JP2018182160A - Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process - Google Patents

Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process Download PDF

Info

Publication number
JP2018182160A
JP2018182160A JP2017082219A JP2017082219A JP2018182160A JP 2018182160 A JP2018182160 A JP 2018182160A JP 2017082219 A JP2017082219 A JP 2017082219A JP 2017082219 A JP2017082219 A JP 2017082219A JP 2018182160 A JP2018182160 A JP 2018182160A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
main surface
chamfered
over
chamfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017082219A
Other languages
Japanese (ja)
Inventor
和弥 冨井
Kazuya Tomii
和弥 冨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2017082219A priority Critical patent/JP2018182160A/en
Priority to PCT/JP2018/010111 priority patent/WO2018193762A1/en
Publication of JP2018182160A publication Critical patent/JP2018182160A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method for a semiconductor wafer capable of evaluating the presence/absence of over-polish into a principal surface of the semiconductor wafer which occurs in mirror plane chamfering work, and evaluating a measurement of an over-polish amount within a short time and a non-destructive manner.SOLUTION: The present invention relates to an evaluation method for a semiconductor wafer including: performing chamfering and polishing work on an edge of the semiconductor wafer sliced from a semiconductor ingot and comprising a principal surface consisting of a principal front face and a principal rear face; manufacturing the semiconductor wafer comprising the principal surface and a chamfered surface by then performing polishing work on the principal front face of the semiconductor wafer on which the chamfering and polishing work has been performed, or on both the principal front face and the principal rear face; and thereafter applying mirror plane chamfering work. The evaluation method for the semiconductor wafer is characterized in that the principal surface of the semiconductor wafer in the vicinity of the chamfered surface is irradiated with a laser beam, an inspection is performed in a dark field by detecting a scattered light from the irradiated surface, and over-polish performing the polishing work over a boundary between the chamfered surface and the principal surface during the mirror plane chamfering work is inspected.SELECTED DRAWING: Figure 1

Description

本発明は、研磨加工後の鏡面面取り加工で発生する半導体ウェーハ主面へのオーバーポリッシュの有無及びオーバーポリッシュの入り込み量を評価する半導体ウェーハの評価方法、及びこの半導体ウェーハの評価方法を用いた半導体ウェーハ製造工程の管理方法に関する。   The present invention relates to a semiconductor wafer evaluation method for evaluating the presence or absence of overpolishing on the main surface of a semiconductor wafer generated by mirror chamfering after polishing and the penetration amount of overpolishing, and a semiconductor using this semiconductor wafer evaluation method The present invention relates to a method of managing a wafer manufacturing process.

半導体ウェーハの片面もしくは両面研磨加工後に鏡面面取り加工を施すと、前記半導体ウェーハの表裏の主面の一方もしくは両面研磨加工面が再度研磨(以下、追研磨)され、オーバーポリッシュと言われる過研磨が発生する。ここで主面とは主表面と主裏面からなるものである。このオーバーポリッシュを抑制する方法が特許文献1−4で開示されている。これらの特許文献では、オーバーポリッシュの発生を確認する方法としてエッジロールオフや平坦度測定機などの表面形状測定機が利用されている。また特許文献5でもオーバーポリッシュ抑制方法が開示されており、オーバーポリッシュの確認方法ではビデオマイクロスコープが使用されている。   When mirror chamfering is performed after single-sided or double-sided polishing of a semiconductor wafer, one or double-sided polished surface of the main surface of the front and back of the semiconductor wafer is re-polished (following polishing) again. Occur. Here, the main surface is composed of the main surface and the main back surface. The method of suppressing this over-polish is disclosed by patent documents 1-4. In these patent documents, surface shape measuring machines, such as edge roll-off and a flatness measuring machine, are used as a method of checking generation | occurrence | production of over polish. Patent Document 5 also discloses an over-polish suppression method, and a video microscope is used in the over-polish confirmation method.

特開2006−128269号公報JP, 2006-128269, A 特開2013−258226号公報JP, 2013-258226, A 特開2013−258227号公報JP, 2013-258227, A 特開2015−153939号公報JP, 2015-153939, A WO2002/005337号公報WO 2002/005337

しかしながら、上記のオーバーポリッシュを確認する方法として、上記のような表面形状測定機を利用した場合、視覚的に面取り加工部近傍からの入り込み量が把握できないという問題があった。また視覚的であるビデオマイクロスコープは半導体ウェーハ1枚1枚を作業者が確認する必要があり手間と時間が掛かり、また製造検査ラインとは別のオフラインでの作業となるため破壊検査となるという問題があった。   However, when the surface shape measuring machine as described above is used as a method of checking the above-mentioned over-polish, there is a problem that the amount of penetration from the vicinity of the chamfered portion can not be grasped visually. In addition, video microscopes, which are visual, require workers to confirm each semiconductor wafer, which takes time and effort, and are destructive inspections because they are performed off-line separately from the manufacturing inspection line. There was a problem.

本発明は、前述のような問題に鑑みてなされたものであって、その目的は、鏡面面取り加工で発生する半導体ウェーハ主面内へのオーバーポリッシュの有無の評価及びオーバーポリッシュの入り込み量の測定を短時間かつ非破壊にて評価することができる半導体ウェーハの評価方法を提供することにある。   The present invention has been made in view of the problems as described above, and its object is to evaluate the presence or absence of over-polishing in the main surface of a semiconductor wafer generated by mirror chamfering and to measure the amount of over-polish entering. It is an object of the present invention to provide a method of evaluating a semiconductor wafer capable of evaluating in a short time and nondestructively.

上記目的を達成するために、本発明は、半導体インゴットからスライスされた主表面と主裏面からなる主面を有する半導体ウェーハのエッジを面取り研削加工した後に、面取り研削加工された半導体ウェーハの前記主表面もしくは前記主表面と主裏面の両面を研磨加工して前記主面と面取り面を有する半導体ウェーハを作製し、その後鏡面面取り加工が施された半導体ウェーハの評価方法であって、前記面取り面近傍の半導体ウェーハの前記主面に対してレーザー光を照射し、照射面からの散乱光を検知することで暗視野にて検査し、前記鏡面面取り加工により前記面取り面と前記主面との境界を越えて研磨されるオーバーポリッシュを検査することを特徴とする半導体ウェーハの評価方法を提供する。   In order to achieve the above object, according to the present invention, the main surface of a semiconductor wafer having a main surface sliced from a semiconductor ingot is chamfered and ground after chamfering and grinding the edge of the semiconductor wafer. The semiconductor wafer having the main surface and a chamfered surface is manufactured by polishing the front surface or both the main surface and the main back surface to produce a semiconductor wafer having a main surface and a chamfered surface, and thereafter mirror chamfered. The main surface of the semiconductor wafer is irradiated with laser light, and the scattered light from the irradiated surface is detected to inspect in a dark field, and the boundary between the chamfered surface and the main surface is inspected by the mirror chamfering process. Provided is a method of evaluating a semiconductor wafer characterized by inspecting over-polished to be polished over.

