JP5415816B2 - Method for producing polyethylene terephthalate - Google Patents

Method for producing polyethylene terephthalate Download PDF

Info

Publication number
JP5415816B2
JP5415816B2 JP2009106458A JP2009106458A JP5415816B2 JP 5415816 B2 JP5415816 B2 JP 5415816B2 JP 2009106458 A JP2009106458 A JP 2009106458A JP 2009106458 A JP2009106458 A JP 2009106458A JP 5415816 B2 JP5415816 B2 JP 5415816B2
Authority
JP
Japan
Prior art keywords
pet
polycondensation reaction
polyethylene terephthalate
carboxylic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009106458A
Other languages
Japanese (ja)
Other versions
JP2010254805A (en
Inventor
達也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009106458A priority Critical patent/JP5415816B2/en
Publication of JP2010254805A publication Critical patent/JP2010254805A/en
Application granted granted Critical
Publication of JP5415816B2 publication Critical patent/JP5415816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、耐加水分解性の良好なポリエチレンテレフタレートを効率よく製造できる製造方法に関する。   The present invention relates to a production method capable of efficiently producing polyethylene terephthalate having good hydrolysis resistance.

ポリエチレンテレフタレートは機械特性、熱特性、耐薬品性、電気特性、成形性に優れ、様々な用途に用いられている。しかし、ポリエチレンテレフタレートは加水分解により機械物性が低下するため、長期にわたって使用する場合や湿気のある状態で使用する場合は、加水分解を抑制する必要があり、様々な検討がなされてきた。   Polyethylene terephthalate is excellent in mechanical properties, thermal properties, chemical resistance, electrical properties, and moldability, and is used in various applications. However, since the mechanical properties of polyethylene terephthalate decrease due to hydrolysis, it is necessary to suppress hydrolysis when used over a long period of time or in a wet state, and various studies have been made.

例えば、特許文献1にはエポキシ化合物を使用することでポリエステルの耐加水分解性を向上させる技術が開示されている。しかし、エポキシ化合物は、マテリアルリサイクルする際にゲル化して成形不良の原因となり、ケミカルリサイクルの際にも異物化したりするため、後の工程で別途除去する必要があり、環境的にも、生産性の点からも問題があった。また、特許文献2では、リン酸アルカリ金属塩など無機リン酸塩を緩衝剤として含有させることで、カルボン酸末端基数を少なくして耐加水分解性を向上させることが提案されている。しかしながら、通常触媒の失活剤(耐熱安定剤)として用いるリン化合物とは別に、さらにリン酸アルカリ金属塩を添加する必要があり、リン酸アルカリ金属塩の析出など別の新たな問題があった。   For example, Patent Document 1 discloses a technique for improving the hydrolysis resistance of polyester by using an epoxy compound. However, epoxy compounds gel when materials are recycled, causing molding defects and forming foreign objects during chemical recycling. Therefore, it is necessary to remove them separately in a later process. There was also a problem from this point. Patent Document 2 proposes that the hydrolysis resistance is improved by reducing the number of carboxylic acid end groups by containing an inorganic phosphate such as an alkali metal phosphate as a buffer. However, in addition to the phosphorus compound usually used as a catalyst deactivator (heat stabilizer), it is necessary to add an alkali metal phosphate, and there are other new problems such as precipitation of the alkali metal phosphate. .

一方、カルボン酸末端基数を低減するには、なるべくカルボン酸末端基数が増加しないような条件、例えば重縮合反応を低温で行うことなどが有効である。しかしながら、重縮合反応を低温で行うと、重縮合反応の反応速度が低下して生産性が損なわれ、実用には適さないといった問題があった。   On the other hand, in order to reduce the number of carboxylic acid end groups, it is effective to carry out a polycondensation reaction at a low temperature so that the number of carboxylic acid end groups is not increased as much as possible. However, when the polycondensation reaction is carried out at a low temperature, the reaction rate of the polycondensation reaction is lowered to impair the productivity, which is not suitable for practical use.

特開平9−227767号公報JP-A-9-227767 特開2007−277548号公報JP 2007-277548 A

本発明の目的は、これら従来の欠点を解消せしめ、耐加水分解性に優れたポリエチレンテレフタレートを、効率よく製造することができる製造方法を提供することにある。   An object of the present invention is to provide a production method capable of efficiently producing polyethylene terephthalate which has solved these conventional drawbacks and has excellent hydrolysis resistance.

本発明者らは、上記課題を解決しようと鋭意研究した結果、重縮合反応前に触媒の失活剤(以下、耐熱安定剤と称することもある。)として添加するリン化合物をフェニルホスホン酸にすることで、低温でも重縮合反応を効率よく進行させることができ、しかも低温で重合反応を行えることから、緩衝材やエポキシ化合物などを別途用いなくても加水分解を引き起こしやすいカルボン酸末端基の数が極めて少ないポリエチレンテレフタレートを製造することができることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have added a phosphorus compound to be added to phenylphosphonic acid as a catalyst deactivator (hereinafter sometimes referred to as a heat-resistant stabilizer) before the polycondensation reaction. As a result, the polycondensation reaction can proceed efficiently even at low temperatures and the polymerization reaction can be carried out at low temperatures, so that carboxylic acid end groups that tend to cause hydrolysis without using a buffer material or an epoxy compound are used. The inventors have found that polyethylene terephthalate having a very small number can be produced, and have reached the present invention.

