JP5416323B1 - Brass alloy for water supply components - Google Patents

Brass alloy for water supply components Download PDF

Info

Publication number
JP5416323B1
JP5416323B1 JP2013536344A JP2013536344A JP5416323B1 JP 5416323 B1 JP5416323 B1 JP 5416323B1 JP 2013536344 A JP2013536344 A JP 2013536344A JP 2013536344 A JP2013536344 A JP 2013536344A JP 5416323 B1 JP5416323 B1 JP 5416323B1
Authority
JP
Japan
Prior art keywords
mass
content
brass alloy
less
dezincification corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013536344A
Other languages
Japanese (ja)
Other versions
JPWO2014155692A1 (en
Inventor
浩士 山田
山本  匡昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Application granted granted Critical
Publication of JP5416323B1 publication Critical patent/JP5416323B1/en
Publication of JPWO2014155692A1 publication Critical patent/JPWO2014155692A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Abstract

含有量を管理しなければならない主要成分の数を減らし、製造しやすい水道部材用黄銅合金を得る。Niを0.3質量%以上5.5質量%以下、Pを0.01質量%以上0.5質量%以下、Biを0.1質量%以上5.0質量%以下含有するとともに、Znを含有し、ZnとNiとの含有量(質量%)が次の2つの式(1)及び(2)を満足し、残分が銅及び微量元素である黄銅合金による。
Zn+2.2×Ni≧32.5 ……(1)
Zn−1.3×Ni≦38.6 ……(2)
A brass alloy for water supply members that is easy to manufacture is obtained by reducing the number of main components whose contents must be controlled. Ni is contained in an amount of 0.3 to 5.5% by mass, P is contained in an amount of 0.01 to 0.5% by mass, Bi is contained in an amount of 0.1 to 5.0% by mass, and Zn is contained. It is based on a brass alloy in which the contents (mass%) of Zn and Ni satisfy the following two formulas (1) and (2), and the balance is copper and trace elements.
Zn + 2.2 × Ni ≧ 32.5 (1)
Zn-1.3 × Ni ≦ 38.6 (2)

Description

この発明は、亜鉛を含有する黄銅合金に関し、特に、上水経路等に使用される水道部材用黄銅合金に関する。   The present invention relates to a brass alloy containing zinc, and in particular, to a brass alloy for water supply members used in a water supply path or the like.

亜鉛を20〜40%含む銅合金は、鋳造性や延性、切削性に優れるとともに、金に似た光沢を有する外観上の美しさも有する黄銅、あるいは真鍮と呼ばれ、様々な用途に用いられている。例えば、特許文献1には、錫を0.3〜1.0%、ニッケルを0.5〜1.0%、アルミニウムを0.4〜8%、燐を0.01〜0.03%、ビスマスを1.0〜2.0%含み、錫とニッケルとアルミニウムとの燐との合計が1.5%以上である黄銅合金が記載されている。   A copper alloy containing 20 to 40% zinc is called brass or brass, which has excellent castability, ductility, and machinability, and also has a lustrous appearance similar to gold, and is used for various purposes. ing. For example, Patent Document 1 discloses that tin is 0.3 to 1.0%, nickel is 0.5 to 1.0%, aluminum is 0.4 to 8%, phosphorus is 0.01 to 0.03%, A brass alloy containing 1.0 to 2.0% bismuth and having a total of tin, nickel and aluminum phosphorus of 1.5% or more is described.

特開2000−239765号公報JP 2000-239765 A

しかしながら、特許文献1に記載の黄銅合金は、亜鉛量以外に錫とニッケルとアルミニウムとの三成分のバランスで成り立っており、成分の主要素が多く、実際に製造する際の亜鉛の減耗を含めた品質管理が難しいという問題があった。   However, the brass alloy described in Patent Document 1 is composed of a balance of three components of tin, nickel, and aluminum in addition to the amount of zinc, and has many main components, including depletion of zinc during actual production. There was a problem that quality control was difficult.

そこでこの発明は、主要成分の種類を減らし、製造の際の品質管理を容易にしながらも、脱亜鉛腐食を抑制し、機械的性質や切削性、鋳造性がよく、汎用性にも優れた黄銅合金を得ることを目的とする。   Therefore, the present invention reduces the types of main components, facilitates quality control during production, suppresses dezincing corrosion, has excellent mechanical properties, machinability, castability, and excellent versatility. The purpose is to obtain an alloy.

この発明は、Niを0.3質量%以上5.5質量%以下、Pを0.005質量%以上0.5質量%以下、Biを0.1質量%以上5.0質量%以下含有するとともに、Znを含有し、
ZnとNiとの含有量(質量%)が次の2つの式(1)及び(2)を満足し、
残分が銅及び微量元素である黄銅合金によって、上記の課題を解決したのである。
Zn+2.2×Ni≧32.5 ……(1)
Zn−1.3×Ni≦38.6 ……(2)
In the present invention, Ni is contained in an amount of 0.3 to 5.5% by mass, P is contained in an amount of 0.005 to 0.5% by mass, and Bi is contained in an amount of 0.1 to 5.0% by mass. Together with Zn,
The content (mass%) of Zn and Ni satisfies the following two formulas (1) and (2),
The above problem was solved by a brass alloy whose balance is copper and trace elements.
Zn + 2.2 × Ni ≧ 32.5 (1)
Zn-1.3 × Ni ≦ 38.6 (2)

この発明の特徴は、SnとAl又はSnを意図的に含有させる成分から除外しながら、NiとPとのバランスにより幅広いZn量の範囲で必要な物性を達成したことにある。Niは銅と固溶することで脱亜鉛腐食を防ぐ効果が発揮される。このため、Niの量に対応した範囲でZnを含有させることで、脱亜鉛腐食抑制効果を十分に発揮させるとともに、PとBiによってその効果を補強した。ただし、PとBiが過剰であると機械的性質が低下するため、その範囲は限定したものとする。   The feature of the present invention is that the necessary physical properties are achieved in a wide Zn content range by the balance between Ni and P while excluding Sn and Al or Sn intentionally. Ni exhibits an effect of preventing dezincification corrosion by dissolving with copper. For this reason, by containing Zn in a range corresponding to the amount of Ni, the dezincification corrosion suppressing effect was sufficiently exhibited, and the effect was reinforced by P and Bi. However, if P and Bi are excessive, the mechanical properties deteriorate, so the range is limited.

また、この発明にかかる黄銅合金は、上記の脱亜鉛腐食性能や、機械的性質等を阻害しない範囲で、その他の微量元素を含有してもよい。この微量元素としては、具体的には少なくともそれぞれの含有量が1.0質量%未満であって上記した以外の元素が挙げられる。例えば、不純物として混入しうるSn、Si、Fe、Mn、Mg、Pb、Cd、Seなどの元素が挙げられる。これらの元素は合金の製造にあたって原料由来の混入を避けることが難しい場合があるが、この発明の効果をより発揮するには、含有量が少ないほど好ましい。なお、Pb、Cd、Seなどの、溶出量が多い場合に害を為すおそれがある元素は、機械的性質や耐脱亜鉛腐食性などの物性とは無関係に、少ないほど好ましく、検出限界未満であることが望ましい。   In addition, the brass alloy according to the present invention may contain other trace elements as long as the above dezincification corrosion performance and mechanical properties are not impaired. Specific examples of the trace element include elements other than those described above having at least each content of less than 1.0% by mass. For example, elements such as Sn, Si, Fe, Mn, Mg, Pb, Cd, and Se that can be mixed as impurities can be used. These elements may be difficult to avoid mixing from the raw materials in the production of the alloy. However, the smaller the content, the better the effects of the present invention. In addition, elements that may cause harm when the amount of elution is large, such as Pb, Cd, and Se, are preferably as small as possible regardless of physical properties such as mechanical properties and dezincification corrosion resistance, and are less than the detection limit. It is desirable to be.