半導体ウェーハの片面もしくは両面研磨加工後の鏡面面取り加工により、研磨加工より前段の面取り研削加工で作られた半導体ウェーハの主面と面取り加工部(面取り面)の境界より半導体ウェーハの主面内側にも追研磨され、この追研磨された部分をオーバーポリッシュと本発明では記している。このオーバーポリッシュされた部分の半導体ウェーハ厚さは薄化し、また半導体ウェーハの平坦度も悪化することが知られている。このオーバーポリッシュが想定される半導体ウェーハの面取り加工部(面取り面)近傍の主面にレーザー光を照射し、暗視野にて検査することにより、オーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定が短時間かつ非破壊にて可能となる。   Inside the main surface of the semiconductor wafer from the boundary between the main surface and the chamfered portion (chamfered surface) of the semiconductor wafer made by chamfering grinding processing before the polishing processing by mirror chamfering processing after single-sided or double-sided grinding processing of the semiconductor wafer Also in the present invention, the post-polished portion is described as over-polished. It is known that the thickness of the semiconductor wafer in the over-polished portion is reduced and the flatness of the semiconductor wafer is also deteriorated. The main surface near the chamfered portion (chamfered surface) of the semiconductor wafer where this over-polishing is supposed is irradiated with laser light and inspected in the dark field to measure the presence or absence of over-polishing and the amount of over-polish entering. It becomes possible in a short time and nondestructively.

このとき、面取り面と前記主面との境界から、前記半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することが好ましい。   At this time, it is preferable to irradiate a laser beam to a region from the boundary between the chamfered surface and the main surface to the inner side of 2 mm toward the center of the semiconductor wafer.

また、半導体ウェーハがノッチ部を有しており、ノッチ部近傍における面取り面と主面との境界から、半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することも好ましい。   In addition, it is also preferable that the semiconductor wafer has a notch portion, and a region from the boundary between the chamfered surface and the main surface in the vicinity of the notch portion to the center side of the semiconductor wafer be irradiated with laser light.

レーザー光を照射する範囲を、上記のような範囲に指定することで、より短時間での観察及び評価が可能となる。   By designating the range to be irradiated with the laser light in the range as described above, observation and evaluation can be performed in a shorter time.

このとき、レーザー光の波長を200nm〜700nmとすることが好ましい。   At this time, it is preferable to set the wavelength of the laser beam to 200 nm to 700 nm.

このように、照射するレーザー光の波長を可視光域と紫外域と限定することでより優れた評価、すなわち、より確実にオーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定ができる評価が可能となる。   As described above, by limiting the wavelength of the laser light to be irradiated to the visible light region and the ultraviolet light region, it is possible to perform more excellent evaluation, that is, evaluation with which the presence or absence of overpolishing and the intruding amount of overpolishing can be measured more reliably. Become.

また、本発明は、上記の半導体ウェーハの評価方法によって得られた結果を用いて、鏡面面取り加工の工程管理を行うことを特徴とする半導体ウェーハ製造工程の管理方法を提供する。   The present invention also provides a method of controlling a semiconductor wafer manufacturing process, which is characterized by performing process control of mirror beveling using the result obtained by the above-described method of evaluating a semiconductor wafer.

鏡面面取り加工時のオーバーポリッシュの有無やオーバーポリッシュの入り込み量を取得しておくことにより、鏡面面取り加工を行う工程の工程管理が可能となる。具体的には、鏡面面取り加工機の機差の把握や鏡面面取り加工の加工条件の変更に役立てることが可能である。   By acquiring the presence or absence of over-polish at the time of mirror surface chamfering and the penetration amount of over-polish, process control of the process of performing mirror surface chamfering becomes possible. Specifically, it can be used for grasping the machine difference of the mirror surface chamfering machine and changing the processing conditions of the mirror surface chamfering.

以上のように、本発明の半導体ウェーハの評価方法であれば、鏡面面取り加工により発生するオーバーポリッシュの有無や、オーバーポリッシュの入り込み量を短時間で評価でき、また非破壊検査であるため製品の収率低下もない。さらには、本発明の半導体ウェーハの評価方法では鏡面面取り工程の工程管理に有効なデータも取得可能であるので、本発明の半導体ウェーハの評価方法によって得られた結果を用いる本発明の半導体ウェーハ製造工程の管理方法であれば、鏡面面取り加工を行う工程の工程管理を効率的に行うことができる。   As described above, according to the evaluation method of a semiconductor wafer of the present invention, it is possible to evaluate in a short time the presence or absence of over-polish generated by mirror chamfering and the amount of over-polish entering, and since it is nondestructive inspection There is no drop in yield. Furthermore, in the method for evaluating a semiconductor wafer of the present invention, data effective for process control of a mirror surface beveling process can also be obtained. Therefore, the semiconductor wafer manufacturing of the present invention using the results obtained by the method for evaluating a semiconductor wafer of the present invention If it is the management method of a process, process control of the process which performs mirror surface chamfering can be performed efficiently.

本発明の半導体ウェーハの評価方法の一例を示すフロー図である。It is a flowchart which shows an example of the evaluation method of the semiconductor wafer of this invention. 本実施例で示す半導体ウェーハの面取り加工部近傍の暗視野画像である。It is a dark field image of the chamfering process vicinity of the semiconductor wafer shown in a present Example. 参考例で示す半導体ウェーハの面取り加工部近傍の明視野画像である。It is a bright field image of the chamfering process vicinity of the semiconductor wafer shown by a reference example. 本実施例で示す半導体ウェーハのノッチ部近傍の暗視野画像である。It is a dark field image of the notch part vicinity of the semiconductor wafer shown in a present Example. 参考例で示す半導体ウェーハのノッチ部近傍の明視野画像である。It is a bright field image of the notch part vicinity of the semiconductor wafer shown by a reference example. 本実施例で示す半導体ウェーハのESFQRグラフである。It is the ESFQR graph of the semiconductor wafer shown by a present Example. 本実施例で示す半導体ウェーハの面取り加工部近傍の主面の暗視野画像である。It is a dark-field image of the main surface of the chamfering process part vicinity of the semiconductor wafer shown in a present Example. 図5の半導体ウェーハのESFQRグラフである。It is an ESFQR graph of the semiconductor wafer of FIG. 本実施例で用いたエッジ検査装置の検出機構の模式図である。It is a schematic diagram of the detection mechanism of the edge inspection apparatus used in the present Example. 本実施例で用いたエッジ検査装置の検出部が評価対象の半導体ウェーハのエッジ部に対してどのように移動するかを示したものである。It shows how the detection unit of the edge inspection apparatus used in this embodiment moves with respect to the edge portion of the semiconductor wafer to be evaluated.