かくして本発明によれば、テレフタル酸もしくはそのエステル形成性誘導体とエチレングリコールとをエステル交換反応もしくはエステル化反応させて前駆体を製造し、得られた前駆体を溶融状態で重縮合反応させるポリエチレンテレフタレートの製造方法において、
該重縮合反応の初期段階までに、全ジカルボン酸成分のモル数を基準として、5〜100mmol%のフェニルホスホン酸および重縮合反応触媒をこの順で添加し、
そして、重縮合反応を得られるポリエチレンテレフタレートの融点(Tm:℃)以上280℃以下の温度で固有粘度が0.45dl/g以上になるまで行い、カルボン酸末端基数が15eq/t以下であるポリエチレンテレフタレートの製造方法が提供される。
Thus, according to the present invention, a terephthalic acid or ester-forming derivative thereof and ethylene glycol are transesterified or esterified to produce a precursor, and the resulting precursor is polycondensed in a molten state. In the manufacturing method of
By the initial stage of the polycondensation reaction , 5 to 100 mmol% of phenylphosphonic acid and a polycondensation reaction catalyst are added in this order, based on the number of moles of all dicarboxylic acid components,
The melting point of the polyethylene terephthalate obtained by polycondensation reaction: There line to the intrinsic viscosity (Tm ° C.) or higher 280 ° C. below the temperature is higher than or equal to 0.45 dl / g, the carboxylic acid end groups is not more than 15 eq / t A method for producing polyethylene terephthalate is provided.

また、本発明によれば、本発明の好ましい態様として、溶融状態での重縮合反応終了後に、さらに固有粘度が0.60〜1.0の範囲となるまで固相重合を行うポリエチレンテレフタレートの製造方法も提供される。   Further, according to the present invention, as a preferred embodiment of the present invention, after completion of the polycondensation reaction in the molten state, the production of polyethylene terephthalate that undergoes solid phase polymerization until the intrinsic viscosity is in the range of 0.60 to 1.0. A method is also provided.

本発明によれば、特定のリン化合物を用いることで、低温で重縮合反応を行っても十分な重合反応性を維持することができ、しかも、低温で重縮合反応を効率よく行えることから、極めてカルボン酸末端基数が少ない耐加水分解性に優れるポリエチレンテレフタレートを生産性を損なうことなく提供することができる。   According to the present invention, by using a specific phosphorus compound, sufficient polymerization reactivity can be maintained even when a polycondensation reaction is performed at a low temperature, and the polycondensation reaction can be efficiently performed at a low temperature. Polyethylene terephthalate having an extremely small number of carboxylic acid end groups and excellent hydrolysis resistance can be provided without impairing productivity.

本発明のポリエチレンテレフタレート(以下、PETと称することがある。)の製造方法は、テレフタル酸もしくはそのエステル形成性誘導体とエチレングリコールとをエステル交換反応もしくはエステル化反応させて前駆体を製造し、得られた前駆体を触媒の存在下で重縮合反応させる製造方法であり、本発明の好ましい態様として、さらに固相重合を行う製造方法を包含する。なお、テレフタル酸のエステル形成性誘導体としては、テレフタル酸のジメチルエステル、ジエチルエステル、ジプロピルエステルなどの低級アルキルエステルが挙げられる。   The method for producing the polyethylene terephthalate (hereinafter sometimes referred to as PET) of the present invention comprises producing a precursor by transesterifying or esterifying terephthalic acid or an ester-forming derivative thereof with ethylene glycol. This is a production method in which the obtained precursor is subjected to a polycondensation reaction in the presence of a catalyst, and a preferred embodiment of the present invention further includes a production method in which solid phase polymerization is performed. Examples of ester-forming derivatives of terephthalic acid include lower alkyl esters such as dimethyl ester, diethyl ester, and dipropyl ester of terephthalic acid.

本発明の製造方法は、テレフタル酸のエステル形成性誘導体を原料とするエステル交換反応とテレフタル酸を原料とするエステル化反応のどちらの反応を経由してもよい。エステル交換反応およびエステル化反応は、その条件や触媒などは特に制限されず、それ自体公知の方法を好適に採用できる。具体的なエステル交換反応触媒としては、カルシウム化合物、マグネシウム化合物、マンガン化合物、チタン化合物などが好適に挙げられる。他方、エステル化反応を経由する場合、エステル化反応の条件や触媒などは特に制限されず、それ自体公知の方法を好適に採用できる。エステル化反応触媒については、使用してもしなくても良いが、使用する場合は前述のエステル交換反応触媒で例示したものが好ましく挙げられる。   The production method of the present invention may pass through either a transesterification reaction using an ester-forming derivative of terephthalic acid as a raw material or an esterification reaction using terephthalic acid as a raw material. The conditions and catalyst for the transesterification reaction and esterification reaction are not particularly limited, and a method known per se can be suitably employed. Specific examples of the transesterification reaction catalyst include calcium compounds, magnesium compounds, manganese compounds, titanium compounds, and the like. On the other hand, in the case of passing through the esterification reaction, the conditions for the esterification reaction and the catalyst are not particularly limited, and a method known per se can be suitably employed. The esterification reaction catalyst may or may not be used, but when it is used, those exemplified for the above-mentioned transesterification reaction catalyst are preferable.

また、本発明の製造方法では、エステル化反応初期から中期の間もしくはエステル交換反応開始前から反応初期の間に、得られるPETのカルボン酸末端基数をさらに低減するために、微量の水酸化カリウムなどのアルカリ金属化合物を添加しても良い。また、静電印加特性の向上を図るために、エステル化反応終了から重縮合反応初期までの間、あるいはエステル交換反応開始前に、微量の酢酸マグネシウムなどのマグネシウム化合物を添加しても良い。   In addition, in the production method of the present invention, a small amount of potassium hydroxide is used to further reduce the number of carboxylic acid end groups of the obtained PET between the early stage and the middle stage of the esterification reaction or before the beginning of the transesterification reaction and the early stage of the reaction. You may add alkali metal compounds, such as. In order to improve electrostatic application characteristics, a trace amount of a magnesium compound such as magnesium acetate may be added from the end of the esterification reaction to the beginning of the polycondensation reaction or before the start of the transesterification reaction.