さらに、この発明にかかる黄銅合金は、上記の成分に加えて、Bを0.15質量%以下の範囲で含有していると、耐脱亜鉛腐食性がさらに向上するとともに、機械的性質も好適なものとなるので好ましい。   Furthermore, when the brass alloy according to the present invention contains B in the range of 0.15% by mass or less in addition to the above components, the dezincification corrosion resistance is further improved and the mechanical properties are also suitable. Therefore, it is preferable.

さらにまた、この発明にかかる黄銅合金は、引張強さを更に向上させるために、上記の成分に加えてAlを1.0質量%以下の範囲で加えてもよい。   Furthermore, in order to further improve the tensile strength, the brass alloy according to the present invention may contain Al in the range of 1.0% by mass or less in addition to the above components.

この発明により、従来は多数の成分について厳密な調製をしなければ好適な物性が得られなかった、脱亜鉛腐食抑制効果の高く機械的性質等に優れた黄銅合金を、より少ない成分のみの調製で製造することができる。   According to the present invention, a brass alloy having a high dezincification corrosion-inhibiting effect and excellent mechanical properties, etc., in which a suitable physical property cannot be obtained unless rigorously prepared for a large number of components in the past. Can be manufactured.

実施例で用いる試験片の概略図Schematic diagram of test pieces used in the examples 脱亜鉛深さの断面概念図Cross-sectional conceptual diagram of dezincing depth 実施例におけるNiとZnの含有量に対して評価結果をプロットしたグラフThe graph which plotted the evaluation result with respect to content of Ni and Zn in an Example Zn過剰である比較例9の試料の100倍の断面写真100 times cross-sectional photograph of the sample of Comparative Example 9 in which Zn is excessive 実施例22の試料の200倍の断面写真200-fold cross-sectional photograph of the sample of Example 22 Pを含まない比較例11の試料の200倍の断面写真200 times cross-sectional photograph of the sample of Comparative Example 11 containing no P Biを含まない比較例14の試料の200倍の断面写真200 times cross-sectional photograph of the sample of Comparative Example 14 containing no Bi

以下、この発明について具体的に説明する。この発明は、少なくともNiとPとBiとZnを含有する黄銅合金である。主としてNi、及び補助的にP及びBiの添加により脱亜鉛腐食を抑制する。   The present invention will be specifically described below. The present invention is a brass alloy containing at least Ni, P, Bi and Zn. Dezincification corrosion is suppressed mainly by addition of Ni and supplementarily P and Bi.

この発明にかかる黄銅合金は、Niを0.3質量%以上含有する。Niを含有することで、引張強さなどの機械的性質と、耐脱亜鉛腐食性が向上する効果がある。この効果はNiがCuに固溶することで現れると考えられる。ただし、Niの固溶量が増加しすぎると、ガス吸収などが多くなり、ガス欠陥や引け巣の発生によりその鋳造性が悪化する。このため、Niの含有量は5.5質量%以下である必要があり、4.5質量%以下であると好ましい。また、この発明にかかる黄銅合金では、後述するZnとの関係でもNiの含有量を規定する。   The brass alloy according to the present invention contains 0.3% by mass or more of Ni. By containing Ni, there is an effect that mechanical properties such as tensile strength and anti-dezincing corrosion resistance are improved. This effect is considered to appear when Ni dissolves in Cu. However, when the solid solution amount of Ni increases excessively, gas absorption and the like increase, and the castability deteriorates due to generation of gas defects and shrinkage cavities. For this reason, the content of Ni needs to be 5.5% by mass or less, and is preferably 4.5% by mass or less. Moreover, in the brass alloy concerning this invention, content of Ni is prescribed | regulated also in relation with Zn mentioned later.

この発明にかかる黄銅合金は、Pを0.005質量%以上含む必要があり、0.03質量%以上含有すると好ましい。Pが含まれているとわずかな量であっても耐脱亜鉛腐食性に大きく寄与する。0.005質量%未満ではこの効果が不十分になりやすい。一方、Pの含有量は0.5質量%以下である必要があり、0.25質量%以下であると好ましい。0.25質量%を越えると伸びにやや問題を生じやすくなり、0.5質量%を越えると伸びだけでなく引張強さにも問題が生じやすくなるだけでなく、引け巣も生じやすくなるなど様々な問題を生じやすくなる。   The brass alloy concerning this invention needs to contain 0.005 mass% or more of P, and when it contains 0.03 mass% or more, it is preferable. When P is contained, even a slight amount greatly contributes to dezincification corrosion resistance. If it is less than 0.005% by mass, this effect tends to be insufficient. On the other hand, the P content needs to be 0.5% by mass or less, and is preferably 0.25% by mass or less. Exceeding 0.25% by mass tends to cause some problems in elongation, and exceeding 0.5% by mass not only tends to cause problems in tensile strength, but also tends to cause shrinkage. Prone to various problems.

この発明にかかる黄銅合金は、Biを0.1質量%以上含む必要があり、0.3質量%以上含有すると好ましい。Biは合金中に微細に分散することで、切削性を劇的に向上させるとともに、耐脱亜鉛腐食性を発揮することができるが、0.1質量%未満ではこれらの効果が不十分になってしまう。一方で、Biが多すぎると逆に耐脱亜鉛腐食性が低下してしまうだけでなく、機械的性質が低下しやすくなるので、5.0質量%以下である必要があり、4.0質量%以下であると好ましい。   The brass alloy according to the present invention needs to contain 0.1 mass% or more of Bi, and preferably contains 0.3 mass% or more. Bi is finely dispersed in the alloy to dramatically improve the machinability and exhibit anti-dezincing corrosion resistance. However, if it is less than 0.1% by mass, these effects become insufficient. End up. On the other hand, if there is too much Bi, not only the dezincification corrosion resistance is lowered, but also the mechanical properties are liable to be lowered, so it is necessary to be 5.0% by mass or less, and 4.0% by mass. % Or less is preferable.

この発明にかかる黄銅合金は、上記の元素の他に、その他の微量元素を含有してもよい。その他の微量元素は、少なくともそれぞれ0.5質量%未満であって、上記した以外の元素が挙げられる。例えば、Sn、Mn,Fe,Pb,Si,Mg,Cd、Se等が挙げられる。これらのうち、Sn、Mn、Fe、Si、Mg、Pbは原料由来で不純物として混入しやすい。ただし、それぞれが多すぎても本発明の効果を阻害するおそれがあるため、本発明の効果を阻害しない範囲での含有に留める必要がある。   The brass alloy according to the present invention may contain other trace elements in addition to the above elements. Other trace elements are at least less than 0.5% by mass, and include elements other than those described above. For example, Sn, Mn, Fe, Pb, Si, Mg, Cd, Se, etc. are mentioned. Among these, Sn, Mn, Fe, Si, Mg, and Pb are derived from the raw material and easily mixed as impurities. However, since there is a possibility that the effect of the present invention may be inhibited even if there is too much each, it is necessary to keep the content within a range not inhibiting the effect of the present invention.