上述したように、オーバーポリッシュを確認する方法として、表面形状測定機を利用した場合、視覚的に面取り加工部近傍からの入り込み量が把握できないという問題があり、また視覚的であるビデオマイクロスコープは手間と時間が掛かり、また製造検査ラインとは別のオフラインでの作業となるため破壊検査となるという問題があった。   As described above, when a surface profile measuring machine is used as a method of confirming over-polish, there is a problem that the amount of penetration from the vicinity of the chamfered portion can not be grasped visually, and the video microscope which is visual is not It takes time and effort, and there is a problem that it becomes a destructive inspection because it is an off-line operation separate from the manufacturing inspection line.

そこで、本発明者は、鏡面面取り加工で発生する半導体ウェーハ主面内へのオーバーポリッシュの有無の評価及びオーバーポリッシュの入り込み量の測定を短時間かつ非破壊にて評価することができる半導体ウェーハの評価方法について鋭意検討を重ねた。   Therefore, the inventor of the present invention can evaluate the presence or absence of over-polishing in the main surface of a semiconductor wafer generated by mirror-chamfering processing and the measurement of the amount of penetration of over-polishing in a short time and nondestructively. We carefully examined the evaluation method.

その結果、本発明者は、レーザー光照射面の暗視野観察を利用することで、オーバーポリッシュの有無やオーバーポリッシュの入り込み量が視覚的に確認できることを見出し、またレーザー発光部と暗視野受光部を備えた検査機を利用して、半導体ウェーハの面取り加工部(面取り面)近傍の半導体ウェーハの主面を観察することで、オンラインでの検査も可能となり、その結果、検査時間短縮や作業者による手間も軽減でき、さらに非破壊検査が可能となることを見出し、本発明を完成させた。   As a result, the inventor has found that the presence or absence of over-polishing and the amount of over-polish entering can be visually confirmed by using dark-field observation of the laser beam irradiated surface, and the laser light emitting portion and the dark field light receiving portion By observing the main surface of the semiconductor wafer in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer using the inspection machine equipped with the above, online inspection becomes possible, and as a result, inspection time can be shortened and workers can It has been found that the time and effort required by the present invention can be reduced, and further that nondestructive inspection can be performed, thus completing the present invention.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of an embodiment with reference to the drawings, but the present invention is not limited thereto.

まず、本発明の半導体ウェーハの評価方法について、図1を参照しながら説明する。
図1は、本発明の半導体ウェーハの評価方法の一例を示すフロー図である。ここで半導体ウェーハとは、シリコン、GaAsなどの化合物半導体、GaN、SiCなど半導体IC(Integrated Circuit)を作製するために用いられる基板材料をいい、主表面と主裏面からなる主面を有している。
First, the method for evaluating a semiconductor wafer according to the present invention will be described with reference to FIG.
FIG. 1 is a flow chart showing an example of the semiconductor wafer evaluation method of the present invention. Here, a semiconductor wafer refers to a substrate material used to fabricate semiconductor integrated circuits (ICs) such as silicon, compound semiconductors such as GaAs, GaN, and SiC, and has a main surface including a main surface and a main back surface. There is.

図1に記載のフローより前段では、例えばインゴット作製、スライス、面取り、ラップ、平面研削、両頭研削、エッチング、洗浄などの工程が適宜行われる。
尚、図1の片面研磨もしくは両面研磨工程(S1)と鏡面面取り工程(S2)との間には、洗浄工程やその他検査工程が入っていても良い。
In the former stage of the flow described in FIG. 1, for example, steps such as ingot preparation, slicing, chamfering, lapping, surface grinding, double-sided grinding, etching, and cleaning are appropriately performed.
A cleaning process or other inspection process may be included between the single-sided polishing or double-sided polishing process (S1) and the mirror surface chamfering process (S2) in FIG.

図1の片面研磨もしくは両面研磨工程(S1)とは、CMP(Chemical Mechanical Polishing)加工が一般的である。本発明では、このCMP加工を半導体ウェーハの主表面もしくは主裏面に適用した加工を片面研磨としており、主表面と主裏面の両面にCMP加工したものを両面研磨と記している。このCMP加工は一般の手法によればよく、詳細については省略する。この片面研磨もしくは両面研磨工程(S1)が行われた半導体ウェーハは、主表面と主裏面からなる主面と、面取り面とを有している。   Chemical mechanical polishing (CMP) processing is generally used as the single-side polishing or double-sided polishing step (S1) in FIG. In the present invention, the processing in which this CMP processing is applied to the main surface or main back surface of a semiconductor wafer is single-side polishing, and the one obtained by CMP processing both surfaces of the main surface and main back surface is referred to as double-side polishing. This CMP process may be performed according to a general method, and the details will be omitted. The semiconductor wafer subjected to the single-side polishing or the double-side polishing step (S1) has a main surface including a main surface and a main back surface, and a chamfered surface.

図1の鏡面面取り工程(S2)とは、片面研磨もしくは両面研磨工程(S1)より前段にある研削による面取り加工にて作られた面取り部(面取り面)に対して、上記CMP加工を施すものである。このCMP加工は前述の通り、半導体ウェーハの面取り部に対して行うものであるが、そこで使用される研磨布には厚みがあり柔軟性を持つ。また、半導体ウェーハの主面へのCMP加工の場合は、その面に対してほぼ平行に研磨布を当てることが一般的であるが、面取り部(面取り面)へのCMP加工に関しては、半導体ウェーハの主面に対して研磨布を傾ける必要がある。この傾ける角度や前述の研磨布の厚み、研磨布の柔軟性により、面取り面のみならず、主面までを研磨をしてしまい、このオーバーポリッシュの入り込み量が変化することが知られている。   In the mirror surface chamfering step (S2) in FIG. 1, the above-mentioned CMP processing is performed on a chamfered portion (chamfered surface) made by chamfering processing by grinding in the front stage of single-side polishing or double-side polishing step (S1) It is. As described above, this CMP process is performed on the chamfered portion of the semiconductor wafer, but the polishing cloth used there is thick and flexible. In addition, in the case of CMP processing on the main surface of a semiconductor wafer, it is general to apply a polishing cloth substantially parallel to that surface, but in the case of CMP processing on a chamfered portion (chamfered surface), the semiconductor wafer It is necessary to incline the polishing cloth with respect to the main surface of the It is known that not only the chamfered surface but also the main surface is polished depending on the inclination angle, the thickness of the above-mentioned polishing pad, and the flexibility of the polishing pad, and the amount of penetration of this over-polish changes.

