JP4866716B2 - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP4866716B2
JP4866716B2 JP2006343061A JP2006343061A JP4866716B2 JP 4866716 B2 JP4866716 B2 JP 4866716B2 JP 2006343061 A JP2006343061 A JP 2006343061A JP 2006343061 A JP2006343061 A JP 2006343061A JP 4866716 B2 JP4866716 B2 JP 4866716B2
Authority
JP
Japan
Prior art keywords
weight
copper alloy
less
content
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006343061A
Other languages
Japanese (ja)
Other versions
JP2008156666A (en
Inventor
山本  匡昭
大治郎 二川
清史 堤
泰 上田
片岡  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2006343061A priority Critical patent/JP4866716B2/en
Publication of JP2008156666A publication Critical patent/JP2008156666A/en
Application granted granted Critical
Publication of JP4866716B2 publication Critical patent/JP4866716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Domestic Plumbing Installations (AREA)

Description

この発明は、鉛の使用量を抑えた銅合金に関し、その銅合金を用いた水道用部材に関する。   The present invention relates to a copper alloy in which the amount of lead used is suppressed, and to a water supply member using the copper alloy.

従来、水道用資機材や給水装置の部品に用いられてきた鋳造溶製銅合金CAC406は鉛を4.0〜6.0重量%含んでおり、水道水への鉛の溶出が多く見られた。そのため、有害な鉛の溶出量を削減するために、鉛の含有量を低下させた、又は鉛を使用しない鉛フリー銅合金の製造が検討されている。   Conventionally, the cast and molten copper alloy CAC406, which has been used for parts of water supply equipment and water supply equipment, contains 4.0 to 6.0% by weight of lead, and many elutions of lead into tap water were observed. . Therefore, in order to reduce the amount of harmful lead elution, the production of lead-free copper alloys in which the lead content is reduced or lead is not used has been studied.

ただし、鉛の含有量を低下させたり、鉛を用いなかったりすると、銅合金の鋳造性や切削性、耐圧性が低下し、例えばバルブに用いた場合に水漏れが発生するなどの要因となっている。そこで、単に鉛の含有量を削減するだけではなく、銅合金としての機能の低下を抑えた合金が検討されている。   However, if the lead content is reduced or lead is not used, the castability, machinability, and pressure resistance of the copper alloy will decrease, causing water leakage when used for valves, for example. ing. Therefore, not only reducing the lead content but also examining an alloy that suppresses a decrease in the function as a copper alloy.

このような合金として、例えば、特許文献1に記載の、スズや亜鉛、リンとともに、鉛の代わりにビスマスやセレンを添加して伸びなどの機械的性質や切削性を高めた銅合金がある。この銅合金は、錫を2.8〜5.0重量%、ビスマスを0.4〜3.0重量%、セレンを0.35重量%以下、亜鉛を5.0〜10.0重量%、ニッケルを3.0重量%以下含有し、残分が銅からなる銅基合金である。   As such an alloy, for example, there is a copper alloy described in Patent Document 1 in which mechanical properties such as elongation and machinability are improved by adding bismuth and selenium instead of lead together with tin, zinc, and phosphorus. This copper alloy is composed of 2.8 to 5.0% by weight of tin, 0.4 to 3.0% by weight of bismuth, 0.35% by weight or less of selenium, 5.0 to 10.0% by weight of zinc, A copper-based alloy containing 3.0% by weight or less of nickel and the balance being copper.

WO 2004/022804 A1WO 2004/022804 A1

しかしながら、セレンには毒性があるため、セレンを多く含む合金は水道用部材として用いるには不適切であり、含有量は検出限界未満であることが求められた。しかし、特許文献1に記載の合金で、セレンの含有量を0%とすると、特許文献1(表7,供試品No.1〜7)に記載のように、鋳造欠陥を生じるなど物性に問題を生じることがあった。この傾向は特にビスマスの含有量が少ない場合に顕著であった。   However, since selenium is toxic, an alloy containing a large amount of selenium is unsuitable for use as a member for waterworks, and its content is required to be below the detection limit. However, in the alloy described in Patent Document 1, when the content of selenium is 0%, as described in Patent Document 1 (Table 7, Sample Nos. 1 to 7), physical properties such as casting defects are generated. There was a problem. This tendency was particularly remarkable when the bismuth content was low.

一方で、ビスマスは偏析の原因となりうるので、セレンを用いない代わりに、ビスマスを大量に含む銅合金を用いて水道用部材を作ると、部材内で成分が偏る可能性が高くなってしまうという問題があるので、出来るだけビスマスの含有量を低下させることが望ましかった。   On the other hand, since bismuth can cause segregation, instead of not using selenium, making a water supply member using a copper alloy containing a large amount of bismuth increases the possibility of components being biased in the member. Because of the problems, it was desirable to reduce the bismuth content as much as possible.

そこでこの発明は、スズ、亜鉛、ニッケル、ビスマス、リンを含有する水道用部材用の銅合金において、鉛の含有量が不純物として混入しうる範囲で、セレンを用いずに、かつ、ビスマスの使用量を抑えて、鋳造性や機械的性質を従来の鉛使用合金CAC406と同等以上にすることを目的とする。   Therefore, the present invention provides a copper alloy for water supply members containing tin, zinc, nickel, bismuth and phosphorus, and uses bismuth without using selenium as long as the lead content can be mixed as an impurity. The purpose is to reduce the amount and make the castability and mechanical properties equal to or higher than those of the conventional lead-containing alloy CAC406.

この発明は、スズ、亜鉛、ニッケル、ビスマス、リンを含む銅合金において、鉛の含有量を0.2重量%以下にし、セレンの含有量を検出限界未満としつつ、ビスマスの含有量を0.5重量%以上2.0重量%以下として、ニッケルの含有量を3.1重量%以上5.0重量%以下とすることにより、上記の課題を解決したのである。   According to the present invention, in a copper alloy containing tin, zinc, nickel, bismuth and phosphorus, the lead content is 0.2% by weight or less, the selenium content is less than the detection limit, and the bismuth content is 0.00. The above problem has been solved by setting the nickel content to be 3.1% by weight or more and 5.0% by weight or less by setting the content to 5% by weight to 2.0% by weight.