特にこの発明にかかる黄銅合金は、微量元素(不純物)としてのSnの含有量が0.3質量%未満である必要があり、0.1質量%未満であると好ましい。この発明にかかる黄銅合金は、品質を決定づける主要成分の数を減らして、安定した品質の合金を製造しやすくするものであり、Snが過剰に入ると他の成分とのバランスをとるのが難しくなる。具体的には、0.3質量%以上であると、耐脱亜鉛腐食性を低下させやすくなったり、合金全体のバランスが取りにくくなってしまう。製造時に品質を安定させるためにはSnの含有量は少ないほどよい。   Particularly in the brass alloy according to the present invention, the content of Sn as a trace element (impurity) needs to be less than 0.3% by mass, and preferably less than 0.1% by mass. The brass alloy according to the present invention makes it easy to produce a stable quality alloy by reducing the number of main components that determine quality, and it is difficult to balance with other components when Sn is excessively contained. Become. Specifically, when it is 0.3% by mass or more, dezincification corrosion resistance is liable to be reduced, and it becomes difficult to balance the entire alloy. In order to stabilize the quality during production, the smaller the Sn content, the better.

Sn以外の元素の含有量は一元素あたり、0.5質量%未満であれば良く、0.3質量%未満であると好ましい。また、この中でもPbは比較的混入しやすいものの、できるだけ混入を避けることが望ましく、0.3質量%未満であると好ましく、0.1質量%未満であるとより好ましい。さらに、Cd、Seはそれ自体が有害で、多量に水道用部材に用いると水中にこれらの成分が溶け出すおそれがあるため、0.1質量%未満であると好ましく、不可避不純物として含まれる量以下であるとより好ましく、検出限界未満であると最も好ましい。また、その他の、Snを含めた微量元素も本発明の効果をより安定して発揮するには、不可避不純物としての含有に留めると好ましい。   The content of elements other than Sn may be less than 0.5 mass% per element, and is preferably less than 0.3 mass%. Of these, Pb is relatively easy to mix, but it is desirable to avoid mixing as much as possible, preferably less than 0.3% by mass, and more preferably less than 0.1% by mass. Furthermore, Cd and Se are harmful per se, and if they are used in a large amount for water supply components, these components may be dissolved in water. Therefore, the amount is preferably less than 0.1% by mass and contained as an inevitable impurity. The following is more preferable, and it is most preferable that it is less than the detection limit. In addition, other trace elements including Sn are preferably contained as inevitable impurities in order to exhibit the effects of the present invention more stably.

この発明にかかる黄銅合金は、上記の元素の他に加えて、Bを含んでいてもよい。0.001質量%以上のBを含有させることで上記の規定する配合比の黄銅合金から、機械的性質及び耐脱亜鉛腐食性をさらに向上させることができる。好ましくは、0.002質量%以上である。ただし、Bが過剰になるとB由来の金属間化合物が増加したり、引け巣の発生が多発し、水道部材用製品が得られるような鋳造性がなくなってしまい、耐脱亜鉛腐食性もかえって低下してしまうため、Bの含有量は0.150質量%以下であると好ましく、0.100質量%以下であるとより好ましく、0.050質量%以下であるとさらに好ましい。   The brass alloy according to the present invention may contain B in addition to the above elements. By containing 0.001% by mass or more of B, the mechanical properties and the dezincification corrosion resistance can be further improved from the brass alloy having the compounding ratio specified above. Preferably, it is 0.002 mass% or more. However, when B is excessive, intermetallic compounds derived from B increase, shrinkage cavities frequently occur, castability that can be obtained for products for water supply members is lost, and dezincification corrosion resistance is also reduced. Therefore, the content of B is preferably 0.150% by mass or less, more preferably 0.100% by mass or less, and further preferably 0.050% by mass or less.

この発明にかかる黄銅合金は、上記の元素の他に加えて、Alを含んでいてもよい。0.2質量%以上のAlを含有させることで上記の規定する配合比の黄銅合金から、引張強さをさらに向上させることができる。ただし、Alが過剰になると耐脱亜鉛腐食性や伸びが低下するため、Alの含有量は1.0質量%以下であると好ましく、0.8質量%以下であるとさらに好ましい。   The brass alloy according to the present invention may contain Al in addition to the above elements. By containing 0.2% by mass or more of Al, the tensile strength can be further improved from the brass alloy having the compounding ratio specified above. However, when Al is excessive, dezincification corrosion resistance and elongation decrease, so the Al content is preferably 1.0% by mass or less, and more preferably 0.8% by mass or less.

この発明にかかる黄銅合金が含有するZnの量は、上記のNiの含有量と合わせて規定する。Znは機械的性質を向上させる代わりに、脱亜鉛腐食を起こすおそれがあり、Znを単独で用いる場合には、機械的性質と耐脱亜鉛腐食性とのバランスが良好となる範囲が極めて狭いという問題がある。しかしながらNiが含有されていると、Znの含有量に対してバランスが確保できる範囲を広げることができ、この発明にかかる黄銅合金を製造する際の困難性を軽減させる効果がある。この効果によって広がったZnを許容できる範囲が下記の不等式(1)及び(2)として現れるが、これはNiが多いほどZnが存在できる許容範囲は広くなることを示している。すなわち、Znの含有量が式(1)の条件を逸脱して少ないと引張強さが不十分なものとなるが、Niが多いとその分Znの不足を補える。ただし、より確実に引張強さを確保するのであれば、Znの含有量は33質量%以上であると好ましい。一方で、Znの含有量が式(2)の条件を逸脱して多いと、耐脱亜鉛腐食性が不十分なものとなるが、Niが多いとその分、Znの増加による影響を抑制できる。ただし、より確実に耐脱亜鉛腐食性を確保するのであれば、下記の不等式(3)の規定を満たすことが好ましい。   The amount of Zn contained in the brass alloy according to the present invention is specified together with the above-described Ni content. Zn may cause dezincification corrosion instead of improving mechanical properties. When Zn is used alone, the range in which the balance between mechanical properties and dezincification resistance is good is extremely narrow. There's a problem. However, when Ni is contained, the range in which the balance can be secured with respect to the Zn content can be expanded, and there is an effect of reducing the difficulty in manufacturing the brass alloy according to the present invention. The allowable range of Zn spread by this effect appears as the following inequalities (1) and (2). This indicates that the allowable range in which Zn can exist increases as the amount of Ni increases. That is, if the Zn content deviates from the condition of formula (1) and is small, the tensile strength becomes insufficient, but if Ni is large, the shortage of Zn can be compensated accordingly. However, if the tensile strength is ensured more reliably, the Zn content is preferably 33% by mass or more. On the other hand, if the Zn content is large and deviates from the condition of the formula (2), the dezincification corrosion resistance becomes insufficient, but if Ni is large, the influence of the increase in Zn can be suppressed accordingly. . However, it is preferable to satisfy the following inequality (3) in order to ensure dezincification corrosion resistance more reliably.

Zn+2.2Ni≧32.5 ……(1)
Zn−1.3Ni≦38.6 ……(2)
Zn−0.5Ni≦38.8 ……(3)
Zn + 2.2Ni ≧ 32.5 (1)
Zn-1.3Ni ≦ 38.6 (2)
Zn-0.5Ni ≦ 38.8 (3)

この発明にかかる黄銅合金は、溶融して鋳型に流し込む鋳造に用いることができ、特に金型鋳造製品に用いると、好適にその効果を発揮することができる。また、鍛造や伸銅製品等に用いてもよい。いずれの場合でも、脱亜鉛腐食が進行しやすいβ相の生成を抑制できるが、結晶構造が変化しやすい場合でも、上記の配合比の範囲であれば、材料の機械的性質や切削性を確保しつつ、溶出や脱亜鉛腐食を抑制することができる。   The brass alloy according to the present invention can be used for casting in which it is melted and poured into a mold, and particularly when it is used for a die casting product, the effect can be suitably exhibited. Moreover, you may use for a forging, a wrought copper product, etc. In any case, it is possible to suppress the formation of β-phase where dezincification is likely to proceed, but even if the crystal structure is likely to change, the mechanical properties and machinability of the material are ensured within the above blending ratio range. However, elution and dezincification corrosion can be suppressed.