尚、図1の鏡面面取り工程(S2)とエッジ検査工程(S3)との間には、洗浄工程や、その他の研磨や検査工程が入っていても良い。   A cleaning process and other polishing and inspection processes may be included between the mirror surface chamfering process (S2) and the edge inspection process (S3) in FIG.

このエッジ検査工程(S3)とは、上記面取り部(面取り面)とその近傍の主面、例えば半導体ウェーハの最先端部から数mm内側までのキズやカケ、クラックなどの欠陥を検査する工程である。ここで前述の半導体ウェーハの最先端部とは、半導体ウェーハの主面の円の中心から径方向に最も遠い最外周部を指す。また数mm内側とは、例えば、半導体ウェーハの主面へのキズなどの欠陥やパーティクル検査では半導体ウェーハの最先端部から2mm〜3mm程度内側は検査ができず、その外周部分を補う検査範囲が前記数mmでありエッジ検査対象部分となる。   The edge inspection step (S3) is a step of inspecting defects such as scratches, chipping, cracks and the like from the above-mentioned chamfered portion (chamfered surface) and its main surface in the vicinity thereof, for example, several mm from the tip of the semiconductor wafer. is there. Here, the foremost portion of the above-mentioned semiconductor wafer refers to the outermost peripheral portion farthest in the radial direction from the center of the circle of the main surface of the semiconductor wafer. In the inside of several mm, for example, defects such as flaws on the main surface of the semiconductor wafer or a particle inspection can not inspect the inside about 2 mm to 3 mm from the leading edge of the semiconductor wafer. The said several mm and it becomes an edge inspection object part.

このエッジ検査では一般的に主にレーザー光による検査が用いられ、前述のようにキズ、カケ、クラックなどに反射した光を観察することで欠陥を特定している。本発明では、前述のように面取り研削加工(面取り面)と半導体ウェーハの主面との境界から内側に、鏡面面取り加工時に追研磨されたオーバーポリッシュの痕跡を観察するため、その近傍の主面にレーザー光を照射し、さらに暗視野による受光までをこのエッジ検査工程(S3)で行っている。   In this edge inspection, generally, inspection using a laser beam is mainly used, and as described above, defects are identified by observing light reflected by scratches, chips, cracks and the like. In the present invention, the main surface in the vicinity is in order to observe the trace of the over-polished additionally polished at the time of the mirror surface chamfering processing inside the boundary between the chamfering grinding process (chamfering surface) and the main surface of the semiconductor wafer as described above. The edge inspection process (S3) is performed until the laser beam is irradiated to the laser and the light reception by the dark field is further performed.

半導体ウェーハの片面もしくは両面研磨加工後の鏡面面取り加工により、研磨加工より前段の面取り研削加工で作られた半導体ウェーハの主面と面取り面の境界より半導体ウェーハの主面内側にも追研磨され、この追研磨された部分であるオーバーポリッシュ部分の半導体ウェーハ厚さは薄化し、また半導体ウェーハの平坦度も悪化することが知られている。このオーバーポリッシュが想定される半導体ウェーハの面取り面近傍の主面にレーザー光を照射し、暗視野を用いて検査することにより、オーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定が短時間かつ非破壊にて可能となる。
上述した面取り面近傍の主面とは、値の指定はしないが、半導体ウェーハの最先端部から数mm内側の領域とすることができる。
By mirror chamfering after single-sided or double-sided polishing of the semiconductor wafer, the inside of the main surface of the semiconductor wafer is further polished from the boundary between the main surface and the chamfered surface of the semiconductor wafer made by chamfering grinding processing prior to polishing. It is known that the thickness of the semiconductor wafer in the over-polished portion, which is the portion to be additionally polished, is reduced and the flatness of the semiconductor wafer is also deteriorated. The main surface near the chamfered surface of the semiconductor wafer where this over polishing is expected is irradiated with laser light, and inspection is performed using a dark field to measure the presence or absence of over polishing and the intruding amount of over polishing in a short time and not. It becomes possible by destruction.
Although the main surface in the vicinity of the chamfered surface described above does not specify a value, it can be a region several mm inside from the tip of the semiconductor wafer.

このとき、面取り面と主面との境界から、半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することが好ましい。また、半導体ウェーハがノッチ部を有しており、ノッチ部近傍における面取り面と主面との境界から、半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することも好ましい。レーザー光を照射する範囲を、上記のような範囲に指定することで、より短時間での観察及び評価が可能となる。
上述したように、レーザー光を照射する範囲、(すなわち、検査範囲)を面取り面と半導体ウェーハの主面の境界から半導体ウェーハの中心側に2mm内側が好ましいとしたが、面取り研削加工の径方向幅は概ね0.2mm〜0.4mmであるため、エッジ検査範囲は半導体ウェーハの最先端部から2mm〜3mm内側が妥当であると言える。
At this time, it is preferable to irradiate a laser beam to a region from the boundary between the chamfered surface and the main surface to the inner side of 2 mm on the center side of the semiconductor wafer. In addition, it is also preferable that the semiconductor wafer has a notch portion, and a region from the boundary between the chamfered surface and the main surface in the vicinity of the notch portion to the center side of the semiconductor wafer be irradiated with laser light. By designating the range to be irradiated with the laser light in the range as described above, observation and evaluation can be performed in a shorter time.
As described above, the laser irradiation range (that is, the inspection range) is preferably 2 mm from the boundary between the chamfered surface and the main surface of the semiconductor wafer to the center side of the semiconductor wafer. Since the width is approximately 0.2 mm to 0.4 mm, it can be said that the edge inspection range is appropriate 2 mm to 3 mm inside from the leading edge of the semiconductor wafer.