鉛、セレン及びビスマスの含有量を上記のように抑えることで鋳造性及び機械的性質が低下するが、ニッケルを3.1重量%以上含有させることで、その欠点を補うことができ、水道用部材の製造に適した銅合金とすることができる。   Although the castability and mechanical properties are reduced by suppressing the contents of lead, selenium and bismuth as described above, the disadvantage can be compensated for by containing 3.1% by weight or more of nickel. It can be set as the copper alloy suitable for manufacture of a member.

この発明にかかる銅合金を用いて水道用部材を製造すると、鋳造性及び機械的性質が良好であり、成分の偏在が起こりにくいので、良好な製品が得られる。また、その水道用部材から水中に有毒な鉛とセレンが溶出することを抑制できる。   When a member for water supply is manufactured using the copper alloy according to the present invention, good castability and mechanical properties are obtained, and uneven distribution of components hardly occurs, so that a good product can be obtained. Moreover, it can suppress that toxic lead and selenium elute in water from the member for water supply.

以下、この発明について詳細に説明する。この発明は、ニッケル、スズ、亜鉛、ビスマス、リンを所定量含有し、鉛とシリコンの含有量が所定量以下であり、セレンの含有量が検出限界未満である銅合金である。まず、この銅合金を構成する各々の元素について説明する。   The present invention will be described in detail below. The present invention is a copper alloy containing a predetermined amount of nickel, tin, zinc, bismuth and phosphorus, a lead and silicon content of not more than a predetermined amount, and a selenium content below the detection limit. First, each element constituting this copper alloy will be described.

上記銅合金は、スズを2.0重量%以上含むことが必要であり、2.4重量%以上であるとより好ましい。スズの含有量が上がるほど銅合金の引張強さは増加し、伸びは低下する傾向にある機械的性質の観点から、スズの含有量が2.0重量%未満であると、安定した引張強さを得られなくなる場合がある。一方で、スズの含有量は5.9重量%以下である必要があり、5.2重量%以下であると好ましい。5.9重量%を超えると、銅合金の伸びが低下し過ぎる場合がある。なお、この発明において機械的性質とは、引張強度や伸びを意味し、機械的性質がよいとは、引張強度が高く、伸びが高いことをいう。   The said copper alloy needs to contain tin 2.0weight% or more, and it is more preferable in it being 2.4 weight% or more. From the viewpoint of mechanical properties that the tensile strength of the copper alloy increases and the elongation tends to decrease as the tin content increases, when the tin content is less than 2.0% by weight, a stable tensile strength is obtained. You may not be able to get it. On the other hand, the tin content needs to be 5.9% by weight or less, and is preferably 5.2% by weight or less. If it exceeds 5.9% by weight, the elongation of the copper alloy may decrease too much. In the present invention, mechanical properties mean tensile strength and elongation, and good mechanical properties mean high tensile strength and high elongation.

上記銅合金は、亜鉛の含有量が5.0重量%以上である必要があり、6.0重量%以上であるとより好ましい。一方で、10.1重量%以下である必要がある。亜鉛には脱酸効果があり、湯流れ性を向上させ、機械的性質を安定にすることができる。上記の上限と下限の間となる含有量では、上記銅合金はほぼ同様の強度を示し、機械的性質への影響は小さいが、亜鉛の含有量が5.0重量%未満であると、上記銅合金の湯流れ性が不十分なものとなってしまうだけでなく、微小空隙が生じる場合がある。一方で、10.1重量%を超えると、伸びの低下が無視できなくなり、また、製造過程において、亜鉛滓により鋳造欠陥が増加する可能性が高まり、さらに、亜鉛の浸出基準値を超えて亜鉛の浸出量が多くなると、脱亜鉛腐食の危険性が高まるとともに、水道用部材として使用できなくなる。   The copper alloy needs to have a zinc content of 5.0% by weight or more, and more preferably 6.0% by weight or more. On the other hand, it is necessary to be 10.1% by weight or less. Zinc has a deoxidizing effect, can improve the hot water flow property, and can stabilize the mechanical properties. When the content is between the above upper limit and the lower limit, the copper alloy exhibits substantially the same strength, and the influence on the mechanical properties is small, but if the zinc content is less than 5.0% by weight, Not only will the hot water flow of the copper alloy be insufficient, it may cause microvoids. On the other hand, if it exceeds 10.1% by weight, the decrease in elongation cannot be ignored, and in the production process, there is a high possibility that casting defects will increase due to zinc soot, and the zinc leaching standard value will be exceeded. When the amount of leaching increases, the risk of dezincing corrosion increases and it cannot be used as a member for water supply.

上記銅合金は、リンの含有量が0.009重量%以上である必要があり、0.017重量%以上であると好ましい。一方、リンの含有量は0.15重量%以下である必要があり、0.10重量%以下であるとより好ましい。リンは、溶解や鋳造の際に脱酸剤として作用して、鋳造時の湯流れ性や、鋳物の健全性を高める効果がある。0.009重量%未満であるとその効果が不十分であり、鋳造欠陥等が生じやすくなるおそれが高まってしまう。一方で、0.15重量%を超えると、リンが鋳型の水分と反応して鋳造欠陥の要因となるおそれが高まる。   The copper alloy needs to have a phosphorus content of 0.009% by weight or more, and preferably 0.017% by weight or more. On the other hand, the phosphorus content must be 0.15% by weight or less, and more preferably 0.10% by weight or less. Phosphorus acts as a deoxidizer during melting and casting, and has the effect of increasing the hot water flow during casting and the soundness of the casting. If the amount is less than 0.009% by weight, the effect is insufficient, and the possibility that casting defects and the like are likely to occur increases. On the other hand, if it exceeds 0.15% by weight, the possibility that phosphorus reacts with the moisture in the mold and causes casting defects increases.