さらに、この発明にかかる黄銅合金は、製造にあたって配合比を調製しなければならない主成分からSnを除外しているため、製造時に厳密な品質管理が困難な鋳造による製造であっても、狙い通りの耐脱亜鉛腐食性や機械的性質などの必要な特性をバランスよく備えた製品を製造しやすい。   Furthermore, since the brass alloy according to the present invention excludes Sn from the main components for which the blending ratio must be adjusted in manufacturing, even if it is manufactured by casting in which strict quality control is difficult at the time of manufacturing, as intended It is easy to manufacture products with the necessary characteristics such as anti-dezincing corrosion resistance and mechanical properties.

この発明にかかる黄銅合金を具体的に配合した実施例を挙げる。まず、評価方法について説明する。   The Example which specifically mix | blended the brass alloy concerning this invention is given. First, the evaluation method will be described.

<引張試験方法>
φ28mm×200mmの金型に鋳造した試料から、JIS Z2241で規定する14A号試験片に加工した。具体的形状は図1の通りであり、平行部の原断面積Sと原標点距離LとがL=5.65×S^(1/2)の関係にある比例試験片である。棒状部の直径dは4mm、原標点距離Lは20mm、円柱状とした並行部長さLは30mm、肩部の半径Rは15mmとした。(L=5.65×(2×2×π)^(1/2)=20.04)
<Tensile test method>
A sample cast in a φ28 mm × 200 mm mold was processed into a 14A test piece defined by JIS Z2241. The specific shape is as shown in FIG. 1, and a proportional test piece in which the original cross-sectional area S 0 of the parallel portion and the original gauge point distance L 0 have a relationship of L 0 = 5.65 × S 0 ^ (1/2). It is. The diameter d 0 of the rod-shaped portion was 4 mm, the original point distance L 0 was 20 mm, the columnar parallel portion length L c was 30 mm, and the shoulder radius R was 15 mm. (L 0 = 5.65 × (2 × 2 × π) ^ (1/2) = 20.04)

この試験片について、JIS Z2241に準拠して引張試験を実施して、その引張強さ(MPa)及び伸び(%)を次のように評価した。なお、引張強さは試験において不連続な降伏を示すまで、試験中に試験片が耐えた最大の試験力Fmとした。また、伸びは破断するまで試験した後の試験片の永久伸びを原評点距離に対して百分率で表した値である。
・引張強さの評価は、○……300MPa以上、△……250MPa以上300MPa未満、×……250MPa未満とした。なお、下記表中では項目を「引」と表示し単位を省略する。
・伸びの評価は、○……30%以上、△……20%以上30%未満、×……20%未満とした。なお、下記表中では項目を「伸」と表示し単位を省略する。
About this test piece, the tension test was implemented based on JISZ2241, and the tensile strength (MPa) and elongation (%) were evaluated as follows. The tensile strength was the maximum test force Fm that the test piece withstood during the test until it showed a discontinuous yield in the test. Further, the elongation is a value representing the permanent elongation of the test piece after being tested until it breaks as a percentage of the original score distance.
-Evaluation of tensile strength was made into (circle) ... 300MPa or more, (triangle | delta) ... 250MPa or more and less than 300MPa, x ... less than 250MPa. In the table below, the item is displayed as “Draw” and the unit is omitted.
・ Evaluation of elongation was as follows: ○ …… 30% or more, Δ …… 20% or more but less than 30%, × …… less than 20%. In the table below, the item is displayed as “stretched” and the unit is omitted.

<脱亜鉛腐食試験方法>
φ28mm×200mmの金型に鋳造した試料から、10mm角の立方体状に切り出したものを試験片とし、ISO6509に準拠して行った。すなわち、試験片の周囲を、厚さ15mm以上のエポキシ樹脂で覆い、試験片の一面だけを樹脂から露出させた。この露出面100mmを湿式研磨紙で研磨した後、1200番の研磨紙で仕上げ、試験直前にエタノールで洗浄した。このエポキシ樹脂に埋め込んで一面のみ露出させた試料を、250mLの12.7g/L塩化第二銅水溶液に、75±5℃にて24時間浸漬させた。試験終了後に、水で洗い、エタノールですすいだ後、すみやかに、その断面部分の脱亜鉛深さ(図2における、表面全体の腐食深さAを除外して腐食面からさらに脱亜鉛腐食した部分Bの深さ、μm)を、光学顕微鏡を用いて計測した。具体的には、試料10mmを5視野に分割して視野毎の脱亜鉛深さを、最小の点と、最大の点で計測し、合計10点の平均値を脱亜鉛腐食平均深さ、それら10点の内、最も深い点の深さを脱亜鉛腐食最大深さとして次のように評価した。それらの結果のいずれも×ではないものを合格とした。
・脱亜鉛腐食平均深さ:○……200μm未満、×……200μm以上。なお、下記表中では項目を「平」と表示する。
・脱亜鉛腐食最大深さ:○……200μm未満、△……200μm以上400μm未満、×……400μm以上。なお、下記表中では項目を「最」と表示する。
<Dezincification corrosion test method>
A sample cut into a 10 mm square cube from a sample cast in a φ28 mm × 200 mm mold was used as a test piece, and the test was performed in accordance with ISO 6509. That is, the periphery of the test piece was covered with an epoxy resin having a thickness of 15 mm or more, and only one surface of the test piece was exposed from the resin. The exposed surface 100 mm 2 was polished with wet polishing paper, finished with 1200 polishing paper, and washed with ethanol immediately before the test. The sample embedded in the epoxy resin and exposed only on one side was immersed in 250 mL of a 12.7 g / L cupric chloride aqueous solution at 75 ± 5 ° C. for 24 hours. After completion of the test, after washing with water and rinsing with ethanol, the dezincing depth of the cross section immediately (in Fig. 2, the part that was further dezincified and corroded from the corroded surface excluding the corrosion depth A of the entire surface) B depth (μm) was measured using an optical microscope. Specifically, the sample 10 mm is divided into 5 fields of view, and the dezincification depth for each field of view is measured at the minimum point and the maximum point, and the average value of 10 points in total is the dezincification corrosion average depth. Of the 10 points, the depth of the deepest point was evaluated as the maximum dezincification corrosion depth as follows. Any of those results that were not x were considered acceptable.
-Dezincification corrosion average depth: ○: Less than 200 μm, x: 200 μm or more. In the table below, the item is indicated as “flat”.
・ Maximum depth of dezincification corrosion: ○ …… less than 200 μm, Δ …… 200 μm or more and less than 400 μm, × …… 400 μm or more. In the table below, the item is indicated as “Most”.

<鋳造性試験>
鋳造性の試験として上記機械的性質試験及び脱亜鉛腐食試験に用いるために、φ28mm×200mmの金型に鋳造する際に湯流れ性やその製品組織から、その作業性と製品への影響を次のように評価した。
・鋳造性の評価は、○……問題なく鋳造できるもの、△……作業性悪化やガス欠陥や引け巣により製品への悪影響が多少あるが、致命的な欠陥とならないもの、×……作業性の悪化やガス欠陥や引け巣により製品への悪影響が大きく、水道部材用黄銅合金として不適なものとした。
<Castability test>
In order to use it as a castability test in the mechanical property test and dezincification corrosion test described above, the influence on the workability and product is explained from the flowability of the molten metal and its product structure when casting into a φ28mm × 200mm mold. It was evaluated as follows.
・ Evaluation of castability: ○ …… Can be cast without problems, △ …… Slightly adversely affects the product due to deterioration of workability, gas defects, and shrinkage, but no fatal defects, × …… Work The product was adversely affected by deterioration of properties, gas defects and shrinkage nests, making it unsuitable as a brass alloy for water supply components.