このようにして、エステル交換反応またはエステル化反応を経由して得られた前駆体を、溶融状態で重縮合反応させる。この際、重縮合反応の初期段階までに、好ましくはエステル交換反応もしくはエステル化反応終了後から固有粘度0.3dl/gになるまでの重縮合反応中に、フェニルホスホン酸と、重縮合反応触媒としてのアンチモン化合物、ゲルマニウム化合物、またはチタン化合物などの触媒をそれぞれ添加することが好ましい。その添加順序としては、フェニルホスホン酸、重縮合反応触媒の順で添加間隔を5分以上あけることが重縮合反応性、耐加水分解性の点から好ましい。   In this way, the precursor obtained via the transesterification or esterification reaction is subjected to a polycondensation reaction in a molten state. In this case, phenylphosphonic acid and the polycondensation reaction catalyst are prepared by the initial stage of the polycondensation reaction, preferably during the polycondensation reaction until the intrinsic viscosity becomes 0.3 dl / g after completion of the transesterification reaction or esterification reaction. It is preferable to add a catalyst such as an antimony compound, a germanium compound, or a titanium compound. As the order of addition, it is preferable from the viewpoint of polycondensation reactivity and hydrolysis resistance that the addition interval is 5 minutes or more in the order of phenylphosphonic acid and polycondensation reaction catalyst.

ところで、本発明の特徴は、フェニルホスホン酸を耐熱安定剤として添加し、かつ重縮合反応を、得られるPETの融点(Tm:℃)以上280℃以下、さらにはTm以上275℃以下で行うことにある。通常PETは、280〜300℃で重縮合反応が行われるが、耐熱安定剤であるリン化合物としてフェニルホスホン酸を用いることで、通常では重縮合反応の反応速度が不十分で生産性が損なわれるような低い温度でも、十分な重縮合反応速度を維持しつつ、カルボン酸末端基数を低減させることができたのである。   By the way, the feature of the present invention is that phenylphosphonic acid is added as a heat-resistant stabilizer, and the polycondensation reaction is performed at a melting point (Tm: ° C.) or higher and 280 ° C. or lower, and further Tm or higher and 275 ° C. or lower of the obtained PET. It is in. Usually, polycondensation reaction is carried out at 280 to 300 ° C in PET, but by using phenylphosphonic acid as a phosphorus compound that is a heat stabilizer, the reaction rate of polycondensation reaction is usually insufficient and productivity is impaired. Even at such a low temperature, the number of carboxylic acid end groups could be reduced while maintaining a sufficient polycondensation reaction rate.

フェニルホスホン酸の添加量は、PETを構成する全酸成分のモル数を基準として、5〜100mmol%、さらに10〜80mmol%である。フェニルホスホン酸の添加量が下限未満では十分な耐加水分解性、すなわちカルボン酸末端基の低減効果が得られず、他方上限を超えると、含有量に対する耐加水分解性の改善効果が少なく、耐熱性が低下したり、重縮合反応速度が遅くなって、生産性が低下したりすることがある。もちろん、本発明の製造方法は、リン化合物としてフェニルホスホン酸を上記添加量の範囲で用いていればよく、本発明の効果を損なわない範囲で、他のリン化合物を併用しても良い。ただし、重縮合反応速度を低下させずに、カルボン酸末端基数を低減させる観点からは、耐熱安定剤として添加するリン化合物の大半、好ましくは90重量%以上が、フェニルホスホン酸であることが好ましい。   The addition amount of phenylphosphonic acid is 5 to 100 mmol%, and further 10 to 80 mmol%, based on the number of moles of all acid components constituting PET. If the amount of phenylphosphonic acid added is less than the lower limit, sufficient hydrolysis resistance, that is, a reduction effect of carboxylic acid end groups cannot be obtained, and if the upper limit is exceeded, there is little effect of improving hydrolysis resistance with respect to the content, and heat resistance The productivity may be lowered, or the polycondensation reaction rate may be slowed to reduce the productivity. Of course, the manufacturing method of this invention should just use the phenylphosphonic acid as a phosphorus compound in the range of the said addition amount, and may use another phosphorus compound together in the range which does not impair the effect of this invention. However, from the viewpoint of reducing the number of carboxylic acid end groups without reducing the polycondensation reaction rate, most of the phosphorus compound added as a heat-resistant stabilizer, preferably 90% by weight or more, is preferably phenylphosphonic acid. .

フェニルホスホン酸の添加方法としては、エチレングリコール溶液や粉体など、どの形態で添加しても構わないが、エチレングリコール溶液として添加することが好ましい。エチレングリコール溶液として添加する場合の濃度は、20重量%以下が、添加口付近へのフェニルホスホン酸の付着が少なく、添加量の誤差が小さくなる点、及び反応性の点で好ましい。   As a method for adding phenylphosphonic acid, it may be added in any form such as an ethylene glycol solution or powder, but it is preferably added as an ethylene glycol solution. The concentration in the case of adding as an ethylene glycol solution is preferably 20% by weight or less from the viewpoint of less adhesion of phenylphosphonic acid in the vicinity of the addition port, reducing the error of the addition amount, and reactivity.

つぎに、本発明の製造方法における重縮合反応について、説明する。本発明では重縮合反応は十分な重縮合反応速度を確保するために、触媒の存在下で行う。具体的な重縮合触媒としては、それ自体公知のアンチモン化合物、ゲルマニウム化合物、チタン化合物、アルミニウム化合物などを用いることができる。   Next, the polycondensation reaction in the production method of the present invention will be described. In the present invention, the polycondensation reaction is carried out in the presence of a catalyst in order to ensure a sufficient polycondensation reaction rate. Specific examples of the polycondensation catalyst include per se known antimony compounds, germanium compounds, titanium compounds, aluminum compounds, and the like.