このレーザー光の波長は200nm〜700nmとすることが好ましい。このように、照射するレーザー光の波長を可視光域と紫外域と限定することでより優れた評価、すなわち、より確実にオーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定ができる評価が可能となる。   The wavelength of this laser light is preferably 200 nm to 700 nm. As described above, by limiting the wavelength of the laser light to be irradiated to the visible light region and the ultraviolet light region, it is possible to perform more excellent evaluation, that is, evaluation with which the presence or absence of overpolishing and the intruding amount of overpolishing can be measured more reliably. Become.

またこのエッジ検査工程では、レーザー光による検査装置が、そのオーバーポリッシュ部の画像から自動的にオーバーポリッシュ入り込み量を算出し、それを記録する手段を備えても良いし、オーバーポリッシュの有無やオーバーポリッシュの痕跡の強弱だけを記録しても良い。これらの記録により鏡面面取り工程の工程管理、例えば鏡面面取り加工機の機差の把握や、鏡面面取り加工機ごとの経時変化を捕らえることに役立てられる。   In this edge inspection step, the inspection device using a laser beam may be provided with means for automatically calculating the amount of entering the over-polish from the image of the over-polished part and recording the same, or the presence or absence of over-polish or over-exposure. Only the strength of the polish mark may be recorded. These records are useful for controlling the process of the mirror surface beveling process, for example, grasping the machine difference of the mirror surface beveling machine, and capturing the time-dependent change of each mirror surface beveling machine.

このように、本発明の半導体ウェーハ製造工程の管理方法では、上記で説明した本発明の半導体ウェーハの評価方法によって得られた結果を用いて、鏡面面取り加工の工程管理を行うものである。本発明の半導体ウェーハの評価方法により鏡面面取り加工時のオーバーポリッシュの有無やオーバーポリッシュの入り込み量を取得しておくことにより、鏡面面取り加工を行う工程の工程管理が可能となる。具体的には、鏡面面取り加工機の機差の把握や鏡面面取り加工の加工条件の変更に役立てることが可能である。   As described above, in the method of managing a semiconductor wafer manufacturing process of the present invention, the process control of mirror beveling is performed using the result obtained by the method of evaluating a semiconductor wafer of the present invention described above. By acquiring the presence or absence of over-polishing and the amount of penetration of over-polishing during mirror chamfering processing by the semiconductor wafer evaluation method of the present invention, it is possible to control the process of the step of mirror-mirror chamfering processing. Specifically, it can be used for grasping the machine difference of the mirror surface chamfering machine and changing the processing conditions of the mirror surface chamfering.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be more specifically described below with reference to examples, but the present invention is not limited to these.

(実施例)
本実施例では、チョクラルスキー法で成長させた直径300mmのシリコン単結晶インゴットから得られた半導体ウェーハを使用した。図1のフローを参照すると、ここで使用した半導体ウェーハは、図1の両面研磨(S1)を実施し、洗浄後に鏡面面取り加工(S2)を実施している。
(Example)
In this example, a semiconductor wafer obtained from a 300 mm diameter silicon single crystal ingot grown by the Czochralski method was used. Referring to the flow of FIG. 1, the semiconductor wafer used here is subjected to double-side polishing (S1) of FIG. 1 and is subjected to mirror-surface chamfering (S2) after cleaning.

ここで両面研磨(S1)は、不二越機械工業株式会社製のDSP−20Bを用いた。半導体ウェーハの研磨取り代は両面で概ね12μmであった。   The double-side polishing (S1) used herein was DSP-20B manufactured by Fujikoshi Machine Industry Co., Ltd. The polishing removal of the semiconductor wafer was approximately 12 μm on both sides.

両面研磨(S1)の次工程の半導体ウェーハに対する洗浄は、水、アンモニア、過酸化水素を混合した、いわゆるSC1洗浄である。   The cleaning of the semiconductor wafer following the double-side polishing (S1) is a so-called SC1 cleaning in which water, ammonia and hydrogen peroxide are mixed.

さらに、鏡面面取り加工(S2)では、スピードファム株式会社製IV型エッジポリッシュ装置を使用し、両面研磨(S1)と概ね同じ研磨取り代になるよう加工を行った。   Furthermore, in mirror surface chamfering process (S2), it processed so that it might become the grinding | polishing removal margin substantially the same as double-sided grinding (S1), using IV type | mold edge polish apparatus by SpeedFam Co., Ltd. product.

図2Aは本実施例で示す半導体ウェーハの面取り加工部(面取り面)近傍の主面の暗視野画像である。この画像の見方を説明する。横方向は、画像に半導体ウェーハ全周と示した通り、このウェーハの1周360度を示している。また縦方向は、画像の右側にウェーハ主表面側、面取り研削加工領域、ウェーハ主裏面側と記している通り、本発明でいう面取り加工部(面取り面)近傍を示した。このように、半導体ウェーハの面取り加工部(面取り面)近傍の全周を引き延ばし、この画像のように長方形に示したことがこの画像の特徴である。   FIG. 2A is a dark field image of the main surface in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer shown in the present embodiment. Explain how to read this image. The horizontal direction indicates 360 degrees of one circumference of this wafer as shown in the image as the entire circumference of the semiconductor wafer. Further, the vertical direction indicates the vicinity of the chamfered portion (chamfered surface) in the present invention, as described on the right side of the image at the wafer main surface side, the chamfering grinding processing area, and the wafer main surface side. As described above, it is a feature of this image that the entire circumference in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer is extended and shown as a rectangle like this image.

図2Aの画像は、KLA−Tencor社製CV350というエッジ検査装置を用いて取得したものである。
図7に上記のエッジ検査装置の暗視野像及び明視野像の検出機構の模式図を示す。
図2Aの暗視野画像は、図7においてレーザー源から出たレーザー光をウェーハ上に照射し、照射面からの散乱光を散乱光検知器で検知した画像である。ここで使用するレーザー光の波長は405nmであった。
The image of FIG. 2A is acquired using the edge inspection apparatus called CV350 by KLA-Tencor company.
FIG. 7 is a schematic view of a dark-field image and bright-field image detection mechanism of the edge inspection apparatus described above.
The dark field image in FIG. 2A is an image obtained by irradiating the wafer with the laser light emitted from the laser source in FIG. 7 and detecting the scattered light from the irradiated surface by the scattered light detector. The wavelength of the laser beam used here was 405 nm.