上記銅合金は、ビスマスの含有量が0.5重量%以上である必要がある。一方で、2.0重量%以下である必要がある。ビスマスは、実用範囲内のマトリックスに固溶せず、結晶粒界や粒内に存在するため、青銅鋳物に特有の凝固形態による鋳造欠陥の発生を抑制でき、また、合金内に含まれていると切削加工性を向上させる効果を有する。ビスマスの含有量が0.5重量%未満であるとその効果が不十分となる可能性がある。一方で、ビスマスが増加することにより引張強さは低下しないものの、伸びは低下する傾向にあり、2.0重量%を超えて過剰であると、伸びが低下しやすくなってしまう。   The copper alloy needs to have a bismuth content of 0.5% by weight or more. On the other hand, it is necessary to be 2.0% by weight or less. Bismuth does not dissolve in the matrix within the practical range, but exists in the grain boundaries and grains, so that it is possible to suppress the occurrence of casting defects due to the solidification form unique to bronze castings, and it is contained in the alloy. And has the effect of improving the machinability. If the bismuth content is less than 0.5% by weight, the effect may be insufficient. On the other hand, the tensile strength does not decrease due to the increase of bismuth, but the elongation tends to decrease. If it exceeds 2.0% by weight, the elongation tends to decrease.

ただし、ビスマスが多すぎると偏析が起こりやすくなるため、このビスマスの含有量は、1.1重量%未満であると好ましく、1.0重量%以下であるとより好ましい。この発明にかかる銅合金は、下記の量のニッケルが存在することで、ビスマスがこのような量であっても、鋳造欠陥や微小空隙の発生を抑え、機械的性質を従来の鉛含有合金と同等程度に維持することができる。   However, since segregation is likely to occur when there is too much bismuth, the bismuth content is preferably less than 1.1 wt% and more preferably 1.0 wt% or less. The copper alloy according to the present invention has the following amount of nickel, so that even if the amount of bismuth is such an amount, the occurrence of casting defects and microvoids is suppressed, and the mechanical properties are compared with conventional lead-containing alloys. It can be maintained at the same level.

上記銅合金は、ニッケルの含有量が3.1重量%以上である必要がある。この発明にかかる銅合金は、セレンやビスマスの含有量を抑えたことで発生しやすくなる鋳造欠陥や微小空隙を、十分な量のニッケルを含有させることで解決している。3.1重量%以上のニッケルを含有すればこの効果が十分に発揮されるが、3.1重量%未満であると、その鋳造欠陥や微小空隙の発生を抑える効果が不十分となる可能性がある。また、機械的性質の低下も無視できなくなる場合がある。一方で、ニッケルの含有量は5.0重量%以下である必要がある。5.0重量%を上回ると伸びが低下しすぎてしまったり、切削性が悪化したり、鋳造欠陥が生じやすくなってしまったりするためである。ニッケルは、主成分である銅と全率固溶体を形成し、結晶構造は銅と同じ面心立方格子からなるので、基材ベースの一方を担うのに適当である。また、凝固の際に固液界面での液相側のスズ濃度を緩和する効果が大きく、偏析を防止すると共に、鋳造欠陥を低減でき、耐圧性を向上する効果がある。さらに、スズ、リンと化合物を形成し、デンドライト間隙に生成するため、微小空隙を埋める働きをするとともに、その化合物がチップブレーカーの役割を果たし、細かく分断したせん断型切削粉を形成する役割がある。このような性質により、鉛、セレン、及びビスマスの含有量を抑制することによる性質の欠陥を補うことができる。   The copper alloy needs to have a nickel content of 3.1% by weight or more. The copper alloy according to the present invention solves the casting defects and minute voids that are likely to be generated by suppressing the content of selenium and bismuth by containing a sufficient amount of nickel. 3.1% by weight or more of nickel exhibits this effect sufficiently, but if it is less than 3.1% by weight, the effect of suppressing the occurrence of casting defects and microvoids may be insufficient. There is. In addition, a decrease in mechanical properties may not be ignored. On the other hand, the nickel content needs to be 5.0% by weight or less. This is because if the amount exceeds 5.0% by weight, the elongation is too low, the machinability is deteriorated, and casting defects are likely to occur. Nickel forms a complete solid solution with copper as the main component, and the crystal structure is composed of the same face-centered cubic lattice as copper, so it is suitable to bear one of the base materials. In addition, the effect of alleviating the tin concentration on the liquid phase side at the solid-liquid interface during solidification is great, preventing segregation, reducing casting defects, and improving pressure resistance. In addition, it forms a compound with tin and phosphorus, and forms in the dendrite gap, so that it fills the minute gaps, and the compound acts as a chip breaker, forming a finely divided shear type cutting powder. . With such properties, defects in properties due to suppression of the contents of lead, selenium, and bismuth can be compensated.

上記銅合金が含む鉛の量は、0.2重量%以下である必要があり、その中でも含有量が低いほどより好ましい。鉛は人体への影響が大きく、この発明にかかる水道用部材として用いた場合に水道水に浸出する量を出来るだけ抑える必要がある。0.2重量%を超えると、JWWA Z 108−浸出試験方法による浸出基準値を満足することが難しくなってしまう。また、鉛の含有量が増加しすぎると、引張強さや伸びが低下しすぎたり、鋳造欠陥等が生じてしまったりするおそれもある。なお、鉛の含有量は0であるのが最も好ましいが、資源の有効利用のためにリサイクル材料を用いて銅合金を作製する際に含有量が0となるのは現実的ではない。   The amount of lead contained in the copper alloy needs to be 0.2% by weight or less, and among them, the lower the content, the more preferable. Lead has a great influence on the human body, and when used as a member for water supply according to the present invention, it is necessary to suppress as much as possible the amount leached into tap water. If it exceeds 0.2% by weight, it will be difficult to satisfy the leaching standard value according to the JWWA Z 108-Leaching Test Method. Moreover, when lead content increases too much, there exists a possibility that tensile strength and elongation may fall too much, or a casting defect etc. may arise. Although the lead content is most preferably 0, it is not realistic that the content becomes 0 when a copper alloy is produced using a recycled material for effective use of resources.