重縮合反応触媒として、アンチモン化合物、ゲルマニウム化合物またはアルミニウム化合物を用いる場合、それらの添加量は、それぞれの金属(アンチモン、ゲルマニウム、アルミニウムなど)元素として、得られるPETの全酸成分のモル数を基準として、10〜50mmol%であることが重縮合反応性、固相重合反応性の点から好ましく、さらに耐熱性、耐加水分解性の点からは15〜40mmol%であることが好ましい。触媒としての金属(アンチモン、ゲルマニウム、アルミニウムなど)元素量が上限を超えると重縮合反応性は向上するものの、再溶融時の分解反応も促進されるため、カルボン酸末端基が増加し、得られるPETの耐加水分解性や耐熱性が低下しやすくなる。具体的な触媒として用いるアンチモン化合物としては、五酸化アンチモン、三酸化アンチモンが挙げられ、具体的なゲルマニウム化合物としては、二酸化ゲルマニウムを挙げることができ、それぞれ目的に応じて使い分けることができる。例えば、色調が最も良好となるのはゲルマニウム化合物であり、固相重合反応性が良好となるのはアンチモン化合物である。   When an antimony compound, germanium compound or aluminum compound is used as a polycondensation reaction catalyst, the amount of addition is based on the number of moles of all acid components of the resulting PET as each metal (antimony, germanium, aluminum, etc.) element. 10 to 50 mmol% is preferable from the point of polycondensation reactivity and solid phase polymerization reactivity, and further from 15 to 40 mmol% from the viewpoint of heat resistance and hydrolysis resistance. If the amount of metal (antimony, germanium, aluminum, etc.) as a catalyst exceeds the upper limit, the polycondensation reactivity is improved, but the decomposition reaction at the time of remelting is also promoted, resulting in an increase in carboxylic acid end groups. The hydrolysis resistance and heat resistance of PET are likely to decrease. Specific examples of the antimony compound used as the catalyst include antimony pentoxide and antimony trioxide. Specific examples of the germanium compound include germanium dioxide, which can be used depending on the purpose. For example, the germanium compound has the best color tone, and the antimony compound has the best solid-phase polymerization reactivity.

また、前述のとおり、チタン化合物を重縮合触媒として使用してもよく、その場合は、得られるPETの全酸成分のモル数を基準として、チタン元素として1〜10mmol%の範囲で用いることが、重縮合反応および固相重合での反応性の点から好ましい。チタン元素量が上限を超えると重縮合反応や固相重合の反応性は向上するものの、耐熱性、耐加水分解性、色調が低下しやすく、他方下限未満では、重縮合反応や固相重合での反応性が低下し、生産性が損なわれやすい。重縮合触媒として使用されるチタン触媒としては、テトラブトキシチタネートやテトライソプロピルチタネートなどのアルコキシドや、チタンと乳酸、クエン酸などとのチタンキレート化合物などを挙げることができ、中でもチタンキレート化合物であることが耐熱性、耐加水分解性、色調の点から好ましい。   In addition, as described above, a titanium compound may be used as a polycondensation catalyst. In that case, the titanium element may be used in a range of 1 to 10 mmol% as a reference based on the number of moles of all acid components of the obtained PET. From the viewpoint of reactivity in polycondensation reaction and solid phase polymerization. When the amount of titanium element exceeds the upper limit, the reactivity of polycondensation reaction and solid phase polymerization is improved, but heat resistance, hydrolysis resistance and color tone tend to decrease. This reduces the reactivity of the product and tends to impair productivity. Examples of the titanium catalyst used as the polycondensation catalyst include alkoxides such as tetrabutoxy titanate and tetraisopropyl titanate, and titanium chelate compounds of titanium and lactic acid, citric acid, etc. Among them, titanium chelate compounds Is preferable from the viewpoint of heat resistance, hydrolysis resistance, and color tone.

本発明のPETの製造方法は、このような溶融状態での重縮合反応(以下、溶融重合と称することがある。)を、得られるPETの固有粘度が0.45dl/g以上になるまで行う必要があり、さらには0.50〜0.60dl/gの範囲となるように行うことが好ましい。固有粘度が0.45未満である場合、得られるPETの分子量が低すぎて十分な機械物性が得られなかったりすることがある。なお、固有粘度の上限は特に制限されないが、溶融重合の重合時間を過度に長くしない点から、0.60以下であることが好ましい。また、本発明のPETの製造方法によって得られるPETのカルボン酸末端基数は、耐加水分解性の点から、15eq/t以下であることが好ましく、さらに13eq/t以下であることが好ましい。下限は特に制限されないが、生産性などの点から5eq/t以上である。   The PET production method of the present invention performs such a polycondensation reaction in a molten state (hereinafter sometimes referred to as melt polymerization) until the intrinsic viscosity of the resulting PET becomes 0.45 dl / g or more. It is necessary, and it is preferable to carry out in a range of 0.50 to 0.60 dl / g. If the intrinsic viscosity is less than 0.45, the molecular weight of the obtained PET may be too low to obtain sufficient mechanical properties. The upper limit of the intrinsic viscosity is not particularly limited, but is preferably 0.60 or less from the viewpoint of not excessively increasing the polymerization time of melt polymerization. In addition, the number of carboxylic acid terminal groups of PET obtained by the method for producing PET of the present invention is preferably 15 eq / t or less, more preferably 13 eq / t or less, from the viewpoint of hydrolysis resistance. Although a minimum in particular is not restrict | limited, From points, such as productivity, it is 5 eq / t or more.

なお、本発明の製造方法では、本発明の効果を損なわない範囲で、得られるPETにそれ自体公知の共重合成分を共重合してもよい。好ましくは、得られるPETの全ジカルボン酸成分のモル数を基準として、95mol%以上がテレフタル酸成分、全グリコール成分のモル数を基準として、95mol%以上がエチレングリコール成分であることが、耐加水分解性やさらには耐熱性の好ましい。共重合成分の割合が下限未満にあることで、融点降下による耐熱性の低下や結晶化度低下による耐加水分解性の低下を抑制することができる。   In addition, in the manufacturing method of this invention, you may copolymerize a copolymerization component known per se to PET obtained in the range which does not impair the effect of this invention. Preferably, 95 mol% or more is terephthalic acid component based on the number of moles of all dicarboxylic acid components of the obtained PET, and 95 mol% or more of ethylene glycol component is based on the number of moles of all glycol components. Decomposability and heat resistance are preferred. When the ratio of the copolymerization component is less than the lower limit, a decrease in heat resistance due to a melting point drop and a decrease in hydrolysis resistance due to a decrease in crystallinity can be suppressed.