図2Bは参考例で示す半導体ウェーハの面取り加工部(面取り面)近傍の主面の明視野画像であり、上記のエッジ検査装置を用いて取得したものである。
図2Bの明視野画像は、図7においてレーザー源から出たレーザー光をウェーハ上に照射し、照射面からの反射光を反射光検知器で検知した画像である。
また、図2Aと図2Bの画像は、図7に示すレーザー源、散乱光検知器、反射光検知器を含む検出部が、図8に示すように、左のステップ1から、下面→エッジ部→上面という順に動いて、ウェーハ表面を観察することで得られたものである。
ちなみに図2Aと図2Bの両方の画像の縦倍率が同じであり、また、図2Aと図2Bの両方の画像の横倍率が同じである。図2Bの明視野画像を載せた理由は、図2Aの暗視野画像では面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界が不明瞭であり、明視野ではこの境界部が明瞭化できるためである。このように縦倍率同士が同じであり、横倍率同士が同じであるため、図2Bで得られた面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界を、図2Aの同一の位置に示すことができる。
FIG. 2B is a bright field image of the main surface in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer shown in the reference example, which is obtained by using the above-mentioned edge inspection apparatus.
The bright field image of FIG. 2B is an image obtained by irradiating the laser light emitted from the laser source in FIG. 7 onto the wafer and detecting the reflected light from the irradiated surface by the reflected light detector.
2A and 2B, the detection unit including the laser source, the scattered light detector, and the reflected light detector shown in FIG. 7 is, as shown in FIG. It is obtained by observing the wafer surface by moving in the order of → top surface.
Incidentally, the longitudinal magnifications of both the images of FIG. 2A and FIG. 2B are the same, and the lateral magnifications of both the images of FIG. 2A and FIG. 2B are the same. The reason why the bright field image of FIG. 2B is mounted is that the boundary between the chamfered grinding area (chamfered surface) and the main surface of the semiconductor wafer is unclear in the dark field image of FIG. 2A, and this boundary is clear in the bright field. Because it can be Thus, since the longitudinal magnifications are the same and the lateral magnifications are the same, the boundary between the chamfered grinding area (chamfered surface) obtained in FIG. 2B and the main surface of the semiconductor wafer is the same as in FIG. 2A. Can be shown in position.

ここで図2Aにおいて、半導体ウェーハの主表面側や主裏面側の領域内に横に伸びる白い線が見える。この線が本発明の暗視野で見ることのできるオーバーポリッシュの痕跡である。詳しくは、鏡面面取り加工により追研磨されたオーバーポリッシュ部の最も面内中心側が白い線として顕在化している。そのため、半導体ウェーハの最先端部からこの白い線までの径方向の長さを測定することでオーバーポリッシュ入り込み量が測定可能となる。
図2Aの画像では半導体ウェーハの最先端部からオーバーポリッシュの痕跡である白い線まで、この半導体ウェーハでは径方向に600μmであった。ここで白い線は、画像のように、詳細には直線ではなく波を打っているため、オーバーポリッシュ入り込み量としては、入り込んだ最大量を取得している。
Here, in FIG. 2A, white lines extending laterally can be seen in the regions on the main surface side and the main back surface side of the semiconductor wafer. This line is an over-polished trace that can be seen in the dark field of the present invention. Specifically, the in-plane center side of the over-polished portion additionally polished by mirror surface chamfering is manifested as a white line. Therefore, by measuring the radial length from the leading edge of the semiconductor wafer to this white line, it is possible to measure the amount of over-polishing incorporated.
In the image of FIG. 2A, it was 600 μm in the radial direction from the leading edge of the semiconductor wafer to the white line which is a trace of over-polish. Here, since the white line strikes a wave rather than a straight line in detail as in the image, the maximum amount of penetration is obtained as the amount of penetration into overpolishing.

実際の検査では、面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界を明らかにする必要はないため、図2Bの明視野画像は不要である。   In the actual inspection, the bright field image in FIG. 2B is not necessary because it is not necessary to clarify the boundary between the chamfered grinding area (chamfered surface) and the main surface of the semiconductor wafer.

図3Aは本実施例で示す半導体ウェーハのノッチ部近傍の暗視野画像である。図3Aの画像は図2Aとは異なり、半導体ウェーハの主表面側ノッチ部近傍を撮影している。   FIG. 3A is a dark field image in the vicinity of the notch of the semiconductor wafer shown in the present embodiment. The image in FIG. 3A is different from that in FIG. 2A, and is taken in the vicinity of the notch portion on the main surface side of the semiconductor wafer.

図3Bは参考例で示す半導体ウェーハのノッチ部近傍の明視野画像である。図3Aと図3Bも前述のKLA−Tencor社製CV−350にて取得した。図2B同様、図3Bも面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界が明瞭であるため、図3Aの境界部の参考のために取得したが、実際の検査では、図3Bの明視野画像は不要である。   FIG. 3B is a bright field image of the vicinity of the notch of the semiconductor wafer shown in the reference example. FIG. 3A and FIG. 3B were also acquired by above-mentioned KLA-Tencor CV-350. Similar to FIG. 2B, FIG. 3B is also obtained for reference of the boundary in FIG. 3A because the boundary between the chamfered grinding area (chamfered surface) and the main surface of the semiconductor wafer is clear, but in the actual inspection, The 3B brightfield image is not required.

図3Aの画像ではオーバーポリッシュの痕跡をより明瞭に見ることができる。このように通常の面取り加工部(面取り面)近傍の主面だけでなく、ノッチ部の面取り加工部(面取り面)近傍の主面であっても暗視野の検査は利用価値が高いことが分かる。   The over-polished traces can be seen more clearly in the image of FIG. 3A. As described above, it is understood that the inspection of the dark field has high utility value even in the main surface near the chamfered portion (chamfered surface) of the notch portion as well as the main surface near the normal chamfered portion (chamfered surface) .

図4は本実施例で示す半導体ウェーハのESFQRグラフである。ESFQR(Edge Site Frontsurface referenced least sQuares Range)とは、半導体ウェーハ全周の外周域に形成した扇型の領域内のSFQRを測定したものである。SFQR(Site Front Least Squares Range)とは、設定されたサイト内でデータを最小二乗法にて算出したサイト内平面を基準平面とし、この平面からの+側(すなわち、半導体ウェーハの主表面を上に向け水平に置いた場合の上側)、−側(同下側)の最大偏差のことである。   FIG. 4 is an ESF QR graph of the semiconductor wafer shown in this embodiment. The ESFQR (Edge Site Front Surface Referenced Least sQuares Range) is a measurement of SFQR in a fan-shaped area formed in the outer peripheral area of the entire periphery of the semiconductor wafer. With SFQR (Site Front Least Squares Range), the in-site plane calculated by the least squares method in the set site is used as the reference plane, and the + side from this plane (that is, the main surface of the semiconductor wafer is (Upper side when placed horizontally), the maximum deviation on the-side (same lower side).

