、所定の傾斜角範囲φで基板を相対的に傾斜させる傾斜走査と、
を組み合わせて、基板の表面に対するp偏光の光の入射角、及び、基板の表面に対するp偏光の光の入射方向を変化させながら、それぞれ基板画像を取得し、
基板表面の分割小領域にp偏光の光が実際にブリュースター角θBで入射された際に対応する画素の光量をゼロとしたとき、上記で得られた全基板画像において画素の光量が一度もゼロにならない分割小領域を基板の異常箇所として検出することを特徴とする基板の検査方法。
A substrate image having pixels corresponding to divided small regions obtained by dividing the surface of the substrate into a plurality of small regions is obtained from specular reflection light obtained by irradiating the surface of the substrate with p-polarized light; Based on the substrate image, it is a method for inspecting a substrate for detecting a part having a foreign matter adhesion or a defect as an abnormal part,
i) In the plane of incidence of p-polarized light including the diameter of the substrate, the angle of incidence of p-polarized light relative to the surface of the substrate is relative within a predetermined angle range d including the theoretical Brewster angle θ B of the substrate. In-plane scanning to be changed automatically,
ii) tilt scanning in which the substrate is relatively tilted within a predetermined tilt angle range φ around the line where the incident surface and the substrate intersect as a central axis;
In combination with each other, changing the incident angle of the p-polarized light to the surface of the substrate and the incident direction of the p-polarized light to the surface of the substrate, respectively,
When p-polarized light is actually incident on the divided small area of the substrate surface at the Brewster angle θ B and the corresponding pixel light amount is zero, the pixel light amount is once in the entire substrate image obtained above. A method for inspecting a substrate, comprising detecting a divided small region that does not become zero as an abnormal portion of the substrate.
前記入射面内走査の角度範囲dは、該基板が備えるそり・うねりによる最大傾斜角αを考慮して、理論上のブリュースター角θBを基準に、少なくともd=θB±αの範囲を含むようにすることを特徴とする請求項1に記載の基板の検査方法。 The angle range d of the in-plane scanning is at least d = θ B ± α with respect to the theoretical Brewster angle θ B in consideration of the maximum inclination angle α due to warpage and undulation provided on the substrate. The substrate inspection method according to claim 1, wherein the substrate inspection method is included. 前記傾斜走査は、入射面と基板とが垂直に交わる場合の傾斜角度を0°として、−0.5°以上+0.5°以下の傾斜角範囲φで行うことを特徴とする請求項1又は2に記載の基板の検査方法。   2. The tilt scan is performed in a tilt angle range φ of −0.5 ° or more and + 0.5 ° or less, where the tilt angle when the incident surface and the substrate intersect perpendicularly is 0 °. 3. The substrate inspection method according to 2. 前記入射面内走査を0.01°以上0.5°以下の角度間隔で行うと共に、前記傾斜走査を0.01°以上0.5°以下の傾斜角間隔で行うことを特徴とする請求項1〜3のいずれかに記載の基板の検査方法。   The in-plane scanning is performed at an angular interval of 0.01 ° to 0.5 °, and the inclined scanning is performed at an inclination angle interval of 0.01 ° to 0.5 °. The inspection method of the board | substrate in any one of 1-3. 基板の表面に対してp偏光の光を照射する照射手段と、該基板を載置すると共に、p偏光の光の入射角、及びp偏光の光の入射方向を相対的に変化させることができる基板保持手段と、得られた鏡面反射光から、該基板の表面を複数の小領域に分割した分割小領域に対応する画素を有した基板画像を取得する画像取得手段と、取得した基板画像を処理して、異物の付着や欠陥を有した箇所を基板の異常個所として検出することができる画像処理手段とを備えた基板の検査装置であり、
前記基板保持手段によって、照射手段から照射されたp偏光の光の入射角、及びp偏光の光の入射方向を変化させることで、
i)該基板の直径を含んだp偏光の光の入射面内において、該基板の理論上のブリュースター角θBを含む所定の角度範囲dで基板の表面に対するp偏光の光の入射角を変化させる入射面内走査と、
ii)入射面と基板とが交わる線を中心軸にして、所定の傾斜角範囲φで基板を傾斜させる傾斜走査と、
を組み合わせながら、画像取得手段でそれぞれの基板画像を取得し、
前記画像処理手段によって、基板表面の分割小領域にp偏光の光が実際にブリュースター角θBで入射された際に対応する画素の光量をゼロとして処理したときに、上記で得られた全基板画像において画素の光量が一度もゼロにならない分割小領域を基板の異常箇所として検出することを特徴とする基板の検査装置。
An irradiation means for irradiating the surface of the substrate with p-polarized light and the substrate can be placed, and the incident angle of the p-polarized light and the incident direction of the p-polarized light can be relatively changed. A substrate holding means, an image acquisition means for acquiring a substrate image having pixels corresponding to the divided small areas obtained by dividing the surface of the substrate into a plurality of small areas from the obtained specular reflection light, and the acquired substrate image An inspection apparatus for a substrate provided with image processing means capable of detecting and detecting a place having a foreign substance adhesion or a defect as an abnormal portion of the substrate,
By changing the incident angle of the p-polarized light irradiated from the irradiation means and the incident direction of the p-polarized light by the substrate holding means,
i) The incident angle of the p-polarized light with respect to the surface of the substrate within a predetermined angle range d including the theoretical Brewster angle θ B of the substrate within the plane of incidence of the p-polarized light including the diameter of the substrate. Changing incident in-plane scanning;
ii) tilt scanning in which the substrate is tilted within a predetermined tilt angle range φ around a line where the incident surface and the substrate intersect as a central axis;
Each board image is acquired by the image acquisition means,
When the p-polarized light is actually incident at the Brewster angle θ B on the divided small areas on the substrate surface by the image processing means, the light quantity of the corresponding pixels is processed as zero, and all the obtained above are obtained. A substrate inspection apparatus for detecting a divided small region in which a light amount of a pixel never becomes zero in a substrate image as an abnormal portion of the substrate.
前記基板保持手段が、x−y直交座標を形成する2本の直交軸のまわりでそれぞれ回転させるようにして、載置した基板を任意の方向に傾斜させることができる基板ホルダーである請求項5に記載の基板の検査装置。   6. The substrate holder, wherein the substrate holding means is capable of tilting the placed substrate in an arbitrary direction so as to rotate around two orthogonal axes forming xy orthogonal coordinates. Inspection apparatus for substrates as described in 1.
JP2010227320A 2010-10-07 2010-10-07 Substrate inspection method and substrate inspection apparatus Active JP5418461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227320A JP5418461B2 (en) 2010-10-07 2010-10-07 Substrate inspection method and substrate inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227320A JP5418461B2 (en) 2010-10-07 2010-10-07 Substrate inspection method and substrate inspection apparatus