上記銅合金が含むシリコンの量は、0.01重量%未満であると好ましい。シリコンは、銅合金の湯流れ性を向上させる効果がある反面、凝固する際に羊毛状の酸化シリコンを生成し、溶湯の補給性を低下させるだけでなく、固液界面での液相側のスズ濃度を高めてしまう効果がある。これにより、デンドライト間又は粒界に多くの微細な鋳造欠陥を発生させることを助長させ、水漏れの原因ともなる。さらに、含有していると上記銅合金の伸びを著しく低下させる。0.01重量%以上含むとこれらの不利な効果が無視できなくなってしまう。このため、出来るだけシリコンを含有しない方がよく、含有量が0.01重量%未満であればそれらの不利な効果はほとんど生じないで済む。   The amount of silicon contained in the copper alloy is preferably less than 0.01% by weight. Silicon has the effect of improving the flowability of the copper alloy, but it produces wool-like silicon oxide when solidified, not only lowering the replenishability of the molten metal, but also on the liquid phase side at the solid-liquid interface. There is an effect of increasing the tin concentration. This facilitates the generation of many fine casting defects between dendrites or grain boundaries, and also causes water leakage. Furthermore, when it contains, the elongation of the said copper alloy will fall remarkably. If the content is 0.01% by weight or more, these disadvantageous effects cannot be ignored. For this reason, it is better not to contain silicon as much as possible, and if the content is less than 0.01% by weight, those disadvantageous effects hardly occur.

上記の銅合金が含むセレンの量は、検出限界未満である必要がある。セレンは人体の必須成分であるが、一方で、大量に摂取すると毒性がある。このため、水道用部材の材料としてその銅合金を用いた場合、水中に溶出することで人体に与える毒性が無視できない場合がある。従って、セレンは少なければ少ないほど好ましく、この発明にかかる銅合金ではセレンが検出限界未満であることが必要であり、セレンが水中にまったく溶出しないことが好ましい。なお、この発明において検出限界とは、サーモエレクトロン社製:IRIS Advantage RPで検出できない値をいい、具体的には0.001重量%未満であると検出されない。   The amount of selenium contained in the copper alloy needs to be less than the detection limit. Selenium is an essential component of the human body, but it is toxic if taken in large quantities. For this reason, when the copper alloy is used as a material for water supply members, the toxicity to the human body due to elution in water may not be ignored. Therefore, the smaller the amount of selenium, the better. The copper alloy according to the present invention requires that selenium is less than the detection limit, and it is preferable that selenium does not elute into water at all. In the present invention, the detection limit refers to a value that cannot be detected by Thermo Electron Co., Ltd .: IRIS Advantage RP. Specifically, it is not detected if it is less than 0.001% by weight.

上記銅合金の、上記した以外の成分、すなわち残分は銅である。ただし、上記銅合金は、上記の成分と残分である銅以外に、不純物を含んでもよい。この不純物とは、上記銅合金を製造するにあたり、例えば、環境に配慮してリサイクル材料を利用する場合に、必然的に含まれるものである。もちろん、不純物の含有量が多いほど、目的とする性質を達成できなくなるおそれが高くなるため、不純物の含有量は少ないほど好ましい。ただし上記の通り、セレンの含有量は検出限界未満である必要がある。なお、ここで不純物とは、上記に列挙した以外の元素で、その含有量が1重量%未満であるものをいう。   Components other than those described above, that is, the remainder of the copper alloy are copper. However, the copper alloy may contain impurities in addition to the above components and the remaining copper. This impurity is inevitably included in the production of the copper alloy, for example, when a recycled material is used in consideration of the environment. Of course, the higher the impurity content, the higher the possibility that the intended properties cannot be achieved. Therefore, the lower the impurity content, the better. However, as described above, the selenium content needs to be less than the detection limit. Here, the impurity means an element other than those listed above, the content of which is less than 1% by weight.

この発明にかかる銅合金が含有する可能性がある不純物としては、例えば、鉄とアルミニウムとが挙げられる。いずれも、合金の製造工程において、他の合金を製造する際に装置に付着した成分により、混入するおそれがある。鉄は、新材配合時に混入すると、ハードスポット、すなわち、異物として現れるため、機械的性質の劣化や、切削性を低下させる原因となる。混入しうる量は、0.1重量%以上0.5重量%以下である場合が多く、0.3重量%以下であることが好ましい。アルミニウムは、上記のシリコンと同様の問題が生じる。すなわち、アルミニウム酸化物が溶湯中に懸濁することにより湯流れ性が悪化し、微細空隙が発生し、機械的性質と耐圧性とを低下させてしまう。これを抑制するため、0.01重量%以下であると好ましく、0.005重量%以下であるとより好ましい。   Examples of impurities that the copper alloy according to the present invention may contain include iron and aluminum. In either case, in the alloy manufacturing process, there is a risk of mixing due to components adhering to the apparatus when manufacturing another alloy. When iron is mixed at the time of blending a new material, it appears as a hard spot, that is, a foreign substance, which causes deterioration of mechanical properties and deterioration of machinability. The amount that can be mixed is often 0.1% by weight or more and 0.5% by weight or less, and preferably 0.3% by weight or less. Aluminum has the same problems as the above silicon. That is, when the aluminum oxide is suspended in the molten metal, the flowability of the molten metal is deteriorated, fine voids are generated, and the mechanical properties and pressure resistance are lowered. In order to suppress this, it is preferably 0.01% by weight or less, and more preferably 0.005% by weight or less.

なお、この発明において規定するそれぞれの成分の重量混合比は、製造段階での原料の混合比ではなく、原料を溶融して得られた合金における成分の重量混合比である。また、上記したそれぞれの成分の重量混合比は、それぞれの成分と残分である銅とを合わせて100重量%となる値である。上記の元素成分を含む銅合金は、一般的な銅合金の製造方法で得ることができ、この銅合金からなる銅合金系水道用部材は、上記銅合金を用いて一般的な鋳造方法により青銅鋳物として製造することが出来る。その方法としては、例えば高周波誘導溶解炉により溶解させる方法が挙げられる。   In addition, the weight mixing ratio of each component prescribed | regulated in this invention is not the mixing ratio of the raw material in a manufacture stage, but the weight mixing ratio of the component in the alloy obtained by fuse | melting a raw material. Moreover, the weight mixing ratio of each of the above-described components is a value that is 100% by weight of the respective components and the remaining copper. The copper alloy containing the above element components can be obtained by a general copper alloy manufacturing method, and a copper alloy water supply member made of this copper alloy is bronze by a general casting method using the above copper alloy. It can be manufactured as a casting. As the method, for example, a method of melting by a high frequency induction melting furnace can be mentioned.