本発明の実施例及び比較例について、各々の配合比で溶解した後、鋳造によって試料を溶製し、試料の各元素の含有量と、上記の試験を行った結果とを併せて、以下の各表に示す。ここで、Cuの含有量はCu以外の各元素の含有量の和を100質量%から差し引いて求められ、「式1」「式2」「式3」とは上記の不等式(1)〜(3)のそれぞれの左辺の値を示す。これら実施例及び比較例の中から、特に例を抽出して、それぞれの成分について検証する。また、ここで「総合」とは水道部材用黄銅合金として適切かどうかを評価する総合評価(以下「総合評価」という)のことであり、上述した機械的性質試験、脱亜鉛腐食試験及び鋳造性試験において全て○の評価となったものを○、△の評価を含むが×の評価を含まないものを●、×を一つでも含むものを×とした。   About the Example and Comparative Example of the present invention, after melting at each compounding ratio, the sample was melted by casting, and the content of each element of the sample and the results of the above test were combined, and the following: Shown in each table. Here, the content of Cu is obtained by subtracting the sum of the contents of each element other than Cu from 100% by mass, and “Expression 1”, “Expression 2”, and “Expression 3” are the above inequalities (1) to ( The value of each left side of 3) is shown. Examples are extracted from these examples and comparative examples, and each component is verified. “Comprehensive” as used herein refers to comprehensive evaluation (hereinafter referred to as “comprehensive evaluation”) for evaluating whether it is suitable as a brass alloy for water supply members. The above-mentioned mechanical property test, dezincification corrosion test, and castability In the test, all of the evaluations of “◯” were evaluated as “◯”, those including Δ evaluation but not including “×” evaluation were evaluated as “×”, and those including even one “×” were determined as “×”.

まず、AlとSnとSiとの含有量を検出限界未満とし、Ni、Bi、P,Zn及びCuの量を調製した比較例及び実施例について、表1に列挙する。このうち、比較例1〜3はNiの含有量が検出限界未満である。結果として比較例1は式1を満たしているにも関わらず、Niが無い状態であるため、引張強さが不足したと考えられる。一方で、比較例2及び3は式2を満たしているにもかかわらずNiが無い状態におけるZnの許容範囲を逸脱してZnが過剰であることで、Niによって抑えるべきZnの脱亜鉛腐食しやすさがそのまま発揮されてしまったと考えられる。すなわち、この比較例1〜3は、Niが無い状況において合金性能のバランスをとることが困難であることを示している。   First, Table 1 lists comparative examples and examples in which the contents of Al, Sn, and Si were set below the detection limit and the amounts of Ni, Bi, P, Zn, and Cu were prepared. Among these, Comparative Examples 1-3 has Ni content less than a detection limit. As a result, although Comparative Example 1 satisfies Equation 1, it is considered that the tensile strength is insufficient because Ni is not present. On the other hand, in Comparative Examples 2 and 3, Zn is excessively deviating from the allowable range of Zn in the state where Ni is not present even though Equation 2 is satisfied. It seems that ease has been demonstrated as it is. That is, Comparative Examples 1 to 3 indicate that it is difficult to balance the alloy performance in the situation where there is no Ni.

Figure 0005416323
Figure 0005416323

比較例4〜9はNiを徐々に増加させている。このうち、比較例4、5、8は式1を満たさず、引張強さの評価が×となっており、比較例8ではZnが少なすぎるためか伸びも評価が△にまで低下している。一方、式2を満たさない比較例6,7、9は脱亜鉛腐食の評価が×となっている。比較例10では逆にNiが過剰となっており、式1〜3を全て満たすものの、鋳造性にやや問題を生じ、引け巣が生じることで引張強さも低下してしまった。   In Comparative Examples 4 to 9, Ni is gradually increased. Of these, Comparative Examples 4, 5, and 8 do not satisfy Formula 1, and the evaluation of the tensile strength is x. In Comparative Example 8, the evaluation is also reduced to Δ because the Zn is too little. . On the other hand, in Comparative Examples 6, 7, and 9 that do not satisfy Formula 2, the evaluation of dezincification corrosion is x. On the contrary, in Comparative Example 10, Ni was excessive and all of the formulas 1 to 3 were satisfied. However, there was a slight problem in castability, and the tensile strength was lowered due to the formation of shrinkage cavities.

実施例1〜10は一部に△の評価を含むものである。このうち、式2は満たすものの、式3を満たさない実施例1,3,6,9,10はいずれも脱亜鉛最大深さの評価が△となり、脱亜鉛腐食を十分に抑え込むには式3の条件を満たすことがより望ましいことが示された。一方、実施例2,4,5,7,8は式1を満たすものの、Znそれのみの含有量が33質量%未満とやや少ないために引張強さにやや問題を生じて△となっている。また、実施例8〜10はNiがやや多く、4.5質量%を越えて5質量%に近いために、NiがCuに固溶されたNiが多すぎた影響により、ガス吸収が増え一部にガス欠陥や引け巣が生じてしまったと考えられる。実施例11〜25は良好な結果となったデータをNiの含有量順に並べたものである。   Examples 1 to 10 include evaluation of Δ in part. Of these, Examples 1, 3, 6, 9, and 10 that satisfy Expression 2 but do not satisfy Expression 3 have an evaluation of the maximum dezincing depth of Δ, and Expression 3 is sufficient to suppress dezincing corrosion sufficiently. It was shown that it is more desirable to satisfy the conditions. On the other hand, Examples 2, 4, 5, 7, and 8 satisfy Formula 1, but the content of only Zn itself is slightly less than 33% by mass, so that there is a slight problem in tensile strength, and Δ. . In Examples 8 to 10, since the amount of Ni is slightly higher and exceeds 4.5% by mass and close to 5% by mass, the gas absorption is increased due to the influence of Ni that is a solid solution of Ni in Cu. It is thought that a gas defect or shrinkage nest has occurred in the part. In Examples 11 to 25, data obtained as a good result are arranged in order of Ni content.

これらの結果を、横軸にZn含有量、縦軸にNi含有量をとった図3のグラフ上にプロットする。台形の左辺は式1のラインであり、縦の破線は実施例2,4,5,7,8と区別されるZnが33質量%のラインであり、右辺側破線は式3のラインであり、右辺側実線は式2のラインである。また、上底辺はNiが5.5質量%のライン、下底辺はNiが0.3質量%のラインであり、上方の横破線はNiが4.5質量%のラインである。これらから、全ての評価が○であった実施例11〜25はいずれも、破線で囲まれた中央の領域に位置していることがわかり、一部に△の評価を有する実施例1〜10はその外側の実線で囲まれた範囲に位置していることがわかる。また、Niが含有されない比較例1〜3は不等式のラインとは無関係に評価が×となっている。   These results are plotted on the graph of FIG. 3 with the Zn content on the horizontal axis and the Ni content on the vertical axis. The left side of the trapezoid is a line of Formula 1, the vertical broken line is a line of 33% by mass of Zn that is distinguished from Examples 2, 4, 5, 7, and 8, and the broken line on the right side is a line of Formula 3. The solid line on the right side is the line of Equation 2. The upper base is a line with 5.5% by mass of Ni, the lower base is a line with 0.3% by mass of Ni, and the upper horizontal broken line is a line with 4.5% by mass of Ni. From these, it can be seen that Examples 11 to 25, all of which were evaluated as ◯, are located in a central region surrounded by a broken line, and Examples 1 to 10 having evaluations of Δ in part. Is located in the area surrounded by the solid line outside. Moreover, the comparative examples 1-3 which do not contain Ni are evaluated as x regardless of the inequality line.