このように溶融重合によって所定の溶融粘度になったPETは、重縮合反応を終了し、吐出して、繊維やフィルムなどにそのまま成形しても良いし、一旦ストランド化し、カッティングを行い、チップ化してもよい。   In this way, PET having a predetermined melt viscosity by melt polymerization may end the polycondensation reaction, be ejected, and may be directly molded into fibers, films, etc., or may be converted into strands, cut, and chipped. May be.

ところで、本発明のPETの製造方法は、さらに固相重合することが、より良好な耐加水分解性を有するPETとすることができるので好ましい。以下、固相重合について、さらに詳述する。   By the way, in the method for producing PET of the present invention, it is preferable to further carry out solid-phase polymerization since it can be a PET having better hydrolysis resistance. Hereinafter, the solid phase polymerization will be described in more detail.

本発明における固相重合は、それ自体公知の方法を好適に使用でき、特に限定されるものではないが、例えば、真空下あるいは窒素気流下、150〜250℃の温度下で、所望の固有粘度になるまで、固体状態のポリエチレンテレフタレート、例えば前述のチップ化したものを滞留させて重合反応させればよい。PETのチップを前記の条件下で滞留させる方法については、例えば、回転する密閉反応容器内で滞留させる方法、一定の容積をもつ反応槽内を連続的にチップを移動させながら任意の時間滞留させる方法などがあげられる。   The solid phase polymerization in the present invention can be suitably performed by a method known per se, and is not particularly limited. For example, a desired intrinsic viscosity can be obtained at a temperature of 150 to 250 ° C. under a vacuum or a nitrogen stream. Until then, a solid state polyethylene terephthalate, for example, the above-mentioned chipped state may be retained to cause a polymerization reaction. Regarding the method of retaining the PET chip under the above-mentioned conditions, for example, the method of retaining in a rotating sealed reaction vessel, or the retention of an arbitrary time while moving the chip continuously in a reaction tank having a certain volume. Methods.

このように固相重合して得られるPETは、固有粘度が0.60〜1.0dl/gの範囲にあることが好ましい。固有粘度が下限未満であると、固相重合による分子量の増加が不十分であるため、固相重合前のPET対比、耐加水分解性の向上効果が小さくなる。他方、固有粘度が上限を超えると分子量の増加は十分であるが、粘度が高過ぎるため、フィルムなどの成形のための溶融押出時の負荷が大きくなり正常な押出が困難となる。固相重合後のPETの固有粘度は、好ましくは0.65〜0.95dl/gの範囲であり、更に好ましくは0.70〜0.90dl/gの範囲である。   Thus, it is preferable that PET obtained by solid phase polymerization has an intrinsic viscosity in the range of 0.60 to 1.0 dl / g. When the intrinsic viscosity is less than the lower limit, the increase in molecular weight due to solid phase polymerization is insufficient, and the effect of improving the PET resistance and hydrolysis resistance before solid phase polymerization becomes small. On the other hand, when the intrinsic viscosity exceeds the upper limit, the increase in molecular weight is sufficient, but since the viscosity is too high, the load during melt extrusion for forming a film or the like becomes large and normal extrusion becomes difficult. The intrinsic viscosity of PET after solid phase polymerization is preferably in the range of 0.65 to 0.95 dl / g, more preferably in the range of 0.70 to 0.90 dl / g.

また、固相重合後のPETのカルボン酸末端基数は12eq/t以下、さらに10eq/t以下、特に8eq/t以下であることが好ましい。固相重合後のPETのカルボン酸末端基数が上限を超えると、固相重合によるカルボン酸末端基数の低減化効果が不十分であり、固相重合前のPET対比、耐加水分解性の向上効果が乏しい。なお、通常では固相重合でもここまでカルボン酸末端基数を少なくするのは難しいが、本発明の製造方法では、溶融重合の段階で、すでにカルボン酸末端基数が低減されているので、特に過酷な固相重合の条件を取らなくても、極めてカルボン酸末端基数を低減することができる。カルボン酸末端基数の下限は特に制限されないが、生産性などの点から3eq/t程度である。   Further, the number of carboxylic acid end groups of PET after solid phase polymerization is preferably 12 eq / t or less, more preferably 10 eq / t or less, and particularly preferably 8 eq / t or less. If the number of carboxylic acid end groups in PET after solid-phase polymerization exceeds the upper limit, the effect of reducing the number of carboxylic acid end groups by solid-phase polymerization is insufficient, and the effect of improving hydrolysis resistance compared to PET before solid-phase polymerization Is scarce. Usually, even in solid phase polymerization, it is difficult to reduce the number of carboxylic acid end groups so far. However, in the production method of the present invention, the number of carboxylic acid end groups is already reduced at the stage of melt polymerization. The number of carboxylic acid end groups can be greatly reduced without taking the conditions for solid phase polymerization. The lower limit of the number of carboxylic acid end groups is not particularly limited, but is about 3 eq / t from the viewpoint of productivity.

このように固相重合を経て得られたPETを、乾燥後、溶融押出し、例えば紡糸・延伸により繊維とすることができ、またシート状に押出し、二軸延伸することで二軸配向フィルムとすることができる。もちろん、このような繊維やフィルムに成形する際の溶融押出工程の時間は、カルボン酸末端基数の増加を抑制する観点から短いほど好ましく、例えば30分以下とするのが好ましい。   The PET obtained through the solid-phase polymerization in this way can be dried and then melt-extruded, for example, into fibers by spinning and stretching, or extruded into a sheet and biaxially stretched to obtain a biaxially oriented film. be able to. Of course, the time of the melt extrusion process at the time of forming into such a fiber or film is preferably as short as possible from the viewpoint of suppressing the increase in the number of carboxylic acid end groups, and is preferably 30 minutes or less, for example.

(1)固有粘度
得られたPETを、P−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いて溶解し、25℃で測定した。また、得られたPETが固相重合したものである場合は、PETを液体窒素で凍結し、細かく粉砕してから測定した。
(1) Intrinsic viscosity The obtained PET was dissolved in a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio) and measured at 25 ° C. When the obtained PET was solid-phase polymerized, it was measured after the PET was frozen with liquid nitrogen and finely pulverized.