なお、一般に青銅鋳物は、凝固温度範囲が広いため、マッシー型の凝固形態となる。一般に、鉛を含まない青銅鋳物は、デンドライト間隙に微細な収縮巣を発生させやすい。この性質は水道用部材に使用する材料として耐圧性を阻害し、水漏れが発生する要因となる。特に厚肉品であると、鋳造時の冷却速度が遅くなるためにこの傾向が顕著である。これに対して、鉛を多く含有している銅合金では、鉛が上記のデンドライト間隙に凝集し、微小空隙の発生を抑制する役割を果たしている。この発明にかかる銅合金では、この鉛の役割を、量を抑制したビスマスと、ニッケル−スズ化合物、ニッケル−リン化合物とによって補うことができる。すなわち、ニッケル及びビスマスを所定量添加することで、肉厚中心部に発生する微細な微小空隙を抑制できる。さらに、リンを所定量添加することでガス欠陥となる溶湯中の酸素と反応してPを形成させて、溶湯を健全化して、微小空隙の発生を抑制できる。なお、シリコンの含有量が多いと、ニッケル等によっても補えないほどの鋳造欠陥が生じる。 In general, a bronze casting has a wide solidification temperature range, and thus has a massy-type solidification form. Generally, bronze castings that do not contain lead tend to generate fine shrinkage nests in the dendrite gap. This property hinders pressure resistance as a material used for water supply members, and causes water leakage. Particularly in the case of thick-walled products, this tendency is remarkable because the cooling rate during casting becomes slow. On the other hand, in a copper alloy containing a large amount of lead, lead aggregates in the above dendrite gap and plays a role in suppressing the generation of microscopic voids. In the copper alloy according to the present invention, the role of lead can be supplemented by bismuth with a reduced amount, a nickel-tin compound, and a nickel-phosphorus compound. That is, by adding a predetermined amount of nickel and bismuth, it is possible to suppress the minute minute voids generated at the thickness center portion. Furthermore, by adding a predetermined amount of phosphorus, it reacts with oxygen in the molten metal that becomes a gas defect to form P 2 O 5 , and the molten metal is made sound and the generation of minute voids can be suppressed. When the silicon content is high, casting defects that cannot be compensated for by nickel or the like occur.

この発明にかかる銅合金を用いて水道用部材を製造すると、鉛を多く含有する銅合金CAC406による水道用部材と比べても、良好な湯流れ性、機械的性質、鋳造欠陥の少なさ、浸出特性、切削性等を発揮する。また、鉛の浸出が少なく、セレンの溶出を0に近づけた、安全性の高いものとなる。   When a member for water supply is manufactured using the copper alloy according to the present invention, compared with a member for water supply using the copper alloy CAC406 containing a large amount of lead, good hot water flow, mechanical properties, few casting defects, leaching Demonstrate properties and machinability. In addition, lead leaching is small, and the selenium elution is close to 0, which is highly safe.

具体的には、切削性としては、従来のCAC406合金を比較材として用いた場合の被削性係数が少なくとも70以上であり、配合比によってはより高い被削性係数を示すものである。   Specifically, as the machinability, the machinability coefficient is at least 70 or more when a conventional CAC406 alloy is used as a comparative material, and a higher machinability coefficient is exhibited depending on the blend ratio.

ここで被削性係数は、バイトにかかる主分力:P1(周方向の力)、送分力:P2(送り方向の力)、背分力:P3(工具の軸方向の力)の3つの応力を佐藤工機(株)製:AST式切削工具動力計AST−TTHにより測定し、また、比較材であるCAC406についても同様に3つの応力を測定して、下記式(1)により算出した。なお、下記式(1)中の「3合力」とは、下記式(2)により算出される値をいう。   Here, the machinability coefficient is 3 of main component force applied to the tool: P1 (force in the circumferential direction), feed force: P2 (force in the feed direction), and back component force: P3 (force in the axial direction of the tool). Sato Koki Co., Ltd .: AST type cutting tool dynamometer AST-TTH was measured, and for the comparative material CAC406, three stresses were similarly measured and calculated by the following formula (1) did. In addition, “3 resultant force” in the following formula (1) refers to a value calculated by the following formula (2).

(被削性係数)=(比較材の3合力)/(各々の材料の3合力)×100 (1)   (Machinability coefficient) = (3 resultant force of comparative material) / (3 resultant force of each material) × 100 (1)

(3合力)={(主分力)+(送分力)+(背分力)1/2 (2) (3 resultant force) = {(main component force) 2 + (feed component force) 2 + (back component force) 2 } 1/2 (2)

これらの数値を満たす上に、切削形状は渦巻き状、折れた切削粉状、又は剪断型切り屑状となり、直線やヘリカル巻、円筒巻きの形状にはならずに済む。   In addition to satisfying these numerical values, the cutting shape is a spiral shape, a broken cutting powder shape, or a sheared chip shape, and does not have a linear shape, a helical winding shape, or a cylindrical winding shape.

また、この発明にかかる銅合金の機械的性質は、JIS Z 2241に従って測定される引張強さと伸びとが、従来の鉛含有銅合金であるCAC406とほぼ同等以上であるので好ましい。具体的には、引張強さが195MPa以上であり、伸びが15%以上となる。   Further, the mechanical properties of the copper alloy according to the present invention are preferable because the tensile strength and elongation measured according to JIS Z 2241 are substantially equal to or higher than those of the conventional lead-containing copper alloy CAC406. Specifically, the tensile strength is 195 MPa or more and the elongation is 15% or more.

さらに、鋳造欠陥については、JIS Z 2343の浸透探傷試験において、肉厚中心部に欠陥指示模様が確認されず、従来の鉛含有銅合金であるCAC406と同様の鋳造方法での生産が可能である。   Further, regarding the casting defect, in the penetration inspection test of JIS Z 2343, the defect indicating pattern is not confirmed in the central portion of the thickness, and the production can be performed by the same casting method as the conventional lead-containing copper alloy CAC406. .