ZnとNiについて、一方の含有量をほぼ同一に揃えて、他方の含有量を変動させた組み合わせを抽出して表2に示す。比較例1と実施例2はZnを33質量%質量前後で揃えて、Niの有無を変化させた組み合わせである。実施例2ではNiの追加により引張強さが大きく改善していることがわかる。比較例3と実施例12とでは、Znを37質量%前後で揃えて、Niの有無を変化させた組み合わせである。Znが多くなると脱亜鉛腐食が起きることが比較例3で示されているが、Niを追加した実施例12ではそれが完全に抑制されることが示されている。比較例6及び実施例3,20、24は、さらにZnが多い39質量%程度で揃えて、Niの量を変化させた組み合わせである。Znが多くなるとNiを多少加えただけでは脱亜鉛腐食を十分に抑え込むことができず、ある程度Niを増量させる必要があることがわかり、式2を満たした実施例3ではそれがやや改善され、式3を満たした実施例20,24ではそれがさらに改善していることが示されている。実施例5,18,20,6及び比較例9は、逆にNiを1.5質量%前後に揃えて、Znの量を変化させた組み合わせである。Znが33質量%未満で不足していると、Niが十分あっても引張強さにはやや不安が残ることが実施例5で示されており、Znが十分な実施例18,20ではそれが改善されている。しかしZnが増えすぎて式3を満たさない実施例6では脱亜鉛腐食最大深さに問題の徴候がみられ、式2を満たさないほどのZnが増加した比較例9では脱亜鉛深さが最大平均ともに問題となってしまった。Niの添加により物性のバランスがとれる範囲が示されている。   Regarding Zn and Ni, combinations in which one content is almost the same and the other content is varied are shown in Table 2. Comparative Example 1 and Example 2 are combinations in which Zn is arranged around 33% by mass and the presence or absence of Ni is changed. In Example 2, it can be seen that the tensile strength is greatly improved by the addition of Ni. Comparative Example 3 and Example 12 are combinations in which Zn is aligned around 37 mass% and the presence or absence of Ni is changed. In Comparative Example 3, it is shown that dezincification corrosion occurs when Zn increases, but in Example 12 where Ni is added, it is shown that it is completely suppressed. Comparative Example 6 and Examples 3, 20, and 24 are combinations in which the amount of Ni is changed by aligning at about 39% by mass with more Zn. When Zn is increased, it can be seen that dezincification corrosion cannot be sufficiently suppressed only by adding a little Ni, and it is necessary to increase the amount of Ni to some extent. In Example 3 that satisfies Equation 2, this is slightly improved, In Examples 20 and 24 that satisfy Equation 3, it is shown that this is further improved. In contrast, Examples 5, 18, 20, 6 and Comparative Example 9 are combinations in which the amount of Zn is changed by aligning Ni around 1.5% by mass. Example 5 shows that when Zn is less than 33% by mass and there is a sufficient amount of Ni, the tensile strength remains somewhat uneasy, and in Examples 18 and 20 where Zn is sufficient, Has been improved. However, in Example 6, which does not satisfy Formula 3 because Zn increases too much, there is a sign of a problem in the maximum depth of dezincification corrosion, and in Comparative Example 9 where Zn increases so as not to satisfy Formula 2, the dezincification depth is maximum. Both averages became a problem. The range in which the physical properties are balanced by the addition of Ni is shown.

Figure 0005416323
Figure 0005416323

<Pの変動についての検証・1>
実施例20の値を基本として、P以外の含有量をこれに近い値に調製しつつ、Pの含有量を0から増加させた比較例11及び実施例26〜30を調製した。これらをPの含有量順に並べた比較例11(P=0)及び実施例26〜28,20,及び29〜30を表3に示す。Pが検出限界未満である比較例11では脱亜鉛腐食が激しかったが、Pを添加していった実施例26〜28では添加量に応じて脱亜鉛腐食が改善していった。一方、伸びはPの変化に対して複雑に変動し、表3中では実施例20で最大となったものの、それ以上にPが増加すると伸びは低下に転じてしまい、Pが0.450質量%の実施例30では評価が△になる程度まで低下した。
<Verification of fluctuations in P-1>
Based on the value of Example 20, Comparative Example 11 and Examples 26 to 30 in which the content of P was increased from 0 were prepared while adjusting the content other than P to a value close to this. Table 3 shows Comparative Example 11 (P = 0) and Examples 26 to 28, 20, and 29 to 30 in which these are arranged in the order of the P content. In Comparative Example 11 in which P was less than the detection limit, dezincification corrosion was severe, but in Examples 26 to 28 in which P was added, dezincification corrosion was improved according to the amount added. On the other hand, the elongation fluctuated in a complicated manner with respect to the change of P, and in Table 3, the maximum was found in Example 20, but when P increased further, the elongation turned to a decrease, and P was 0.450 mass. % Of Example 30 decreased to the extent that the evaluation was Δ.

Figure 0005416323
Figure 0005416323

<Pの変動についての検証・2>
実施例18の値を基本として、P以外の含有量をこれに近い値に調製しつつ、Pの含有量を0.5質量%以上に増加させた比較例12,13を調製した。これらをPの含有量順に並べて表4に示す。Pが0.5質量%を越えた比較例12では引張強さ、伸びともに大幅に悪化しており、Pが1.0質量%近い比較例13では脱亜鉛腐食が著しく悪化し、鋳造性にも問題を生じてしまった。
<Verification of fluctuations in P-2>
On the basis of the value of Example 18, Comparative Examples 12 and 13 were prepared in which the content of P was increased to 0.5% by mass or more while the content other than P was adjusted to a value close to this. These are shown in Table 4 in order of P content. In Comparative Example 12 in which P exceeded 0.5 mass%, both tensile strength and elongation were significantly deteriorated, and in Comparative Example 13 in which P was close to 1.0 mass%, the dezincification corrosion was remarkably deteriorated, and castability was improved. Also caused problems.

Figure 0005416323
Figure 0005416323

<Biの変動についての検証>
実施例19の値を基本として、Bi以外の含有量をこれに近い値に調製しつつ、Biの含有量を0質量%から7.68質量%まで増加させた比較例14、15,実施例31〜34を調製した。これらを、Biの含有量順に、比較例14,実施例31,実施例19、実施例32〜34、比較例15の順に並べて表5に示す。Biが検出限界未満である比較例14では脱亜鉛腐食が著しかったが、Biを0.30質量%加えた実施例31ではこれが著しく改善した。Biの含有量が4.0質量%近くなる実施例33まではBiの増加に従って耐脱亜鉛腐食性は改善する傾向にあったが、Biが4.0質量%を越えた実施例34では耐脱亜鉛腐食性は悪化に転じ、さらにBiを増やした比較例15では、耐脱亜鉛腐食性だけでなく、機械的性質も著しく悪化した。
<Verification of changes in Bi>
Comparative Examples 14, 15 and Examples in which the Bi content was increased from 0% by mass to 7.68% by mass while adjusting the content other than Bi to a value close to this based on the value of Example 19. 31-34 were prepared. These are shown in Table 5 in the order of Bi content, in the order of Comparative Example 14, Example 31, Example 19, Examples 32 to 34, and Comparative Example 15. In Comparative Example 14 where Bi is less than the detection limit, dezincification corrosion was remarkable, but in Example 31 where Bi was added in an amount of 0.30% by mass, this was remarkably improved. Up to Example 33 where the Bi content was close to 4.0% by mass, the dezincification corrosion resistance tended to improve as Bi increased, but in Example 34 where Bi exceeded 4.0% by mass, The dezincification corrosion property turned worse, and in Comparative Example 15 in which Bi was further increased, not only the dezincification corrosion resistance but also the mechanical properties were remarkably deteriorated.