(2)カルボン酸末端基数
得られたPETを、窒素雰囲気下、200℃でベンジルアルコールに溶解させた後、滴定法により、PETの重量1t当りの当量数として、カルボン酸末端基数(eq/t)を測定した。
(2) Carboxylic acid terminal group number After the obtained PET was dissolved in benzyl alcohol at 200 ° C. under a nitrogen atmosphere, the number of carboxylic acid terminal groups (eq / t) was determined as the number of equivalents per 1 ton of PET by titration. ) Was measured.

(3)耐加水分解性
(フィルムの製造)
得られたPETをチップ化して、回転式真空乾燥機にて180℃で3時間乾燥した後、押出機に供給して280℃で溶融押出し、スリットダイよりシート状に成形した。さらにこのシートを表面温度20℃の冷却ドラムで冷却固化した未延伸フィルムを100℃にて長手方向(縦方向)に3.5倍延伸し、25℃のロール群で冷却した。続いて、縦方向に延伸したフィルムの幅方向(長手方向と厚み方向に直交する方向)の両端をクリップで保持しながらテンターに導き130℃に加熱された雰囲気中で、幅方向(横方向)に3.7倍延伸した。その後テンター内で220℃に加熱された雰囲気中で熱固定を行い、横方向に3%の幅入れを行い、室温まで冷やして、厚み50μmのPETフィルムを得た。
(3) Hydrolysis resistance (production of film)
The obtained PET was made into chips, dried at 180 ° C. for 3 hours in a rotary vacuum dryer, supplied to an extruder, melt extruded at 280 ° C., and formed into a sheet from a slit die. Further, an unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 20 ° C. was stretched 3.5 times in the longitudinal direction (longitudinal direction) at 100 ° C. and cooled by a roll group at 25 ° C. Subsequently, in the atmosphere heated to 130 ° C. in an atmosphere guided to the tenter while holding both ends of the film stretched in the longitudinal direction in the width direction (direction orthogonal to the longitudinal direction and the thickness direction) with a clip, the width direction (lateral direction) The film was stretched 3.7 times. Thereafter, heat setting was performed in an atmosphere heated to 220 ° C. in a tenter, a width of 3% was placed in the transverse direction, and the mixture was cooled to room temperature to obtain a PET film having a thickness of 50 μm.

(耐加水分解性評価)
得られたPETフィルムを、その縦方向に150mm長、横方向に10mm幅に切り出した短冊状の試料片を作成した。この試料片を10枚用意し、そのうちの5枚について、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で、インストロンタイプの万有引張試験装置にて試料片の縦方向の破断伸度を測定し、それらの平均値を処理前の平均破断伸度とした。
他方、残りの5枚の試料片については、温度85℃、湿度85%RHに設定した環境試験機内に3000時間放置してから、初期破断伸度と同様にして破断伸度を測定し、それら5つの値の平均値を処理後の平均破断伸度とした。そして、処理後の平均破断伸度を処理前の平均破断伸度で割った値を破断伸度保持率(%)とし、下記基準にて評価した。なお、破断伸度保持率の高いものほど耐加水分解性が良好と判断される。
◎:破断伸度保持率が70%以上
○:破断伸度保持率が50以上70%未満
△:破断伸度保持率が30以上50%未満
×:破断伸度保持率が30%未満
(Evaluation of hydrolysis resistance)
A strip-shaped sample piece obtained by cutting the obtained PET film into a length of 150 mm in the vertical direction and a width of 10 mm in the horizontal direction was prepared. Ten sample pieces were prepared, and five of them were longitudinally measured with an Instron type universal tensile tester under conditions of 100 mm between chucks, 10 mm / min tensile speed, and 500 mm / min chart speed. The elongation at break was measured, and the average value thereof was taken as the average breaking elongation before treatment.
On the other hand, the remaining five sample pieces were left in an environmental test machine set at a temperature of 85 ° C. and a humidity of 85% RH for 3000 hours, and then measured for the breaking elongation in the same manner as the initial breaking elongation. The average value of the five values was taken as the average breaking elongation after the treatment. And the value which divided the average breaking elongation after a process by the average breaking elongation before a process was made into the breaking elongation retention (%), and the following reference | standard evaluated. In addition, it is judged that a thing with a high breaking elongation retention rate has a favorable hydrolysis resistance.
A: Breaking elongation retention is 70% or more B: Breaking elongation retention is 50 or more and less than 70% B: Breaking elongation retention is 30 or more and less than 50% X: Breaking elongation retention is less than 30%

[実施例1]
エステル交換反応容器にテレフタル酸ジメチルを100重量部、エチレングリコールを60重量部、酢酸マンガン四水塩0.019部を仕込み、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらリン化合物としてフェニルホスホン酸0.014部(テレフタル酸ジメチルのモル数を基準として17mmol%)を添加し、エステル交換反応を終了させた。続いて5分後に重縮合触媒として、三酸化アンチモン0.038部およびテトラブトキシチタネート0.005部を添加し、240℃まで加熱して一部のエチレングリコールを留出させた後、反応物を内部に撹拌翼を有する重縮合装置に移行した。
[Example 1]
A transesterification vessel was charged with 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and 0.019 part of manganese acetate tetrahydrate, heated to 150 ° C., melted and stirred. The reaction was advanced while the temperature inside the reaction vessel was slowly raised to 235 ° C., and the methanol produced was distilled out of the reaction vessel. When the distillation of methanol was completed, 0.014 part of phenylphosphonic acid (17 mmol% based on the number of moles of dimethyl terephthalate) was added as a phosphorus compound to complete the transesterification reaction. Subsequently, 0.05 part of antimony trioxide and 0.005 part of tetrabutoxy titanate were added as a polycondensation catalyst after 5 minutes and heated to 240 ° C. to distill a part of ethylene glycol. It shifted to the polycondensation apparatus which has a stirring blade inside.