さらにまた、浸出特性等についても、JWWA Z 108−浸出試験方法−及びJWWA Z 110−浸出液−での分析方法で、鉛が0.001mg/l以下、亜鉛が0.1mg/l以下、銅が0.1mg/l以下、カドミウムが0.001mg/l以下、色度0.5以下、濁度0.2以下、味及び臭気については異常無いことが基準として定められているが、この発明にかかる銅合金はこれらの基準を満たしている。   Furthermore, with regard to leaching characteristics and the like, lead is 0.001 mg / l or less, zinc is 0.1 mg / l or less, and copper is analyzed by JWWA Z 108-leaching test method- and JWWA Z 110-leaching solution-. Standards are 0.1 mg / l or less, cadmium is 0.001 mg / l or less, chromaticity is 0.5 or less, turbidity is 0.2 or less, and there is no abnormality in taste and odor. Such copper alloys meet these criteria.

この発明にかかる銅合金を用いた銅合金系水道用部材とは、水道用施設や給水装置に使用される資機材及び給水器具などを主体とし、その他鉛害により使用する合金が制限される部材などをいう。具体的には、バルブ類では、仕切弁、補修弁、逆止弁、玉型弁、電磁弁、止水栓、サドル弁、吸水管バルブなどに使用される、管、弁体、軸受などが挙げられ、量水器では量水器ケース本体が挙げられ、その他には、配管用継手、給止水栓金具、ポンプ部品などが挙げられる。   The copper alloy water supply member using the copper alloy according to the present invention is mainly a material and water supply equipment used for water supply facilities and water supply devices, and other members whose alloys used due to lead damage are restricted. And so on. Specifically, in valves, pipes, valve bodies, bearings, etc. used for gate valves, repair valves, check valves, ball valves, solenoid valves, stop cocks, saddle valves, water intake pipe valves, etc. In the case of a water meter, a water meter case main body can be mentioned, and in addition, a pipe joint, a stop cock fitting, a pump part, etc. can be mentioned.

以下、実施例を挙げてこの発明をより具体的に説明する。それぞれの材料を混合し、高周波誘導溶解炉にて溶製した後、CO鋳型により鋳造して表1に記載の配合率となる各々の例で供試材を作製した。また、別途比較例として、従来から用いられていた鉛入りの青銅材料CAC406を基準材として用い、物性の比較対象とした。なお、ここで用いるCAC406の組成は、ニッケル0.2重量%、スズ5.8重量%、亜鉛5.1重量%、リン0.021重量%、鉛5.4重量%である。 Hereinafter, the present invention will be described more specifically with reference to examples. Each material was mixed and melted in a high-frequency induction melting furnace, and then cast with a CO 2 mold to prepare test materials in respective examples having the blending ratios shown in Table 1. In addition, as a comparative example, a lead-containing bronze material CAC406, which has been conventionally used, was used as a reference material, and was used as a physical property comparison target. The composition of CAC406 used here is 0.2% by weight of nickel, 5.8% by weight of tin, 5.1% by weight of zinc, 0.021% by weight of phosphorus, and 5.4% by weight of lead.

また、いずれの実施例、比較例においても、鉛、シリコン、セレンは材料としては含有させず、製造後の合金において、製造工程中で混入したと考えられる含有量を、マルチ型ICP発光分光分析装置(サーモエレクトロン社製:IRIS Advantage RP)により測定したところ、いずれの例においても鉛の含有量は0.001重量%以下であり、シリコンの含有量は0.01重量%以下であり、セレンは検出されなかった。なお、この検出装置はセレンが0.001重量%以上含まれていれば検出可能であるものである。また、それぞれの成分の含有量も、マルチ型ICP発光分光分析装置(サーモエレクトロン社製:IRIS Advantage RP)により測定したものである。   Also, in any of the examples and comparative examples, lead, silicon, and selenium are not included as materials, and the content considered to have been mixed in the manufacturing process in the manufactured alloy is determined by multi-type ICP emission spectroscopic analysis. When measured with an apparatus (manufactured by Thermo Electron: IRIS Advantage RP), the lead content in each example is 0.001 wt% or less, the silicon content is 0.01 wt% or less, and selenium Was not detected. In addition, this detection apparatus can detect if selenium is contained 0.001% by weight or more. The content of each component is also measured by a multi-type ICP emission spectroscopic analyzer (manufactured by Thermo Electron: IRIS Advantage RP).

それぞれの得られた銅合金及びCAC406について、下記の試験を行った。   The following tests were performed on the obtained copper alloys and CAC406.

<機械的性質試験>
各々の合金について、JIS H 5120に記載のA号供試材を鋳造した後、JIS Z 2201に従って4号試験片に機械加工を行い、JIS Z 2241に従って引張強さと伸びとを測定した。その結果の数値と、機械的性質としての評価を表1に示す。基準材である比較例と比べて、引張強さ(MPa)と伸び(%)のどちらも優れていれば「○」と判定し、どちらかが基準材より劣っていれば「×」と判定する。なお、比較材の引張強さの最低条件は195MPaであり、伸びの最低条件は15%である。
<Mechanical property test>
For each alloy, No. A specimen described in JIS H 5120 was cast, then No. 4 test piece was machined according to JIS Z 2201, and tensile strength and elongation were measured according to JIS Z 2241. The numerical values of the results and the evaluation as mechanical properties are shown in Table 1. If both tensile strength (MPa) and elongation (%) are superior compared to the reference material, which is a reference material, it is judged as “◯”, and if either is inferior to the reference material, it is judged as “x”. To do. The minimum condition for the tensile strength of the comparative material is 195 MPa, and the minimum condition for elongation is 15%.