Figure 0005416323
Figure 0005416323

<Alの含有量についての検証>
実施例18の値を基本として、含有量をこれに近い値に調製しつつ、実施例18では検出限界未満であったAlの量を増加させた実施例35,実施例36,比較例16を調製した。これらを、Alの含有量順に並べて表6に示す。Al含有量の増加に従って引張強さが著しく向上していった。一方で、Al増加量の増加に従って耐脱亜鉛腐食性が悪化していくとともに伸びも低下していき、Alが1.0質量%を越えると脱亜鉛腐食が許容限界を超えてしまった。
<Verification of Al content>
Example 35, Example 36, and Comparative Example 16 were prepared by increasing the amount of Al that was less than the detection limit in Example 18 while adjusting the content to a value close to this based on the value of Example 18. Prepared. These are shown in Table 6 in order of the Al content. As the Al content increased, the tensile strength improved significantly. On the other hand, the dezincification corrosion resistance deteriorates as the Al increase increases, and the elongation also decreases. When Al exceeds 1.0 mass%, the dezincification corrosion exceeds the allowable limit.

Figure 0005416323
Figure 0005416323

<Snの含有量についての検証>
実施例18の値を基本として、含有量をこれに近い値に調製しつつ、実施例18では検出限界未満であったSnの量を増加させた実施例37,比較例17を調製した。これらを、Snの含有量順に並べて表7に示す。Snを含有すると、著しく耐脱亜鉛腐食性が悪化し、0.29質量%の実施例37ですでに脱亜鉛深さは最大、平均ともにその影響が大きく、平均は○の範囲であるものの、最大は△の評価となった。0.38質量%の比較例17では実用上問題ある値となってしまった。なお、比較例17では脱亜鉛腐食の値が著しく悪かったため、機械的性質については測定していない。
<Verification of Sn content>
Based on the value of Example 18, while adjusting the content to a value close to this, Example 37 and Comparative Example 17 were prepared in which the amount of Sn that was less than the detection limit in Example 18 was increased. These are shown in Table 7 in order of Sn content. When Sn is contained, the dezincification corrosion resistance is remarkably deteriorated, and in Example 37 of 0.29% by mass, the dezincing depth is already the maximum, the influence of both the average is large, and the average is in the range of ○, The maximum was rated △. In the comparative example 17 of 0.38% by mass, a practically problematic value was obtained. In Comparative Example 17, since the value of dezincification corrosion was remarkably bad, the mechanical properties were not measured.

Figure 0005416323
Figure 0005416323

<Siの含有量についての検証>
実施例18の値を基本として、含有量をこれに近い値に調製しつつ、実施例18では検出限界未満であったSiの量を増加させた実施例38,比較例18を調製した。これらを、Siの含有量順に並べて表8に示す。Siの増加とともに伸びが低下し、0.5質量%を越えると伸びの評価は×となった。ただし、耐脱亜鉛腐食性については、Siを添加すると実施例38で一旦悪化するものの、よりSiを増やした比較例18では改善に転じており、Siの添加量によって変化する物性の管理が難しいことが示された。このため、Siは検出限界未満である方がよいと考えられる。
<Verification of Si content>
Based on the value of Example 18, while adjusting the content to a value close to this, Example 38 and Comparative Example 18 in which the amount of Si that was less than the detection limit in Example 18 was increased were prepared. These are shown in Table 8 in order of Si content. The elongation decreased with the increase of Si, and when it exceeded 0.5 mass%, the evaluation of elongation was x. However, the anti-dezincing corrosion resistance once deteriorated in Example 38 when Si was added, but has turned to improvement in Comparative Example 18 in which more Si is added, and it is difficult to manage the physical properties that change depending on the amount of Si added. It was shown that. For this reason, it is considered that Si should be less than the detection limit.

Figure 0005416323
Figure 0005416323

<Bの含有量についての検証>
実施例18の値を基本として、含有量をこれに近い値に調製しつつ、実施例18では検出限界未満であったBの量を増加させた実施例39〜42,比較例19を調製した。これらを、Bの含有量順に並べて表9に示す。実施例41まではBの増加とともに引張強さ及び耐脱亜鉛腐食性が向上した。ただし、Bが0.105質量%の実施例42ではBによる金属間化合物の増加や、引け巣などにより鋳造性がやや悪化し、脱亜鉛腐食においてもBが検出限界未満のものと比較してやや低下した。さらに、Bが0.201質量%の比較例19では金属間化合物により切削性が著しく低下するとともに、引け巣が多量発生したため水道用黄銅部材製品としての適用が困難な状態まで鋳造性が悪化し、さらに脱亜鉛腐食最大深さが実施例18と比較して2.5倍以上悪化してしまった。
<Verification of B content>
Based on the value of Example 18, while adjusting the content to a value close to this, Examples 39 to 42 and Comparative Example 19 were prepared in which the amount of B that was less than the detection limit in Example 18 was increased. . These are shown in Table 9 in order of content of B. Up to Example 41, the tensile strength and dezincification resistance improved with the increase of B. However, in Example 42 where B is 0.105% by mass, castability is slightly deteriorated due to an increase in intermetallic compounds due to B, shrinkage cavities, etc., and in dezincification corrosion, B is somewhat less than the detection limit. Declined. Further, in Comparative Example 19 in which B is 0.201% by mass, the machinability is remarkably lowered by the intermetallic compound, and a large amount of shrinkage nest is generated, so that the castability deteriorates to a state where it is difficult to apply as a brass member product for water supply. Furthermore, the maximum dezincification corrosion depth was deteriorated by 2.5 times or more compared with Example 18.

Figure 0005416323
Figure 0005416323

<脱亜鉛深さの実測データについて>
上記の脱亜鉛腐食試験における、脱亜鉛腐食の深さの観測データのうち、特徴的な例について選定した写真を示す。
<About measured data of dezincing depth>
The photograph selected about the characteristic example among the observation data of the depth of a dezincification corrosion in said dezincification corrosion test is shown.

図4に、亜鉛が41.2質量%で式2,3を満たさない比較例9の試料の100倍の断面拡大写真を示す。計測の結果、脱亜鉛腐食最大深さが313.3μmで△、脱亜鉛腐食平均深さが253.4μmで×となった。白黒では確認困難だが、表面付近から変色している部分が全体的に脱亜鉛腐食を起こしている。   FIG. 4 shows a cross-sectional enlarged photograph of 100 times that of the sample of Comparative Example 9 in which zinc is 41.2% by mass and does not satisfy Formulas 2 and 3. As a result of the measurement, the maximum dezincification corrosion depth was 313.3 μm, and the dezincification corrosion average depth was 253.4 μm, and x. Although it is difficult to confirm in black and white, the part discolored from the vicinity of the surface causes dezincing corrosion as a whole.