図4のグラフ取得時の上記扇型のサイズは、ウェーハ全周を5度間隔で72分割し、径方向の一辺の長さは35mmとした。またグラフにはEE0.5mmやEE1mm、EE2mmとあるが、このEE(Edge Exclusion)とは、ESFQR測定時の外周除外領域を示している。したがって、EE0.5mmとは半導体ウェーハの最先端部から内側の、径方向に0.5mm〜35.5mm(前述の径方向の一辺が35mmであるため)の領域を測定している。ちなみに、ESFQRの測定機には、KLA−Tencor社製WaferSightシリーズを使用した。   The above fan-shaped size at the time of obtaining the graph of FIG. 4 was obtained by dividing the entire circumference of the wafer into 72 at intervals of 5 degrees, and the length of one side in the radial direction was 35 mm. In addition, although there are EE 0.5 mm, EE 1 mm, and EE 2 mm in the graph, this EE (Edge Exclusion) indicates an outer peripheral exclusion area at the time of ESFQR measurement. Therefore, the area of 0.5 mm to 35.5 mm in the radial direction (because one side of the above-mentioned radial direction is 35 mm) is measured with EE 0.5 mm from the tip of the semiconductor wafer. By the way, for the measuring machine of ESFQR, the WaferSight series manufactured by KLA-Tencor was used.

図4のグラフのデータは、図2A、Bや図3A、Bで使用した同一の半導体ウェーハを使用して測定したものである。この図4ではEE1mmやEE2mmと比較してEE0.5mmのESFQRの値が乱れ、悪化している様子が分かる。この悪化の原因は、鏡面面取り加工でのオーバーポリッシュによるものである。図2Aの画像では半導体ウェーハの最先端部から600μm内側までオーバーポリッシュが入り込んでいた。そのためEE0.5mmでは、オーバーポリッシュの影響で、直前の両面研磨加工で形成された形状が崩れたため、ESFQRの悪化につながった。一方で、EE1mmやEE2mmはオーバーポリッシュの影響を受けておらず、ESFQRの悪化も見られないということである。   The data in the graph of FIG. 4 are measured using the same semiconductor wafer used in FIGS. 2A and 2B and FIGS. 3A and 3B. In FIG. 4, it can be seen that the value of ESFQR of EE 0.5 mm is disturbed and deteriorated compared to EE 1 mm and EE 2 mm. The cause of this deterioration is due to over-polishing in mirror beveling. In the image of FIG. 2A, the overpolished has penetrated to the inside of 600 μm from the leading edge of the semiconductor wafer. Therefore, at EE 0.5 mm, the shape formed in the immediately preceding double-side polishing process was broken due to the influence of over-polish, leading to the deterioration of ESFQR. On the other hand, EE1mm and EE2mm are not affected by over-polish, and there is no deterioration in ESFQR.

図5は本実施例で示す半導体ウェーハの面取り加工部(面取り面)近傍の暗視野画像である。図5の半導体ウェーハは、図2Aで使用した半導体ウェーハとは異なり、実験的に、鏡面面取り工程にて半導体ウェーハの主表面側にオーバーポリッシュを発生させないように作製したものである。図5の画像からウェーハ主表面側と書かれた領域に、図2Aのようなオーバーポリッシュの痕跡が確認できないことが分かる。   FIG. 5 is a dark field image in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer shown in the present embodiment. Unlike the semiconductor wafer used in FIG. 2A, the semiconductor wafer of FIG. 5 is experimentally manufactured so as not to generate over-polish on the main surface side of the semiconductor wafer in the mirror chamfering step. It can be seen from the image of FIG. 5 that no trace of over-polishing as shown in FIG. 2A can be confirmed in the area described as the wafer main surface side.

図6は図5の半導体ウェーハのESFQRグラフである。前述の図2Aで確認できるオーバーポリッシュの影響により図4ではEE0.5mmでは、ESFQRの悪化が見られたが、図6のように主表面側にオーバーポリッシュが無い半導体ウェーハではEE0.5mmのESFQRを測定しても悪化が見られないことが分かる。   FIG. 6 is an ESF QR graph of the semiconductor wafer of FIG. Although the deterioration of ESFQR was seen at EE 0.5 mm in FIG. 4 due to the influence of over-polish which can be confirmed in the above-mentioned FIG. 2A, the semiconductor wafer having no over-polish on the main surface side as shown in FIG. It can be seen that no deterioration is seen even if

以上の結果から、本発明の暗視野によるエッジ検査を行うことで、オーバーポリッシュの有無やオーバーポリッシュ入り込み量を簡単に評価でき、非破壊の評価および測定が可能であるため製品の収率低下もなく、さらには鏡面面取り工程の工程管理にも利用可能なデータが得られることが分かる。   From the above results, by performing the edge inspection by the dark field of the present invention, the presence or absence of over-polish and the amount of over-polish entering can be easily evaluated, and since nondestructive evaluation and measurement are possible, the product yield also decreases. Furthermore, it can be seen that data that can be used for process control of the mirror beveling process can also be obtained.

以上説明したように、オーバーポリッシュの位置と入り込み量を測定するために、上記では説明のために半導体ウェーハの主面及びエッジ部にレーザー光を照射したが、オーバーポリッシュを測定するだけであれば、レーザー光を主面に照射すればよい。   As described above, in order to measure the position and the amount of penetration of the over-polish, the main surface and the edge portion of the semiconductor wafer are irradiated with the laser light for the purpose of explanation, but if only the over-polish is measured The laser beam may be irradiated to the main surface.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.