<階段状供試材における浸透探傷試験>
各々の合金について、肉厚を20、30、40mmの3段階に変化させた図1に示すように押湯効果を少なくし鋳造欠陥を生じやすい形状とした階段状のCO鋳型を作製して、これにより得られた鋳物の中心部を切断し、JIS Z 2343 浸透探傷試験に従って試験を行い、この浸透探傷試験における鋳造欠陥及び微小空隙の発生状況を観察した。その判定した結果をそれぞれの表に示す。判定方法は、肉厚中心部に欠陥指示模様が確認されず、基準材となるJIS材CAC406と同様の鋳造方法での生産が可能であるものを(○)とし、肉厚中心部に欠陥指示模様が確認されるものの、同様の鋳造方法での生産が可能であるものを合格(△)とした。ただしこれは、鋳造品形状や鋳造条件によっては欠陥が発生する場合があるため、製造方法等を考慮すべきものである。また、その他の結果のものを(×)とした。その結果を表1に示す。また、断面の写真を図2に示す。また、実施例1−2,3−2で観測される赤色発光部は、観察面以外に残存した浸透液が発色したものであり、鋳造欠陥とは無関係なものである。
<Penetration flaw test on staircase specimen>
For each alloy, a stepped CO 2 mold was produced in which the thickness was changed in three stages of 20, 30, and 40 mm, as shown in FIG. The center portion of the casting thus obtained was cut and tested according to the JIS Z 2343 penetration test, and the occurrence of casting defects and microvoids in this penetration test was observed. The result of the determination is shown in each table. As for the judgment method, a defect indicating pattern is not confirmed in the central part of the wall thickness, and (○) indicates that the production can be performed by the same casting method as the JIS material CAC406 as the reference material, and the defective instruction is indicated in the central wall part. Although the pattern was confirmed, a product that could be produced by the same casting method was regarded as acceptable (Δ). However, since a defect may occur depending on the shape of casting and casting conditions, the manufacturing method and the like should be considered. In addition, the other results were taken as (x). The results are shown in Table 1. Moreover, the photograph of a cross section is shown in FIG. In addition, the red light emitting portions observed in Examples 1-2 and 3-2 are those in which the penetrating liquid remaining on the surface other than the observation surface is colored, and have nothing to do with casting defects.

<切削性試験>
それぞれの銅合金について、超硬の工具を使用し、切削速度を400(m/min)とし、切込量1.0mm、送り量0.1mm/revで旋盤加工を行い、その影響を調査した。評価方法は、基準材の合金(CAC406)の被削性係数を100として、各合金の被削性係数を比較した。表1にこの結果を示す。
<Machinability test>
For each copper alloy, a carbide tool was used, the cutting speed was set to 400 (m / min), lathe processing was performed with a cutting amount of 1.0 mm and a feeding amount of 0.1 mm / rev, and the influence was investigated. . In the evaluation method, the machinability coefficient of the reference material alloy (CAC406) was set to 100, and the machinability coefficients of the alloys were compared. Table 1 shows the results.

被削性係数の測定においては、上記式(1)及び(2)を用い、AST式切削工具動力計として、佐藤工機(株)製:AST−TTHを用い、各々の実施例の3つの応力(3合力)と、基準材であるCAC406の3つの応力(3合力)を測定して計算した。この被削性係数が70以上であれば良好と判定した。被削性係数が70未満となったものは、切削抵抗が大きく、切削速度を遅くしなければならず、生産性が低下した。   In the measurement of the machinability coefficient, the above formulas (1) and (2) are used, and as the AST-type cutting tool dynamometer, Sato Koki Co., Ltd .: AST-TTH is used. The stress (three resultant forces) and three stresses (three resultant forces) of the CAC406 that is the reference material were measured and calculated. If this machinability coefficient was 70 or more, it was determined to be good. When the machinability coefficient was less than 70, the cutting resistance was large, the cutting speed had to be slowed, and the productivity was lowered.

<浸出試験>
日本水道協会制定のJWWA Z 108−浸出試験方法−及びJWWA Z 110−浸出液−の分析方法に従い、試験を行った。その結果得られた総合評価を表1に示す。試験片と浸出溶液の接触面積比は、1000cm/リットルで実施した。その結果、鉛が0.001mg/l以下、亜鉛が0.1mg/l以下、銅が0.1mg/l以下、カドミウムが0.001mg/l以下、色度0.5以下、濁度0.2以下という基準を満たし、味及び臭気については異常無いものを○と判定し、条件を満たさない比較例1−1乃至1−4、比較例2−1、比較例4−2、基準材(CAC406)を×と判定した。
<Leaching test>
The test was conducted according to the analysis method of JWWA Z 108-Leaching test method- and JWWA Z 110-Leaching liquid established by the Japan Water Works Association. The overall evaluation obtained as a result is shown in Table 1. The contact area ratio between the test piece and the leaching solution was 1000 cm 2 / liter. As a result, lead is 0.001 mg / l or less, zinc is 0.1 mg / l or less, copper is 0.1 mg / l or less, cadmium is 0.001 mg / l or less, chromaticity is 0.5 or less, and turbidity is 0. Satisfying the criterion of 2 or less, and judging that there is no abnormality in the taste and odor as ○, Comparative Examples 1-1 to 1-4, Comparative Example 2-1, Comparative Example 4-2, Reference Material ( CAC406) was determined as x.

(ビスマス及びニッケル含有量についての検討)
表1に列挙したそれぞれの実施例及び比較例は、ニッケルの含有量によって区分している。比較例1−1乃至1−4はニッケルを材料としては含有させず検出されないものである。また、比較例2−1と、実施例1−1〜1−3はニッケルが3.1〜3.2重量%であり、比較例3−1,3−2と、実施例2−1〜2−3はニッケルが4.0〜4.2重量%である。また、実施例3−1〜3−4は、ニッケルが4.9〜5.0重量%であり、比較例4−1,4−2はニッケルが5.9〜6.0重量%である。
(Examination of bismuth and nickel content)
Each of the examples and comparative examples listed in Table 1 is classified according to the nickel content. Comparative Examples 1-1 to 1-4 do not contain nickel as a material and are not detected. Further, Comparative Example 2-1 and Examples 1-1 to 1-3 have 3.1 to 3.2% by weight of nickel, and Comparative Examples 3-1 and 3-2 and Examples 2-1 to In 2-3, nickel is 4.0 to 4.2% by weight. In Examples 3-1 to 3-4, nickel is 4.9 to 5.0% by weight, and in Comparative Examples 4-1 and 4-2, nickel is 5.9 to 6.0% by weight. .