図5に、総合評価が○である実施例22の試料の200倍の断面拡大写真を示す。図4の倍のスケールである。計測の結果、脱亜鉛腐食最大深さが122.3μmで○、脱亜鉛腐食平均深さは41.1μmで○となった。白黒でも明らかなように、表面近傍は変色しておらず、相変化がほとんど生じていないことがわかる。   FIG. 5 shows a 200-fold enlarged photograph of the sample of Example 22 in which the overall evaluation is ○. It is a double scale of FIG. As a result of the measurement, the maximum dezincification corrosion depth was 122.3 μm, and the average dezincification corrosion depth was 41.1 μm. As can be seen from black and white, the vicinity of the surface is not discolored and it can be seen that there is almost no phase change.

図6に、Pを含まない比較例11の試料の200倍の断面拡大写真を示す。図5と同じスケールである。計測の結果、計測の結果、脱亜鉛腐食最大深さが293.9μmで△、脱亜鉛腐食平均深さは206.5μmで×となった。白黒では確認困難であるが、変色して相変化を起こしている部分が内部へ深く入り込んでいる箇所があり、当該部分が大きく脱亜鉛腐食を起こしてしまっていた。   FIG. 6 shows a 200-times enlarged photograph of the sample of Comparative Example 11 that does not contain P. It is the same scale as FIG. As a result of measurement, as a result of measurement, the maximum dezincification corrosion depth was 293.9 μm, and the average dezincification corrosion depth was 206.5 μm. Although it is difficult to confirm in black and white, there is a part where the part that has undergone a color change and phase change has penetrated deeply into the inside, and this part has caused dezincing corrosion greatly.

図7に、Biを含まない比較例14の試料の200倍の断面拡大写真を示す。図5と同じスケールである。計測の結果、脱亜鉛腐食最大深さが442.6μmで×、脱亜鉛腐食平均深さは334.8μmで×となった。白黒では確認困難であるが、変色して相変化を起こしている部分が200μm前後の深さまで到達しており、脱亜鉛腐食の最大深さはその変色域よりもさらに深いところまで到達してしまっていた。   FIG. 7 shows a 200-times enlarged photograph of the cross section of the sample of Comparative Example 14 that does not contain Bi. It is the same scale as FIG. As a result of the measurement, the maximum dezincification corrosion depth was 442.6 μm, and the average dezincification corrosion depth was 334.8 μm. Although it is difficult to confirm with black and white, the part where the phase change has occurred due to discoloration has reached a depth of around 200 μm, and the maximum depth of dezincification corrosion has reached even deeper than the discoloration range. It was.

Claims (3)

Niを0.3質量%以上5.5質量%以下、Pを0.005質量%以上0.5質量%以下、Biを0.1質量%以上5.0質量%以下含有するとともに、Znを含有し、
ZnとNiとの含有量(質量%)が下記の式(1)及び(2)を満足し、
残分が銅及び微量元素である水道部材用黄銅合金。
Zn+2.2×Ni≧32.5 ……(1)
Zn−1.3×Ni≦38.6 ……(2)
Ni is contained in an amount of 0.3 to 5.5% by mass, P is contained in an amount of 0.005 to 0.5% by mass, Bi is contained in an amount of 0.1 to 5.0% by mass, and Zn is contained. Contains,
The content (mass%) of Zn and Ni satisfies the following formulas (1) and (2),
Brass alloy for water supply components with the balance being copper and trace elements.
Zn + 2.2 × Ni ≧ 32.5 (1)
Zn-1.3 × Ni ≦ 38.6 (2)
請求項1にかかる水道部材用黄銅合金に、さらにBを0.001質量%以上0.15質量%以下含有した水道部材用黄銅合金。   The brass alloy for water supply members which further contained 0.001 mass% or more and 0.15 mass% or less B in the brass alloy for water supply members concerning Claim 1. 請求項1又は請求項2にかかる水道部材用黄銅合金に、さらにAlを0.2質量%以上1.0質量%以下含有した水道部材用黄銅合金。   The brass alloy for water supply members which contains 0.2 mass% or more and 1.0 mass% or less of Al further to the brass alloy for water supply members concerning Claim 1 or Claim 2.
JP2013536344A 2013-03-29 2013-03-29 Brass alloy for water supply components Active JP5416323B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059593 WO2014155692A1 (en) 2013-03-29 2013-03-29 Brass alloy for tap water supply members

Publications (2)

Publication Number Publication Date
JP5416323B1 true JP5416323B1 (en) 2014-02-12
JPWO2014155692A1 JPWO2014155692A1 (en) 2017-02-16

Family

ID=50202812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013536344A Active JP5416323B1 (en) 2013-03-29 2013-03-29 Brass alloy for water supply components

Country Status (2)

Country Link
JP (1) JP5416323B1 (en)
WO (1) WO2014155692A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311295A (en) * 1992-05-07 1993-11-22 Dowa Mining Co Ltd Copper base alloy for heat exchanger and its manufacture
JPH06200340A (en) * 1992-09-01 1994-07-19 American Teleph & Telegr Co <Att> Machinable alloy containing lead-free forged copper
JP2000239765A (en) * 1999-02-18 2000-09-05 Joetsu Material Kk Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
JP2005290475A (en) * 2004-03-31 2005-10-20 Dowa Mining Co Ltd Brass, its manufacturing method, and part using the same
WO2009048008A1 (en) * 2007-10-10 2009-04-16 Toto Ltd. Lead-free, free-machining brass having excellent castability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311295A (en) * 1992-05-07 1993-11-22 Dowa Mining Co Ltd Copper base alloy for heat exchanger and its manufacture
JPH06200340A (en) * 1992-09-01 1994-07-19 American Teleph & Telegr Co <Att> Machinable alloy containing lead-free forged copper
JP2000239765A (en) * 1999-02-18 2000-09-05 Joetsu Material Kk Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
JP2005290475A (en) * 2004-03-31 2005-10-20 Dowa Mining Co Ltd Brass, its manufacturing method, and part using the same
WO2009048008A1 (en) * 2007-10-10 2009-04-16 Toto Ltd. Lead-free, free-machining brass having excellent castability

Also Published As

Publication number Publication date
JPWO2014155692A1 (en) 2017-02-16
WO2014155692A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5522582B2 (en) Brass alloy for water supply components
US10337085B2 (en) Die casting aluminum alloy and production method thereof, and communications product
US9963764B2 (en) Lead-free free-machining brass having improved castability
JP5383730B2 (en) Eco-friendly manganese brass alloys and methods for producing them
JP5591661B2 (en) Copper-based alloy for die casting with excellent dezincification corrosion resistance
US11028465B2 (en) Low-cost lead-free dezincification-resistant brass alloy for casting
JP2010242184A (en) Lead-free, free-machining brass excellent in castability and corrosion resistance
JP5642603B2 (en) Lead-free free-cutting brass alloy for casting
US9963765B2 (en) Copper alloy for use in a member for use in water works
JP5416323B1 (en) Brass alloy for water supply components
JP6692317B2 (en) High corrosion resistance leadless brass alloy
JP6482530B2 (en) Low lead brass alloy for water supply components
US20110142715A1 (en) Brass alloy
WO2016157413A1 (en) Steel alloy for use in water supply member
JP2011179107A (en) Aluminum alloy extrusion material for connectors excellent in extrusion properties and sacrificial anode properties
JP4455507B2 (en) Valve for drinking water
JP2003147460A (en) Lead-free copper alloy for casting having excellent machinability
US20150104347A1 (en) Low Shrinkage Corrosion-Resistant Brass Alloy
JP2016113660A (en) Copper-based alloy for mold casting excellent in dezincification corrosion resistance
TWI485271B (en) Low shrinkage corrosion resistant brass alloy
JP4866716B2 (en) Copper alloy
JP2015227475A (en) Lead-free free-cutting bronze alloy for casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5416323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150