Publications (2)

Publication Number Publication Date
JP2012083126A JP2012083126A (en) 2012-04-26
JP5418461B2 true JP5418461B2 (en) 2014-02-19

Family

ID=46242161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227320A Active JP5418461B2 (en) 2010-10-07 2010-10-07 Substrate inspection method and substrate inspection apparatus

Country Status (1)

Country Link
JP (1) JP5418461B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546862B2 (en) 2012-10-19 2017-01-17 Kla-Tencor Corporation Systems, methods and metrics for wafer high order shape characterization and wafer classification using wafer dimensional geometry tool
KR101952617B1 (en) * 2014-07-03 2019-02-28 (주)엘지하우시스 Method of detecting corrosion of glass substrate
CN109282759B (en) * 2018-10-05 2023-04-25 福建钜铖汽车配件有限公司 Automobile piston surface roughness detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274161A (en) * 2004-03-22 2005-10-06 Olympus Corp Flaw inspection device
JP2010117337A (en) * 2008-11-12 2010-05-27 Nippon Electro Sensari Device Kk Surface defect inspection device

Also Published As

Publication number Publication date
JP2012083126A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
EP1877758B1 (en) Wafer edge inspection
US6825487B2 (en) Method for isolation of wafer support-related crystal defects
US20090002688A1 (en) Optical inspection method and optical inspection system
WO1999004249A1 (en) Method of checking unevenness of light-transmitting substance, apparatus therefor, and method of sorting transparent substrates
JP2008268189A (en) Method and apparatus for inspecting surface defect
TWI741151B (en) Workpiece inspection method, work piece inspection device and processing device
TWI663392B (en) System and method for wafer edge inspection with trajectory following edge profile
JPH11242001A (en) Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate
JP5418461B2 (en) Substrate inspection method and substrate inspection apparatus
JP2999712B2 (en) Edge defect inspection method and apparatus
CN110308182A (en) Wafer defect detection method and device
US10024790B2 (en) Imaging a transparent article
JP4674382B1 (en) Inspection apparatus and defect inspection method
JP2018182160A (en) Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process
JP2594685B2 (en) Wafer slip line inspection method
KR20110087069A (en) Wafer surface inspection apparatus in capable of inspecting both sides of wafer simultaneously
KR20200142233A (en) Wafer Inspection Apparatus
JP3586970B2 (en) Inspection method and inspection device for fine pattern
TWI736822B (en) Semiconductor wafer evaluation method and semiconductor wafer production method
JPH10253547A (en) Visual inspection system for board
JPH0972722A (en) Board external appearance inspecting apparatus
JPH07225198A (en) Line inspection method of glass substrate
JPS58184116A (en) Examining method of defect on surface of light-transmittable object
JP7093158B2 (en) Inspection equipment
JP2002289563A (en) Inspecting method and equipment of work holding board for polishing, and polishing method of work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5418461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350