ニッケルが0重量%であると、いずれの場合も浸透探傷試験及び浸出試験で問題が生じ、特にビスマスの含有量が低いと×の評価となった(比較例1−1〜1−4)。また、ビスマスを材料としては含有させず検出されないものであると、いずれの場合も切削性に問題が生じる結果となった(比較例2−1、比較例3−1)。   When nickel was 0% by weight, in all cases, problems occurred in the penetrant testing and leaching test. In particular, when the bismuth content was low, the evaluation was x (Comparative Examples 1-1 to 1-4). Moreover, it was the result which produced the problem in machinability in any case that bismuth was not contained as a material and was not detected (Comparative Example 2-1 and Comparative Example 3-1).

しかし、ビスマスが0.5〜2.0重量%であれば、ニッケルの含有量を3.1重量%以上とすることで、必要とする鋳造性を得ることができた(実施例1、実施例2,実施例3)。   However, if bismuth was 0.5 to 2.0% by weight, the required castability could be obtained by setting the nickel content to 3.1% by weight or more (Example 1, Implementation). Example 2, Example 3).

また、ニッケルが4.1重量%であると、ビスマスが検出限界未満でも浸透探傷試験の結果が良好であるので(比較例3−1)、適当な量のニッケルを含有することで、鋳造欠陥の発生を抑制することができることが示された。   Further, when the nickel content is 4.1% by weight, the result of the penetration flaw test is good even if the bismuth is less than the detection limit (Comparative Example 3-1). It was shown that generation | occurrence | production of can be suppressed.

一方で、ニッケルが5.0重量%を超えると、機械的性質及び切削性が悪化したり(比較例4−1)、機械的性質及び浸透探傷試験で問題が生じて浸出性能が悪化したり(比較例4−2)してしまった。   On the other hand, when nickel exceeds 5.0% by weight, mechanical properties and machinability are deteriorated (Comparative Example 4-1), problems occur in mechanical properties and penetration testing, and leaching performance is deteriorated. (Comparative Example 4-2).

押湯効果の少ない階段状の鋳型の形状図Staircase mold shape with little hot-water effect 階段状供試材の浸透探傷試験結果を示す各々の断面図Each cross-sectional view showing the results of penetration flaw testing on staircase specimens 階段状供試材の浸透探傷試験結果を示す各々の断面図Each cross-sectional view showing the results of penetration flaw testing on staircase specimens

Claims (3)

スズを2.0重量%以上5.9重量%以下、ニッケルを3.1重量%以上5.0重量%以下、亜鉛を5.0重量%以上10.1重量%以下、ビスマスを0.5重量%以上2.0重量%以下、リンを0.009重量%以上0.15重量%以下含有し、セレンの含有量が検出限界未満であり、鉛の含有量が0.2重量%以下であり、シリコンの含有量が0.01重量%以下であり、残分が銅と不可避不純物である銅合金。 Tin 2.0% to 5.9% by weight, nickel 3.1% to 5.0% by weight, zinc 5.0% to 10.1% by weight, bismuth 0.5% Not less than 2.0% by weight, not more than 0.009% by weight and not more than 0.15% by weight, the selenium content is less than the detection limit, and the lead content is not more than 0.2% by weight. A copper alloy having a silicon content of 0.01% by weight or less and the balance being copper and inevitable impurities. ビスマスの含有量が0.5重量%以上、1.1重量%未満である、請求項1に記載の銅合金。   The copper alloy according to claim 1, wherein the bismuth content is 0.5 wt% or more and less than 1.1 wt%. 請求項1又は2に記載の銅合金を用いた、銅合金系水道用部材。   The member for copper alloy-type waterworks using the copper alloy of Claim 1 or 2.
JP2006343061A 2006-12-20 2006-12-20 Copper alloy Active JP4866716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343061A JP4866716B2 (en) 2006-12-20 2006-12-20 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343061A JP4866716B2 (en) 2006-12-20 2006-12-20 Copper alloy

Publications (2)

Publication Number Publication Date
JP2008156666A JP2008156666A (en) 2008-07-10
JP4866716B2 true JP4866716B2 (en) 2012-02-01

Family

ID=39657910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343061A Active JP4866716B2 (en) 2006-12-20 2006-12-20 Copper alloy

Country Status (1)

Country Link
JP (1) JP4866716B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302722A (en) * 2001-04-09 2002-10-18 Chuetsu Metal Works Co Ltd High strength bronze alloy and production method therefor
JP2003193157A (en) * 2001-12-28 2003-07-09 Kitz Corp Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same
JP4455507B2 (en) * 2002-09-09 2010-04-21 株式会社キッツ Valve for drinking water

Also Published As

Publication number Publication date
JP2008156666A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP6335194B2 (en) Lead-free, easy-to-cut, corrosion-resistant brass alloy with good thermoformability
EP1777306B1 (en) Cast copper alloy article and method for casting thereof
KR101994170B1 (en) Brass alloy and processed part and wetted part
KR102623143B1 (en) Free-cutting copper alloy castings, and method for manufacturing free-cutting copper alloy castings
US9982327B2 (en) Brass alloy for tap water supply member
MXPA06002911A (en) Free-cutting copper alloy containing very low lead.
JP3946244B2 (en) Copper alloy waterworks components
JP2021042460A (en) Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
US20150368759A1 (en) Copper-base alloy
JP4866716B2 (en) Copper alloy
CA2137135A1 (en) Brass alloy
JP2005281800A (en) Copper-based alloy, and ingot and product using it
JP4866717B2 (en) Copper alloy
KR102334814B1 (en) Lead-free brass alloy for casting that does not contain lead and bismuth, and method for manufacturing the same
JP5566622B2 (en) Cast alloy and wetted parts using the alloy
WO2016157413A1 (en) Steel alloy for use in water supply member
CA2687452C (en) Brass alloy
KR102348780B1 (en) Brass alloy with improved corrosion resistance
KR102314457B1 (en) Low-lead brass alloy for plumbing member
JP2006111925A (en) Copper-base alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150