Claims (5)

半導体インゴットからスライスされた主表面と主裏面からなる主面を有する半導体ウェーハのエッジを面取り研削加工した後に、面取り研削加工された半導体ウェーハの前記主表面もしくは前記主表面と主裏面の両面を研磨加工して前記主面と面取り面を有する半導体ウェーハを作製し、その後鏡面面取り加工が施された半導体ウェーハの評価方法であって、
前記面取り面近傍の半導体ウェーハの前記主面に対してレーザー光を照射し、照射面からの散乱光を検知することで暗視野にて検査し、前記鏡面面取り加工により前記面取り面と前記主面との境界を越えて研磨されるオーバーポリッシュを検査することを特徴とする半導体ウェーハの評価方法。
After chamfering and grinding an edge of a semiconductor wafer having a main surface and a main back surface sliced from a semiconductor ingot, the main surface or both the front and back surfaces of the chamfered and ground semiconductor wafer is polished A method of evaluating a semiconductor wafer which is processed to produce a semiconductor wafer having the main surface and a chamfered surface, and is then subjected to mirror surface chamfering,
The main surface of the semiconductor wafer in the vicinity of the chamfered surface is irradiated with laser light, and the scattered light from the irradiated surface is detected to inspect in a dark field, and the chamfered surface and the main surface And a method of evaluating a semiconductor wafer characterized in that it inspects over-polished polished across the boundary with the above.
前記面取り面と前記主面との境界から、前記半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することを特徴とする請求項1に記載の半導体ウェーハの評価方法。   The method for evaluating a semiconductor wafer according to claim 1, wherein a region from the boundary between the chamfered surface and the main surface to an inner side of 2 mm on the center side of the semiconductor wafer is irradiated with laser light. 前記半導体ウェーハがノッチ部を有しており、
前記ノッチ部近傍における前記面取り面と前記主面との境界から、前記半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することを特徴とする請求項1に記載の半導体ウェーハの評価方法。
The semiconductor wafer has a notch portion,
2. The semiconductor wafer according to claim 1, wherein a region from the boundary between the chamfered surface and the main surface in the vicinity of the notch portion to the center side of the semiconductor wafer is irradiated with a laser beam by 2 mm. Method.
前記レーザー光の波長を200nm〜700nmとすることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体ウェーハの評価方法。   The wavelength of the said laser beam shall be 200 nm-700 nm, The evaluation method of the semiconductor wafer as described in any one of the Claims 1-3 characterized by the above-mentioned. 請求項1から請求項4のいずれか一項に記載の半導体ウェーハの評価方法によって得られた結果を用いて、前記鏡面面取り加工の工程管理を行うことを特徴とする半導体ウェーハ製造工程の管理方法。   A control method of a semiconductor wafer manufacturing process characterized by performing process control of the above-mentioned mirror surface chamfering processing using a result obtained by an evaluation method of a semiconductor wafer according to any one of claims 1 to 4. .
JP2017082219A 2017-04-18 2017-04-18 Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process Pending JP2018182160A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017082219A JP2018182160A (en) 2017-04-18 2017-04-18 Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process
PCT/JP2018/010111 WO2018193762A1 (en) 2017-04-18 2018-03-15 Semiconductor wafer evaluation method and method for managing semiconductor wafer manufacturing step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082219A JP2018182160A (en) 2017-04-18 2017-04-18 Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process

Publications (1)

Publication Number Publication Date
JP2018182160A true JP2018182160A (en) 2018-11-15

Family

ID=63855758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082219A Pending JP2018182160A (en) 2017-04-18 2017-04-18 Evaluation method for semiconductor wafer and management method for semiconductor wafer manufacturing process

Country Status (2)

Country Link
JP (1) JP2018182160A (en)
WO (1) WO2018193762A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298557B2 (en) 2020-07-01 2023-06-27 株式会社Sumco Semiconductor wafer evaluation method and semiconductor wafer manufacturing method
JP7327575B1 (en) 2022-05-19 2023-08-16 株式会社Sumco Evaluation Method of Polishing Margin During Mirror-Face Chamfering of Semiconductor Wafers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067465B2 (en) * 2018-12-27 2022-05-16 株式会社Sumco Semiconductor wafer evaluation method and semiconductor wafer manufacturing method
JP7283445B2 (en) * 2020-06-08 2023-05-30 株式会社Sumco Semiconductor wafer evaluation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237055A (en) * 2005-02-22 2006-09-07 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer and method of specularly chamfering semiconductor wafer
JP2008216054A (en) * 2007-03-05 2008-09-18 Hitachi High-Technologies Corp Device and method for inspecting test object
JP5305795B2 (en) * 2008-09-08 2013-10-02 株式会社レイテックス Surface inspection device
JP2012013632A (en) * 2010-07-05 2012-01-19 Sumco Corp Surface defect inspection apparatus and surface defect inspection method
JP5505334B2 (en) * 2011-02-25 2014-05-28 信越半導体株式会社 Semiconductor wafer and manufacturing method thereof
JP2014085296A (en) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd Wafer shape measurement device
US9645097B2 (en) * 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
JP6507979B2 (en) * 2015-10-07 2019-05-08 株式会社Sumco Semiconductor wafer evaluation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298557B2 (en) 2020-07-01 2023-06-27 株式会社Sumco Semiconductor wafer evaluation method and semiconductor wafer manufacturing method
JP7327575B1 (en) 2022-05-19 2023-08-16 株式会社Sumco Evaluation Method of Polishing Margin During Mirror-Face Chamfering of Semiconductor Wafers
JP2023170611A (en) * 2022-05-19 2023-12-01 株式会社Sumco Evaluation method for polishing allowance during mirror chamfering of semiconductor wafer

Also Published As

Publication number Publication date
WO2018193762A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2018193762A1 (en) Semiconductor wafer evaluation method and method for managing semiconductor wafer manufacturing step
CN102738029B (en) Method for detecting specific defect and system used for detecting specific defect
CN109690746B (en) Method for evaluating silicon wafer, method for evaluating silicon wafer manufacturing process, method for manufacturing silicon wafer, and silicon wafer
KR101985195B1 (en) Evaluation method and production method for semiconductor wafers
JP2016049581A (en) Wafer inspection method, grinding and polishing device
JP2007036231A (en) Semiconductor wafer, and manufacturing method for semiconductor wafer
CN110634740B (en) Improved back unsealing method of semiconductor device
KR20160055805A (en) Polishing-pad evaluation method and wafer polishing method
KR102327328B1 (en) Method for evaluating surface defects of substrates for bonding
JP7366637B2 (en) Workpiece confirmation method and processing method
KR20210084633A (en) Evaluation method and manufacturing method of semiconductor wafer, and manufacturing process management method of semiconductor wafer
JP6809422B2 (en) Evaluation method for semiconductor wafers
JP4507157B2 (en) Wafer manufacturing process management method
KR101885614B1 (en) Wafer inspection method and wafer inspection apparatus
JP3620641B2 (en) Inspection method of semiconductor wafer
CN112630233A (en) Method for inspecting surface defect of substrate
JP2005259967A (en) Apparatus and method for chemical mechanical polishing
CN116504673A (en) Process flow for identifying anomalies in wafer process
JP2002289563A (en) Inspecting method and equipment of work holding board for polishing, and polishing method of work
KR20130026698A (en) Method of inspecting wafer