ついで重合装置内の温度を240℃から272℃まで90分かけて昇温し、同時に装置内の圧力を大気圧から60Paまで減圧した。重合装置内の撹拌翼を回転させるための撹拌トルクが所定の値に達したら装置内を窒素ガスで大気圧に戻して重合を終了した。重合装置下部のバルブを開いて重合装置内部を窒素ガスで加圧し、重合の完了したポリエチレンテレフタレートをストランド状にして水中に吐出し、吐出されたストランドをカッターによって切断し、チップ化した。このようにして固有粘度が0.54dl/g、カルボン酸末端基数が13.8eq/tであるPETを得た。得られたPETの特性と重合時間とを表1に示す。   Subsequently, the temperature in the polymerization apparatus was raised from 240 ° C. to 272 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 60 Pa. When the stirring torque for rotating the stirring blade in the polymerization apparatus reached a predetermined value, the inside of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization. The valve at the bottom of the polymerization apparatus was opened and the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polymerized polyethylene terephthalate was made into a strand shape and discharged into water, and the discharged strand was cut by a cutter into chips. Thus, PET having an intrinsic viscosity of 0.54 dl / g and a carboxylic acid terminal group number of 13.8 eq / t was obtained. The properties and polymerization time of the obtained PET are shown in Table 1.

[実施例2〜5]
重合温度およびフェニルホスホン酸の添加量を表1に示すとおり変更した以外は、実施例1と同様な操作を繰り返した。得られたPETの特性と重合時間とを表1に示す。
[Examples 2 to 5]
The same operation as in Example 1 was repeated except that the polymerization temperature and the addition amount of phenylphosphonic acid were changed as shown in Table 1. The properties and polymerization time of the obtained PET are shown in Table 1.

[比較例1]
重合装置内の温度を240℃から290℃まで昇温させる以外は実施例1と同様な操作を実施し、固有粘度が0.54dl/g、カルボン酸末端基数が19.6eq/tであるPETを得た。得られたPETの特性と重合時間とを表1に示す。
[Comparative Example 1]
PET having the intrinsic viscosity of 0.54 dl / g and the number of carboxylic acid end groups of 19.6 eq / t, except that the temperature in the polymerization apparatus is raised from 240 ° C. to 290 ° C. Got. The properties and polymerization time of the obtained PET are shown in Table 1.

[比較例2]
リン化合物としてフェニルホスホン酸に変えて、トリエチルホスホノアセテート0.020部(テレフタル酸ジメチルのモル数を基準として17mmol%)を添加する以外は実施例1と同様な操作を実施し、固有粘度が0.54dl/g、カルボン酸末端基数が14.6eq/tであるPETを得た。得られたPETの特性と重合時間とを表1に示す。
このPETの重縮合反応時間は、実施例1のPETの約1.5倍を要しており、生産性が著しく劣るため製造上採用し難いものである。
[Comparative Example 2]
The same procedure as in Example 1 was performed, except that 0.020 part of triethylphosphonoacetate (17 mmol% based on the number of moles of dimethyl terephthalate) was added instead of phenylphosphonic acid as the phosphorus compound, and the intrinsic viscosity was PET having 0.54 dl / g and a carboxylic acid terminal group number of 14.6 eq / t was obtained. The properties and polymerization time of the obtained PET are shown in Table 1.
The polycondensation reaction time of this PET is about 1.5 times that of the PET of Example 1, and the productivity is remarkably inferior, making it difficult to adopt in production.

[比較例3]
重合装置内の温度を240℃から290℃まで昇温させる以外は比較例2と同様な操作を実施し、固有粘度が0.54dl/g、カルボン酸末端基数が24.2eq/tであるPETを得た。得られたPETの特性と重合時間とを表1に示す。
[Comparative Example 3]
PET having the intrinsic viscosity of 0.54 dl / g and the number of carboxylic acid end groups of 24.2 eq / t, except that the temperature in the polymerization apparatus was raised from 240 ° C. to 290 ° C. Got. The properties and polymerization time of the obtained PET are shown in Table 1.

Figure 0005415816
Figure 0005415816

[実施例6]
実施例1で得られたPETを160℃で4時間予備乾燥した後、回転式タンブラー型固相重合反応装置に仕込み、225℃、67Pa以下の真空度で17時間固相重合を実施して、固有粘度が0.78dl/g、カルボン酸末端基数が9.3eq/tであるPETを得た。得られたPETの特性を表2に示す。
[Example 6]
The PET obtained in Example 1 was pre-dried at 160 ° C. for 4 hours, then charged into a rotary tumbler type solid phase polymerization reactor, and subjected to solid phase polymerization at 225 ° C. and a vacuum of 67 Pa or less for 17 hours. A PET having an intrinsic viscosity of 0.78 dl / g and a carboxylic acid end group number of 9.3 eq / t was obtained. The properties of the obtained PET are shown in Table 2.

[実施例7〜10]
実施例1で得られたPETの代わりに、実施例2〜5で得られたPETを使用し、固相重合時間を変更した以外は実施例6と同様な操作を繰り返した。得られたPETの特性を表2に示す。
[Examples 7 to 10]
The same operation as in Example 6 was repeated except that the PET obtained in Examples 2 to 5 was used instead of the PET obtained in Example 1 and the solid phase polymerization time was changed. The properties of the obtained PET are shown in Table 2.

[比較例4]
比較例1で得られたPETを使用する以外は実施例6と同様な操作を実施し、固有粘度が0.79dl/g、カルボン酸末端基数が14.1eq/tであるPETを得た。得られたPETの特性を表2に示す。
[Comparative Example 4]
The same operation as in Example 6 was carried out except that the PET obtained in Comparative Example 1 was used, and PET having an intrinsic viscosity of 0.79 dl / g and a carboxylic acid terminal group number of 14.1 eq / t was obtained. The properties of the obtained PET are shown in Table 2.

[比較例5]
比較例3で得られたPETを使用する以外は実施例6と同様な操作を実施し、固有粘度が0.78dl/g、カルボン酸末端基数が18.5eq/tであるPETを得た。得られたPETの特性を表2に示す。
[Comparative Example 5]
The same operation as in Example 6 was performed except that the PET obtained in Comparative Example 3 was used, and PET having an intrinsic viscosity of 0.78 dl / g and a carboxylic acid terminal group number of 18.5 eq / t was obtained. The properties of the obtained PET are shown in Table 2.

Figure 0005415816
Figure 0005415816

本発明のPETの製造方法は、効率的に耐加水分解性に優れたPETを製造できることから、繊維やフィルムの原料であるPETの製造方法として好適に使用でき、特に耐加水分解性が求められる成形体の原料の製造方法として、極めて好適に使用できる。   Since the PET production method of the present invention can efficiently produce PET having excellent hydrolysis resistance, it can be suitably used as a method for producing PET, which is a raw material for fibers and films, and particularly requires hydrolysis resistance. As a manufacturing method of the raw material of a molded object, it can use very suitably.

Claims (2)

テレフタル酸もしくはそのエステル形成性誘導体とエチレングリコールとをエステル交換反応もしくはエステル化反応させて前駆体を製造し、得られた前駆体を溶融状態で重縮合反応させるポリエチレンテレフタレートの製造方法において、
該重縮合反応の初期段階までに、全ジカルボン酸成分のモル数を基準として、5〜100mmol%のフェニルホスホン酸および重縮合反応触媒をこの順で添加し、
そして、重縮合反応を得られるポリエチレンテレフタレートの融点(Tm:℃)以上280℃以下の温度で固有粘度が0.45dl/g以上になるまで行い、カルボン酸末端基数が15eq/t以下であることを特徴とするポリエチレンテレフタレートの製造方法。
In a method for producing polyethylene terephthalate in which terephthalic acid or an ester-forming derivative thereof and ethylene glycol are transesterified or esterified to produce a precursor, and the resulting precursor is polycondensed in a molten state,
By the initial stage of the polycondensation reaction, 5 to 100 mmol% of phenylphosphonic acid and a polycondensation reaction catalyst are added in this order, based on the number of moles of all dicarboxylic acid components,
And it is performed until the intrinsic viscosity becomes 0.45 dl / g or more at a temperature of the melting point (Tm: ° C.) or more and 280 ° C. or less of the polyethylene terephthalate capable of obtaining the polycondensation reaction, and the number of carboxylic acid end groups is 15 eq / t or less. A process for producing polyethylene terephthalate, characterized in that
溶融状態での重縮合反応終了後に、さらに固有粘度が0.60〜1.0の範囲となるまで固相重合を行うことを特徴とする請求項1記載のポリエチレンテレフタレートの製造方法。 2. The method for producing polyethylene terephthalate according to claim 1 , wherein after the polycondensation reaction in the molten state is completed, solid phase polymerization is further performed until the intrinsic viscosity is in the range of 0.60 to 1.0. 3.
JP2009106458A 2009-04-24 2009-04-24 Method for producing polyethylene terephthalate Active JP5415816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106458A JP5415816B2 (en) 2009-04-24 2009-04-24 Method for producing polyethylene terephthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106458A JP5415816B2 (en) 2009-04-24 2009-04-24 Method for producing polyethylene terephthalate

Publications (2)

Publication Number Publication Date
JP2010254805A JP2010254805A (en) 2010-11-11
JP5415816B2 true JP5415816B2 (en) 2014-02-12

Family

ID=43316099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106458A Active JP5415816B2 (en) 2009-04-24 2009-04-24 Method for producing polyethylene terephthalate

Country Status (1)

Country Link
JP (1) JP5415816B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881464B2 (en) * 2010-07-06 2012-02-22 帝人デュポンフィルム株式会社 Polyester film for solar cell back surface protective film
CN105102503B (en) 2013-04-05 2017-10-24 味之素株式会社 Petchem

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124004A (en) * 2002-10-07 2004-04-22 Teijin Ltd Manufacturing method of polyester, polyester and fiber
JP2004175912A (en) * 2002-11-27 2004-06-24 Teijin Ltd Method for producing polyester film
JP2004217750A (en) * 2003-01-14 2004-08-05 Teijin Ltd Catalyst for manufacturing polyester and polyester produced by using the same
JP2006124599A (en) * 2004-11-01 2006-05-18 Mitsubishi Chemicals Corp Catalyst for polyester polycondensation reaction and method for producing polyester
JP5215074B2 (en) * 2008-08-01 2013-06-19 帝人株式会社 Catalyst for producing polyester and production of polyester using the catalyst

Also Published As

Publication number Publication date
JP2010254805A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5569516B2 (en) Polyester resin composition and film
JP5369387B2 (en) Process for producing polymethylene terephthalate composition and film
JP6592507B2 (en) Polyester resin composition and method for producing the same
JP2004067733A (en) Copolyester and its manufacturing method
KR102031012B1 (en) Polyethylene terephthalate composition, and method for producing same
JP5415816B2 (en) Method for producing polyethylene terephthalate
JP6904461B2 (en) Polyester resin composition
JP5515196B2 (en) Polyester composition, polyester film comprising the same, and method for producing the same
JP2006265275A (en) Method for producing polyester composition
JP5940919B2 (en) Polyester and method for producing the same
JP5947081B2 (en) Polyester composition and method for producing the same
JP2009185194A (en) Polyester composition
JP2014165257A (en) Biaxially stretched polyester film for solar battery backside protection
JP4817648B2 (en) Polyester composition and molded article comprising the same
JP2007277305A (en) Thermoplastic polyester, method for producing the same, and film
JP7431862B2 (en) polyester resin mixture
JP2006152140A (en) Polyester composition and molded article therefrom
JP5601393B2 (en) Polyethylene terephthalate composition, method for producing the same, and film
JP2012051233A (en) Weather-resistant polyester film
JP2006111655A (en) Polyester resin composition and method for producing optical fiber-covering loose tube
JPH06234909A (en) Polybutylene terephthalate resin composition and its production
JP5940920B2 (en) Polyester and method for producing the same
JP2013187244A (en) Biaxially stretched polyester film for solar battery backside protection
JP5151029B2 (en) Polyester composition and fibers comprising the same
TW202219108A (en) Catalyst particles for polyester production and method for producing polyester using same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5415816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250